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Abstract

Performing systematic reviews is a critical
yet manual, labor-intensive step in evidence-
based medicine. Automating systematic re-
views is an active area of research, requiring
innovations in machine learning and compu-
tational linguistics. We examine how corefer-
ence resolution can aid in identifying the arms
of a study, an often overlooked piece of in-
formation needed to synthesize the results in
a systematic review. A classification model1

that performs better with the coreference fea-
tures supports the intuition that coreference is
able to capture the discourse salience of arms.
We note that control arms do not benefit as
much from these features.

1 Introduction

Evidence-based medicine (EBM) is a paradigm that
seeks to inform medical practitioners of the opti-
mal treatment, based on the totality of the avail-
able evidence (i.e., the results of all relevant clin-
ical trials). To this end, teams of medical experts
often conduct systematic reviews, which synthesize
all published medical literature pertaining to a spe-
cific clinical question. The first step in a systematic
review is to formulate the research question to be
investigated, and then find all of the relevant cita-
tions. Abstracts and then full texts are screened to
exclude irrelevant trials. Once a set of trials perti-
nent to the research question are identified (typically
10-20 trials), key pieces of information are extracted
from each trial. This information generally consists

1https://github.com/elisaF/extractGroups

of the patient Population under study, the Interven-
tion(s) being tested, the Comparison and the Out-
comes (abbreviated as PICO). Results from all iden-
tified trials are typically statistically combined via
meta-analysis to produce an aggregated result.

Producing systematic reviews is a time-
consuming, largely manual process. This is
exacerbated by the rapidly growing evidence base:
PubMed2 contains 800,000+ publications on clini-
cal trials in humans (Wallace et al., 2013), and on
average reports of 75 new trials are published daily.
A single systematic review can take over a year to
produce – at which point it risks becoming outdated.
Therefore, automating evidence synthesis poses an
enormous yet enticing challenge for automation.

A crucial step towards automating synthesis is
identifying the arms, or groups, in trials. A clinical
trial consists of one control arm, and one or more
intervention arms. For example, a study comparing
the efficacy of aspirin versus a placebo would con-
sist of two arms: those taking aspirin (the interven-
tion group), and those taking the placebo (the con-
trol group). Previous work has mostly focused on
identifying the PICO elements. However, the PICO
elements alone are insufficient to convey the design
of the study, a key piece of evidence necessary in
the downstream task of data synthesis and analy-
sis. Thus, the present study focuses on improving
the automated identification of arms. We observed
that arms are often salient in the discourse of the ab-
stract, in that they corefer more often than other to-

2publicly available resource for
accessing medical references and abstracts
https://www.ncbi.nlm.nih.gov/pubmed/
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Randomised controlled trial with 12 month intervention. Change in body mass index (BMI) standard deviation
score (SDS) over 12 months with assessment 18 months after the start of the intervention. Using the last available
data on all participants (n=106), those in the Mandometer group︸ ︷︷ ︸

arm1

had significantly lower mean BMI SDS at 12

months compared with standard care︸ ︷︷ ︸
arm2

. The mean meal size in the Mandometer group︸ ︷︷ ︸
arm1

fell by 45 g. Those in the

Mandometer group also had greater improvement in concentration of high density lipoprotein cholesterol.

Table 1: Excerpt from medical abstract illustrating the discourse salience of the intervention arm, arm1, where the
control arm is arm2 (note that not all mentions of the arms are annotated in the gold data, as discussed in section 5.3).

Randomised controlled trial with

chain1︷ ︸︸ ︷
12 month intervention . Change in body mass index (BMI) standard devia-

tion score (SDS) over 12 months with assessment 18 months after the start of

chain1︷ ︸︸ ︷
the intervention . Using the last

available data on all participants (n=106),

chain2︷ ︸︸ ︷
those in

chain3︷ ︸︸ ︷
the Mandometer group︸ ︷︷ ︸

arm1

had significantly lower mean BMI

SDS at 12 months compared with standard care︸ ︷︷ ︸
arm2

. The mean meal size in

chain3︷ ︸︸ ︷
the Mandometer group︸ ︷︷ ︸

arm1

fell by 45 g.

chain2︷ ︸︸ ︷
Those in

chain3︷ ︸︸ ︷
the Mandometer group also had greater improvement in concentration of high density lipoprotein choles-

terol.

