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Department of Computing

Macquarie University
Sydney, Australia

diego.molla-aliod@mq.edu.au

Abstract

Macquarie University’s contribution to the
BioASQ challenge (Task 5b Phase B) fo-
cused on the use of query-based extractive
summarisation techniques for the genera-
tion of the ideal answers. Four runs were
submitted, with approaches ranging from
a trivial system that selected the first n
snippets, to the use of deep learning ap-
proaches under a regression framework.
Our experiments and the ROUGE results
of the five test batches of BioASQ indi-
cate surprisingly good results for the triv-
ial approach. Overall, most of our runs on
the first three test batches achieved the best
ROUGE-SU4 results in the challenge.

1 Introduction

The main goal of query-focused multi-document
summarisation is to summarise a collection of
documents from the point of view of a particu-
lar query. In this paper we compare the use of
various techniques for query-focused summarisa-
tion within the context of the BioASQ challenge.
The BioASQ challenge (Tsatsaronis et al., 2015)
started in 2013 and it comprises various tasks cen-
tred on biomedical semantic indexing and ques-
tion answering. The fifth run of the BioASQ chal-
lenge (Nentidis et al., 2017), in particular, had
three tasks:

• BioASQ 5a: Large-scale online biomedical
semantic indexing.

• BioASQ 5b: Biomedical semantic question
answering. This task had two phases:

– Phase A: Identification of relevant infor-
mation.

– Phase B: Question answering.

• BioASQ 5c: Funding information extraction
from biomedical literature.

The questions used in BioASQ 5b were of three
types: yes/no, factoid, list, and summary. Submis-
sions to the challenge needed to provide an exact
answer and an ideal answer. Figure 1 shows ex-
amples of exact and ideal answers for each type
of question. We can see that the ideal answers
are full sentences that expand the information pro-
vided by the exact answers. These ideal answers
could be seen as the result of query-focused multi-
document summarisation. We therefore focused
on Task 5b Phase B, and in that phase we did
not attempt to provide exact answers. Instead, our
runs provided the ideal answers only.

In this paper we will describe the techniques
and experiment results that were most relevant to
our final system runs. Some of our runs were
very simple, yet our preliminary experiments re-
vealed that they were very effective and, as ex-
pected, the simpler approaches were much faster
than the more complex approaches.

Each of the questions in the BioASQ test sets
contained the text of the question, the question
type, a list of source documents, and a list of rele-
vant snippets from the source documents. We used
this information, plus the source documents which
are PubMed abstracts accessible using the URL
provided in the test sets.

Overall, the summarisation process of our runs
consisted of the following two steps:

1. Split the input text (source documents or
snippets) into candidate sentences and score
each candidate sentence.

2. Return the n sentences with highest score.

The value of n was determined empirically and
it depended on the question type, as shown in Ta-
ble 1.
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yes/no Does Apolipoprotein E (ApoE) have anti-inflammatory activity?

• Exact answer: yes
• Ideal answer: Yes. ApoE has anti-inflammatory activity

factoid Which type of lung cancer is afatinib used for?

• Exact answer: EGFR-mutant non small cell lung carcinoma
• Ideal answer: Afatinib is a small molecule covalently binding and inhibiting the EGFR, HER2

and HER4 receptor tyrosine kinases. Trials showed promising efficacy in patients with EGFR-
mutant NSCLC or enriched for clinical benefit from EGFR tyrosine kinase inhibitors gefitinib
or erlotinib.

list Which are the Yamanaka factors?

• Exact answer: [OCT4, SOX2, MYC, KLF4]
• Ideal answer: The Yamanaka factors are the OCT4, SOX2, MYC, and KLF4 transcription

factors

summary What is the role of brain natriuretic peptide in traumatic brain injury patients ?

• Exact answer: N/A
• Ideal answer: Brain natriuretic peptide concentrations are elevated in patients with traumatic

brain during the acute phase and correlate with poor outcomes. In traumatic brain injury pa-
tients higher brain natriuretic peptide concentrations are associated with more extensive SAH,
elevated ICP and hyponatremia. Brain natriuretic peptide may play an adaptive role in recovery
through augmentation of cerebral blood flow.

