
Proceedings of the Fourth Workshop on NLP for Similar Languages, Varieties and Dialects, pages 210–219,
Valencia, Spain, April 3, 2017. c©2017 Association for Computational Linguistics

Slavic Forest, Norwegian Wood

Rudolf Rosa and Daniel Zeman and David Mareček and Zdeněk Žabokrtský
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Abstract

DWe once had a corp,

or should we say,C it once hadDus
DThey showed us its tags,

isn’t it great,CunifiedDtags
DmiThey asked us to parse

and they told us to useGeverything
DmiSo we looked around

and we noticed there was nearEmnothingAA7

We took other langs,

bitext aligned: words one-to-one

We played for two weeks,

and then they said, here is the test

The parser kept training till morning,

just until deadline

So we had to wait and hope what we get

would be just fine

And, when we awoke,

the results were done, we saw we’d won

So, we wrote this paper,

isn’t it good, Norwegian wood.

1 Introduction

This paper describes the winning submission to
the Cross-lingual Dependency Parsing shared task
at VarDial 2017 (Zampieri et al., 2017).

The goal was to devise a labeled dependency
parser for a target language with no treebank avail-
able, utilizing treebanks of other very close source
languages, and plaintext sentence-aligned source-
target parallel data. The task is simulated on target
languages for which treebanks do exists, but are
not provided to the participants.

As the focus of the task is on parsing per se,
a supervised part-of-speech (POS) tagger for each
target language is provided. Moreover, all of the
treebanks come from the Universal Dependencies
(UD) collection v 1.4 (Nivre et al., 2016), which
means that their syntactic and morphological an-

notation – tree topology, dependency relation la-
bels (deprels), universal POS tags (UPOS), and
morphological features (morpho feats) – follows
the universal cross-lingual UD scheme.1

Consonantly with the focus of the VarDial
workshop on similar languages, the source and tar-
get languages are very close to each other, with
very similar grammars and a nearly one-to-one
correspondence on the level of individual words.
Therefore, we decided to mostly disregard sys-
tematic structural heterogeneity between the lan-
guages, and focus primarily on lexical differences.

Our method relies on a context-independent
word-by-word machine translation (MT) of the
source treebank into the target language, based on
a one-to-one word alignment provided by a heuris-
tic aligner for similar languages. This switch from
a cross-lingual to a pseudo-monolingual setting al-
lows us to easily apply source-trained taggers and
parsers to the target data and vice versa.

We also employ several homogenization tech-
niques, mostly to overcome systematic differences
in treebank annotations. Specifically, we normal-
ize the deprels in the source treebanks to better
correspond to the target deprels, and we subselect
only cross-lingually consistent morpho feats.

2 Related Work

The notorious fact that there are several thousand
languages used around the globe makes it nec-
essary to search for NLP methods that could be
applicable to a wider range of languages, ide-
ally without too much effort invested into build-
ing language-specific resources for new languages
again and again. This is by far not specific to de-
pendency parsing, for which—like for most other
“traditional” NLP tasks—various approaches have

1See http://universaldependencies.org/
docsv1 for a description of the UD scheme.

210



been developed, ranging from fully unsupervised
methods (whose performance seems to be limited)
to supervised methods with radically economy-
driven annotation management.

We limit the scope of the following overview
only to cross-lingual transfer of dependency
parsers from a resource-rich source language(s) to
a resource-poor target language. In addition, this
paper does not touch the discussions whether a
tree (and what kind of tree) is a reasonable rep-
resentation for a sentence structure, and whether
all languages do really share their structural prop-
erties to such an extent that a single type of rep-
resentation is viable for all of them. Though
such issues deserve intensive attention, and per-
haps even more so now when UD have gained
such a fascinating momentum, we take the two
assumptions simply for granted. Neither do we
present the genesis of the current UD collection,
preceded by HamleDT treebank collection by Ze-
man et al. (2014), going back to the CoNLL 2006
and 2007 tasks (Buchholz and Marsi, 2006; Nivre
et al., 2007), and to earlier POS standardization
efforts. In this overview, we limit ourselves to the
scope outlined by the VarDial shared task, whose
goal is to develop a parser for a (virtually) under-
resourced language closely related to a resource-
rich language.2

We believe that most of the published ap-
proaches could be classified into two broad fam-
ilies which we call tree-transfer-based methods
and common-abstraction-based methods. The for-
mer project individual dependency trees across the
language boundary prior to training a target parser.
The latter methods transfer a parser model trained
directly on the source treebank, but limited only to
abstract features shared by both languages.

