
Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 178–185,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Gradual Learning of Matrix-Space Models of Language
for Sentiment Analysis

Shima Asaadi∗ and Sebastian Rudolph
Faculty of Computer Science

TU Dresden, Germany
firstname.lastname@tu-dresden.de

Abstract
Learning word representations to capture the
semantics and compositionality of language
has received much research interest in natu-
ral language processing. Beyond the popu-
lar vector space models, matrix representations
for words have been proposed, since then, ma-
trix multiplication can serve as natural com-
position operation. In this work, we investi-
gate the problem of learning matrix representa-
tions of words. We present a learning approach
for compositional matrix-space models for the
task of sentiment analysis. We show that our
approach, which learns the matrices gradually
in two steps, outperforms other approaches and
a gradient-descent baseline in terms of quality
and computational cost.

1 Introduction

Recently, a lot of NLP research has been de-
voted to word representations with the goal to
capture language semantics, compositionality, and
other linguistic aspects. A prominent class of
approaches to produce word representations are
Vector Space Models (VSMs) of language. In
VSMs, a vector representation is created for each
word in the text, mostly based on distributional
information. One of the recent prominent meth-
ods to extract vector representations of words is
Word2vec, introduced by Mikolov et al. (2013a;
2013b). These models measure both syntactic and
semantic aspects of words and also seem to exhibit
good compositionality properties. The principle
of compositionality states that the meaning of a
complex expression can be obtained from combin-
ing the meaning of its constituents (Frege, 1884).
In the Word2vec case and many other VSM ap-
proaches, some vector space operations (such as

∗Supported by DFG Graduiertenkolleg 1763 (QuantLA)

vector addition) are used as composition opera-
tion.

One of the downsides of using vector addi-
tion (or other commutative operations like the
component-wise product) as the compositional-
ity operation is that word order information is
inevitably lost. Alternative word-order-sensitive
compositionality models for word representations
have been introduced, such as Compositional
Matrix-Space Models (CMSMs) (Rudolph and
Giesbrecht, 2010). In such models, matrices in-
stead of vectors are used as word representations
and compositionality is realized via matrix mul-
tiplication. It has been proven that CMSMs are
capable of simulating a wide range of VSM-based
compositionality operations. The question, how-
ever, how to learn suitable word-to-matrix map-
pings has remained largely unexplored with few
exceptions (Yessenalina and Cardie, 2011). The
task is exacerbated by the fact that this amounts to
a non-convex optimization problem, where a good
initialization is crucial for the success of gradient
descent techniques.

In this paper, we address the problem of learn-
ing CMSM in the domain of sentiment analysis.
As has been observed before, the sentiment of a
phrase is very much influenced by the presence
and position of negators and modifiers, thus word
order seems to be particularly relevant for estab-
lishing an accurate sentiment score.

We propose to apply a two-step learning method
where the output of the first step serves as ini-
tialization for the second step. We evaluate the
performance of our method on the task of fine-
grained sentiment analysis and compare it to a
previous work on learning CMSM for sentiment
analysis (Yessenalina and Cardie, 2011). More-
over, the performance of our representation learn-
ing in sentiment composition is evaluated on sen-
timent composition in opposing polarity phrases

178

(Kiritchenko and Mohammad, 2016b).
The rest of the paper is organized as follows.

Section 2 provides the related works. A detailed
description of the approach is presented in Section
3, followed by experiments and discussion in Sec-
tion 4, and the conclusion in the last section.

2 Related Work

Compositional Distributional Semantics: In
compositional distributional semantics, different
approaches for learning word and phrase represen-
tations and ways to compose the constituents are
studied. As an early work in compositional dis-
tributional semantics, Mitchell and Lapata (2010)
propose vector composition models with additive
and multiplicative functions as the composition
operations in semantic VSMs. These models out-
perform non-compositional approaches in seman-
tic similarity of complex expressions. Mikolov
et al. (2013a) propose Word2vec where contin-
uous vector representations of words are trained
through continuous bag-of-words and skip-gram
models. These models are supposed to reflect
syntactic and semantic similarities of words. An
extension to these models is a vector representa-
tion of idiomatic phrases by considering a vec-
tor for each phrase and training Word2vec accord-
ingly (Mikolov et al., 2013b). Moreover, compo-
sitionality is captured in these models by applying
certain mathematical operations on word vectors.