Figure 1: Examples of questions with their exact and ideal answers in BioASQ 5b.
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Summary Factoid Yesno List

n 6 2 2 3

Table 1: Value of n (the number of sentences re-
turned as the ideal answer) for each question type.

2 Simple Runs

As a first baseline, we submitted a run labelled
trivial that simply returned the first n snippets of
each question. The reason for this choice was that,
in some of our initial experiments, we incorpo-
rated the position of the snippet as a feature for
a machine learning system. In those experiments,
the resulting system did not learn anything and
simply returned the input snippets verbatim. Sub-
sequent experiments revealed that a trivial base-
line that returned the first snippets of the question
was very hard to beat. In fact, for the task of
summarisation of other domains such as news, it
has been observed that a baseline that returns the
first sentences often outperformed other methods
(Brandow et al., 1995).

As a second baseline, we submitted a run la-
belled simple that selected the n snippets what
were most similar to the question. We used co-
sine similarity, and we tried two alternatives for
computing the question and snippet vectors:

tfidf-svd: First, generate the tf.idf vector of the
question and the snippets. We followed
the usual procedure, and the tf.idf vectors
of these sentences are bag-of-word vectors
where each dimension represents the tf.idf
of a word. Then, reduce the dimensionality of
the vectors by selecting the first 200 compo-
nents after applying Singular Value Decom-
position. In contrast with a traditional ap-
proach to generate the tf.idf (and SVD) vec-
tors where the statistics are based on the in-
put text solely (question and snippets in our
case), we used the text of the question and
the text of the ideal answers of the training
data.1 The reason for using this variant was
based on empirical results during our prelim-
inary experiments.

word2vec: Train Word2Vec (Mikolov et al.,
1In particular, we used the “TfidfVectorizer” module of

the sklearn toolkit (http://scikit-learn.org) and
fitted it with the list of questions and ideal answers. We then
used the “TruncatedSVD” module and fitted it with the tf.idf
vectors of the list of questions and ideal answers.

trivial simple
tfidf-svd word2vec

Mean F1 0.2157 0.1643 0.1715
Stdev F1 0.0209 0.0097 0.0128

Table 2: ROUGE-SU4 of the simple runs.

2013) using a set of over 10 million PubMed
abstracts provided by the organisers of
BioASQ. Using these pre-trained word em-
beddings, look up the word embeddings of
each word in the question and the snippet.
The vector representing a question (or snip-
pet) is the sum of embeddings of each word
in the question (or snippet). The dimension
of the word embeddings was set to 200.

Table 2 shows the F1 values of ROUGE-SU4
of the resulting summaries. The table shows the
mean and the standard deviation of the evalua-
tion results after splitting the training data set for
BioASQ 5b into 10 folds (for comparison with the
approaches presented in the following sections).

We observe that the trivial run has the best re-
sults, and that the run that uses word2vec is second
best. Our run labelled “simple” therefore used co-
sine similarity of the sum of word embeddings re-
turned by word2vec.

3 Regression Approaches

For our run labelled regression, we experimented
with the use of Support Vector Regression (SVR).
The regression setup and features are based on the
work by Malakasiotis et al. (2015), who reported
the best results in BioASQ 3b (2015).

The target scores used to train the SVR system
were the F1 ROUGE-SU4 score of each individual
candidate sentence.

In contrast with the simple approaches de-
scribed in Section 2, which used the snippets as
the input data, this time we used all the sentences
of the source abstracts. We also incorporated in-
formation about whether the sentence was in fact
a snippet as described below.

As features, we used:

• tf.idf vector of the candidate sentence. In
contrast with the approach described in Sec-
tion 2, The statistics used to determine the
tf.idf vectors were based on the text of the
question, the text of the ideal answers, and
the text of the snippets.
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• Cosine similarity between the tf.idf vector
of the question and the tf.idf vector of the
candidate sentence.

• The smallest cosine similarity between the
tf.idf vector of candidate sentence and the
tf.idf vector of each of the snippets related
to the question. Note that this feature was not
used by Malakasiotis et al. (2015).

