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Abstract

We present a machine learning approach
for the Arabic Dialect Identification (ADI)
and the German Dialect Identification
(GDI) Closed Shared Tasks of the DSL
2017 Challenge. The proposed approach
combines several kernels using multiple
kernel learning. While most of our ker-
nels are based on character p-grams (also
known as n-grams) extracted from speech
transcripts, we also use a kernel based
on i-vectors, a low-dimensional represen-
tation of audio recordings, provided only
for the Arabic data. In the learning stage,
we independently employ Kernel Discrim-
inant Analysis (KDA) and Kernel Ridge
Regression (KRR). Our approach is shal-
low and simple, but the empirical results
obtained in the shared tasks prove that it
achieves very good results. Indeed, we
ranked on the first place in the ADI Shared
Task with a weighted F1 score of 76.32%
(4.62% above the second place) and on the
fifth place in the GDI Shared Task with a
weighted F1 score of 63.67% (2.57% be-
low the first place).

1 Introduction

The recent 2016 Challenge on Discriminating be-
tween Similar Languages (DSL) (Malmasi et al.,
2016) shows that dialect identification is a chal-
lenging NLP task, actively studied by researchers
in nowadays. For example, a state-of-the-art Ara-
bic dialect identification system achieves just over
50% (Ionescu and Popescu, 2016b; Malmasi and
Zampieri, 2016), in a 5-way classification setting.
In this context, we present a method based on
learning with multiple kernels, that we designed
for the Arabic Dialect Identification (ADI) and

the German Dialect Identification (GDI) Shared
Tasks of the DSL 2017 Challenge (Zampieri et
al., 2017). In the ADI Shared Task, the partici-
pants had to discriminate between Modern Stan-
dard Arabic (MSA) and four Arabic dialects, in a
5-way classification setting. A number of 6 teams
have submitted their results on the test set, and our
team (UnibucKernel) ranked on the first place with
an accuracy of 76.27% and a weighted F1 score
of 76.32%. In the GDI Shared Task, the partic-
ipants had to discriminate between four German
dialects, in a 4-way classification setting. A num-
ber of 10 teams have submitted their results, and
our team ranked on the fifth place with an accuracy
of 66.36% and a weighted F1 score of 63.67%.

Our best scoring system in both shared tasks
combines several kernels using multiple kernel
learning. The first kernel that we considered is the
p-grams presence bits kernel1, which takes into ac-
count only the presence of p-grams instead of their
frequency. The second kernel is the (histogram)
intersection string kernel2, which was first used in
a text mining task by Ionescu et al. (2014). The
third kernel is derrived from Local Rank Distance
(LRD)3, a distance measure that was first intro-
duced in computational biology (Ionescu, 2013;
Dinu et al., 2014), but it has also shown its ap-
plication in NLP (Popescu and Ionescu, 2013;
Ionescu, 2015). All these string kernels have
been previously used for Arabic dialect identi-
fication by Ionescu and Popescu (2016b), and
they obtained very good results, taking the sec-
ond place in the ADI Shared Task of the DSL
2016 Challenge (Malmasi et al., 2016). While

1We computed the p-grams presence bits kernel using the
code available at http://string-kernels.herokuapp.com.

2We computed the intersection string kernel using the
code available at http://string-kernels.herokuapp.com.

3We computed the Local Rank Distance using the code
available at http://lrd.herokuapp.com.
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three of our kernels are based on character p-grams
from speech transcrips, we also use an RBF ker-
nel (Shawe-Taylor and Cristianini, 2004) based on
i-vectors (Ali et al., 2016), a low-dimensional rep-
resentation of audio recordings, available only for
the Arabic data. To the best of our knowledge,
none of the string kernels have been previously
combined with a kernel based on i-vectors or used
for German dialect identification.

We considered two kernel classifiers (Shawe-
Taylor and Cristianini, 2004) for the learning task,
namely Kernel Ridge Regression (KRR) and Ker-
nel Discriminant Analysis (KDA). In a set of pre-
liminary experiments performed on the GDI train-
ing set, we found that KDA gives slightly better
results than KRR. On the other hand, KRR seems
to yield a better performance on the ADI training
and development sets. In the end, we decided to
submit results using both classifiers. However, our
best scoring system in both shared tasks employs
Kernel Ridge Regression (KRR) in the learning
stage. Before submitting our results, we have also
tuned our string kernels for the task. First of all,
we tried out p-grams of various lengths, including
blended variants of string kernels as well. Second
of all, we have evaluated the individual kernels
and various kernel combinations. The empirical
results indicate that combining kernels can help to
improve the accuracy by at least 1%. When we
added the kernel base on i-vectors into the mix,
we found that it can further improve the perfor-
mance, by nearly 5%. All these choices played a
significant role in obtaining the first place in the
final ranking of the ADI Shared Task.

