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Judith Eckle-Kohler∗, Teresa Martin†, Eugenio Martı́nez-Cámara∗,
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Abstract
The Story Cloze test (Mostafazadeh et al.,
2016) is a recent effort in providing a com-
mon test scenario for text understanding
systems. As part of the LSDSem 2017
shared task, we present a system based on
a deep learning architecture combined with
a rich set of manually-crafted linguistic fea-
tures. The system outperforms all known
baselines for the task, suggesting that the
chosen approach is promising. We addi-
tionally present two methods for generat-
ing further training data based on stories
from the ROCStories corpus. Our system
and generated data are publicly available
on GitHub1.

1 Introduction

The goal of the Story Cloze test is to provide a com-
mon ground for the evaluation of systems on lan-
guage understanding (Mostafazadeh et al., 2016).
Given four sentences of a story on everyday life
events, a system has to identify the correct ending
from a set of two predefined ending sentences. The
“correct” ending in this case is the one which most
humans would choose as the closing sentence for
the story context.

We first report the discoveries we made while ex-
ploring the provided datasets (Section 2) followed
by a description of our system (Section 3). We
present and discuss its results (Sections 4 and 5)
and come to a close in the conclusion (Section 6).

2 Dataset Exploration

Mostafazadeh et al. (2016) provide a validation and
1github.com/UKPLab/lsdsem2017-story-cloze

a test set for the Story Cloze test, both of which
contain around 1800 stories2. Each of those stories
consists of four context sentences and two end-
ings to choose from. Additionally, two ROCStories
datasets were made available with close to 100 000
stories in total. Stories from these datasets also
cover everyday life events but consist of a fixed
number of five sentences without ending candi-
dates.

To gain an overview of the task, we categorized
two hundred stories from the validation set based
on how their correct ending can be identified.

We noticed that a large set of stories can indeed
be solved via text understanding and logical infer-
ence. This includes stories where the correct end-
ing is more likely according to script knowledge3

(Schank and Abelson, 1977), where the topic of
the wrong ending doesn’t match the story context4

or where the wrong ending contradicts the story
context5.

For some stories, the correct ending cannot be
identified rationally, but rather according to com-
monly accepted moral values6 or based on the
reader’s expectation of a positive mood in a story7.
Regarding sentiments, we generally noticed a bias
towards stories with “happy endings”, i. e. stories
where the sentiment expressed in the correct ending
is more positive than for the wrong ending.

We infer from these observations that an ap-
proach focusing exclusively on text understanding

2As of Feb. 2017, see cs.rochester.edu/nlp/rocstories
3See story 52dbbfda-5b42-4ace-8d59-55cee3eb30c0 in the

Story Cloze validation set.
4See f8ff777f-de4d-4e3a-91bd-b197ed13f78e ibid.
5See a11cf506-7d19-4ab9-b0ac-a0fd85a9bd38 ibid.
6See 195a43c7-d43e-48e4-845b-fd6c75609df2 ibid.
7See 80b6447f-4c37-4194-9862-3785e5075463 ibid.
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should perform well. However, the dataset suggests
that an approach which (additionally) exploits how
humans write and perceive stories could also lead
to respectable results, albeit not in the way origi-
nally intended for the Story Cloze test.

3 System Description

We interpret the Story Cloze test as a fully super-
vised learning problem, meaning we train and test
our approach on instances consisting of four con-
text sentences and two ending candidates (i. e. the
format of the Story Cloze datasets). This stands in
contrast to the systems reported by Mostafazadeh
et al. (2016) which were trained on five-sentence
stories (the ROCStories dataset).

Our approach builds around recent advances of
deep learning methods and conventional feature
engineering techniques.

The core of the system is a Bidirectional Recur-
rent Neural Network (BiRNN) (Schuster and Pali-
wal, 1997) with Long Short-Term Memory (LSTM)
units (Hochreiter and Schmidhuber, 1997), which
computes a feature representation of all given sen-
tences. This representation is enriched by feature
vectors computed over both ending candidates. To
predict the correct ending of a story, we execute
our neural network twice to obtain a score for each
ending. These scores are compared to make a final
decision. The feature vectors ensure that informa-
tion on the respective other ending is available to
the network during both executions.