Rudolph and Giesbrecht (2010) introduced
compositional matrix-space models in which
words are represented as matrices, and defined
composition operation as a matrix multiplication
function. Learning such matrix representations
can be done by supervised machine learning al-
gorithms (Yessenalina and Cardie, 2011). Other
approaches using matrices for distributional rep-
resentations of words have been introduced more
recently. Socher et al. (2012) introduce a model in
which a matrix and a vector is assigned to each
word. The vector captures the meaning of the
word by itself and the matrix shows how it modi-
fies the meaning of neighboring words. The model
is learned through recursive neural networks. In
the model of Socher et al. (2013), a unique tensor-
based composition function in a recursive neural
tensor network is introduced which composes all
word vectors. Maillard and Clark (2015) describe
a compositional model for learning adjective-noun
pairs where, first, a vector representation for each

word is trained using a skip-gram model. Then,
adjective matrices are trained in composition to
their nouns, using back-propagation.
Sentiment Analysis: There is a lot of research in-
terest in the sentiment analysis task in NLP. The
task is to classify the polarity of a text (negative,
positive, neutral) or assign a real-valued score,
showing the polarity and intensity of the text.
Some contributions focus on learning sentiment of
a short text based on supervised machine learn-
ing techniques (Yessenalina and Cardie, 2011;
Agrawal and An, 2014). Recent approaches have
focused on learning different types of neural net-
works for sentiment analysis, such as the work
of Socher et al. (2013) which apply recursive neu-
ral tensor networks for both fine-grained and bi-
nary classification of phrases and sentences. Tim-
maraju and Khanna (2015) use recursive-recurrent
neural networks for sentiment classification of
long text, and Hong and Fang (2015) apply long
short-term memory and deep recursive-NNs. In a
very recent work by Wang et al. (2016), convo-
lutional neural networks and recurrent neural net-
works are combined leading to a significant im-
provement in sentiment analysis of short text.
Sentiment Composition: Compositionality in
sentiment analysis is used to compute the sen-
timent of complex phrases and sentences. Re-
cent works of Kiritchenko and Mohammad
(2016a; 2016b) deal with sentiment composition
of phrases. In (Kiritchenko and Mohammad,
2016a), they create a dataset of unigrams, bigrams
and trigrams, which contains phrases with at least
one negative and one positive word. They ana-
lyze the performance of different learning algo-
rithms and word embeddings on the dataset with
different linguistic patterns. In (Kiritchenko and
Mohammad, 2016b), they create a sentiment com-
position lexicon for phrases containing negators,
modals and adverbs with their associated senti-
ment scores, and study the effect of modifiers on
the overall sentiment of phrases.

3 The Approach

Learning appropriate word representations to ex-
tract syntactic and semantic information of com-
positional phrases is a complex task in sentiment
analysis. In order to learn a sentiment-aware
representation model, we propose the following
approach: We use a compositional matrix-space
model, where, as opposed to vector-space models

179

of language, words are represented by matrices.
In the following, we describe the representation
model itself and the training in detail.

3.1 Model Description: Compositional
Matrix-Space Model

Compositional Matrix-Space Models (CMSMs)
consider compositionality in language by the fol-
lowing general idea: the semantic space consists
of quadratic matrices carrying real values. In other
words, the semantics of each word is represented
by a matrix. Then, considering the standard ma-
trix multiplication as the composition operation,
the semantics of phrases are obtained by multi-
plying the word-matrices in the appropriate or-
der (Rudolph and Giesbrecht, 2010). Training
CMSM using machine learning algorithms yields
a type of word embedding for each word, which
is a low-dimensional real-valued matrix. Like for
word embeddings into vector spaces, each ma-
trix representation is supposed to contain syntactic
and semantic information about the word. Since
we consider the task of sentiment analysis, word
embeddings must be trained to contain sentiment-
related information.