The paper is organized as follows. Work related
to Arabic and German dialect identification and
to methods based on string kernels is presented in
Section 2. Section 3 presents the kernels that we
used in our approach. The learning methods used
in the experiments are described in Section 4. De-
tails about the experiments on Arabic and German
dialect identification are provided in Sections 5
and 6, respectively. Finally, we draw our conclu-
sion in Section 7.

2 Related Work

2.1 Arabic Dialect Identification

Arabic dialect identification is a relatively new
NLP task with only a handful of works to ad-
dress it (Biadsy et al., 2009; Zaidan and Callison-
Burch, 2011; Elfardy and Diab, 2013; Darwish et

al., 2014; Zaidan and Callison-Burch, 2014; Mal-
masi et al., 2015). Although it did not received
too much attention, the task is very important for
Arabic NLP tools, as most of these tools have
only been design for Modern Standard Arabic. Bi-
adsy et al. (2009) describe a phonotactic approach
that automatically identifies the Arabic dialect of
a speaker given a sample of speech. While Bi-
adsy et al. (2009) focus on spoken Arabic dialect
identification, others have tried to identify the Ara-
bic dialect of given texts (Zaidan and Callison-
Burch, 2011; Elfardy and Diab, 2013; Darwish
et al., 2014; Malmasi et al., 2015). Zaidan and
Callison-Burch (2011) introduce the Arabic On-
line Commentary (AOC) data set of 108K la-
beled sentences, 41% of them having dialectal
content. They employ a language model for au-
tomatic dialect identification on their collected
data. A supervised approach for sentence-level
dialect identification between Egyptian and MSA
is proposed by Elfardy and Diab (2013). Their
system outperforms the approach presented by
Zaidan and Callison-Burch (2011) on the same
data set. Zaidan and Callison-Burch (2014) ex-
tend their previous work (Zaidan and Callison-
Burch, 2011) and conduct several ADI experi-
ments using word and character p-grams. Differ-
ent from most of the previous work, Darwish et
al. (2014) have found that word unigram models
do not generalize well to unseen topics. They sug-
gest that lexical, morphological and phonological
features can capture more relevant information for
discriminating dialects. As the AOC corpus is not
controlled for topic bias, Malmasi et al. (2015)
also state that the models trained on this corpus
may not generalize to other data as they implic-
itly capture topical cues. They perform ADI ex-
periments on the Multidialectal Parallel Corpus of
Arabic (MPCA) (Bouamor et al., 2014) using var-
ious word and character p-grams models in order
to assess the influence of topic bias. Interestingly,
Malmasi et al. (2015) find that character p-grams
are “in most scenarios the best single feature for
this task”, even in a cross-corpus setting. Their
findings are consistent with the results of Ionescu
and Popescu (2016b) in the ADI Shared Task of
the DSL 2016 Challenge (Malmasi et al., 2016),
as they ranked on the second place using solely
character p-grams from Automatic Speech Recog-
nition (ASR) transcripts. However, the 2017 ADI
Shared Task data set (Ali et al., 2016) contains
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the original audio files and some low-level au-
dio features, called i-vectors, along with the ASR
transcripts of Arabic speech collected from the
Broadcast News domain. Our experiments indi-
cate that the audio features produce a much bet-
ter performance, probably because there are many
ASR errors (perhaps more in the dialectal speech
segments) that make Arabic dialect identification
from ASR transcripts much more difficult.