• Cosine similarity between the sum of
word2vec embeddings of the words in the
question and the word2vec embeddings of the
words in the candidate sentence. As in our
run labelled “simple”, we used vectors of di-
mension 200.

• Pairwise cosine similarities between the
words of the question and the words of the
candidate sentence. As in the work by
Malakasiotis et al. (2015), we used word2vec
to compute the word vectors. These word
vectors were the same as used in Section 2.
We then computed the pairwise cosine simi-
larities and selected the following features:

– The mean, median, maximum, and min-
imum of all pairwise cosine similarities.

– The mean of the 2 highest, mean of the 3
highest, mean of the 2 lowest, and mean
of the 3 lowest.

• Weighted pairwise cosine similarities, also
based in the work by Malakasiotis et al.
(2015). In particular, now each word vec-
tor was multiplied by the tf.idf of the word,
we computed the pairwise cosine similarities,
and we used the mean, median, maximum,
minimum, mean of 2 highest, mean of 3 high-
est, mean of 2 lowest, and mean of 3 lowest.

Figure 2 shows the result of grid search by vary-
ing the gamma parameter of SVR, fixing C to
1.0, and using the RBF kernel.2 The figure shows
the result of an extrinsic evaluation that reports the
F1 ROUGE-SU4 of the final summary, and the re-
sult of an intrinsic evaluation that reports the Mean
Square Error (MSE) between the target and the
predicted SU4 of each individual candidate sen-
tence.

We can observe discrepancy between the results
of the intrinsic and the extrinsic evaluations. This

2We used the Scikit-learn Python package.

Figure 2: Grid search of the Gamma parameter
for the experiments using Support Vector Regres-
sion. The continuous lines indicate the mean of
10-fold cross-validation over the training data set
of BioASQ 5b. The dashed lines indicate 2 × the
standard deviation.

discrepancy could be due to the fact that the data
are highly imbalanced in the sense that most anno-
tated SU4 scores in the training data have low val-
ues. Consequently, the regressor would attempt to
minimise the errors in the low values of the train-
ing data at the expense of errors in the high values.
But the few sentences with high SU4 scores are
most important for the final summary, and these
have higher prediction error. This can be observed
in the scatter plot of Figure 3, which plots the tar-
get against the predicted SU4 in the SVR experi-
ments for each value of gamma. The SVR system
has learnt to predict the low SU4 scores to some
degree, but it does not appear to have learnt to dis-
criminate among SU4 scores over a value of 0.4.

Our run labelled “regression” used gamma =
0.1 since it gave the best MSE in our intrinsic eval-
uation, and Figure 3 appeared to indicate that the
system learnt best.

4 Deep Learning Approaches

For our run labelled nnr we experimented with the
use of deep learning approaches to predict the can-
didate sentence scores under a regression setup.
The regression setup is the same as in Section 3.

Figure 4 shows the general architecture of the
deep learning systems explored in our experi-
ments. In a pre-processing stage, and not shown in
the figure, the main text of the source PubMed ab-
stracts is split into sentences by using the default
NLTK3 sentence segmenter. The candidate sen-

3http://www.nltk.org

70



Figure 3: Target vs. predicted SU4 in the SVR experiments for various values of gamma.
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Figure 4: Architecture of the regression system.
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tences and questions undergo a simple preprocess-
ing stage that removes punctuation characters, and
lowercases the string and splits on blank spaces.
Then, these are fed to the system as a sequence of
token identifiers. Figure 4 shows that the input to
the system is a candidate sentence and the question
(as sequences of token IDs). The input is first con-
verted to sequences of word embeddings by apply-
ing an embedding matrix. The word embedding
stage is followed by a sentence and question re-
duction stage that combines the word embeddings
of each sentence into a sentence embedding. Then,
the sentence embedding and the question embed-
ding are compared by applying a similarity opera-
tion, and the vector resulting from the comparison
is concatenated to the sentence embedding for a fi-
nal regression comprising of a hidden layer of rec-
tilinear units (relu) and a final linear combination.