More formally, let p = x1 · · ·xk be a phrase
consisting of k words. The CMSM assigns to each
word xj a matrix Wxi ∈ Rm×m. Then the repre-
sentation of p which is the composition of words
in the phrase, is shown as the matrix product of the
words in the same order:

Wp =
k∏

i=1

Wxi = Wx1Wx2 · · ·Wxk

To finally associate a real-valued score to a phrase
p, we map the matrix representation of p to a real
number using two mapping vectors α, β ∈ Rm as
follows:

ωp = α>Wpβ

In our case, the final score ωp is supposed to
indicate the sentiment polarity and strength of the
phrase p.

The learning task is now, given a set of d train-
ing examples (pj , ωj) with 1 ≤ j ≤ d, to find
matrix representation for all words occurring in all
pj , such that ωpj ≈ ωj for all j. Thereby, we fix

α = e1 =

1
0
...
0

 and β = em =

0
...
0
1

 ,

which only moderately restricts the expressivity of
our model as made formally precise in the follow-
ing theorem.

Theorem 1. Given matrices W1, . . . ,W` ∈
Rm×m and vectors α, β ∈ Rm, there are matrices
Ŵ1, . . . , Ŵ` ∈ R(m+1)×(m+1) such that for ev-
ery sequence i1 · · · ik of numbers from {1, . . . , `}
holds

α>Wi1 · · ·Wikβ = e>1 Ŵi1 · · · Ŵikem+1

Proof. If α is the zero vector, all scores will be
zero, so we can let all Ŵh be the (m+1)×(m+1)
zero matrix.

Otherwise let M be an arbitrary m ×m matrix
of full rank, whose first row is α, i.e., e>1 M = α>.
Now, let

Ŵh :=

(
MWhM

−1 MWhβ

0 · · · 0 0

)

for every h ∈ {1, . . . , `}. Then, we obtain

ŴgŴh =

(
MWgWhM

−1 MWgWhβ

0 · · · 0 0

)

for every g, h ∈ {1, . . . , `}. This leads to

e>1 Ŵi1 · · · Ŵikem+1

= e>1 MWi1 · · ·Wikβ

= α>Wi1 · · ·Wikβ

In words, this theorem guarantees that for every
CMSM-based scoring model with arbitrary vec-
tors α and β there is another such model (with
dimensionality increased by one) where α and β
are distinct unit vectors. This justifies our above
mentioned choice.

3.2 Model Training
Since the learning problem for CMSMs is not a
convex problem, it must be trained carefully and
specific attention has to be devoted to a good ini-
tialization (Yessenalina and Cardie, 2011). To this
end, we (1) perform an “informed initialization”
exploiting available scoring information for one-
word phrases (unigrams), (2) apply a first learning
step training only on parts of the matrices and us-
ing scored one- and two-word phrases from our

180

training set, and (3) use the matrices obtained in
this step as initialization for training the full ma-
trices on the full training set.
Initialization: In this step, we first take all the
words in the training data as our vocabulary, cre-
ating quadratic matrices of size m × m with en-
tries from a normal distribution N (0, 0.1). Then,
we consider the words which appear in unigram
phrases pj = x with associated score ωj in the
training set. We exploit the fact that for any matrix
W , computing e>1 Wem extracts exactly the entry
of the first row, last column of W . Hence, we up-
date this entry in every matrix corresponding to a
scored unigram phrase by this value, i.e.:

Wpj =

· · · · ωj
...

. . .
...

· · · · ·

This way, we have initialized the word-to-

matrix mapping such that it leads to perfect scores
on the unigram phrases.
First Learning Step: After initialization, we con-
sider bigram phrases. The sentiment value of a bi-
gram phrase pj = xy is computed by the standard
multiplication of word matrices of its constituents
in the same order and mapping to the real value
using the mapping vectors α = e1 and β = em:

ωj = e>1 WxWyem

=

1
...
0

>x1,1 · · · x1,m

...
. . .

...
xm,1· · ·xm,m

y1,1 · · · y1,m

...
. . .

...
ym,1· · ·ym,m

0

...
1

=

x1,1
...

x1,m

> y1,m

...
ym,m

 =
∑m

i=1 x1,iyi,m

We observe that for bigrams, multiplying the
first row of the first matrix (row vector) with the
last column of the second matrix (column vector)
yields the sentiment score of the bigram phrase.
Hence, as far as the scoring of unigrams and bi-
grams are concerned, only the matrix entries in the
first row and the last column are relevant – thanks
to our specific choice of the vectors α and β.