2.2 German Dialect Identification
German dialect identification is even less stud-
ied than Arabic dialect identification. Scherrer
and Rambow (2010) describe a system for writ-
ten dialect identification based on an automati-
cally generated Swiss German lexicon that asso-
ciates word forms with their geographical exten-
sions. At test time, they split a sentence into words
and look up their geographical extensions in the
lexicon. Hollenstein and Aepli (2015) present a
Swiss German dialect identification system based
on character trigrams. They train a trigram lan-
guage model for each dialect and score each test
sentence against every model. The predicted di-
alect is chosen based on the lowest perplexity. Al-
though Samardzic et al. (2016) present a corpus
that can be used for GDI, they do not deal with
this task in their paper. Nonetheless, their corpus
was used to evaluate the participants in the GDI
Shared Task of the DSL 2017 Challenge.

2.3 String Kernels
In recent years, methods of handling text at
the character level have demonstrated impres-
sive performance levels in various text analysis
tasks (Lodhi et al., 2002; Sanderson and Guenter,
2006; Kate and Mooney, 2006; Grozea et al.,
2009; Popescu, 2011; Escalante et al., 2011;
Popescu and Grozea, 2012; Ionescu et al., 2014;
Ionescu et al., 2016). String kernels are a com-
mon form of using information at the character
level. They are a particular case of the more gen-
eral convolution kernels (Haussler, 1999). Lodhi
et al. (2002) used string kernels for document cat-
egorization with very good results. String kernels
were also successfully used in authorship identi-
fication (Sanderson and Guenter, 2006; Popescu
and Grozea, 2012). For example, the system de-
scribed by Popescu and Grozea (2012) ranked first
in most problems and overall in the PAN 2012
Traditional Authorship Attribution tasks. More
recently, various blended string kernels reached

state-of-the-art accuracy rates for native language
identification (Ionescu et al., 2016) and Arabic di-
alect identification (Ionescu and Popescu, 2016b).

3 Kernels for Dialect Identification

3.1 String Kernels
The kernel function captures the intuitive notion
of similarity between objects in a specific domain
and can be any function defined on the respec-
tive domain that is symmetric and positive definite.
For strings, many such kernel functions exist with
various applications in computational biology and
computational linguistics (Shawe-Taylor and Cris-
tianini, 2004). String kernels embed the texts in a
very large feature space, given by all the substrings
of length p, and leave it to the learning algorithm
to select important features for the specific task,
by highly weighting these features.

Perhaps one of the most natural ways to mea-
sure the similarity of two strings is to count how
many substrings of length p the two strings have
in common. This gives rise to the p-spectrum ker-
nel. Formally, for two strings over an alphabet Σ,
s, t ∈ Σ∗, the p-spectrum kernel is defined as:

kp(s, t) =
∑
v∈Σp

numv(s) · numv(t),

where numv(s) is the number of occurrences of
string v as a substring in s.4 The feature map
defined by this kernel associates to each string a
vector of dimension |Σ|p containing the histogram
of frequencies of all its substrings of length p (p-
grams). A variant of this kernel can be obtained
if the embedding feature map is modified to as-
sociate to each string a vector of dimension |Σ|p
containing the presence bits (instead of frequen-
cies) of all its substrings of length p. Thus, the
character p-grams presence bits kernel is obtained:

k0/1
p (s, t) =

∑
v∈Σp

inv(s) · inv(t),

where inv(s) is 1 if string v occurs as a substring
in s, and 0 otherwise.

In computer vision, the (histogram) intersec-
tion kernel has successfully been used for ob-
ject class recognition from images (Maji et al.,
2008; Vedaldi and Zisserman, 2010). Ionescu et

4The notion of substring requires contiguity. Shawe-
Taylor and Cristianini (2004) discuss the ambiguity between
the terms substring and subsequence across different do-
mains: biology, computer science.
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al. (2014) have used the intersection kernel as a
kernel for strings. The intersection string kernel is
defined as follows:

k∩p (s, t) =
∑
v∈Σp

min{numv(s), numv(t)},

where numv(s) is the number of occurrences of
string v as a substring in s.

For the p-spectrum kernel, the frequency of a p-
gram has a very significant contribution to the ker-
nel, since it considers the product of such frequen-
cies. On the other hand, the frequency of a p-gram
is completely disregarded in the p-grams presence
bits kernel. The intersection kernel lies some-
where in the middle between the p-grams presence
bits kernel and p-spectrum kernel, in the sense that
the frequency of a p-gram has a moderate contri-
bution to the intersection kernel. In other words,
the intersection kernel assigns a high score to a p-
gram only if it has a high frequency in both strings,
since it considers the minimum of the two frequen-
cies. The p-spectrum kernel assigns a high score
even when the p-gram has a high frequency in only
one of the two strings. Thus, the intersection ker-
nel captures something more about the correlation
between the p-gram frequencies in the two strings.
Based on these comments, we decided to use only
the p-grams presence bits kernel and the intersec-
tion string kernel for ADI and GDI.