The weights of all stages are optimised by back-
propagation in order to minimise the MSE of the
predicted score at training time. Our experiments
varied on the approach for sentence and ques-
tion reduction, and the approach to incorporate the
similarity between sentence and question, as de-
scribed below.

To produce word embeddings we use word2vec,
trained on a collection of over 10 million PubMed
abstracts as described in previous sections. The
resulting word embeddings are encoded in the em-
bedding matrix of Figure 4. We experimented with
the possibility of adjusting the weights of the em-
bedding matrix by backpropagation, but the results
did not improve. The results reported in this paper,
therefore, used a constant embedding matrix. We
experimented with various sizes of word embed-
dings and chose 100 for the experiments in this
paper.

After obtaining the word embeddings, we ex-
perimented with the following approaches to pro-
duce the sentence vectors:

Mean: The word embeddings provided by
word2vec map words into a dimensional
space that roughly represents the word
meanings, such that words that are similar
in meaning are also near in the embedded
space. This embedding space has the prop-
erty that some semantic relations between
words are also mapped in the embedded
space (Mikolov et al., 2013). It is therefore
natural to apply vector arithmetics such as
the sum or the mean of word embeddings

of a sentence in order to obtain the sentence
embedding. In fact, this approach has been
used in a range of applications, on its own,
or as a baseline against which to compare
other more sophisticated approaches to
obtain word embeddings, e.g. work by Yu
et al. (2014) and Kageback et al. (2014). To
accommodate for different sentence lengths,
in our experiments we use the mean of word
embeddings instead of the sum.

CNN: Convolutional Neural Nets (CNN) were
originally developed for image processing,
for tasks where the important information
may appear on arbitrary fragments of the im-
age (Fukushima, 1980). By applying a con-
volutional layer, the image is scanned for
salient information. When the convolutional
layer is followed by a maxpool layer, the
most salient information is kept for further
processing.

We follow the usual approach for the applica-
tion of CNN for word sequences, e.g. as de-
scribed by Kim (2014). In particular, the em-
beddings of the words in a sentence (or ques-
tion) are arranged in a matrix where each row
represents a word embedding. Then, a set of
convolutional filters are applied. Each con-
volutional filter uses a window of width the
total number of columns (that is, the entire
word embedding). Each convolutional filter
has a fixed height, ranging from 2 to 4 rows
in our experiments. These filters aim to cap-
ture salient ngrams. The convolutional filters
are then followed by a maxpool layer.

Our final sentence embedding concatenates
the output of 32 different convolutional fil-
ters, each at filter heights 2, 3, and 4. The
sentence embedding, therefore, has a size of
32× 3 = 96.

LSTM: The third approach that we have used
to obtain the sentence embeddings is recur-
rent networks, and in particular Long Short
Term Memory (LSTM). LSTM has been ap-
plied successfully to applications that pro-
cess sequences of samples (Hochreiter et al.,
1997). Our experiments use TensorFlow’s
implementation of LSTM cells as described
by Pham et al. (2013).

In order to incorporate the context on the left
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and right of each word we have used the bidi-
rectional variant that concatenates the output
of a forward and a backward LSTM chain.
As is usual practice, all the LSTM cells in the
forward chain share a set of weights, and all
the LSTM cells in the backward chain share
a different set of weights. This way the net-
work can generalise to an arbitrary position
of a word in the sentence. However, we ex-
pect that the words of the question behave
differently from the words of the candidate
sentence. He have therefore used four dis-
tinct sets of weights, two for the forward and
backward chains of the candidate sentences,
and two for the question sentences.

In our experiments, the size of the output of a
chain of LSTM cells is the same as the num-
ber of features in the input data, that is, the
size of the word embeddings. Accounting
for forward and backward chains, and given
word embeddings of size 100, the size of the
final sentence embedding is 200.

Figure 4 shows how we incorporated the simi-
larity between the question and the candidate sen-
tence. In particular, we calculated a weighted dot
product, where the weights wi can be learnt by
backpropagation:

sim(q, s) =
∑

i

wiqisi

Since the sum will be performed by the subse-
quent relu layer, our comparison between the sen-
tence and the question is implemented as a simple
element-wise product between the weights, sen-
tence embeddings, and question embeddings.