Note that we could have instead learned ending
embeddings jointly by feeding the network with
both endings at the same time. In order to train a
network to distinguish between correct and wrong
endings, we would have had to feed the same pair
another time, but with the endings swapped and
the label set to its binary counterpart. However, we
were concerned that such a system would eventu-
ally learn the position of the correct ending instead
of its meaning. Hence, we decided against such a
joint learning approach.

The following sections cover the features and
neural network architecture in greater detail.

3.1 Features

We defined a set of linguistic features in order to
profit from the discoveries of our dataset explo-
ration (see Section 2). The features are:
NGramOverlap: The number of overlapping n-

grams between an ending and a story context
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Figure 1: Neural network architecture. Depicted is
the execution for obtaining a score for ending e1.

for n = {1, 2, 3}. We filtered out bigrams and
trigrams using a linguistically motivated list
of stopwords.

EndingLength: The token count of an ending.
Negation: The presence of words indicating nega-

tion (none, never, etc.) in an ending.
PronounContrast: The presence of pronoun mis-

matches between a story context and an end-
ing. This helps to detect cases where the
wrong ending is written in first person al-
though the story context is written in third
person.

SentiContrast: Disagreement in the sentiment
value between the third and fourth sentences
of a context and an ending. The sentiment
value was computed based on a sentiment
word list manually extracted from the ROC-
Stories dataset.

For each of the features listed above, an addi-
tional feature was added to model the feature value
difference between the two endings of a story. All
features were extracted using the DKPro TC Frame-
work (Daxenberger et al., 2014).

3.2 Neural Network

The overall architecture of our neural network
model is shown in Figure 1.

First, the tokens of the context sentences
s1, . . . , s4 and of ending e1 are looked up in the
word embedding matrix to obtain vectorized rep-
resentations. The embeddings of the context sen-
tences are concatenated into the vector vc, whereas
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those of the ending form vector ve. vc and ve are
fed separately to a pair of RNN networks (forward
and backward) with LSTM units. This BiLSTM
module encodes the meaning of context and ending
in two separate vectors, ic and ie. Given the vector
of feature values if , extracted externally on the four
context sentences and both endings, we concate-
nate ic, ie and if and feed them to the dense hidden
layer H. The output of H is fed to the output layer,
O. Afterwards, the softmax function is applied on
the output of O to obtain a score representing the
probability of ending e1 being correct.

The same procedure is applied for ending e2

in place of ending e1. Then, the highest-scoring
ending is chosen as the correct ending of the story.

Due to time constraints and system complexity
we decided against hyper-parameter optimization
and chose parameter values we deemed reasonable:
We used pretrained 100-dimensional GloVe embed-
dings (Pennington et al., 2014)8. Following previ-
ous work on using BiLSTMs in NLP tasks (Tan et
al., 2015; Tan et al., 2016; dos Santos et al., 2016),
we chose a dimensionality of 141 for the LSTM
output vectors and hidden layer H.

We employ zero padding for sentences longer
than 20 tokens. The network was trained in
batches (size 40) for 30 epochs with the Adam
optimizer (Kingma and Ba, 2014), starting with a
learning rate of 10−4. We apply dropout (p = 0.3)
after computing the BiLSTM output. Finally,
ReLu (Glorot et al., 2011) is used as an activa-
tion function in layer H. The system was imple-
mented using the TensorFlow library (Abadi et al.,
2016).

3.3 Intermediate Results

We performed an intermediate evaluation of the
previously described system on the Story Cloze val-
idation set. To this end, we partitioned the dataset
into a training and development split (85 % and
15 %, respectively). We compared the following
systems:
BiLSTM-V: Our proposed system, trained on the

85 % training split without making use of the
feature set described in Section 3.1.

BiLSTM-VF: Same as BiLSTM-V, but including
the feature set.

Happy: Motivated by our dataset exploration, this
baseline always picks the happier ending (the
ending with the more positive sentiment). We

8nlp.stanford.edu/data/glove.6B.zip

employed the state-of-the-art sentiment anno-
tator by Socher et al. (2013) for this purpose.
This system does not take the story context
into account.