Table 2: Medical abstract with annotated arms and coreference chains. The chains were automatically determined as
described in section 4.3. All phrases with the same chain label are judged to co-refer.

kens. This study is exploratory work that focuses on
investigating the effectiveness of using coreference
features for identifying arms.

The remainder of this paper is organized as fol-
lows. We motivate the choice of coreference fea-
tures for arm identification. We then examine prior
work in identifying the arms in medical texts, and
how coreference resolution has been applied to the
medical field. Next, we present an experiment to
classify whether tokens in annotated medical ab-
stracts are part of an arm. We propose features that
take advantage of the discourse salience of arms, and
we discuss the results with and without the corefer-
ence features.

2 Motivation

Identifying the arms is not a simple information ex-
traction task. The arms in a study consist of one con-
trol group, and one or more intervention groups. Of-
ten, the control group is never explicitly mentioned

in the abstract. In the following excerpt, only the
intervention arm is mentioned:

To determine whether modifying eating behaviour
with use of a feedback device facilitates weight
loss in obese adolescents.

An arm in a study is typically a noun phrase
(NP), where this NP is repeated, either verbatim or
anaphorically, throughout the abstract. An exam-
ple of the discourse salience of arms in a medical
abstract is in Table 1. The intervention arm, Man-
dometer group, is repeated several times verbatim
throughout the abstract.

Given this recurring linguistic pattern in medical
abstracts, we investigated the use of coreference res-
olution to help identify arms. The goal of corefer-
ence resolution is to determine which mentions in a
text refer to the same entity. A referring expression,
or mention, is the natural language expression used
by discourse participants to refer to entities. Two
or more mentions that refer to the same entity are
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coreferent, and together form a coreference chain.
An anaphor and its antecedent (or cataphor and its
postcedent) will form a coreference chain. Men-
tions can be indefinite noun phrases, definite noun
phrases, proper names and pronouns, where clinical
trial abstracts contain mostly NP’s. Using an off-the-
shelf coreference tool (to be discussed in more detail
in section 4.3) yields the mentions and coreference
chains illustrated in Table 2.

Note that the token intervention, which is not part
of an arm, appears at most 2 times within a single
coreference chain, whereas Mandometer, part of the
experimental arm, appears 3 times. Further, inter-
vention is found only in 1 chain, whereas Mandome-
ter appears in 2 chains. More generally, we hypoth-
esize a token forming part of an arm is more salient
in two ways: (i) an arm token appears more often
within a single coreference chain, and (ii) an arm to-
ken appears more frequently across different chains
(within the same abstract). These observations mo-
tivate the coreference features presented in section
4.3. In Table 2, standard care is not a member of
any chains. More generally, we can expect salience
to help more with intervention arms than control.3

3 Related work

3.1 Automated Identification of Arms

Previous work has identified PICO elements either
at the word or sentence level. Most research has ex-
tracted information from medical abstracts, although
some studies have used the full text of the articles
(De Bruijn et al., 2008; Zhao et al., 2012; Wal-
lace et al., 2016). One of the seminal studies in
PICO extraction (Demner-Fushman and Lin, 2007)
collapsed intervention and comparator, where inter-
ventions were short noun phrases based largely on
recognition of semantic types (mapped to UMLS
concepts) and a few manually constructed rules. The
intervention/comparator extractor returned a list of
all the interventions under study, and the extractor
was evaluated at the sentence level. However, it is
important to distinguish between experimental and
control treatments as the bias for the experimental

3Cases of joint coreference such as all participants referring
to both arms in the example abstract are not addressed in this
paper, but pose an interesting problem for identifying PICO el-
ements such as population and outcome.

group must be accounted for in the data synthesis
step (Lumley, 2002).