2.1 Tree-transfer-based approaches
In the tree-transfer-based approaches, a synthetic
pseudo-target treebank is created by some sort of
projection of individual source trees into the tar-
get language. Then a standard monolingual parser
can be trained using the pseudo-target treebank in
a more or less standard way. As it is quite un-
likely that a manually annotated source treebank

2Crosslingual transfer is not used only in truly under-
resourced scenarios, but also in situations in which it is hoped
that features explicitly manifested in one language (such as
morphological agreement) could boost parsing performance
in some other language in which they are less overt. Such
bilingually informed parsing scenarios are studied e.g. by
Haulrich (2012).

with high-quality human-made target translations
and high-quality alignment exists, one or more of
the necessary components must be approximated.
And even if all these data components existed,
the task of dependency tree projection would in-
evitably lead to collisions that have to be resolved
heuristically, especially in the case of many-to-one
or many-to-many alignments, as investigated e.g.
by Hwa et al. (2005) and more recently by Tiede-
mann (2014) or Ramasamy et al. (2014).

This family embraces the following approaches:
• using a parallel corpus and projecting the

trees through word-alignment links, with au-
thentic texts in both languages but an auto-
matically parsed source side,
• using a machine-translated parallel corpus,

with only one side containing authentic texts
and the other being created by MT; both
translation directions have pros and cons:

– source-to-target MT allows for using a
gold treebank on the source side,

– target-to-source MT allows the parser to
learn to work with real texts in the target
language, for which, in addition, a gold
POS labeling might be available.

Obviously there are certain trade-offs related to
this family of tree transfer approaches. For exam-
ple, using MT to create a synthetic parallel cor-
pus often results in a considerably lower text qual-
ity, but provides more reliable alignment links. In
addition, such alignment typically has a higher
amount of one-to-one word alignments, which fa-
cilitates tree projection; in case of extremely close
languages, as in this paper, the MT system can be
constrained to produce only 1:1 translations.

There are two additional advantages of the tree-
transfer-based approach:
• the feature set used by the target language

parser is independent of the features that are
applicable to the source language,
• we can easily use only sentence pairs (or tree

fragments) with a reasonably high correspon-
dence between source and target structures,
as done by Rasooli and Collins (2015).

2.2 Common-abstraction-based approaches

By using a “common abstraction” we mean us-
ing features that have the same or very similar
“meaning” both in the source and target language.
Obviously, word forms cannot be easily used di-
rectly, as there are various spelling and morpho-
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logical differences even between very close lan-
guages. Using such shared features allows a parser
that was trained on a source treebank to be used di-
rectly on target texts; i.e. the source-target “trans-
fer” of the parser is trivial, compared to a source-
target transfer of the treebank as described in §2.1.

The common abstraction features used by the
parser can be linguistically motivated, or induced
by mathematical methods such as clustering and
vector space representation:

• Unified POS tags: a POS tagset simplified
and unified to the extent that it was usable for
both source and target languages was behind
one of the first experiments with delexical-
ized parsing by Zeman and Resnik (2008).
The advantage of such approaches lies in
their linguistic interpretability. On the other
hand, in spite of the substantial progress in
tagset harmonization since the work of Ze-
man (2008), this approach can end up in
a very limited intersection of morphological
categories in case of more distant languages.
• Word clusters have been successfully applied

in many NLP fields, with the clusters of
Brown et al. (1992) being probably the most
prominent representative. Täckström et al.
(2012) showed that cross-lingually induced
clusters can serve as the common abstract
features for cross-lingual parsing.
• Word embeddings, if induced with some

cross-lingual constraints and mapped into a
shared low-dimensional space, can also be
used, as shown e.g. by Duong et al. (2015).

An obvious trade-off that appears with this
family of methods is associated with the speci-
ficity/generality of the shared abstract representa-
tion of words. For example, in the case of delex-
icalization by a common POS tagset, the ques-
tion arises what is the best granularity of shared
tags. The more simplified tags, the more language-
universal information is captured, but the more in-
formation is lost at the same time. Moreover, even
if two languages share a particular morphological
category, e.g. pronoun reflexivity, it is hard to pre-
dict whether adding this distinction into the shared
tagset helps the resulting parser or not.

