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Abstract

In this paper, we describe an improvement
on the task of giving instructions to robots
in a simulated block world using unre-
stricted natural language commands.

1 Introduction

Many of the recent methods for interpreting natu-
ral language commands are based mainly on se-
mantic parsers and hand designed rules. This
is often due to small datasets, such as Robot
Commands Treebank (Dukes, 2013) or datasets
by MacMahon et al. (2006) or Han and Schlangen
(2017).

Tellex et al. (2011) and Walter et al. (2015)
present usage of such systems in real world. They
developed a robotic forklift which is able to un-
derstand simple natural language commands. For
training, they created small dataset by manu-
ally annotating the data from Amazon Mechanical
Turk. Their model is based on probabilistic graph-
ical models invented specifically for this task.

The first approach using neural networks is pro-
posed by Bisk et al. (2016b), who describe and
compare several neural models for understanding
natural language commands. Their dataset (Bisk
et al., 2016a) contains simulated world with square
blocks and actions descriptions in English (see
Figure 1). Since the actions are always shifts of
single block to some location, they divide the task
into two: predicting which block should be moved
and where. They call these tasks source and tar-
get predictions. With their best model, they reach
98% accuracy for source prediction and 0.98 aver-
age distance between correct and predicted loca-
tion for target.

The world is represented by x and y coordinates
of 20 blocks. Each block has a digit or logo of a
company for easy identification. There are 16,767

Figure 1: Visualisation of command “Move
Nvidia block to the left of HP block” in our world.

commands in the dataset, divided into train, devel-
opment, and test set. The commands were writ-
ten by people using Amazon Mechanical Turk and
therefore contains many typos and other errors.

In this paper, we propose several models solv-
ing this task and report improvement compared to
the previous work by Bisk et al. (2016b).

2 Models

2.1 Data preprocessing
For tokenization of commands we use simple rule
based system. Because of the typos we use Hun-
spell1, which is a widely used spell checker. Fi-
nally to prevent overfitting of neural models we
replace all tokens with less than 4 occurrences in
training data with special token representing un-
known word.

2.2 Benchmark model
To be able to measure the impact of the RNN
based models, we first introduce a simple rule-
based benchmark. The benchmark searches for
block numbers (1, 2, . . . , 20, one, two, . . . twenty),
logo names (adidas, bmw, burger, king, . . . ),2 and
directions (west, north, east, south, left, above,
right, below) in the commands.

1http://hunspell.github.io/
2If the logo name contains more words (e.g. burger king),

this model search for each part of the word and for concate-
nation of both words (e.g. burger, king, and burgerking).
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For predicting the source (which block should
be moved), the model predicts the block corre-
sponding to the first word in the sentence denoting
a block. For predicting the target location (where
the source block should be moved), the model pre-
dicts position of the last word describing block
If there exist words describing directions, the last
one is chosen and the position is changed by one
in the direction corresponding to the word.

For example, in the command

Put the UPS block in the same column
as the Texaco block, and one row below
the Twitter block.

the benchmark model finds three words describing
blocks (UPS, Texaco, and Twitter) and the word
below describing direction. The block word (UPS)
is predicted as source. As the target location, the
banchmark model chooses the current location of
Twitter block (the last block word) moved one tile
down, because of the below word.

2.3 Neural model with world on the input

Our first neural model is relatively straightfor-
ward. Word embedding vectors representing the
tokenized command are given to a bidirectional
LSTM recurrent layer (Hochreiter and Schmidhu-
ber, 1997). The last two states of both directions
are concatenated together with the world represen-
tation (2 coordinates for each of the 20 blocks).
and fed into single feed forward layer with lin-
ear activation function. For predicting source, this
layer has dimension 20 and its outputs are then
used as logits to determine the source block. For
predicting location the last feed forward layer has
dimension two and its outputs are directly inter-
preted as predicted target location.

2.4 Predicting reference and relative position

Our second model is similar to the one proposed
by Bisk et al. (2016b).

It does not predict directly the target location,
but a meaning representation of the command,
which is then interpreted based on the world state
to get the final predicted target location. Our
representation is composed of 20 weights repre-
senting how much each block is used as a refer-
ence, and 2-dimensional vector representing the
relative position from the reference block. Let
w = (w1, w2, ...w20)T represent the weights of in-
dividual reference blocks, d = (d1, d2)T represent

the relative position and

S =
(

s1,1 s1,2 . . . s1,20

s2,1 s2,2 . . . s2,20

)
be the state of world, where s1,i and s2,i are x and
y coordinates of the i-th block The final target lo-
cation l ∈ R2 is then computed as l = Sw + d.

In most commands, the target is described in
one of the following ways:

1. By reference and direction: Move BMW
above Adidas

2. By reference, distance and direction: Move
BMW 3 spaces above Adidas

3. By absolute target: Move BMW to the middle
of bottom edge of the table

4. By direction relative to source: Move BMW 3
spaces down

5. By two references: Move BMW between Adi-
das and UPS

This representation is able to capture the
meaning of all of these. For example, the
command 1 can be represented as w =
(1, 0, 0, ..., 0)T , d = (0, 1)T , the command 5 as
w = (0.5, 0, 0, ..., 0, 0, 0.5)T , d = (0, 0)T .3

The tokenized one-hot encoded command is
given to a bidirectional LSTM recurrent layer, the
two last states are concatenated and fed into two
parallel feed-forward layers. The first one has 20
dimensions and outputs the weights w of refer-
ences, the second one is 2-dimensional and out-
puts the relative position d. The target location is
then computed from these.