Data normalization helps to improve machine
learning performance for various applications.
Since the value range of raw data can have large
variation, classifier objective functions will not
work properly without normalization. After nor-
malization, each feature has an approximately
equal contribution to the similarity between two
samples. To obtain a normalized kernel matrix of
pairwise similarities between samples, each com-
ponent is divided by the square root of the product
of the two corresponding diagonal components:

K̂ij =
Kij√
Kii ·Kjj

.

To ensure a fair comparison of strings of differ-
ent lengths, normalized versions of the p-grams
presence bits kernel and the intersection kernel
are being used. Taking into account p-grams of
different lengths and summing up the correspond-
ing kernels, new kernels, termed blended spectrum
kernels, can be obtained. We have used various
blended spectrum kernels in the experiments in or-
der to find the best combination.

3.2 Kernel based on Local Rank Distance
Local Rank Distance (Ionescu, 2013) is a re-
cently introduced distance that measures the non-
alingment score between two strings. It has al-
ready shown promising results in computational
biology (Ionescu, 2013; Dinu et al., 2014) and na-
tive language identification (Popescu and Ionescu,
2013; Ionescu, 2015).

In order to describe LRD, we use the following
notations. Given a string x over an alphabet Σ, the
length of x is denoted by |x|. Strings are consid-
ered to be indexed starting from position 1, that
is x = x[1]x[2] · · ·x[|x|]. Moreover, x[i : j] de-
notes its substring x[i]x[i+ 1] · · ·x[j − 1]. Given
a fixed integer p ≥ 1, a threshold m ≥ 1, and
two strings x and y over Σ, the Local Rank Dis-
tance between x and y, denoted by ∆LRD(x, y),
is defined through the following algorithmic pro-
cess. For each position i in x (1 ≤ i ≤ |x|−p+1),
the algorithm searches for that position j in y (1 ≤
j ≤ |y|−p+1) such that x[i : i+p] = y[j : j+p]
and |i−j| is minimized. If j exists and |i−j| < m,
then the offset |i − j| is added to the Local Rank
Distance. Otherwise, the maximal offset m is
added to the Local Rank Distance. LRD is focused
on the local phenomenon, and tries to pair identi-
cal p-grams at a minimum offset. To ensure that
LRD is a (symmetric) distance function, the algo-
rithm also has to sum up the offsets obtained from
the above process by exchanging x and y. LRD
is formally defined in (Ionescu, 2013; Dinu et al.,
2014; Ionescu and Popescu, 2016a).

The search for matching p-grams is limited
within a window of fixed size. The size of this
window is determined by the maximum offset pa-
rameter m. We set m = 300 in our experi-
ments, which is larger than the maximum length
of the transcripts provided in both training sets. In
the experiments, the efficient algorithm of Ionescu
(2015) is used to compute LRD. However, LRD
needs to be used as a kernel function. We use the
RBF kernel (Shawe-Taylor and Cristianini, 2004)
to transform LRD into a similarity measure:

k̂LRD
p (s, t) = exp

(
−∆LRD(s, t)

2σ2

)
,

where s and t are two strings and p is the p-grams
length. The parameter σ is usually chosen so that
values of k̂(s, t) are well scaled. We have tuned σ
in a set of preliminary experiments. In the above
equation, ∆LRD is already normalized to a value
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in the [0, 1] interval to ensure a fair comparison of
strings of different length. The resulted similarity
matrix is then squared to ensure that it becomes a
symmetric and positive definite kernel matrix.

3.3 Kernel based on Audio Features

For the ADI Shared Task, we also build a kernel
from the i-vectors provided with the data set (Ali
et al., 2016). The i-vector approach is a power-
ful speech modeling technique that comprises all
the updates happening during the adaptation of
a Gaussian mixture model (GMM) mean compo-
nents to a given utterance. The provided i-vectors
have 400 dimensions. In order to build a kernel
from the i-vectors, we first compute the euclidean
distance between each pair of i-vectors. We then
employ the RBF kernel to transform the distance
into a similarity measure:

k̂i-vec(x, y) = exp

−
√√√√ j=1∑

m

(xj − yj)2

2σ2

 ,

where x and y are two i-vectors and m represents
the size of the two i-vectors, 400 in our case. For
optimal results, we have tuned the parameter σ in
a set of preliminary experiments. As for the LRD
kernel, the similarity matrix is squared to ensure
its symmetry and positive definiteness.

