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Abstract

Diagnosis autocoding is intended to
both improve the productivity of clini-
cal coders and the accuracy of the cod-
ing. We investigate the applicability of
deep learning at autocoding of radiol-
ogy reports using International Classi-
fication of Diseases (ICD). Deep learn-
ing methods are known to require
large training data. Our goal is to ex-
plore how to use these methods when
the training data is sparse, skewed
and relatively small, and how their ef-
fectiveness compares to conventional
methods. We identify optimal param-
eters for setting up a convolutional
neural network for autocoding with
comparable results to that of conven-
tional methods.

1 Introduction

Hospitals and other medical clinics invest in
clinical coders to abstract relevant informa-
tion from patients’ medical records and de-
cide which diagnoses and procedures meet
the criteria for coding, as per coding stan-
dards such as International Statistical Classi-
fication of Diseases referred to as ICD Code.
For example, Multiple fractures of foot is rep-
resented by the ICD-10 code ‘S92.7’. These
codes are used to find statistics on diseases
and treatments as well as for billing pur-
poses. Clinical coding is a specialized skill
requiring excellent knowledge of medical
terminology, disease processes, and coding
rules, as well as attention to detail, and an-
alytical skills. Apart from high costs of labor,
human errors could lead to over and under-
coding resulting in misleading statistics.

To alleviate the costs and increase the accu-
racy of coding, autocoding has been studied
by the Natural Language Processing (NLP)
community. It has been studied for a va-
riety of clinical texts such as radiology re-
ports (Crammer et al., 2007; Perotte et al.,
2014; Kavuluru et al., 2015; Scheurwegs et al.,
2016), surveillance of diseases or type of can-
cer from death certificates (Koopman et al.,
2015a,b), and coding of cancer sites and mor-
phologies (Nguyen et al., 2015).

Text classification using deep learning is
relatively recent with promises to reduce the
load of domain or application specific fea-
ture engineering. Conventional classifiers
such as SVMs with well-engineered features
have long shown high performance in differ-
ent domains. We investigate if deep learn-
ing methods can further improve clinical
text classification. Specifically, we investigate
how and in what setting some of the most
popular neural architectures such as Convo-
lutional Neural Networks (CNNs) can be ap-
plied to the autocoding of radiology reports.
The outcomes of our work can inform simi-
lar tasks with decision making on type and
settings of text classifiers.

2 Related Work

In 2007 Pestian et al. (2007) organised a
shared task which introduced a dataset of ra-
diology reports to be autocoded with ICD9
codes. This multi-label classification task
attracted a large body of research over
the years—e.g., (Farkas and Szarvas, 2008;
Suominen et al., 2008)—which tackled the
problem with methods such as rule-based,
decision trees, entropy and SVM classifiers.
Text classification using SVM has long been
known to be state-of-the-art.



Best Values
Parameter Definition Range Default ICD9 rICD9 IMDB

Batch size Number of samples that will be prop-
agated through the network at each
point of time

8–256 8 16 16 32

Number of epochs Epoch is one forward pass and one
backward pass of all training data

1–40 30 30 30 3

Activation function
on convolution layer

Non-linearity function applied on the
output of convolution layer neurons

linear, tanh, sigmoid, soft-
plus, softsign, relu, relu6,
leaky_relu, prelu, elu

relu leaky_relu relu6 relu

Activation function
on fully connected
layer

Non-linearity function applied on
the output of neurons in the fully-
connected layer

linear, tanh, sigmoid, soft-
max, softplus, softsign, relu,
relu6, leaky_relu, prelu, elu

softmax softmax softplus softmax

Dropout rate At each training stage, node can be
dropped out of the network with prob-
ability 1 − p. The reduced network is
then trained on the data in that stage

0.1 - 1.0 0.5 0.7 0.5 0.3

Filter size Receptive field of each neuron also
known as local connectivity

1–7 and all combinations (3, 4, 5) (2, 3, 4) (2;3;4;5;6) (3;4;5)

Depth Number of filters per filter size 40 - 5000 100 800 100 200
Learning rate Controls the size of weight and bias

changes during training
0.0001 - 0.03 0.001 0.001 0.001 0.001

Word representation How words in text are represented as
input to the network

See Table 3 random Medline (300) Medline (100) Medline (40)

Vector size Size of input vectors. When word em-
beddings are used, this represents the
embedding size

32–512 128 128 128 128

Stride Size of sliding window for moving filter
over input

1 1 1 1 1

Table 1: Hyperpameters, range of grid search for finding optimal values, initial and best
values for three datasets.

Recently, neural network based learning
methods have been investigated in generic
NLP as well as domain-specific applications.
For text classification, two dominant meth-
ods are: (1) Convolutional Neural Networks
(CNNs) from the category of feed-forward
neural networks; and (2) Long Short-Term
Memory (LSTM) with a recurrent neural net-
work (RNN) architecture. Also the use of
word embeddings (Le and Mikolov, 2014)—
which are to capture semantic representa-
tions of words in text—has been investigated
in a variety of applications to replace one-hot
(vector space) models which is the traditional
method of text representation.

