
Proceedings of the 21st Nordic Conference of Computational Linguistics, pages 255–258,
Gothenburg, Sweden, 23-24 May 2017. c©2017 Linköping University Electronic Press

Dep search: Efficient Search Tool for Large Dependency Parsebanks

Juhani Luotolahti1,2, Jenna Kanerva1,2, and Filip Ginter1

1Turku NLP Group
2University of Turku Graduate School (UTUGS)

University of Turku, Finland
mjluot@utu.fi, jmnybl@utu.fi, figint@utu.fi

Abstract

We present an updated and improved ver-
sion of our syntactic analysis query toolkit,
dep search, geared towards morphologi-
cally rich languages and large parsebanks.
The query language supports complex
searches on dependency graphs, includ-
ing for example boolean logic and nested
queries. Improvements we present here in-
clude better data indexing, especially bet-
ter database backend and document meta-
data support, API access and improved
web user interface. All contributions are
available under open licences.

1 Introduction

Huge text collections crawled from the Internet
have become a popular resource for natural lan-
guage processing and linguistic studies. Recently,
massive corpora with automatically analyzed full
syntactic structure became available for 45 lan-
guages (Ginter et al., 2017). To efficiently find
and access specific types of sentences or syntac-
tic structures from corpora with billions of tokens,
powerful search systems are needed for both text
and tree based queries, and combinations thereof.

The SETS dependency tree search tool (Lu-
otolahti et al., 2015) is developed for efficient
and scalable tree search in dependency treebanks
and parsebanks, supporting complex searches on
words, lemmas, detailed morphological analyses
and dependency graphs. It is implemented using
efficient data indexing and turning search expres-
sions into compiled code.

In this paper we present the Turku dep search
tool, an improved version of SETS. In addition
to changing the name, our main contributions are:
1) major speed-up and reduction of stored index
size by changing backend from SQLite to Solr1

1http://lucene.apache.org/solr/

and LMDB2; 2) API access and improved web
user interface; 3) supporting arbitrary sentence/-
document metadata enabling for example sub-
corpora and multilingual searches; 4) Universal
Dependencies3 treebanks and automatically ana-
lyzed UD parsebank data for 45 languages pub-
licly available through dep search API and online
interface.

2 Query Language

The query language is in many ways inspired by
languages used in existing tree query software
such as TGrep (Rohde, 2004). The query lan-
guage defines criteria for tokens and their rela-
tions in dependency graphs to be queried. It allows
the user to specify graph structures in the syntac-
tic trees, tokens by their properties, linear order
of the tokens, and combinations thereof. Boolean
logic is supported and queries can be combined
and nested. The query itself is parsed into a tree
structure, reflecting the nature of syntactic trees,
and it is transformed into executable code with
Cython4. The query parser is able to differenti-
ate between token word forms and tags present in
the queried corpora.

The query language is best presented by exam-
ples. Arguably the most simple query is querying
for all tokens. This is achieved by the query ,
underscore representing any token. To restrict the
token by a word form or a tag the query is the word
form itself, for example, to query the word cat the
expression is cat. The lemma cat can be queried
with the expression L=cat. Similarly to find tags,
a query to find nouns is NOUN. Token queries can
easily be combined using boolean operators. For
example to search for a token with the lemma cat
or dog, that is not in genitive case, one can query:
(L=cat | L=dog) & !Case=Gen.

2http://www.lmdb.tech/doc/
3http://universaldependencies.org/
4http://cython.org

255

We can add dependency restrictions to our
query to search for syntactic structures in the de-
pendency graphs. A simple query like this, looks
like cat > , which finds tokens with word form
cat with a dependent token. In a similar vein, we
can search for a token with a typed dependent, for
example to find the token cat with an amod de-
pendent, query is: cat >amod . The query for
cat with two separate amod dependents query is
cat >amod >amod and to look for chains of
amod dependencies from the token cat, one needs
to use parenthesis in their query: cat >amod (

amod>).