4 Learning Methods

Kernel-based learning algorithms work by embed-
ding the data into a Hilbert feature space and by
searching for linear relations in that space. The
embedding is performed implicitly, by specify-
ing the inner product between each pair of points
rather than by giving their coordinates explicitly.
More precisely, a kernel matrix that contains the
pairwise similarities between every pair of train-
ing samples is used in the learning stage to assign
a vector of weights to the training samples. Let
α denote this weight vector. In the test stage, the
pairwise similarities between a test sample x and
all the training samples are computed. Then, the
following binary classification function assigns a
positive or a negative label to the test sample:

g(x) =
n∑

i=1

αi · k(x, xi),

where x is the test sample, n is the number of
training samples, X = {x1, x2, ..., xn} is the set
of training samples, k is a kernel function, and αi

is the weight assigned to the training sample xi.

The advantage of using the dual representation
induced by the kernel function becomes clear if
the dimension of the feature space m is taken into
consideration. Since string kernels are based on
character p-grams, the feature space is indeed very
high. For instance, using 5-grams based only on
the 28 letters of the basic Arabic alphabet will re-
sult in a feature space of 285 = 17, 210, 368 fea-
tures. However, our best models are based on a
feature space that includes 3-grams, 4-grams, 5-
grams, 6-grams and 7-grams. As long as the num-
ber of samples n is much lower than the num-
ber of features m, it can be more efficient to use
the dual representation given by the kernel matrix.
This fact is also known as the kernel trick (Shawe-
Taylor and Cristianini, 2004).

Various kernel methods differ in the way they
learn to separate the samples. In the case of bi-
nary classification problems, kernel-based learn-
ing algorithms look for a discriminant function,
a function that assigns +1 to examples belonging
to one class and −1 to examples belonging to the
other class. In the ADI and GDI experiments, we
used the Kernel Ridge Regression (KRR) binary
classifier. Kernel Ridge Regression selects the
vector of weights that simultaneously has small
empirical error and small norm in the Reproduc-
ing Kernel Hilbert Space generated by the kernel
function. KRR is a binary classifier, but dialect
identification is usually a multi-class classification
problem. There are many approaches for com-
bining binary classifiers to solve multi-class prob-
lems. Typically, the multi-class problem is bro-
ken down into multiple binary classification prob-
lems using common decomposition schemes such
as: one-versus-all and one-versus-one. We con-
sidered the one-versus-all scheme for our dialect
classification tasks. There are also kernel meth-
ods that take the multi-class nature of the problem
directly into account, for instance Kernel Discrim-
inant Analysis. The KDA classifier is sometimes
able to improve accuracy by avoiding the mask-
ing problem (Hastie and Tibshirani, 2003). More
details about KRR and KDA are given in (Shawe-
Taylor and Cristianini, 2004).
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Figure 1: Accuracy rates of the KRR based on
the intersection kernel with p-grams in the range
2-7. The results are obtained in a 10-fold cross-
validation procedure carried out on the ADI train-
ing set.

5 Experiments on Arabic Dialects

5.1 Data Set

The ADI Shared Task data set (Ali et al., 2016)
contains audio recordings and ASR transcripts of
Arabic speech collected from the Broadcast News
domain. The task is to discriminate between
Modern Standard Arabic (MSA) and four Ara-
bic dialects, namely Egyptian (EGY), Gulf (GLF),
Levantine (LAV), and North-African or Maghrebi
(NOR). As the samples are not very evenly dis-
tributed, an accuracy of 23.10% can be obtained
with a majority class baseline on the test set. It is
worth mentioning that the test set from the 2016
ADI Shared Task was included as a development
set in this year’s task.