2.5 Using recurrent output layers
We also tested a variant of the previous architec-
ture in which the feed-forward output layers are
substituted by recurrent 128-dimensional LSTM
layers. The new architecture is shown in Figure 2.

We also tried similar models for predicting the
source blocks. They have bidirectional recur-
rent layer, followed by single output layer, which
is feed-forward for one model and recurrent 64-
dimensional LSTM for the other one.

3 Results

The experiment results are compared in Table 3.
We report improvement over the previous results
for both source and target location predictions.
For source prediction the network without world

3The Adidas block has weight w1 and the UPS block is
the last with weight w20.
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Figure 2: Final target prediction network, which uses recurrent layer instead of feed-forward one.

on the input and with feed-forward output layer
achieves accuracy 98.8%.This is better than the
best model of Bisk et al. (2016b), who reported
98% accuracy. The improvement is mainly caused
by preprocessing data with spell checker and bet-
ter hyperparameter selection. Without using spell
checker our model has accuracy 98.3%.

As for the target location prediction, our best
model has average distance of 0.72 between pre-
dicted and correct target location. This is an im-
provement over both rule based benchmark with
1.54 and the best model reported by Bisk et al.
(2016b), who had 0.98. The median distance is
0.04 which is much better than their comparable
End-To-End model with median distance 0.53. In
65.8% of test instances the distance of our model
is less than 0.5, which might be considered a dis-
tinctive line between good and bad prediction.

4 Error analysis and discussion

We manually analyzed bad predictions of our best
model. As for the source block prediction, there
were only 18 mistakes made on the devset:

1. The two-sentence command (7 mistakes). In
the first sentence, it looks like the first men-
tioned block is the source, but the second sen-
tence states otherwise.4 “The McDonald’s
tile should be to the right of the BMW tile.
Move BMW.”

2. Block switching (3 mistakes): “The 16 and
17 block moved down a little but switched
places.”

3. Commands with typos (3 mistakes): “Slide
block the to the space above block 4” (Note
that the third word here should be three.)

4. Commands including a sequence (2 mis-
takes): “Continue 13, 14, 15. . . ”

5. Grounding error (2 mistakes), see Table 1.
6. Annotation error (once, not a mistake).
Major improvement of source accuracy may be

achieved by solving the problem where second
sentence changes the meaning of the first one.
However, there are no similar commands in the
training data, so it is hard to come with solution.

4All these seven sentences were likely written by single
author.
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Mistake type # Description & Example
More reference 31 Target location is described using two or more reference blocks.
blocks Place block 12 on the same horizontal plane as block 9, and one column

left of block 14.
Source same as
reference block

11 Model mistakes source for reference. Typically, the last block mentioned in
the sentence is source.
Move block 10 above block 11, evenly aligned with 10 and slightly sepa-
rated from the top edge of 10.

Annotation 11 Command does not make sense or does not describe the correct action.
error Move Pepsi to the slight southwest until it’s north of Pepsi.
Missing reference 9 No reference block in the command.
block Move the Stella block down to the very bottom of the square.
Large direction 9 Distance between reference and correct location is more than 1 block.

move the texaco block 5 block lengths above the BMW block
Grounding error 8 Unusual description of blocks and typos in block names.

Put the block that looks like a taurus symbol just above the bird.
Learning mistake 8 Relatively simple example, yet still bad prediction.

Block 4 should be moved almost straight down until it is resting on block 5.
Others 13

Table 1: The worst predictions analysis: Probable reasons behind bad predictions in 100 worst instances
of the development set. References are the blocks which are used in the command for describing the
target location.

Source Target
Random baseline 5.4% 6.12
Middle baseline 5.4% 3.46
Rule-based benchmark 96.3% 1.54
Bisk et al. (2016b) 98% 0.98
World as input 98.5% 3.05
Feed-forward output layer 98.8% 1.07
Recurrent output layer 98.5% 0.72

Table 2: Results comparison. In random and mid-
dle baselines, the randomly chosen block is placed
on random position or in the middle of the board.

Similarly, the word switch appears only once in the
training set.

Overall we think that for source prediction we
reached the limitations given by the dataset we are
using and without usage of another data it is very
hard to get significant improvements.

For target prediction we divide 100 worst pre-
dictions into categories, which can be seen in Ta-
ble 1.

11 out of the 100 worst predictions are bad be-
cause the commands does not make sense. But
also in many other commands the target location
is not described precisely, so the overall impact of
inaccurate commands is in our opinion bigger and

it also influences the training of models.
The other problem categories except of Learn-

ing mistake have similar underlying cause. The
sentence structure is unusual and does not appear
in the training data very often. Also in some cases
such as the More references category the sentences
are more complicated.

But even though these sentences are challeng-
ing and the model makes mistakes in them rela-
tively often, it works well for majority of these
sentences. Thus we find out that our proposed sen-
tence representation is in practice capable of rep-
resenting almost all sentences in the dataset.

5 Conclusion

We presented four different architectures of neu-
ral networks for solving the task of robot commu-
nication on dataset by Bisk et al. (2016a). Our
last model surpassed the previous reported results
and reached accuracy of 98.8% for source predic-
tion and 0.72 average distance between predicted
and correct target location. We find out that our
model is capable of understanding wide variety of
commands in natural language and make mistakes
mostly in sentences with features, which are badly
or not at all represented in the training data.
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