A variation that appers with this family of meth-
ods is the usage of “relexicalization”. The base
parser resulting from the transfer is applied on (un-
seen) target data, and a new parser is self-trained
on this data; a successful application of this ap-

proach is documented by Täckström et al. (2013).

2.3 Other variations

Aufrant et al. (2016) combines both main strate-
gies described above by adapting the word order
in source sentences to be more similar to that of
the target language, e.g. by swapping the order
of an attribute and its nominal head; the infor-
mation about these configurations was extracted
from the WALS World Atlas of Language Struc-
tures (Dryer and Haspelmath, 2013). Such pro-
cessing of source language trees fits to the first
family of approaches, as it resembles a (very lim-
ited) MT preprocessing; but after this step, a POS-
delexicalized parser transfer is used, which fits the
second family.

When processing more than a few under-
resourced languages, choosing the best source lan-
guage should be ideally automatized too. One
could rely on language phylogenetic trees or on
linguistic information available e.g. in WALS, or
on more mechanized measures, such as Kullback-
Leibler divergence of POS trigram distributions
(Rosa and Žabokrtský, 2015).

In addition, we might want to combine informa-
tion from more source languages, like in the case
of multi-source transfer introduced by McDonald
et al. (2011). Choosing source language weights to
be used as mixing coefficients becomes quite intri-
cate then as we face a trade-off between similarity
of the source languages to the target language and
the size of resources available for them.

3 Task and Data

The task was to perform labeled dependency pars-
ing of each of the three target languages, Slovak
(SK), Croatian (HR), and Norwegian (NO), with-
out using target treebanks. In the constrained track
of the task, we were only allowed to use provided
source treebanks and source-target parallel data
for source languages closely related to the target
languages: Czech (CS) as a source for SK, Slove-
nian (SL) for HR, and Danish (DA) and Swedish
(SV) for NO. Because of reported good perfor-
mance in the baselines, we use the DA and SV
data concatenated into “Dano-Swedish” (DS).

For development testing of our systems, small
target dev treebanks were provided, with golden
syntactic annotation, and morphological annota-
tion (UPOS and morpho feats) predicted by super-
vised taggers; the taggers were also provided. Fi-
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nal test treebanks were annotated in the same way.
For an exact description of the task, the datasets,

models, baselines and upper-bounds, please refer
to (Zampieri et al., 2017) and the task webpage.3

The task specifies Labeled Attachment Score
(LAS) as the primary metric, and Unlabeled At-
tachment Score (UAS) as a secondary one.

4 Components

In §4.1 we describe the baseline setup, which we
further enrich by the components described in the
following sections; the final setups used for each
of the target languages are specified in §5.

The development and employment of the com-
ponents was guided by continual evaluation on the
dev treebanks. We evaluated several variations of
each component, and selected the best performing
variant separately for each target language.4 Hy-
perparameter tuning was performed neither for the
tagger and parser nor for any of the components,
as this was forbidden by the shared task rules.5

4.1 Baseline
As our starting point, we took the task baseline. It
consists of a UDPipe tagger and parser (Straka et
al., 2016),6 trained on the source treebank with the
default settings, except:
• the parser is trained without using the morpho

feats (i.e. only using word form and UPOS)7

• the tagger is trained to only produce UPOS.8

We train the tagger and parser together, which
means that UDPipe trains the tagger, applies it
to the treebank, and trains the parser using mor-
phological annotation predicted by the tagger. We
have found this setup to perform better than train-
ing on gold annotation by +1.6 LAS on average.

4.2 Annotation Normalization
Unlike some older work in this area, we work with
multi-lingual data that is harmonized across lan-

3https://bitbucket.org/tiedemann/
vardial2017

4We evaluated 114 different setups: 63 were evaluated for
all 3 target languages, 12 for 2, and 39 for 1 target language;
in total, 252 LAS scores were computed on the dev treebanks.

5Following the UDPipe manual, we deviated from the de-
fault tagger hyperparameters in case of CS (due to its huge
treebank), setting them to: guesser suffix rules=6;
guesser enrich dictionary=4

6Version 3e65d69 from 3rd Jan 2017, obtained from
https://github.com/ufal/udpipe

7Parameter: embedding feats=0
8Parameters: use lemma=0;provide lemma=0;

use xpostag=0;provide xpostag=0;
use feats=1;provide feats=1

guages, i.e. all languages should be syntactically
and morphologically annotated according to the
same UD guidelines. However, the current level
of harmonization is still far from perfect. Certain
deprels occur in the source treebanks but not in the
target treebank (or vice versa), but not due to dif-
ferences in the treebank languages or domains – it
is just because of differences in annotation, despite
the intention of UD to annotate the same things in
the same way. We obviously cannot modify the
test data in any way, but we can make the source
data as similar to the target annotation as possible.
By doing so, we simulate a likely real-world sce-
nario: when people want to parse a resource-poor
language, they supposedly know what kind of de-
prels they want in the output.

