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Abstract

Multitask learning often improves system
performance for morphosyntactic and se-
mantic tagging tasks. However, the ques-
tion of when and why this is the case has
yet to be answered satisfactorily. Although
previous work has hypothesised that this is
linked to the label distributions of the aux-
iliary task, we argue that this is not suffi-
cient. We show that information-theoretic
measures which consider the joint label
distributions of the main and auxiliary
tasks offer far more explanatory value.
Our findings are empirically supported by
experiments for morphosyntactic tasks on
39 languages, and are in line with findings
in the literature for several semantic tasks.

1 Introduction

When attempting to solve a natural language pro-
cessing (NLP) task, one can consider the fact that
many such tasks are highly related to one another.
A common way of taking advantage of this is to
apply multitask learning (MTL, Caruana (1998)).
MTL has been successfully applied to many lin-
guistic sequence-prediction tasks, both syntactic
and semantic in nature (Collobert and Weston,
2008; Cheng et al., 2015; Søgaard and Goldberg,
2016; Martı́nez Alonso and Plank, 2016; Bjerva et
al., 2016; Ammar et al., 2016; Plank et al., 2016).
It is, however, unclear when an auxiliary task is
useful, although previous work has provided some
insights (Caruana, 1998; Martı́nez Alonso and
Plank, 2016).

Currently, considerable time and effort need to
be employed in order to experimentally investigate
the usefulness of any given main task / auxiliary
task combination. In this paper we wish to alle-
viate this process by providing a means to investi-
gating when an auxiliary task is helpful, thus also

shedding light on why this is the case. Concretely,
we apply information-theoretic measures to a col-
lection of data- and tag sets, investigate correla-
tions between such measures and auxiliary task
effectivity, and show that previous hypotheses do
not sufficiently explain this interaction. We inves-
tigate this both experimentally on a collection of
syntactically oriented tasks on 39 languages, and
verify our findings by investigating results found
in the literature on semantically oriented tasks.

2 Neural Multitask Learning

Recurrent Neural Networks (RNNs) are at the core
of many current approaches to sequence predic-
tion in NLP (Elman, 1990). A bidirectional RNN
is an extension which incorporates both preced-
ing and proceeding contexts in the learning pro-
cess (Graves and Schmidhuber, 2005). Recent ap-
proaches frequently use either (bi-)LSTMs (Long
Short-Term Memory) or (bi-)GRUs (Gated Recur-
rent Unit), which have the advantage that they can
deal with longer input sequences (Hochreiter and
Schmidhuber, 1997; Chung et al., 2014).

The intuition behind MTL is to improve perfor-
mance by taking advantage of the fact that related
tasks will benefit from similar internal representa-
tions (Caruana, 1998). MTL is commonly framed
such that all hidden layers are shared, whereas
there is one output layer per task. An RNN can
thus be trained to solve one main task (e.g. pars-
ing), while also learning some other auxiliary task
(e.g. POS tagging).

3 Information-theoretic Measures

We wish to give an information-theoretic perspec-
tive on when an auxiliary task will be useful for
a given main task. For this purpose, we intro-
duce some common information-theoretic mea-
sures which will be used throughout this work.1

1See Cover and Thomas (2012) for an in-depth overview.
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The entropy of a probability distribution is a
measure of its unpredictability. That is to say, high
entropy indicates a uniformly distributed tag set,
while low entropy indicates a more skewed distri-
bution. Formally, the entropy of a tag set can be
defined as

H(X) =−∑
x∈X

p(x) log p(x), (1)

where x is a given tag in tag set X .
It may be more informative to take the joint

probabilities of the main and auxiliary tag sets in
question into account, for instance using condi-
tional entropy. Formally, the conditional entropy
of a distribution Y given the distribution X is de-
fined as

H(Y |X) = ∑
x∈X

∑
y∈Y

p(x,y) log
p(x)

p(x,y)
, (2)

where x and y are all variables in the given distri-
butions, p(x,y) is the joint probability of variable x
cooccurring with variable y, and p(x) is the prob-
ability of variable x occurring at all. That is to
say, if the auxiliary tag of a word is known, this is
highly informative when deciding what the main
tag should be.

The mutual information (MI) of two tag sets
is a measure of the amount of information that is
obtained of one tag set, given the other tag set. MI
can be defined as

I(X ;Y ) = ∑
x∈X

∑
y∈Y

p(x,y) log
p(x,y)

p(x) p(y)
, (3)

where x and y are all variables in the given distri-
butions, p(x,y) is the joint probability of variable
x cooccurring with variable y, and p(x) is the prob-
ability of variable x occurring at all. MI describes
how much information is shared between X and
Y , and can therefore be considered a measure of
‘correlation’ between tag sets.