5.2 Parameter and System Choices

In our approach, we treat ASR transcripts as
strings. Because the approach works at the char-
acter level, there is no need to split the texts into
words, or to do any NLP-specific processing be-
fore computing the string kernels. The only edit-
ing done to the transcripts was the replacing of
sequences of consecutive space characters (space,
tab, and so on) with a single space character. This
normalization was needed in order to prevent the
artificial increase or decrease of the similarity be-
tween texts, as a result of different spacing.

For tuning the parameters, we fixed 10 folds in
order to evaluate each option in a 10-fold cross-
validation (CV) procedure on the training set. We
first carried out a set of preliminary experiments to
determine the optimal range of p-grams for each
kernel using the 10-fold CV procedure. We fixed
the learning method to KRR based on the inter-

section kernel and we evaluated all the p-grams in
the range 2-7. The results are illustrated in Fig-
ure 1. Interestingly, the best accuracy (65.93%)
is obtained with 5-grams. Furthermore, experi-
ments with different blended kernels were con-
ducted to see whether combining p-grams of dif-
ferent lengths could improve the accuracy. More
precisely, we evaluated combinations of p-grams
in five ranges: 3-5, 3-6, 4-6, 4-7 and 3-7. For
the intersection kernel and the LRD kernel, the
best accuracy rates were obtained when all the p-
grams with the length in the range 3-7 were com-
bined. For the presence bits kernel, we obtained
better results with p-grams in the range 3-5. Fur-
ther experiments were also conducted to estab-
lish what type of kernel works better, namely the
blended p-grams presence bits kernel (k̂0/1

3−5), the
blended p-grams intersection kernel (k̂∩3−7), the
kernel based on LRD (k̂LRD

3−7 ), or the kernel based
on i-vectors (k̂i-vec). Since these different kernel
representations are obtained either from ASR tran-
scripts or from low-level audio features, a good
approach for improving the performance is com-
bining the kernels. When multiple kernels are
combined, the features are actually embedded in
a higher-dimensional space. As a consequence,
the search space of linear patterns grows, which
helps the classifier to select a better discriminant
function. The most natural way of combining two
or more kernels is to sum them up. Summing up
kernels or kernel matrices is equivalent to feature
vector concatenation. The kernels were evaluated
alone and in various combinations, by employing
either KRR or KDA for the learning task. This
time, we used the development set to evaluate the
kernel combinations and compare them with the
top two systems from the last year’s ADI Shared
Task (Ionescu and Popescu, 2016b; Malmasi and
Zampieri, 2016) and the state-of-the-art system
of Ali et al. (2016). All the results obtained on
the development set are given in Table 1.

The empirical results presented in Table 1 re-
veal several interesting patterns of the proposed
methods. The difference in terms of accuracy be-
tween KRR and KDA is almost always less than
1%, and there is no reason to chose one in favor
of the other. Regarding the individual kernels, the
results are fairly similar among the string kernels,
but the kernel based on i-vectors definitely stands
out. Indeed, the best individual kernel is the ker-
nel based on i-vectors with an accuracy of 59.84%
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Method Accuracy
Ionescu and Popescu (2016b) 51.82%
Malmasi and Zampieri (2016) 51.17%
Ali et al. (2016) 60.20%
Kernel KRR KDA
k̂

0/1
3−5 52.36% 51.18%

k̂∩3−7 51.64% 52.17%

k̂LRD
3−7 51.77% 52.55%

k̂
0/1
3−5 + k̂∩3−7 52.30% 52.49%

k̂
0/1
3−5 + k̂LRD

3−7 52.48% 52.42%

k̂∩3−7 + k̂LRD
3−7 52.05% 52.66%

k̂
0/1
3−5 + k̂∩3−7 + k̂LRD

3−7 52.63% 52.82%

k̂i-vec 59.84% 58.99%

k̂i-vec + k̂
0/1
3−5 + k̂∩3−7 + k̂LRD

3−7 64.17% 63.85%

Table 1: Accuracy rates of various kernels com-
bined with either KRR or KDA versus several
state-of-the-art methods. The results are obtained
on the ADI development set. The submitted sys-
tems are highlighted in bold.