For example, CS contains a language-specific
nummod:gov deprel, which never occurs in SK.
We do not want the parser to learn to assign that
deprel, because we are not going to score on such
relations. Hence, we replace all occurrences of
nummod:gov in the source treebank by the more
general nummod deprel, which is also used in SK.

Similarly, one may want to modify the UPOSes
and morpho feats, which the parser gets as input
and can use them to improve syntactic analysis. It
seems reasonable to adjust or hide tags unavail-
able in the target data; e.g., the SK treebank does
not distinguish SCONJ from CONJ, and DET from
PRON; or, the Scandinavian treebanks disagree on
when participles are VERB and when ADJ.

Finally, we tried to normalize several rather ran-
domly spotted phenomena whose analysis system-
atically differs across languages. The most promi-
nent example is the Scandinavian word både in
både A och/og B “both A and B”. In SV, the word
is tagged CONJ and attached via the advmod de-
prel, in DA it is ADV/advmod, and in NO it is
CONJ/cc. Normalizing instances of både alone
increased LAS on NO by almost 1 point!

Our normalization is based on manual error
analyses of parser outputs on the dev treebanks.

4.3 Word-by-Word Machine Translation

The core of our approach is a move from a cross-
lingual to a pseudo-monolingual setting by trans-
lating the word forms in the source treebank into
the target language. It has three steps: word-
alignment of the parallel data, extraction of a
translation table from the aligned data, and the
treebank translation itself.
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We employ a simple word-based MT approach,
which we tried as a first attempt but found it good
enough for our purpose; we have yet to evaluate
how it compares to more sophisticated methods.

4.3.1 Word-alignment

Since the source and target languages in our task
are very close to each other, we decided to use
the heuristic Monolingual Greedy Aligner (MGA)
of Rosa et al. (2012),9 rather than e.g. the usual
Giza++ (Och and Ney, 2003) – most standard
word aligners ignore word similarity, which we
believe to be useful and important in our setting.

MGA utilizes the word, lemma, and tag sim-
ilarity based on Jaro-Winkler distance (Winkler,
1990), and the similarity of relative positions in
the sentences, to devise a score for each potential
alignment link as a linear combination of these,
weighted by pre-set weights. The iterative align-
ment process then greedily chooses the currently
highest scoring pair of words to align in each step;
each word can only be aligned once. The process
stops when one of the sides is fully aligned, or
when the scores of the remaining potential links
fall below a pre-set threshold.

We used MGA as is, with the default values
of the hyperparameters and with no adaptation
to the UD annotation style or the specific lan-
guages of the task. Even though MGA was orig-
inally designed for aligning same-language sen-
tences (especially Czech), we found it to perform
well enough in our setting, and therefore left po-
tential tuning and adaptations for future work.

Before aligning, we preprocess the parallel data
by the Treex tokenizer, the provided target tagger,
and a source tagger trained on the source treebank.

4.3.2 Translation table extraction

For our methods to be easily applicable, we re-
quire a one-to-one translation, which we can af-
ford due to the high similarity of the languages.
Therefore, we extract a translation word table
rather than the more usual phrase table from the
aligned data. Moreover, due to the simplicity of
the subsequent translation step, it is sufficient for
us to only store the best (most frequent) translation
for each word; we use Jaro-Winkler similarity of
the source and target word forms as a tie breaker.

9https://github.com/ufal/treex/
blob/master/lib/Treex/Tool/Align/
MonolingualGreedy.pm

Identical source word forms with differing
UPOS or morpho feats annotations are treated as
distinct words, serving as a basic source-side dis-
ambiguation; we rely on these source annotations
being available at inference for selecting the trans-
lation. To reduce the OOV rate, two backoff layers
are also stored, the first disregarding the morpho
feats, and the second also disregarding the UPOS.

An option that we leave for future research is
to use the alignment scores provided by the MGA
when constructing the translation table.