This observation justifies the next learning step:
we use the unigrams and bigrams in the training
set to learn optimal values for the relevant matrix
entries only.

Second Learning Step: Using the entries ob-
tained in the previous learning step for initializa-
tion, we finally repeat the optimization process,
using the full training set and optimizing all the
matrix values simultaneously.

For both learning steps, we apply the batch gra-
dient descent optimization method on the training
set to minimize the cost function defined as the
summed squared error (SSE):

C(W) =
1
2

d∑
j=1

(ω̂j − ωj)2

Then, update the word matrices as follows:

Wxi = Wxi − η × (
∂C(W)
∂Wxi

+ λWxi)

In order to avoid overfitting in optimization, a
regularization term λWxi is used.

According to Petersen and Pedersen (2012) the
derivative of a phrase with respect to the i-th word-
matrix is computed as follows:

∂ωj

∂Wxi

=
∂(α>Wx1 · · ·Wxi · · ·Wxk

β)
∂Wxi

=

(α>Wx1 · · ·Wxi−1)
>(Wxi+1 · · ·Wxk

β)

If a word xi occurs several times in the phrase,
then the partial derivative of the phrase with re-
spect to Wxi is the sum of partial derivatives with
respect to each occurrence of Wxi .

4 Experiments

We evaluate our approach on two different datasets
which provide short phrases annotated with senti-
ment values. In both cases, we perform a ten-fold
cross-validation.

4.1 Evaluation on Sentiment-Annotated
Phrases from the MPQA Corpus

Experimental Setting: For the first evaluation of
the proposed approach, we use the MPQA cor-
pus1. This corpus contains newswire documents
annotated with phrase-level polarity and intensity.
We extracted the annotated phrases from the cor-
pus documents, obtaining 9501 phrases. We re-
moved phrases with low intensity similar to Yesse-
nalina and Cardie (2011). The levels of polari-

1http://mpqa.cs.pitt.edu/corpora/mpqa_corpus/

181

ties and intensities and their translation into nu-
merical values are as per Table 1. For the eval-
uation, we apply a ten-fold cross-validation pro-
cess on the training data as follows: eight folds
are used as training set, one fold as validation set
and one fold as test set. The initial number of it-
erations in the first learning and second learning
steps are set to T = 200 each, but we stop iterating
when we obtain the minimum ranking loss, e =
1
n

∑
i |ω̂i − ωi|, on the validation set. Finally, we

record the ranking loss of the obtained model for
the test set. The learning rate η and regularization
parameter λ in gradient descent are set to 0.01, by
experiment. The dimension of matrices is set to
m = 3 in order to be able to compare our results to
the approach described by Yessenalina and Cardie
(2011), called Matrix-space OLogReg+BowInit.
We call our approach Gradual Gradient descent-
based Matrix-Space Models (Grad-GMSM). All
implementations have been done in Python 2.7.

Polarity Intensity Score
negative high, extreme −1
negative medium −0.5
neutral medium, high, extreme 0
positive medium 0.5
positive high, extreme 1

Table 1: Phrase polarities and intensities in the
MPQA corpus and their translation into sentiment
scores.

Results and Discussion: In Yessenalina and
Cardie’s Matrix-space OLogReg+BowInit, matri-
ces are initialized with a bag-of-words model.
Then, ordered logistic regression is applied in or-
der to minimize the negative log-likelihood of the
training data, as the objective function. L-BFGS-B
is used as their optimizer. To avoid ill-conditioned
matrices, a projection step is added to matrices
during training, by shrinking the singular value of
matrices to one.

The ranking losses obtained by Yessenalina and
Cardie’s and by our method are shown in Table 2.
As we observe, Grad-GMSM obtained a signifi-
cantly lower ranking loss than Matrix-space OLo-
gReg+BowInit.