Text classification using CNNs has been
increasingly studied in recent years (Kalch-
brenner et al., 2014; Kim, 2014; Rios and
Kavuluru, 2015). For example, Rios and
Kavuluru (2015) applied CNN to classify
biomedical articles for indexing, and Kavu-
luru et al. (2016) on suicide watch forums.

3 Method

We build a CNN network with the architec-
ture proposed by (Kim, 2014). It consists of
one convolutional layer using multiple filters
and filter sizes followed by a max pooling
and fully-connected layer to assign a label.

This model is chosen based on its success in
other tasks. This will set a base for what is
achievable using this set of algorithms with-
out using a very deep network or more com-
plicated architecture.

Input text to the network is represented us-
ing two different settings: (1) a matrix of ran-
dom vectors representing all the words in a
document; or (2) word embeddings. We re-
fer to word embeddings created from a cor-
pus of medical text such as Medline cita-
tions as in-domain, and out-of-domain other-
wise (i.e., using Wikipedia). We also experi-
mented with static and dynamic embeddings.
In static setting, the embedding vector values
were pre-fixed based on the collection they
were created on, whereas dynamic embed-
dings changed values during the training.

One goal of this work is to quantify the im-
pact of CNN hyperparameters. Tuning hy-
perparameters can be considered equivalent
of feature engineering in conventional ma-
chine learning tasks. We list some of the
main hyperparameters to be set in a CNN in
Table 1 (first two columns). Our experiments
are focused on tuning these and investigate
how they differ for different datasets.



Classifier Accuracy Precision Recall F1-score

SVM 80.52 66.02 67.69 65.63
Random Forests 68.22 50.85 49.38 48.66
Logistic Regression 79.43 66.08 66.15 64.63

CNN (default) 81.55 78.93 81.55 79.05
CNN (optimal) 83.84 81.44 83.84 81.55

Table 2: Comparison of conventional classi-
fiers with CNN on ICD9.
4 Datasets

We experiment on two different datasets, in-
domain and out-of-domain, in order to find
common characteristics and domain specific
properties of these datasets for text classifica-
tion. These datasets are: (a) ICD9, a dataset
of radiology reports, and (b) IMDB, a sen-
timent analysis dataset. These corpora are
publicly available and are explained below.

ICD9 dataset is an open challenge dataset
published by the Computational Medicine
Center in 2007 (Pestian et al., 2007). The
dataset consists of clinical free text which is
a set of 978 anonymized radiology reports
and their corresponding ICD-9-CM codes.1

There are 38 unique ICD-9 codes present in
the dataset. Given the imbalance of different
disease categories in the dataset with some
categories only having one or two instances,
we created a revised subset rICD9. In rICD9
those codes with less than 15 instances are
removed. This subset contains 894 docu-
ments with 16 unique codes. To measure
how our grid search for hyper-parameters
are robust and how much they are task and
dataset dependent, we use an out-of-domain
dataset. IMDB movie review dataset is a
sentiment analysis dataset provided by Maas
et al. (2011). It contains 100, 000 movie re-
views from IMDB.

5 Experimental Setup

We treat this task as a multi-label classifica-
tion problem. Our implementations use Ten-
sorflow and Scikit-learn. For word embed-
dings we use Word2Vec (Mikolov et al., 2013).
For SVM and other conventional methods,
we used normalized tf-idf features similar
to (Wang and Manning, 2012).

Evaluation For evaluations on ICD9 and its
variant rICD9, we use stratified 10-fold cross-
validation. We measure classification accu-

1Testing data for this dataset is no longer available.

Word embedding Vector Size Dynamic ICD9 rICD9 IMDB

Random embedding 81.93 86.69 87.75

Word2Vec 40 Yes 81.03 86.24 88.79
Wikipedia No 69.75 74.90 85.02

100 Yes 82.04 86.86 88.55
No 75.93 81.40 86.98

300 Yes 82.41 87.22 88.21
No 79.34 84.94 88.14

400 Yes 82.60 87.24 88.10
No 80.03 85.53 88.19

Word2Vec 40 Yes 81.59 87.06 89.00
Medline No 72.31 78.05 82.11

100 Yes 82.55 87.76 89.00
No 78.66 84.06 85.70

300 Yes 83.84 87.45 88.58
No 80.88 86.30 87.10

400 Yes 82.55 87.56 88.62
No 81.39 86.66 87.21

Table 3: Impact of methods of generating
word embeddings on classification accuracy.

racy, precision, recall, and F-score by macro-
averaging. Stratified cross-validation is used
to make label distribution in each training
and validation fold as consistent as possible.
IMDB dataset has been divided into training
data and testing data by its providers. We
therefore train the model on the training data
and evaluate the results on the test data. For
all datasets, all experiments are run for 50
times, and reported results are averaged over
repeated experiments.