For simplicity, we create only one joint transla-
tion table for translating DS into NO.

4.3.3 Treebank translation

We translate each source treebank into the tar-
get language word-by-word, independent of any
source or target context. We use the golden an-
notation of UPOS and morpho feats for source-
side disambiguation; a backoff layer is used if
the translation table does not contain the source
word form with the given annotations. OOVs are
left untranslated. This results in a pseudo-target
treebank, with golden annotations from the source
treebank and word forms in the target language.

In preliminary experiments, the opposite target-
to-source translation led to worse results (by -1.3
LAS on average), possibly because the parser re-
lies more on the correctness of the source, mak-
ing it less robust when applied to the machine-
translated target. Moreover, in case of DS-NO, the
target-to-source translation is not straightforward.

4.4 Pre-training Word Embeddings

Because UDPipe uses a neural network parser, all
input features have to be converted to vectors. By
default, it trains embeddings of each input feature
on the pseudo-target treebank jointly with training
the parser. As larger data can provide better em-
beddings, we pretrain word form embeddings on
the target side of the parallel data, pretokenized
by the Treex tokenizer (Popel and Žabokrtský,
2010),10 and provide them to UDPipe. We use
word2vec (Mikolov et al., 2013), with the param-
eters suggested in the UDPipe manual.11

10https://github.com/ufal/treex/blob/
master/lib/Treex/Block/W2A/Tokenize.pm

11-cbow 0 -size 50 -window 10
-negative 5 -hs 0 -sample 1e-1 -binary 0
-iter 15 -min-count 2 -threads 12
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4.5 Morphological Features Subselection
We found out that in the default setting, not us-
ing the morphological features leads to better LAS
than using them. This is probably caused by the
fact that UDPipe treats the morpho feats string as a
single unit and is not able to split it and assign dif-
ferent importance to individual features. We there-
fore try to find an effective subsection of the mor-
phological features.

4.5.1 Keep useful
Collins et al. (1999) showed that Case was the
most valuable feature for parsing Czech; indeed,
when we discard all features but Case, we observe
better accuracy for all target languages.

One other feature they use with words that do
not have Case is called SubPOS and is specific to
the tagset of their corpus. In UD, there are sev-
eral features with similar function, e.g. PronType
subcategorizing pronouns or NumType subcatego-
rizing numerals. Unfortunately, we found neither
of them to help in our setting.

4.5.2 Keep shared
Another possibility is to keep only those features
that are highly consistent cross-lingually. For each
feature-value pair in the tagged and aligned paral-
lel data, we count the number of times it appears
on both sides of an alignment pair. The consis-
tency c of feature-value pair f is computed as:

c(f) =
1
2

(
#(f ∈ s, f ∈ t)

#(f ∈ s)
+

#(f ∈ s, f ∈ t)
#(f ∈ t)

)
where #() indicates the number of times the fea-
ture is present in the source (s), target (t), or both
aligned words. We only keep feature-value pairs
with consistency higher than a threshold, which
we set to 0.7 after having evaluated the values of
0.6, 0.7, and 0.8. We also tried to condition the
consistency scores on UPOS, which did not im-
prove LAS.

The two described feature selection mecha-
nisms can also be combined, e.g. by providing the
Case feature in the morhpo feats field, and the
other shared features in the XPOS field, thus en-
abling the parser to treat them separately.

4.6 Cross-Tagging
There is a considerable body of work on projecting
POS taggers across aligned corpora, dating back to
(Yarowsky and Ngai, 2001). In combination with
cross-language parsing, such techniques are used

to provide the parser with target-side POS tags.
Our task is specific in that a supervised target POS
tagger is available; however, there are still several
possibilities of combining tagger and parser mod-
els in order to make the parsed data as similar as
possible to what the parser was trained on.
• Baseline. Train a parser on the source tree-

bank. Tag the target data by a supervised tar-
get tagger and parse it by the trained parser,
hoping that the tags produced by the target
tagger are similar enough to the source tags.
• Source data cross-tagging (source-xtag).

Translate source treebank into the target lan-
guage, tag it by a supervised target tagger and
train a parser on it. Tag the target data by the
supervised target tagger and parse it by the
trained parser.
• Target data cross-tagging (target-xtag).

Translate the source treebank into the target
language and train a tagger and parser on in.
Tag the target data by the trained tagger and
then parse it by the trained parser.

In addition, we always train the parser jointly
with a tagger, so that the parser is trained on mono-
lingually predicted tags, as explained in §4.1.