Beyond PICO, De Bruijn et al. (2008) extracted
data from full-text articles based on the CONSORT
Plus Guideline,4 a list of required, recommended
and optional items to include in a systematic review
compiled by medical experts. The study found that
one of the most difficult items to identify was the ex-
perimental treatment, which varied widely beyond
just drug names. Elsewhere, Chung (2009) identi-
fied interventions as a coordinating structure in a sin-
gle sentence, and found the major weakness in this
approach was parsing errors when identifying the
boundaries of the conjuncts. And Summerscales et
al. (2011) focused on the downstream task of calcu-
lating the absolute risk reduction (ARR), identifying
the number of bad outcomes for the control and ex-
perimental treatment groups, along with the sizes of
both treatment groups. This study found outcomes
hardest to detect because of their variability, but also
had an overall poor recall partly because coreference
was not taken into account.

Most recently, Trenta et al. (2015) proposed a
novel approach for identifying the arms and PICO
elements that does not rely on a first stage of sen-
tence classification, but instead classifies each token
directly, followed by an inference process to con-
strain the labels to more accurate results. As with
previous studies, outcome results were the hardest
because they are more variable. A significant limi-
tation of this study is that the abstracts were limited
to two-arm trials, and in a specific domain.

3.2 Automated Coreference Resolution
Coreference resolution is a long-studied task that re-
mains a challenging problem. Most recent work on
coreference resolution builds mainly on one of four
models.

• The first and most widely-used approach is the
mention-pair model (Soon et al., 2001; Ng
and Cardie, 2002b). A classifier first identi-
fies all the pairs of mentions which are coref-
erent. These pairs are then grouped into coref-
erent chains by clustering techniques such as
closest-first (Soon et al., 2001) or best-first (Ng
and Cardie, 2002b; Ng and Cardie, 2002a).

4http://rctbank.ucsf.edu/home/cplus
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In closest-first, you link to the closest preced-
ing mention, whereas in best-first, you choose
the likeliest one. Common features in these
models include distance between the two men-
tions, syntactic features (e.g., POS tags), se-
mantic features (e.g., named entity type), lex-
ical features (e.g., head word of the mention),
and string matching.

• The mention-ranking model (Denis and
Baldridge, 2008), reframes the task as a
ranking function rather than a classification
function, ranking all the candidate antecedents
of a mention to determine which candidate
antecedent is the most probable.

• The entity-centric model makes use of entity-
level information, focusing on features of
mention clusters, and not just pairs (Raghu-
nathan et al., 2010). The coreference clusters
are built up incrementally, using information
from partially-completed coreference chains to
guide later decisions. Features include whether
a mention head word matches any of the head
words in the antecedent cluster.

• The antecedent tree model (Yu and Joachims,
2009) builds a graph from a document, where
the nodes are the mentions and arcs are the
links between mention pairs that are corefer-
ent candidates. The coreference chains are then
modeled as latent trees in the graph.

Constraints are imposed on these models for im-
proved results, such as enforcing a transitive clo-
sure to guarantee you end up with legal assignments
(Finkel and Manning, 2008). For example, if John
Smith is coreferent with Smith, and Smith with Jane
Smith, then it should not follow that John Smith and
Jane Smith are coreferent. Other work has shown
that joint models improve performance. Denis et
al. (2007) recognized that anaphoricity (whether an
entity is the first mention) and coreference should
be treated as a joint task since one informs the
other. Durrett and Klein (2014) models coreference
together with named entity recognition and link-
ing named entities to Wikipedia entities. Combi-
nations of these models have also yielded improved
results, such as Clark and Manning (2015) stacking

mention-pair and entity-centric systems (which the
current paper uses as its off-the-shelf coreference re-
solver).

Many coreference resolvers exploit deeper lin-
guistic knowledge, beyond the features mentioned
above. Chowdhury and Zweigenbaum (2013) elim-
inated less-informative training instances prior to
model training by creating a list of criteria based
on semantic and syntactic intuitions such as a mis-
match in semantic types. Peng et al. (2015) created
predicate schemas to constrain inference, such as
two predicates with a semantically shared argument.
Yang et al. (2015) used semantic role labeling to link
the time and locations for event mentions, and for
verbal mentions they linked their participants. More
recently, Kilicoglu et al. (2016) focused on sortal
anaphoras which they found to commonly occur in
biomedical literature, resolving anaphors that carry a
specific semantic type, or sort, such as these drugs.
Many of these studies take advantage of linguistic
resources such as WordNet5 and FrameNet6.