Run Accuracy F1 (macro) F1 (weighted)
1 76.27% 76.40% 76.32%
2 75.54% 75.94% 75.81%

Table 2: Results on the test set of the ADI Shared
Task (closed training) of KRR (run 1) and KDA
(run 2) based on a combination of three string ker-
nels and a kernel based on i-vectors.

when it is combined with KRR, and an accuracy
of 58.99% when it is combined with KDA. By
contrast, the best individual string kernel yields
an accuracy of 52.55%. Thus, we may conclude
that the i-vector representation extracted from au-
dio recordings is much more suitable for the task
than the character p-grams extracted from ASR
transcripts. This is consistent with the findings
of Ali et al. (2016). Interestingly, the best accu-
racy is actually obtained when all four kernels are
combined together. Indeed, KRR reaches an ac-
curacy of 64.17% when the blended p-grams pres-
ence bits kernel, the blended intersection kernel,
the blended LRD kernel and the kernel based on
i-vectors are summed up. With the same kernel
combination, KDA yields an accuracy of 63.85%.
In the end, we decided to submit two models for
the test set. The first submission (run 1) is the
KRR classifier based on the sum of k̂i-vec, k̂0/1

3−5,
k̂∩3−7, and k̂LRD

3−7 . The second submission (run 2)
is the KDA classifier based on the sum of the same
four kernels. For a better generalization, the sub-
mitted models are trained on both the provided
training and development sets.

Dialects EGY GLF LAV NOR MSA
EGY 244 12 29 6 11
GLF 14 177 43 8 8
LAV 36 26 231 23 18
NOR 10 13 10 222 7
MSA 24 16 31 9 264

Table 3: Confusion matrix (on the test set) of KRR
based on the sum of three string kernels and a ker-
nel based on i-vectors (run 1).

5.3 Results

Table 2 presents our results for the Arabic Di-
alect Identification Closed Shared Task of the DSL
2017 Challenge. Among the two classifiers, the
best performance is obtained by KRR (run 1). The
submitted systems were ranked by their weighted
F1 score, and among the 6 participants, our best
model obtained the first place with a weighted F1

score of 76.32%. As the development and the test
sets are from the same source (distribution), we
obtained better performance on the test set by in-
cluding the development set in the training. The
confusion matrix for our best model is presented
in Table 3. The confusion matrix reveals that our
system has some difficulties in distinguishing the
Levantine dialect from the Egyptian dialect on one
hand, and the Levantine dialect from the Gulf di-
alect on the other hand. Overall, the results look
good, as the main diagonal scores dominate the
other matrix components. Remarkably, both of
our submitted systems are more than 4% better
than the system ranked on the second place.

6 Experiments on German Dialects

6.1 Data Set

The GDI Shared Task data set (Samardzic et al.,
2016) contains manually annotated transcripts of
Swiss German speech. The task is to discriminate
between Swiss German dialects from four differ-
ent areas: Basel (BS), Bern (BE), Lucerne (LU),
Zurich (ZH). As the samples are almost evenly dis-
tributed, an accuracy of 25.80% can be obtained
with a majority class baseline on the test set.

6.2 Parameter and System Choices

As for the ADI task, we edit the transcripts by re-
placing the sequences of consecutive space char-
acters with a single space character. For tuning
the parameters and deciding what kernel learning
method works best, we fixed 5 folds in order to
evaluate each option in a 5-fold CV procedure on
the training set. We first carried out a set of prelim-
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Figure 2: Accuracy rates of the KRR based on the
intersection kernel with p-grams in the range 2-6.
The results are obtained in a 5-fold CV procedure
carried out on the GDI training set.

Kernel KRR KDA
k̂

0/1
3−6 83.99% 84.10%

k̂∩3−6 83.96% 84.09%

k̂LRD
3−5 83.85% 84.25%

k̂
0/1
3−6 + k̂∩3−6 84.03% 84.15%

k̂
0/1
3−6 + k̂LRD

3−5 84.25% 84.33%

k̂∩3−6 + k̂LRD
3−5 84.22% 84.35%

k̂
0/1
3−6 + k̂∩3−6 + k̂LRD

3−5 84.39% 84.49%

Table 4: Accuracy rates of various kernels com-
bined with either KRR or KDA. The results are
obtained using 5-fold CV on the GDI training set.
The submitted systems are highlighted in bold.