Hyperparameter Tuning Effect of varying
different hyperparameters on classification
accuracy is examined by a grid search
method that incrementally changes the val-
ues of hyperparameters. We start from a de-
fault setting as shown in Table 1 as a base-
line. We also change one parameter at a time,
according to a wide range given in column
three, and analyze the results to find the opti-
mal hyperparameter values. Based on the op-
timal parameter values, all experiments are
repeated to measure the effects.

6 Experiments and Results

CNN versus Conventional Classifiers
Classification accuracy was calculated vary-
ing values of different hyperparameters.
Based on the best results we chose the opti-
mal values for each hyper parameter as listed
in columns 5 to 7 of Table 1. Table 2 com-
pares three conventional classifiers, includ-
ing SVM, Random Forests and logistics re-
gression to CNNs. The results for CNN with
default values as well as accuracy- optimized
values on ICD9 dataset shows comparable re-



sults to all the three conventional classifiers.
That means the two sets of algorithms can
achieve similar baselines with minimal fea-
ture engineering or parameter tuning.

Effect of Pre-trained Word Vectors
Pre-trained word vectors can be considered
as prior knowledge on meaning of words in
a dataset. That is, instead of random val-
ues, the embedding layer can be initialized
to values obtained from word embeddings.
We investigated whether using word embed-
dings would improve classification accuracy
in our coding task. Therefore, we created
different word vectors trained using both
Wikipedia and Medline with various vector
sizes. We then compared the accuracy of
random embeddings with these pre-trained
embeddings. Our results, shown in Table 3,
can be summarized as below: (1) Pre-trained
word vectors improve the classification ac-
curacy: The best accuracy achieved on all
three datasets come from using pre-trained
word vectors. It shows that pre-trained word
vectors did improve the effectiveness of our
model (t-test, p-value < 0.05); (2) Dynamic
word vectors are better than static ones: Al-
most all dynamic word vectors achieve bet-
ter accuracy than their corresponding static
word vectors; (3) In-domain word vectors
are better than generic ones: On ICD9 and
its variant dataset, word vectors trained us-
ing Medline which is a collection of med-
ical articles outperformed the word vectors
trained using Wikipedia. It shows in-domain
word vectors can better capture the meaning
of medical terminology. On the other hand,
for IMDB dataset, word vectors trained us-
ing Wikipedia were more effective than word
vectors trained using Medline, but that was
only if the word vectors were static. We
believe that a dynamic word vector, regard-
less of what source it is built on, eventually
leads to more accurate classification; and (4)
Larger embedding size does not always lead
to higher accuracy: For all three datasets,
once the vector size was set to 100, the ac-
curacy leveled with higher vector sizes. It
means that the computation load associated
with bigger vectors may not be necessary.

Error Analysis To identify how accurate
our CNN classifier was and what mistakes it

makes, we manually inspected some of these
classification mistakes. We found two ma-
jor sources of mistakes as below: (1) Not all
the documents in ICD9 dataset have exactly
one target label. 212 out of 978 documents
(22%) have two target labels, and 14 docu-
ments have three. These multi-label annota-
tions imply that even human experts cannot
have full consensus on some of these cod-
ing tasks; and, (2) Companion diseases: Hu-
man experts may focus on different symp-
toms present on a patient report and there-
fore reach to different conclusions. For exam-
ple, based on the following text: “UTI with
fever. Bilateral hydroureteronephrosis. Diffuse
scarring lower pole right kidney.”, one expert
labeled the instance as ’591’ (Hydronephro-
sis), and a second expert labeled it as both
’591’ and ’599.0’ (Urinary tract infection, site
not specified), and a third expert labeled it
as ’591’, ’599.0’ and ’780.6’ (Fever and other
physiologic disturbances of temperature reg-
ulation). In this case, ’591’ is a majority vote,
however, ’599.0’ may also be a reasonable tar-
get, since two of the experts agreed on that.
Based on our experiments, accommodating
this increases the overall accuracy on ICD9
by approximately 4%.

7 Conclusion

We explored the potential of machine learn-
ing methods using neural networks to com-
pete with conventional classification meth-
ods. We used ICD9 coding of radiology re-
ports. Our experiments showed that some
of CNN hyperparameters such as depth are
specific to a dataset or task and should be
tuned, whereas some of the parameters (e.g.,
learning rate or vector size) can be set in ad-
vance without sacrificing the results. Our
results also showed the value of using dy-
namic word embeddings. Our best classifica-
tion results achieved comparable or superior
results to SVM and logistic regression classi-
fiers for autocoding of radiology reports. Our
work is continuing in two major directions:
(1) quantifying the relationships between hy-
perparameters using linear-regression analy-
sis; and (2) applying CNN and LSTM models
for ICD-10 autocoding of patient encounters
in hospital settings.
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