3.1 Information Theory and MTL

Entropy has in the literature been hypothesised to
be related to the usefulness of an auxiliary task
(Martı́nez Alonso and Plank, 2016). We argue that
this explanation is not entirely sufficient. Take,
for instance, two tag sets X and X ′, applied to the
same corpus and containing the same tags. Con-
sider the case where the annotations differ in that
the labels in every sentence using X ′ have been
randomly reordered. The tag distributions in X
and X ′ do not change as a result of this operation,
hence their entropies will be the same. However,
the tags in X ′ are now likely to have a very low

correspondence with any sort of natural language
signal, hence X ′ is highly unlikely to be a useful
auxiliary task for X . Measures taking joint prob-
abilities into account will capture this lack of cor-
relation between X and X ′. In this work we show
that measures such as conditional entropy and MI
are much more informative for the effectivity of an
auxiliary task than entropy.

4 Data

For our syntactic experiments, we use the Univer-
sal Dependencies (UD) treebanks on 39 out of the
40 languages found in version 1.3 (Nivre et al.,
2016).2 We experiment with POS tagging as a
main task, and various dependency relation clas-
sification tasks as auxiliary tasks. We also inves-
tigate whether our hypothesis fits with recent re-
sults in the literature, by applying our information-
theoretic measures to the semantically oriented
tasks in Martı́nez Alonso and Plank (2016), as well
as the semantic tagging task in Bjerva et al. (2016).

Although calculation of joint probabilities re-
quires jointly labelled data, this issue can be by-
passed without losing much accuracy. Assuming
that (at least) one of the tasks under consideration
can be completed automatically with high accu-
racy, we find that the estimates of joint probabili-
ties are very close to actual joint probabilities on
gold standard data. In this work, we estimate joint
probabilities by tagging the auxiliary task data sets
with a state-of-the-art POS tagger.

4.1 Morphosyntactic Tasks

Dependency Relation Classification is the task of
predicting the dependency tag (and its direction)
for a given token. This is a task that has not re-
ceived much attention, although it has been shown
to be a useful feature for parsing (Ouchi et al.,
2014). We choose to look at several instantiations
of this task, as it allows for a controlled setup un-
der a number of conditions for MTL, and since
data is available for a large number of typologi-
cally varied languages.

Previous work has suggested various possible
instantiations of dependency relation classification
labels (Ouchi et al., 2016). In this work, we use la-
bels designed to range from highly complex and
informative, to very basic ones.3 The labelling
schemes used are shown in Table 1.

2Japanese was excluded due to treebank unavailability.
3Labels are automatically derived from UD.
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Category Directionality Example H

Full Full nmod:poss/R L 3.77
Full Simple nmod:poss/R 3.35
Simple Full nmod/R L 3.00
Simple None nmod 2.03
None Full R L 1.54
None Simple R 0.72

Table 1: Dependency relation labels used in this
work, with entropy in bytes (H) measured on En-
glish. The labels differ in the granularity and/or
inclusion of the category and/or directionality.

The systems in the syntactic experiments are
trained on main task data (Dmain), and on auxiliary
task data (Daux). Generally, the amount of over-
lap between such pairs of data sets differs, and can
roughly be divided into three categories: i) iden-
tity; ii) overlap; and iii) disjoint (no overlap be-
tween data sets). To ensure that we cover several
possible experimental situations, we experiment
using all three categories. We generate (Dmain,
Daux) pairs by splitting each UD training set into
three portions. The first and second portions al-
ways contain POS labels. In the identity condition,
the second portion contains dependency relations.
In the overlap condition, the second and final por-
tions contain dependency relations. In the disjoint
condition, the final portion contains dependency
relations.

4.2 Semantic Tasks

Martı́nez Alonso and Plank (2016) experiment
with using, i.a., POS tagging as an auxiliary task,
with main tasks based on several semantically ori-
ented tasks: Frame detection/identification, NER,
supersense annotation and MPQA. Bjerva et al.
(2016) investigate using a semantic tagging task
as an auxiliary task for POS tagging. We do
not train systems for these data sets. Rather, we
directly investigate whether changes in accuracy
with the main/auxiliary tasks used in these papers
are correctly predicted by any of the information-
theoretic measures under consideration here.

5 Method

5.1 Architecture and Hyperparameters

We apply a deep neural network with the exact
same settings in each syntactic experiment. Our
system consists of a two layer deep bi-GRU (100
dimensions per layer), taking an embedded word
representation (64 dimensions) as input. We ap-

ply dropout (p = 0.4) between each layer in our
network (Srivastava et al., 2014). The output of
the final bi-GRU layer, is connected to two out-
put layers – one per task. Both tasks are always
weighted equally. Optimisation is done using the
Adam algorithm (Kingma and Ba, 2014), with the
categorical cross-entropy loss function. We use a
batch size of 100 sentences, training over a maxi-
mum of 50 epochs, using early stopping and mon-
itoring validation loss on the main task.

We do not use pre-trained embeddings. We also
do not use any task-specific features, similarly to
Collobert et al. (2011), and we do not optimise
any hyperparameters with regard to the task(s) at
hand. Although these choices are likely to affect
the overall accuracy of our systems negatively, the
goal of our experiments is to investigate the effect
in change in accuracy when adding an auxiliary
task - not accuracy in itself.