We have found source-xtag to work well for het-
erogeneous source data, such as the DS mixture.

Conversely, target-xtag proved useful for SK,
where the source treebank is much larger than the
target data used to train the target tagger. A tag-
ger trained on the large source treebank provides
much better tags, which in turn boosts the parsing
accuracy, despite the noise from MT and xtag.

Note that if no target tagger is available, we
must either use target-xtag, or we may project
a tagger across the parallel data in the style of
Yarowsky and Ngai (2001) and use the resulting
tagger in our baseline or source-xtag scenarios.12

We also experimented with cross-tagging of
only the UPOS or only the morpho feats, with dif-
ferent setups being useful for different languages.

Although the UDPipe tagger can also be trained
to perform lemmatization, we have not found any
way to obtain and utilize lemmas that would im-
prove the cross-lingual parsing.13

12Our approach still needs a target tagger to perform the
word alignment, but we believe that for very close languages,
the word forms alone might be sufficient to obtain a good-
enough alignment; or, a different word aligner could be used.

13We tried to translate the lemmas, as well as to perform
simple stemming, such as cropping or devowelling.
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Component SK HR NO
§4.2 Normalize source annotations X X X
§4.3 Translate word forms X X X
§4.4 Pre-train form embeddings X X X
§4.6 Source-xtag of UPOS × × X
§4.5 Add Case morpho feat X X X
§4.5 Add shared morpho feats X × ×
§4.6 Target-xtag of morpho feats X × X
§4.6 Target-xtag of UPOS X × ×

Table 1: Components used for the various lan-
guages, listed in the order in which they are ap-
plied. The Case feature was used in the best (after-
deadline) SK setup, but not in the submitted setup.

5 Individual Language Setups

In our final setup, we enrich the baseline (§4.1) by
various components (§4), as listed in Table 1:

1. Normalize source treebank annotations
2. Translate source treebank to target language
3. Pre-train target word form embeddings
4. For NO: Cross-tag UPOS in source treebank
5. Prune source treebank morphological fea-

tures, keeping only Case
6. For SK: Put frequently shared morpho feats

into the “XPOS” field in source treebank
7. Train a tagger on source treebank, tagging

UPOS and Case (for SK also “XPOS”)
8. Retag source treebank by the trained tagger
9. Train a parser on source treebank, using the

pre-trained word form embeddings, UPOS,
and Case (for SK also “XPOS”)

10. For HR: Prune target morphological features,
keeping only Case

11. For NO and SK: Cross-tag Case in target
12. For SK: Cross-tag UPOS and morphological

features in target
13. Parse target corpus by the trained parser

We believe that the utility of the language-
specific components owes to the following:
• For NO, there are two different source lan-

guages. Translating them both to NO and re-
tagging them with the NO tagger makes the
training data more homogeneous.14

• SK and CS seem to be the closest languages
in the shared task, both being morphologi-
cally very rich, which explains the usefulness
of employing additional shared morpho feats.
• The CS treebank is extremely large, leading

to the fact that a pseudo-SK tagger, trained on
14However, it is better to use the original morphological

features in source treebank and cross-tag them on target tree-
bank, presumably because annotation of Case in SV is much
richer than in NO.

SK HR NO
Setup LAS on test
Baseline 53.72 53.35 59.95
Our 78.12 60.70 70.21
Supervised 69.14 68.51 78.23
Reaching supervised 158% 48% 56%
Setup LAS on dev
Baseline 55.97 55.88 59.31
Our 77.49 64.32 69.99
Supervised 70.27 74.27 78.10
Reaching supervised 145% 48% 56%

Table 2: Evaluation using LAS. Reaching super-
vised is how far we got on the scale between the
baseline and the supervised setup.

the CS treebank translated to SK, performs
far better than the original SK tagger.

6 Results

The results we achieved on the dev and test tree-
banks are listed in Table 2. For SK, we got an even
better result of 79.37% LAS (78.63% on dev) just
6 minutes after the deadline by combining shared
morphological features and Case, while the sub-
mitted setup only contained the shared features
without Case. The baseline and supervised LAS
are shown as reported by organizers.

We can see that for both HR and NO, we
achieve a score that is approximately half the way
from the baseline to the supervised setup. The fact
the CS and SK are very close, and that the CS
treebank is huge, leads to amazing results for SK,
leaving the supervised “upper-bound” far behind.