Boolean operators can be used with dependen-
cies similarly as they can be used with the tokens.
To negate a dependency relation, two options are
offered: The query cat !>amod looks for to-
ken cat without an amod dependent, where as the
query cat >!amod searches for the token cat
with a dependent not the type of amod. Since all
parts of the query support boolean logic, subtrees
can be negated, for example querying cat >amod
!pretty would find token cat if it has an amod
dependent which is anything but the word pretty.
Besides using negation, one can use OR operator
to query dependency relations. For example, the
query cat >amod|>nmod finds cat with amod
or nmod dependents.

The third class of query operators has to do
with the sentence; linear order of the tokens and
set operations on subqueries. To query for tokens
next to each other in the sentence, query syntax
is: first . second, query to search for tokens
in a window is cat <lin 2:3 NOUN, which finds
cat - tokens with a noun within two to three to-
kens from it. The operation can be limited to a
particular direction by adding @R/@L - operator.
The previous query limited to only tokens to the
right is: cat <lin 2:3@R NOUN. The @R/@L
-operator can also be applied to all dependency
types. The universal quantifier operator (->) al-
lows searching for sentences in which all tokens
of certain type have a property. For example
query: (<nsubj) -> (Person=3 <nsubj
), finds sentences in which all subjects are in third

person. The plus operator allows us to find sen-
tences with multiple properties, eg. to find sen-
tences with both tokens cat and dog, where dog is
a subject, query is: (dog <nsubj) + cat. In
addition to these, the size of the result can be set
by adding {len set=limit} after the query. For

Operator Meaning
<, > governed by, governs
<@L, <@R governed by on the left, right
>@L, >@R has dependent on the left, right
. tokens are next to each other in linear order
<lin s:e tokens are in s:e distance from each other
!, &, | negation, and, or
+ match if both sets not empty
-> universal quantification

Table 1: Query language operators.

example: Clitic=Han {len set=2}.

3 Design

The search is executed in two main steps: 1)
fetching candidate sentences from the indexed
data, so that in a returned candidate sentence,
all restrictions must be individually met, and 2)
evaluating these candidates to check whether the
configuration of the sentence fully matches the
query. As the full configuration evaluation (part 2)
stays mostly untouched compared to earlier ver-
sion of the search tool, it is only briefly discussed
here, and more detailed information can be found
from Luotolahti et al. (2015).

For fast retrieval of candidate sentences, we use
the Solr search engine to return a list of sentence
ids, where a sentence has to match all query re-
strictions individually (for example, sentence has
a specific word, morphological tag, and/or relation
type), but no relations of these individual restric-
tions are evaluated at this point. For fast retrieval
of candidate sentences, an index is build individu-
ally for all possible attributes (e.g. words, lemmas,
morphological features and dependency relations).
The actual sentence data is stored separately in a
fast memory-mapped database, LMDB, where for
each sentence the data is already stored in the bi-
nary form used when the full sentence configura-
tion is evaluated. The sentences can be fetched
from the LMDB using sentence ids given by the
search engine.

Together with the different attribute indices, the
search engine index can be used to store any neces-
sary metadata related to sentences and documents
and further restrict the search also on metadata
level. Metadata can be used for example to re-
strict the search to a specific language, sub corpora
or time span, naturally depending on the meta-
data available for a corpus in use. This way we
can keep all data from different corpora and lan-
guages in one database, giving us also the possibil-
ity to search similar structures across languages.

256

Especially in the case of Universal Dependen-
cies, cross-linguistically consistent treebank anno-
tation, this gives a great opportunity to study sim-
ilar structures across languages without compro-
mising on speed or ability to limit the set of inter-
esting languages.

After fetching the candidate sentences, their full
configuration is evaluated against the actual search
expression. The search expression is turned into a
sequence of set operations, which can be compiled
into native binary code. This compilation is done
only once in the beginning of the search, taking
typically less than a second. All sentences passing
this step are then returned to the user.