Table 3 shows the sentiment scores of some ex-
ample phrases trained using these two methods.
As shown in the table, the two approaches’ results
coincide regarding the order of basic phrases: the
score of “very good” is greater than “good” (and
both are positive) and the score of “very bad” is

Ranking
Method loss
Grad-GMSM 0.3126
Matrix-space OLogReg+BowInit 0.6375

Table 2: Ranking loss of compared methods.

Matrix-space
Phrase Grad-GMSM OLogReg+BowInit
good 0.73 2.81
very good 0.95 3.53
not good −0.43 −0.16
not very good −0.29 0.66
bad −0.80 −1.67
very bad −1.04 −2.01
not bad 0.38 −0.54
not very bad 0.32 −1.36

Table 3: Frequent phrases with average sentiment
scores

less than “bad” (and both are negative). Also,
“not good” is characterized as negative by both
approaches.

On the other hand, there are significant differ-
ences between the two approaches: for example,
our approach characterizes the phrase “not bad”
as mildly positive while their’s associates a neg-
ative score to it, the same discrepancy occurs for
“not very bad”. Intuitively, we tend to agree more
with our method’s verdict on these phrases.

In general, our findings confirm those of Yesse-
nalina and Cardie: “very” seems to intensify the
value of the subsequent word, while the “not” op-
erator does not just flip the sentiment of the word
after it, but also dampens the sentiment of the
words gradually. On the other hand, the scores of
phrases starting with “not very” defy the assump-
tion that the described effects of these operators
can be combined in a straightforward way.

Figure 1 provides a more comprehensive se-
lection of phrases and their associated scores
by our approach. We obtained an average of
ω(very very good) = 1.23, which is greater than
“very good”, and ω(very very bad) = −1.34
less than “very bad”. Therefore, we can also
consider “very very” as an intensifier operator.
Moreover, we observe that the average score of
ω(not really good) = −0.463 is not equal to the
average score of ω(really not good) = −0.572,
which demonstrates that the matrix-based compo-
sitionality operation shows sensitivity to word or-
ders, arguably reflecting the meaning of phrases

182

-2,5 -2 -1,5 -1 -0,5 0 0,5 1 1,5 2

really very bad
very very bad
really bad
very bad
bad
really not good
not really good
not good
not very good
not very bad
not bad
not really bad
really not bad
good
very good
really good
very very good
really very good

Sentiment Score

Range of sentiment scores

Average

Figure 1: The order of sentiment scores for sample phrases (trained on MPQA corpus).

better than any commutative operation could.

Although the training data consists of only the
values of Table 1, the training of the model is done
in a way that sentiment scores for phrases with
more extreme intensity might yield real values
greater than +1 or lower than −1, since we do not
constrain the sentiment scores to [−1,+1]. More-
over, in our experiments we observed that no extra
precautions were needed to avoid ill-conditioned
matrices or abrupt changes in the scores while
training.

To assess the effect of our gradual two-step
training method, we compared the results of Grad-
GMSM against those obtained by random ini-
tialization followed by a single training phase
where the full matrices were optimized (randIni-
GMSM). The results, averaged over 10 runs each,
are reported in Table 4. On top of a significantly
better result in terms of ranking loss, we also ob-
serve faster convergence in Grad-GMSM, since
the lowest ranking loss is obtained on average af-
ter 78 iterations, including both training steps. In
randIni-GMSM, the lowest ranking lost happens
on average after 162 iterations.

To observe the effect of a higher number of di-
mensions on our approach, we repeated the ex-
periments with m = 50, and observed a ranking
loss of e = 0.3125 (i.e., virtually the same as for

Method
Ranking

loss
Total number of

iterations

Grad-GMSM 0.3126 21.1 (Step 1) + 56.5 (Step 2) = 77.6
randIni-GMSM 0.3480 161.5

Table 4: Performance comparison for different
initializations in MPQA

m = 3) and similar values for the number of iter-
ations confirming the observation of Yessenalina
and Cardie, that increasing the number of dimen-
sions does not significantly improve the prediction
quality of the obtained model.