Table 3 shows our results in comparison to the
second-best system of (Tiedemann, 2017). When
evaluating with LAS, our system clearly outper-
forms them by a large margin for all three lan-
guages; however, the score difference practically
disappears for NO and HR and is greatly dimin-
ished for SK when UAS is used for evaluation in-
stead. We hypothesize that most of these addi-
tional gains in LAS are due to the deprel normal-
ization, which (Tiedemann, 2017) might not have
employed, and which is bound to have negligible
effect on UAS. This belief is also strongly sup-
ported by the estimated improvement brought by
the normalization component according to the ab-
lation analysis (see next paragraph), which very
tightly corresponds to the amount of lead we lose
when going from LAS to UAS evaluation.

Table 4 reports the ablation analysis performed
on the dev treebanks to estimate the effect of in-
dividual components. We report the deterioration
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System SK HR NO
LAS
Our 78.12 60.70 70.21
Tiedemann 73.14 57.98 68.60
UAS
Our 84.92 69.73 77.13
Tiedemann 82.87 69.57 76.77

Table 3: Comparison of LAS and UAS scores of
our system and the second-best system.

Component SK HR NO
Normalize source annotations 2.50 3.11 1.67
Translate word forms 7.04 5.02 6.66
Pre-train form embeddings 2.83 3.88 5.28
Cross-tag 11.36 — 2.92
Add morphological features 2.09 1.70 1.43

Table 4: Ablation analysis: reduction of LAS
score when removing various components.

in LAS versus our best setup15 that occurs when
a given component is removed.16 This serves as
an indication of the improvement brought by the
component; it is not exact due to some interplay
of the components and overlapping of their effects.
The “Cross-tag” component refers to the joint ef-
fect of any cross-tagging steps used for the re-
spective languages. Similarly, “Add morphologi-
cal features” refers to adding only the Case feature
for HR and NO, but adding both Case and shared
morphological features for SK.

Overall, the most important component seems
to be the translation of word forms, leading to im-
provements of +5 to +7 LAS. This seems to con-
firm our initial hypothesis that for very close lan-
guages, much of the gap between the baseline and
the supervised parser can be bridged by appro-
priate lexicalization. However, the single largest
improvement (+11.36 LAS) is achieved by target-
xtag of SK, probably because the CS treebank is
enormous and because CS and SK are extremely
close languages. Other components also brought
very nice improvements, amounting to +2.7 LAS
on average per component and language.

7 Discussion and Future Work

Overall, our setup has achieved very good results.
It surpassed all other submissions to the shared
task on each language in both LAS and UAS, halv-

15For SK, we use the post-deadline setup which combines
Case and shared morphological features.

16For MT, we take the best setup without cross-tagging as
the basis, since the performance of the cross-tagger without
MT is low and would obscure the effect of the MT itself.

ing the gap between the baseline and the super-
vised parser for two of the languages and even far
exceeding supervised for the third. The result for
CS-SK shows that for pairs of very similar lan-
guages, the usefulness of cross-lingual methods
can go beyond the realm of under-resourced lan-
guages, improving even upon respectable super-
vised setups; even better results could probably be
obtained by a combination of both.

As we use many of the components in the same
way for all of the languages with no need of man-
ual adaptation or evaluation on target data, our ap-
proach could also be easily applied to other lan-
guages; we plan to do that in the near future.

Other components are unfortunately not appli-
cable to new data in a straightforward manner. We
employed cross-tagging in a different way for each
of the languages, and although we offered pos-
sible explanations of why particular setups work
best for particular languages, it is an open ques-
tion whether these explanations can also be used
to guide setting up a system for a new language
pair. Furthermore, the annotation normalization
has to be devised manually for each of the source
and target languages.17

Although we found that the translation is the
most important component of our pipeline, we
have yet to evaluate it properly and identify po-
tential ways to improve its performance.

We also believe that further increases in accu-
racy may be obtained by substituting UDPipe with
a brand new tagger and/or parser that would fea-
ture current improvements in the field.

To allow other researchers to examine and/or
apply our approach, we have freely released the
source codes18 and models.19
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toMT: Modular NLP framework. In Proceedings
of IceTAL, 7th International Conference on Natu-
ral Language Processing, Reykjavı́k, Iceland, Au-
gust 17, 2010, pages 293–304. Springer.

Loganathan Ramasamy, David Mareček, and Zdeněk
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