4 Benchmarks

Generally, by changing the database backend we
are able to gain in terms of speed and disk space.
We are also able to remove two major bottleneck
queries.

In the previous version of the search tool, one
major bottleneck was queries involving rare lex-
ical restrictions. When the SQLite backend was
used, the data index needed to be divided into
multiple small databases in order to keep retriev-
ing fast. This however resulted slower queries
when rare lexical items were queried because it
was needed to iterate through many of these small
databases with very few hits in each in order to
find enough hits for the user. The new Solr back-
end is able to hold the whole data in one index,
giving us a major speed-up when rare lexical items
are searched.

Even bigger speed-up in the new version of
dep search is noticed when the query involves OR
statements. Solr handles alternative restrictions
much faster than SQLite is able to do, remov-
ing the most computationally heavy part of these
queries.

In addition to faster queries, dep search needs
now much less disk space for the data index. In
the index of 20M trees the disk usage is ∼45G,
which is about half of the size compared to what
the old version was using.

5 Web User Interface and API

In addition to the search tool, we also provide a
graphical web interface, which can be set to talk to
dep search API, and render results in browser us-
ing Python Flask5 library, Ajax and BRAT annota-

5http://flask.pocoo.org/

tion tool (Stenetorp et al., 2012). Dep search API
is accessed through http, and receives the query
and the database name, and returns the matching
trees as a response.

We maintain a public server for online
searches at http://bionlp-www.utu.fi/dep_
search/, where we have indexed all 70 Universal
Dependencies v2.0 treebanks (Nivre et al., 2017),
as well as automatically analyzed parsebank data
for all the 45 languages present in UD parsebank
collection. For each of these 45 languages, 1M
sentences are made available in the dep search
web interface. Additionally, dep search is used
through its API to provide automatic content val-
idation in the Universal Depedencies project,6 au-
tomatically reindexed upon any update of a UD
treebank development repository. In the past 6
weeks, the server processed over 11,000 requests
— mostly related to the automated UD validation.

6 Conclusions

In this paper we presented the Turku dep search
dependency search tool with expressive query
language developed to support queries involv-
ing rich morphological annotation and complex
graph structures. The search tool is made scal-
able to parsebanks with billions of words us-
ing efficient data indexing to retrieve candidate
sentences and generating algorithmic implemen-
tation of the actual search expression compiled
into native binary code. Dep search tool sup-
ports indexing varying sentence and document
metadata making it possible e.g. to focus the
search to a specific time span or a set of lan-
guages. Source code for the search backend
and the web user interface is publicly avail-
able at https://github.com/fginter/dep_

search and https://github.com/fginter/

dep_search_serve, respectively.
Additionally, we provide a public, online search

interface, where we host all Universal Depen-
dencies version 2.0 treebanks, together with UD
parsebank data for 45 different languages.

Acknowledgements

This work was supported by the Kone Foundation.
Computational resources were provided by CSC –
IT Center for Science.

6http://universaldependencies.org/
svalidation.html

257

References
Filip Ginter, Jan Hajič, Juhani Luotolahti, Milan

Straka, and Daniel Zeman. 2017. CoNLL 2017
shared task - automatically annotated raw texts and
word embeddings. LINDAT/CLARIN digital li-
brary at the Institute of Formal and Applied Linguis-
tics, Charles University in Prague.