4.2 Evaluation on Sentiment Composition
Lexicon with Opposing Polarity Phrases

Experimental Setting: For the second evalua-
tion of the proposed approach we use the Senti-
ment Composition Lexicon for Opposing Polarity
Phrases (SCL-OPP)2. SCL-OPP consists of 602
unigrams, 311 bigrams, and 265 trigrams, which
are taken from a corpus of tweets, and annotated
with real-valued sentiment scores in the interval
[−1,+1] by Kiritchenko and Mohammad (2016b).
The multi-word phrases contain at least one neg-
ative word and one positive word. Therefore,
we find this lexicon as an interesting and suitable
dataset to evaluate our approach in sentiment pre-

2http://www.saifmohammad.com/WebPages/SCL.html

183

diction of opposing polarity phrases.

In this experiment, we set the dimension of ma-
trices to m = 200 as in (Kiritchenko and Mo-
hammad, 2016b) and T = 50. The learning rate
η and regularization parameter λ in gradient de-
scent are set to 0.1 and 0.01, respectively. In ad-
dition to the ranking loss, we also use the Pearson
correlation coefficient (r) for performance evalu-
ation, which measures the linear relation between
the predicted and the annotated sentiment polarity
of phrases in training data. Again, we apply ten-
fold cross-validation in the same way as described
before and average over ten repeated runs.

Results and Discussion: Kiritchenko and Mo-
hammad (2016b) study different patterns of sen-
timent composition in phrases. They analyze the
efficacy of several supervised and unsupervised
methods on these phrases, and the effect of POS
tags, word vector representations, etc. as their
features in learning sentiment classification and
regression. The word embeddings are obtained
by the Word2vec model. For the task of regres-
sion, RBF kernel-based Support-Vector Regres-
sion (SVR) is applied as a supervised method,
which we call RBF-SVR. RBF-SVR uses all un-
igrams, their sentiment scores, POS tags, and
word embeddings as features during the training.
For composition, they use maximal, average or
concatenation of the embeddings. They perform
learning for trigrams and bigrams separately. The
best results reported by RBF-SVR on bigrams and
trigrams are r = 0.802 and r = 0.753, respec-
tively.

As opposed to the experimental scheme of
RBF-SVR, we apply our regular training proce-
dure on SCL-OPP lexicon. We consider it im-
portant that the learned model generalizes well to
phrases of variable length, hence we consider the
training of one model per phrase length not con-
ducive. Rather, we argue that training CMSM can
and should be done independent of the length of
phrases, by ultimately using the combination of
different length phrases for training and testing.
Also, our approach does not use information ex-
tracted from other resources (such as Word2vec)
nor POS tagging, i.e., we perform a light-weight
training with fewer features. Still, we were able to
obtain Pearson r = 0.759 in the task of regression.

Table 5 presents the results obtained by random
initialization in CMSM and Grad-GMSM on the
SCL-OPP dataset. In both methods we apply early

stopping and perform ten-fold cross-validation. In
Grad-GMSM, the total number of iterations again
includes the iterations in both learning phases, and
still it shows a faster convergence toward mini-
mum ranking loss.

Ranking Pearson Total number
Method loss r of iterations
Grad-GMSM 0.249 0.759 2.5 (Step 1) + 7.7 (Step 2) = 10.2
randIni-GMSM 0.376 0.441 77

Table 5: Performance comparison for different ini-
tializations in SCL-OPP

Finally, we repeated the experiments on the
Grad-GMSM model with values of m, i.e., differ-
ent numbers of dimensions. For each dimension
number, we took the average of 5 runs. As shown
in Table 6, the results do improve only marginally
when increasing m over several orders of magni-
tude. Also the number of required iterations re-
mains essentially the same, except for m = 1,
which does not exploit the matrix properties. We
see that – as opposed to vector space models –
good performance can be achieved already with a
very low number of dimensions.