The happy ending baseline reached an accuracy
of 0.616 on the development split which is substan-
tially higher than random guessing. BiLSTM-V
scored 0.708 whereas BiLSTM-VF reached a
slightly higher accuracy of 0.712.

3.4 Dataset Augmentation
Because our presented approach conducts super-
vised learning, it requires training data in the same
form as testing data. Up to this point, the only
dataset available in this form is the Story Cloze
validation set which consists of comparably few
instances for training. We experimented with ways
to automatically create larger training datasets.

3.4.1 Related Work in Data Augmentation
Methods for automatic training data augmenta-
tion using unlabeled data are investigated in semi-
supervised learning and have been successfully ap-
plied in many NLP tasks, for example in word sense
disambiguation (Pham et al., 2005), semantic role
labeling (Fürstenau and Lapata, 2012; Woodsend
and Lapata, 2014) and textual entailment (Zanzotto
and Pennacchiotti, 2010). Another example, which
is similar to the Story Cloze test, is the task of
selecting the correct answer to a question from a
pool of answer candidates. To train models for this
task, Feng et al. (2015) have extended a corpus
of question-answer pairs by automatically adding
negative answers to each pair.

We draw our inspiration from the aforemen-
tioned work and propose two methods for augment-
ing the ROCStories dataset in order to use it for
supervised learning.

3.4.2 Shuffling
Given a ROCStory, shuffle the four context sen-
tences, then randomly swap the fifth sentence with
one of the first four. The resulting story is per-
ceived as wrong by humans since the shuffling
breaks causal and temporal relationships between
the sentences. This method resembles the data
quality evaluation conducted by Mostafazadeh et
al. (2016).

3.4.3 KDE Sampling
In order to obtain a dataset of the same structure as
the Story Cloze datasets, we heuristically comple-
ment each ROCStory with a wrong ending taken
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Story ID Story Context Correct Ending Gen. Wrong Ending

3447901e-6f57
-4810-9d3c
-92d72b6c0b42

A swan swam gracefully through the water. It was
beautiful and white. It had a long orange beak. The
crowd gathered and observed it.

It was a beautiful crea-
ture.

A large blue whale
breached the water be-
fore Kathy’s eyes.

0dd3e2c3-3ea4
-450a-97c4
-42a54c426018

Jane had recently gotten a new job. She was nervous
about her first day of work. On the first day of work,
Jane overslept. Jane arrived at work an hour late.

Jane did not make a
good impression at her
new job.

She told her husband
that she was going all
out this year.

Table 1: ROCStories with wrong endings as generated by the KDE sampling technique

from a pool of sentences. The pool can be chosen
arbitrarily but for the sake of simplicity, we de-
cided to use the existing set of ROCStory endings
themselves.

Given four ROCStory context sentences, we
measure the similarity between this context and
each sentence from the pool (excluding the original
ending). To ensure that endings match the topic and
narrative of their context, our similarity measure is
based on word embeddings of content words and a
bag-of-words vector of occurring pronouns.

Instead of directly choosing whichever ending
sentence scores the highest similarity, we attempt
to replicate the characteristics of the Story Cloze
datasets as close as possible. Therefore, we ob-
serve the distribution of similarity values present
between each story context and its wrong ending in
the validation set. Using kernel density estimation,
we obtain the probability density function (PDF)
of these similarity values.

To choose an ending for a ROCStory context, we
then sample a similarity value from this PDF and
identify the sentence in the pool whose similarity
is closest to the sampled value. In a final step,
we replace proper nouns occurring in the ending
sentence with random proper nouns from the story
context, based on POS-tags.

Table 1 shows two exemplary story endings gen-
erated using this method.

3.4.4 Comparison
We constructed two training datasets, one for each
of the two augmentation methods. We then trained
our BiLSTM approach (without features) for each
dataset and compared their performance on the full
Story Cloze validation set. The BiLSTM using
the shuffled ROCStories reached an accuracy of
0.615, compared to the one using the KDE sam-
pling method with 0.630.