5.2 Experimental Overview
In the syntactic experiments, we train one system
per language, dependency label category, and split
condition. For sentences where only one tag set is
available, we do not update weights based on the
loss for the absent task. Averaged results over all
languages and dependency relation instantiations,
per category, are shown in Table 2.

5.3 Replicability and Reproducibility
In order to facilitate the replicability and repro-
ducibility of our results, we take two methodologi-
cal steps. To ensure replicability, we run all exper-
iments 10 times, in order to mitigate the effect of
random processes on our results.4 To ensure repro-
ducibility, we release a collection including: i) A
Docker file containing all code and dependencies
required to obtain all data and run our experiments
used in this work; and ii) a notebook containing all
code for the statistical analyses performed in this
work.5

6 Results and Analysis

6.1 Morphosyntactic Tasks
We use Spearman’s ρ in order to calculate corre-
lation between auxiliary task effectivity (as mea-
sured using ∆acc) and the information-theoretic
measures. Following the recommendations in
Søgaard et al. (2014), we set our p cut-off value

4Approximately 10,000 runs using 400,000 CPU hours.
5https://github.com/bjerva/mtl-cond-entropy
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Auxiliary task ρ(∆acc,H(Y )) ρ(∆acc,H(Y |X)) ρ(∆acc, I(X ;Y ))

Dependency Relations (Identity) −0.06 (p=0.214) 0.12 (p=0.013) 0.08 (p=0.114)
Dependency Relations (Overlap) 0.07 (p=0.127) 0.27 (p<0.001) 0.43 (p�0.001)
Dependency Relations (Disjoint) 0.08 (p=0.101) 0.25 (p<0.001) 0.41 (p�0.001)

Table 2: Correlation scores and associated p-values, between change in accuracy (∆acc) and entropy
(H(Y )), conditional entropy (H(Y |X)), and mutual information (I(X ;Y )), calculated with Spearman’s ρ ,
across all languages and label instantiations. Bold indicates the strongest significant correlations.

to p < 0.0025. Table 2 shows that MI correlates
significantly with auxiliary task effectivity in the
most commonly used settings (overlap and dis-
joint). As hypothesised, entropy has no significant
correlation with auxiliary task effectivity, whereas
conditional entropy offers some explanation. We
further observe that these results hold for almost
all languages, although the correlation is weaker
for some languages, indicating that there are some
other effects at play here. We also analyse whether
significant differences can be found with respect
to whether or not we have a positive ∆acc, using a
bootstrap sample test with 10,000 iterations. We
observe a significant relationship (p < 0.001) for
MI. We also observe a significant relationship for
conditional entropy (p < 0.001), and again find no
significant difference for entropy (p≥ 0.07).

Interestingly, no correlation is found in the iden-
tity condition between ∆acc and any information-
theoretic measure. This is not surprising, as the
most effective auxiliary task is simply more data
for a task with the highest possible MI. Hence, in
the overlap/disjoint conditions, high MI is highly
correlated with ∆acc, while in the identity condi-
tion, there is no extra data. It is evident that tag set
correlations in identical data is not helpful.

6.2 Semantic Tasks
Although we do not have access to sufficient data
points to run statistical analyses on the results ob-
tained by Martı́nez Alonso and Plank (2016), or by
Bjerva et al. (2016), we do observe that the mean
MI for the conditions in which an auxiliary task is
helpful is higher than in the cases where an auxil-
iary task is not helpful.

7 Conclusions

We have examined the relation between auxiliary
task effectivity and three information-theoretic
measures. While previous research hypothesises
that entropy plays a central role, we show exper-
imentally that conditional entropy is a better pre-
dictor, and MI an even better predictor. This claim

is corroborated when we correlate MI and change
in accuracy with results found in the literature. It is
especially interesting that MI is a better predictor
than conditional entropy, since MI does not con-
sider the order between main and auxiliary tasks.
Our findings should prove helpful for researchers
when considering which auxiliary tasks might be
helpful for a given main task. Furthermore, it
provides an explanation for the fact that there is
no universally effective auxiliary task, as a purely
entropy-based hypothesis would predict.

The fact that MI is informative when determin-
ing the effectivity of an auxiliary task can be ex-
plained by considering an auxiliary task to be sim-
ilar to adding a feature. That is to say, useful fea-
tures are likely to be useful auxiliary tasks. Inter-
estingly, however, the gains of adding an auxiliary
task are visible at test time for the main task, when
no explicit auxiliary label information is available.

We tested our hypothesis on 39 languages, rep-
resenting a wide typological range, as well as a
wide range of data sizes. Our experiments were
run on syntactically oriented tasks of various gran-
ularities. We also corroborated our findings with
results from semantically oriented tasks in the lit-
erature. Hence our results generalise both across a
range of languages, data sizes, and NLP tasks.
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Thomas M Cover and Joy A Thomas. 2012. Elements
of information theory. John Wiley & Sons.

Jeffrey L Elman. 1990. Finding structure in time.
Cognitive science, 14(2):179–211.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5):602–610.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
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