An alternative similarity metric that we have
also tried is as proposed by Yu et al. (2014). Their
similarity metric allows for interactions between
different components of the sentence vectors, by
applying a d× d weight matrix W , where d is the
sentence embedding size, and adding a bias term:

simY u(q, s) = qT Ws + b

In both cases, the optimal weights and bias are
learnt by backpropagation as part of the complete
neural network model of the system.

Table 3 shows the average MSE of 10-
fold cross-validation over the training data of
BioASQ 5b. “Tf.idf” is a neural network with
a hidden layer of 50 relu cells, followed by a

Method Plain Sim SimYu

Tf.idf 0.00354

SVD 0.00345 0.00334 0.00342

Mean 0.00341 0.00330 0.00331
CNN 0.00350 0.00348 0.00349
LSTM 0.00344 0.00335 0.00336

Table 3: Average MSE of 10-fold cross-validation.

linear cell, where the inputs are the tf.idf of the
words. “SVD” computes the sentence vectors as
described in Section 2, with the only difference
being that now we chose 100 SVD components
(instead of 200) for comparison with the other ap-
proaches shown in Table 3.

We observe that all experiments perform better
than the Tf.idf baseline, but there are no major dif-
ferences between the use of SVD and the three ap-
proaches based on word embeddings. The systems
which integrated a sentence similarity performed
better than those not using it, though the differ-
ences when using CNN are negligible. Each cell
in Table 3 shows the best results after grid searches
varying the dropout rate and the number of epochs
during training.

For the “nnr” run, we chose the combination
“Mean” and “Sim” of Table 3, since they pro-
duced the best results in our experiments (although
only marginally better than some of the other ap-
proaches shown in the table).

5 Submission Results

At the time of writing, the human evaluations had
not been released, and only the ROUGE results of
all 5 batches were available. Table 4 shows the F1
score of ROUGE-SU4.

Figure 5 shows the same information as a plot
that includes our runs and all runs of other partic-
ipating systems with higher ROUGE scores. The
figure shows that, in the first three batches, only
one run by another participant was among our
results (shown as a dashed line in the figure).
Batches 4 and 5 show consistent results by our
runs, and improved results of runs of other en-
trants.

The results are consistent with our experiments,
though the absolute values are higher than those
in our experiments. This is probably because we
used the entire training set of BioASQ 5b for our
cross-validation results, and this data is the aggre-
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System Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

trivial 0.5498 0.4901 0.5832 0.5431 0.4950
simple 0.5068 0.5182 0.6186 0.5769 0.5840
regression 0.5186 0.4795 0.5785 0.5436 0.4784
nnr 0.4192 0.3920 0.5196 0.4445 0.4000

Table 4: ROUGE-SU4 of the 5 batches of BioASQ 2017.

Figure 5: Top ROUGE-SU4 scores of the 5
batches of BioASQ 2017.

gation of the training sets of the BioASQ tasks of
previous years. It is possible that the data of latter
years are of higher quality, and it might be useful
to devise learning approaches that would account
for this possibility.

6 Conclusions

At the time of writing, only the ROUGE scores
of BioASQ 5b were available. The conclusions
presented here, therefore, do not incorporate any
insights of the human judgements that are also part
of the final evaluation of BioASQ.

Our experiments show that a trivial baseline
system that returned the first n snippets appears
to be hard to beat. This implies that the order of
the snippets matters. Even though the judges were
not given specific instructions about the order of
the snippets, it would be interesting to study what
criteria they used to present the snippets.

Our runs using regression were not significantly
better than simpler approaches, and the runs using
deep learning reported the lowest results. Note,
however, that the input features used in the runs
using deep learning did not incorporate informa-
tion about the snippets. Table 3 shows that the re-
sults using deep learning are comparable to results
using tf.idf and using SVD, so it is possible that

an extension of the system that incorporates infor-
mation from the snippets would equal or better the
other systems.

Note that none of the experiments described in
this paper used information specific to the biomed-
ical domain and therefore the methods described
here could be applied to any other domain.
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