From looking at the accuracies, the difference
in quality between the two methods is slim. How-
ever, the quality of the shuffled stories is inferior to
those of the KDE sampling method from a human
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Figure 2: Accuracies on the validation set devel-
opment split for BiLSTM systems trained on the
training split plus a varying amount of all 98 166
generated stories.

point of view. For this reason, we conduct all sub-
sequent data augmentation experiments using the
KDE sampling method.

4 Results

Following our motivation for data augmentation,
we trained several BiLSTM systems on the train-
ing split of the Story Cloze validation set, aug-
mented by a varying amount of stories generated
by KDE sampling. Figure 2 shows the accuracy of
these systems evaluated on the 15 % development
split of the validation set. As can be seen, in all
our experiments with augmentation there occurs a
decrease in performance compared to the results
of BiLSTM-V/BiLSTM-VF on the same data (see
Section 3.3). We discuss possible reasons for this
result in Section 5.

For the final evaluation, we compare the follow-
ing approaches:
DSSM: The best performing baseline reported by

Mostafazadeh et al. (2016).
Happy, BiLSTM-V, BiLSTM-VF: The systems

previously explained in Section 3.3.
BiLSTM-T: To assess the quality of the KDE sam-

pling method in isolation, we also include a
BiLSTM system in the evaluation which is
trained only on the ROCStories corpus with
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Approach Validation Test

Dev Full

DSSM – 0.604 0.585
Happy 0.616 0.590 0.602

BiLSTM-V 0.708 – 0.701*

BiLSTM-VF 0.712 – 0.717*

BiLSTM-T 0.637 – 0.560
BiLSTM-TF 0.634 – 0.584

Table 2: System accuracies on the Story Cloze
datasets. Results marked by * are statistically
significant according to McNemar’s test with a
p-value ≤ 0.05.

generated wrong endings.
BiLSTM-TF: Same as BiLSTM-T, but including

the feature set.
Table 2 shows the performance of the systems on

the Story Cloze test set and (if applicable) on the
full validation set or its development split. It can
be seen that our happy ending baseline performs
comparably to the more elaborate DSSM baseline.
BiLSTM-V/VF outperform the two baselines sig-
nificantly. BiLSTM-T/TF fall short in accuracy
compared to the ones trained on the validation set
alone. The addition of features leads to improve-
ments except for BiLSTM-T/TF when evaluated
on the development split of the validation set.

5 Discussion

We manually examined several stories which were
misclassified by BiLSTM-VF to identify its weak-
nesses. In the majority of cases, misclassified sto-
ries were sparse in sentiment or relied heavily on
logical inference for identifying the correct end-
ing. This appears plausible to us, since neither
the BiLSTM nor the feature set were explicitly de-
signed to perform advanced logical inference.

The proposed features increase the performance
of our BiLSTM system. The data properties they
capture are different from the distributional similar-
ities of word embeddings and thus serve as an ad-
ditional supervising signal for the neural network.

Given Figure 2 and the disparity between the
results of BiLSTM-T/TF and BiLSTM-V/VF, we
have to conclude that the training data augmenta-
tion did not work as well as we expected.

While the KDE sampling method creates sto-
ries resembling the ones found in the Story Cloze

validation and test datasets, it does not reproduce
the characteristics of these original stories well
enough to produce truly valuable training data. As
an example, the method does not take sentiment
into account, although we demonstrated that the
Story Cloze datasets are biased towards happy end-
ings. Incorporating further characteristics into the
method would amount to redefining the utilized
similarity measure (no modifications would be nec-
essary for the core idea of sampling a probability
distribution).

6 Conclusion

We showed that using a sentiment-based baseline,
it is trivial to reach 60 % accuracy on the Story
Cloze test set without relying on text understand-
ing. However, more sophisticated techniques are
required for reaching better results. Using a deep
learning architecture enriched with a set of linguis-
tically motivated features, we surpass all previously
published baselines on the task and reach 71.7%
accuracy on the test set.

We proposed two methods which generate ad-
ditional training data for conducting supervised
learning on the Story Cloze test. To our surprise,
the systems trained on generated training data per-
formed worse than those trained on conventional
training data. This could be due to our data genera-
tion not reproducing the characteristics of the origi-
nal Story Cloze datasets well enough. Nonetheless,
we consider the presented methods to be a valuable
contribution related to the task.
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