Number of Ranking Pearson Total number
dimensions loss r of iterations

1 0.441 0.487 20.3
2 0.270 0.728 12.8
3 0.269 0.731 10.6

10 0.266 0.736 12.3
20 0.263 0.741 11.1
50 0.258 0.748 10.6

100 0.253 0.754 9.6
300 0.245 0.763 9.6

Table 6: Performance comparison for different di-
mensions in SCL-OPP

5 Conclusion

In this paper, we addressed the problem of learn-
ing compositional matrix-space models for the
task of sentiment analysis. As opposed to the
standard gradient descent approach, the novelty
of our approach consists in a two-step learning
procedure, where the result of the first step is
used as initialization for the second step. We
showed that with this alternative initialization step
added to the learning process, we get lower rank-
ing loss than (1) a previously described learning
method on CMSM and (2) the standard gradi-
ent descent method starting from a random ini-
tializations. Moreover, we evaluated the perfor-

184

mance of training CMSMs in sentiment prediction
of phrases with opposing polarities and observed
that the model captures compositionality well in
such phrases. Since CMSMs turn out to be very
robust against the choice of dimensionality, we
conclude that choosing low-dimensional matrices
as word representations lead to a reduced training
time and still very good performance. In the fu-
ture, we plan to extensively compare the learning
of word matrix representations with vector space
models in the task of sentiment analysis on several
datasets.

References
Ameeta Agrawal and Aijun An. 2014. Kea: Sentiment

analysis of phrases within short texts. In Preslav
Nakov and Torsten Zesch, editors, Proceedings of
the 8th International Workshop on Semantic Evalu-
ation (SemEval 2014). pages 380–384.

Gottlob Frege. 1884. Die Grundlagen der Arithmetik:
eine logisch-mathematische Untersuchung über den
Begriff der Zahl. Breslau, Germany: W. Koebner.

James Hong and Michael Fang. 2015. Sentiment anal-
ysis with deeply learned distributed representations
of variable length texts. Technical report, Stanford
University.

Svetlana Kiritchenko and Saif M Mohammad. 2016a.
The effect of negators, modals, and degree adverbs
on sentiment composition. In Alexandra Balahur,
Erik van der Goot, Piek Vossen, and Andrés Mon-
toyo, editors, Proceedings of the 7th Workshop on
Computational Approaches to Subjectivity, Senti-
ment and Social Media Analysis (WASSA). pages
43–52.

Svetlana Kiritchenko and Saif M Mohammad. 2016b.
Sentiment composition of words with opposing po-
larities. In Kevin Knight, Ani Nenkova, and Owen
Rambow, editors, Proceedings of North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT 2016). pages 1102–1108.

Jean Maillard and Stephen Clark. 2015. Learning
adjective meanings with a tensor-based skip-gram
model. In Afra Alishahi and Alessandro Mos-
chitti, editors, Proceedings of the Nineteenth Con-
ference on Computational Natural Language Learn-
ing (CoNLL 2015). pages 327–331.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed represen-
tations of words and phrases and their composi-
tionality. In Chris J.C. Burges, Léon Bottou, Max

Welling, Zoubin Ghahramani, and Kilian Q. Wein-
berger, editors, Advances in neural information pro-
cessing systems (NIPS 2013). pages 3111–3119.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive sci-
ence 34(8):1388–1429.

Kaare B. Petersen and Michael S. Pedersen. 2012. The
Matrix Cookbook. Technical University of Den-
mark. Version 20121115.

Sebastian Rudolph and Eugenie Giesbrecht. 2010.
Compositional matrix-space models of language. In
Jan Hajic, Sandra Carberry, and Stephen Clark, ed-
itors, Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics (ACL
2010). pages 907–916.

Richard Socher, Brody Huval, Christopher D Man-
ning, and Andrew Y Ng. 2012. Semantic composi-
tionality through recursive matrix-vector spaces. In
Jun’ichi Tsujii, James Henderson, and Marius Pasca,
editors, Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL 2012). pages 1201–1211.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the conference on empirical
methods in natural language processing (EMNLP
2013). pages 1631–1642.

Aditya Timmaraju and Vikesh Khanna. 2015. Senti-
ment analysis on movie reviews using recursive and
recurrent neural network architectures. Semantic
Scholar.

Xingyou Wang, Weijie Jiang, and Zhiyong Luo. 2016.
Combination of convolutional and recurrent neural
network for sentiment analysis of short texts. In
Yuji Matsumoto and Rashmi Prasad, editors, Pro-
ceedings of the 26th International Conference on
Computational Linguistics (COLING 2016). pages
2428–2437.

Ainur Yessenalina and Claire Cardie. 2011. Compo-
sitional matrix-space models for sentiment analy-
sis. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP
2011). pages 172–182.

185