Juhani Luotolahti, Jenna Kanerva, Sampo Pyysalo, and
Filip Ginter. 2015. Sets: Scalable and efficient
tree search in dependency graphs. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Demonstrations, pages 51–55. Association for Com-
putational Linguistics.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Maria Je-
sus Aranzabe, Masayuki Asahara, Aitziber Atutxa,
Miguel Ballesteros, John Bauer, Kepa Ben-
goetxea, Riyaz Ahmad Bhat, Eckhard Bick,
Cristina Bosco, Gosse Bouma, Sam Bowman,
Marie Candito, Gülşen Cebirolu Eryiit, Giuseppe
G. A. Celano, Fabricio Chalub, Jinho Choi, Çar
Çöltekin, Miriam Connor, Elizabeth Davidson,
Marie-Catherine de Marneffe, Valeria de Paiva,
Arantza Diaz de Ilarraza, Kaja Dobrovoljc, Tim-
othy Dozat, Kira Droganova, Puneet Dwivedi,
Marhaba Eli, Tomaž Erjavec, Richárd Farkas, Jen-
nifer Foster, Cláudia Freitas, Katarı́na Gajdošová,
Daniel Galbraith, Marcos Garcia, Filip Ginter, Iakes
Goenaga, Koldo Gojenola, Memduh Gökrmak,
Yoav Goldberg, Xavier Gómez Guinovart, Berta
Gonzáles Saavedra, Matias Grioni, Normunds
Grūzītis, Bruno Guillaume, Nizar Habash, Jan
Hajič, Linh Hà M, Dag Haug, Barbora Hladká,
Petter Hohle, Radu Ion, Elena Irimia, Anders Jo-
hannsen, Fredrik Jørgensen, Hüner Kaşkara, Hiroshi
Kanayama, Jenna Kanerva, Natalia Kotsyba, Simon
Krek, Veronika Laippala, Phng Lê Hng, Alessan-
dro Lenci, Nikola Ljubešić, Olga Lyashevskaya,
Teresa Lynn, Aibek Makazhanov, Christopher Man-
ning, Cătălina Mărănduc, David Mareček, Héctor
Martı́nez Alonso, André Martins, Jan Mašek,
Yuji Matsumoto, Ryan McDonald, Anna Mis-
silä, Verginica Mititelu, Yusuke Miyao, Simon-
etta Montemagni, Amir More, Shunsuke Mori, Bo-
hdan Moskalevskyi, Kadri Muischnek, Nina Musta-
fina, Kaili Müürisep, Lng Nguyn Th, Huyn Nguyn
Th Minh, Vitaly Nikolaev, Hanna Nurmi, Stina
Ojala, Petya Osenova, Lilja Øvrelid, Elena Pascual,
Marco Passarotti, Cenel-Augusto Perez, Guy Per-
rier, Slav Petrov, Jussi Piitulainen, Barbara Plank,
Martin Popel, Lauma Pretkalnia, Prokopis Proko-
pidis, Tiina Puolakainen, Sampo Pyysalo, Alexan-
dre Rademaker, Loganathan Ramasamy, Livy Real,
Laura Rituma, Rudolf Rosa, Shadi Saleh, Manuela
Sanguinetti, Baiba Saulīte, Sebastian Schuster,
Djamé Seddah, Wolfgang Seeker, Mojgan Ser-
aji, Lena Shakurova, Mo Shen, Dmitry Sichinava,
Natalia Silveira, Maria Simi, Radu Simionescu,
Katalin Simkó, Mária Šimková, Kiril Simov, Aaron
Smith, Alane Suhr, Umut Sulubacak, Zsolt Szántó,
Dima Taji, Takaaki Tanaka, Reut Tsarfaty, Fran-

cis Tyers, Sumire Uematsu, Larraitz Uria, Gert-
jan van Noord, Viktor Varga, Veronika Vincze,
Jonathan North Washington, Zdeněk Žabokrtský,
Amir Zeldes, Daniel Zeman, and Hanzhi Zhu. 2017.
Universal dependencies 2.0. LINDAT/CLARIN
digital library at the Institute of Formal and Applied
Linguistics, Charles University in Prague.

Douglas L. T. Rohde, 2004. TGrep2 User Manual.
Available at http://tedlab.mit.edu/˜dr/Tgrep2.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: a web-based tool for nlp-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107. Association for Computational Lin-
guistics.

258

