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1 Introduction

There is great variation in the amount of NLP re-
sources available for Slavic languages. For ex-
ample, the Universal Dependency treebank (Nivre
et al., 2016) has about 2 MW of training re-
sources for Czech, more than 1 MW for Russian,
while only 950 words for Ukrainian and nothing
for Belorussian, Bosnian or Macedonian. Simi-
larly, the Autodesk Machine Translation dataset
only covers three Slavic languages (Czech, Pol-
ish and Russian). In this talk I present a general
approach, which can be called Language Adap-
tation, similarly to Domain Adaptation. In this
approach, a model for a particular language pro-
cessing task is built by lexical transfer of cog-
nate words and by learning a new feature rep-
resentation for a lesser-resourced (recipient) lan-
guage starting from a better-resourced (donor) lan-
guage. More specifically, I demonstrate how lan-
guage adaptation works in such training scenarios
as Translation Quality Estimation, Part-of-Speech
tagging and Named Entity Recognition.

2 Transfer of Feature Representation

Machine Learning algorithms are limited by the
availability of training data. This problem is of-
ten addressed by developing algorithms to trans-
fer NLP models across different domains, for ex-
ample, an opinion mining model trained on IMDb
can be transferred to the domain of hotel reviews
(Søgaard, 2013). In a similar way, we can assume
that a model trained in a donor language can be
transferred to a recipient language relying on the
fact that both languages come from the same lan-
guage family.

One of the observations for transferring models
across languages is that while the general assump-
tion of similarity holds, the individual features ex-
hibit a slightly different distribution. For example,

Upper baseline (ru)
MAE 0.18

RSME 0.27
Pearson 0.47

en-ru → en-cs en-pl

STL
MAE 0.19 0.19

RMSE 0.25 0.25
Pearson 0.41 0.46

Baseline
Train: ru
Test: xx

MAE 0.20 0.21
RMSE 0.26 0.27
Pearson 0.32 0.33

Table 1: STL for MT Quality Estimation.

in the task of estimating MT quality without ref-
erence translations, good MT examples are simi-
lar in the feature space describing translation into
two related languages, but the exact feature val-
ues, such as the Language Model values or the
phrase table sizes differ. One way of transfer-
ring the feature spaces is via Self-Taught Learning
(STL), in which an autoencoder learns to reduce
the dimensions of unlabelled datasets for the two
domains. Then the available training set in one
domain is transformed using the autoencoder, so
that a new prediction model can be equally suc-
cessful in the source domain and in the new target
domain (Raina et al., 2007). As shown in (Rios
and Sharoff, 2016), an application of this transfor-
mation to predicting the amount of Post-Editing
needed to improve raw MT output can produce
models which almost reach the accuracy of the
original prediction model (Table 1).

3 Transfer of Lexica

Linguistic models can be also transferred through
re-using grammatical models trained in a donor
language with substitution of the lexicons from a
recipient language. For example, a POS tagger
can use the transition probabilities from the donor,1



while the lexical emission probabilities can come
from the recipient (Feldman et al., 2006; Reddy
and Sharoff, 2011).

Similarly, a traditional MT engine for trans-
lation from Ukrainian into English and German
can be surpassed by a crude MT pipeline consist-
ing of a direct word-for-word transfer model from
Ukrainian into Russian followed by a better re-
sourced model translating from Russian into En-
glish and German (Babych et al., 2007). The rea-
son for the success of the pipeline is that the Out-
Of-Vocabulary rate is reduced primarily because
of the better coverage of the donor lexicon.

Automatic induction of translation lexica be-
tween related languages is easier than in the more
general case, since in addition to the similarity
of the embedding vectors, they often have very
similar forms. A reliable lexicon can be pro-
duced by combining detection of cognate forms
via Levenshtein distance with assessment of se-
mantic similarity via bilingual word embeddings
even in the absence of parallel corpora (Upadhyay
et al., 2016). One of the problems in transfer-
ring the lexica concerns Multi-Word Expressions
(MWEs), which tend to differ even for closely re-
lated languages. In particular, this concerns fixed-
form MWEs without a defined grammatical struc-
ture, such as by and large or of course in En-
glish. Such MWEs need to be detected individ-
ually in each language and linked to a grammati-
cal model in a donor language via a distributional
measure of their similarity to single-word expres-
sions, e.g., generally or definitely in the examples
above (Riedl and Biemann, 2015).

In my talk I have also demonstrated an end-to-
end example for transferring feature spaces and
lexicons by developing a Named Entity Recogni-
tion tagger, which starts with resources available
for Slovene and transfers the features derived from
a CRF model (Lafferty et al., 2001; Benikova et
al., ) to other Slavic languages.
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