inary experiments to determine the optimal range
of p-grams for each kernel. We fixed the learning
method to KRR based on the intersection kernel
and we evaluated all the p-grams in the range 2-6.
The results are illustrated in Figure 2. We obtained
the best accuracy (82.87%) by using 4-grams. We
next evaluated combinations of p-grams in three
ranges: 3-5, 3-6, 4-6. For the intersection and the
presence bits kernels, the best accuracy rates were
obtained when all the p-grams with the length in
the range 3-6 were combined. For the LRD ker-
nel, we obtained better results with p-grams in
the range 3-5. Further experiments were also per-
formed to establish what type of kernel works bet-
ter, namely the blended p-grams presence bits ker-
nel, the blended p-grams intersection kernel or the
kernel based on LRD. The kernels were evaluated
alone and in various combinations, by employing
either KRR or KDA for the learning task. All the
results obtained in the 5-fold CV carried out on
the training set are given in Table 4. As in the
ADI experiments, the empirical results presented
in Table 4 show that there are no significant dif-
ferences between KRR and KDA. The individual
kernels yield fairly similar results. The best in-

Run Accuracy F1 (macro) F1 (weighted)
1 66.36% 63.76% 63.67%
2 65.81% 63.63% 63.54%
3 65.64% 63.44% 63.36%

Table 5: Results on the test set of the GDI Shared
Task (closed training) of KRR (run 1) and KDA
(run 2 and 3) based on various combinations of
string kernels.

Dialects BE BS LU ZH
BE 662 53 19 172
BS 76 676 38 149
LU 185 260 249 222
ZH 14 29 7 827

Table 6: Confusion matrix (on the test set) of KRR
based on the sum of three string kernels (run 1).

dividual kernel is the kernel based on LRD with
an accuracy of 84.25% when it is combined with
KDA. Each and every kernel combination yields
better results than each of its individual compo-
nents alone. The best accuracy rates, 84.39% for
KRR and 84.49% for KDA, are indeed obtained
when all three kernels are combined together. In
the end, we submitted the following models. The
first submission (run 1) is the KRR based on the
three kernels sum. Our second submission (run 2)
is the KDA based on the sum of k̂0/1

3−6 and k̂∩3−6.
Our third submission (run 3) is the KDA based on
the combination of all three kernels.

6.3 Results

Table 5 presents our results for the German Di-
alect Identification Closed Shared Task of the DSL
2017 Challenge. Among the three systems, the
best performance is obtained by KRR (run 1).
Among the 10 participants, our best model ob-
tained the fifth place with a weighted F1 score of
63.67%. However, our best performance is only
2.57% below the performance achieved by the sys-
tem ranked on the first place. The confusion ma-
trix presented in Table 6 indicates that our model is
hardly able to distinguish the Lucerne dialect from
the others.

7 Conclusion

We have presented an approach based on learn-
ing with multiple kernels for the ADI and the
GDI Shared Tasks of the DSL 2017 Chal-
lenge (Zampieri et al., 2017). Our approach at-
tained very good results, as our team (UnibucK-
ernel) ranked on the first place in the ADI Shared
Task and on the fifth place in the GDI Shared Task.

207



References
Ahmed Ali, Najim Dehak, Patrick Cardinal, Sameer

Khurana, Sree Harsha Yella, James Glass, Peter
Bell, and Steve Renals. 2016. Automatic dialect
detection in arabic broadcast speech. Proceedings
of Interspeech, pages 2934–2938.

Fadi Biadsy, Julia Hirschberg, and Nizar Habash.
2009. Spoken Arabic Dialect Identification Using
Phonotactic Modeling. Proceedings of the EACL
2009 Workshop on Computational Approaches to
Semitic Languages, pages 53–61.

Houda Bouamor, Nizar Habash, and Kemal Oflazer.
2014. A Multidialectal Parallel Corpus of Arabic.
Proceedings of LREC, pages 1240–1245, may.

Kareem Darwish, Hassan Sajjad, and Hamdy Mubarak.
2014. Verifiably Effective Arabic Dialect Identifica-
tion. Proceedings of EMNLP, pages 1465–1468.

Liviu P. Dinu, Radu Tudor Ionescu, and Alexandru I.
Tomescu. 2014. A rank-based sequence aligner
with applications in phylogenetic analysis. PLoS
ONE, 9(8):e104006, 08.

Heba Elfardy and Mona T. Diab. 2013. Sentence
Level Dialect Identification in Arabic. Proceedings
of ACL, pages 456–461.

Hugo Jair Escalante, Thamar Solorio, and Manuel
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