In the medical area, coreference resolution has
been most closely studied for analyzing clinical nar-
rative text such as that found in Electronic Health
Records (EHRs), and biomolecular studies. In fact,
there have been corpora (i2b2/VA Corpus(Uzuner
et al., 2012), GENIA Event Corpus(Kim et al.,
2008)) and shared tasks (SemEval-2015 shared task
on Analysis of Clinical Text (Task 14)(Elhadad
et al., 2015), BioNLP09 shared task(Kim et al.,
2009), ShARe/CLEF eHealth 2013 Evaluation Lab
Task 1(Pradhan et al., 2013)) created specifically
to advance this area. Given that resources such
as FrameNet and WordNet are based mostly on
news (e.g. British National Corpus, U.S. newswire),
a large number of resources have been created
to aid in natural language processing of medical
texts. By far the largest and most complex is the
Unified Medical Language System (UMLS)7, con-
sisting of three main components: Metathesaurus
with terms and codes from many vocabularies (in-
cluding CPT, ICD-10-CM, MeSH, RxNorm, and
SNOMED CT), Semantic Network with semantic
types and semantic relations, and the SPECIAL-
IST Lexicon, which contains syntactic, morpholog-

5http://wordnet.princeton.edu
6https://framenet.icsi.berkeley.edu
7https://www.nlm.nih.gov/research/umls/
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ical and orthographic information on terms, along
with NLP tools such as POS tagger and word sense
disambiguator. Other tools include MetaMap8, a
tool for recognizing UMLS concepts, DrugBank9,
a database of drug names, BANNER10, a named
entity recognizer for biomedical texts, BioText for
identifying entities and relations in bioscience texts,
and BioFrameNet11, an extension of FrameNet for
molecular biology (and BioWordNet(Poprat et al.,
2008) was a failed attempt at extending WordNet
also to the biomolecular field). However, when ap-
plied to clinical trial texts, these tools prove use-
ful mainly for identifying only medical terms and
drug names, and thus more linguistically-motivated
resources are still lacking for clinical trial texts.

In the area of clinical narratives, Raghavan et
al. (2012) took advantage of the temporal features
present in these texts to help determine whether two
medical concepts corefer with each other. Their
2014 paper (Raghavan et al., 2014) expanded on this
idea to identify medical events spanning across nar-
ratives, such as admission notes, medical reports,
and discharge notes. Yoshikawa et al. (2011) ex-
ploited coreference information for extracting event-
argument relations from biomedical texts in the Ge-
nia Event Corpus. Jindal and Roth (2013) used
very specific domain knowledge to resolve corefer-
ence in clinical narratives, such as creating a spe-
cific discourse model (i.e. a single patient, several
doctors and a few family members) to resolve en-
tities of type ”person”. Despite the active interest
in coreference resolution, there has been much less
research investigating its application to clinical trial
texts. Most of the literature that does exist is applied
to the bio-medical field, focusing more on full-text
articles (Gasperin and Briscoe, 2008; Huang et al.,
2010; Kilicoglu et al., 2016) than on abstracts (Cas-
tano et al., 2002; Yang et al., 2004). To the best of
the authors’ knowledge, there have been no papers
using coreference features to identify arms in clini-
cal trial abstracts.

8https://metamap.nlm.nih.gov
9http://www.drugbank.ca

10http://banner.sourceforge.net
11http://biotext.berkeley.edu

4 Experiment

The goal of this experiment is to explore empiri-
cally whether incorporating coreference features im-
proves the performance of a classifier for arm iden-
tification, as compared to a baseline model without
coref features (note that we do not aim to necessar-
ily achieve state-of-the-art results on this task). The
task of the classifier is to label a token as either part
of an arm or not.

4.1 The corpus

The corpus12 consists of 263 abstracts from the
British Medical Journal (BMJ) annotated with the
experimental and control groups (and other PICO
elements) by Summerscales (2013). The BMJ re-
quires structured input, and the number of sec-
tions varies with some abstracts only containing a
few sections such as BACKGROUND, METHODS,
FINDINGS and INTERPRETATION. These struc-
tured abstracts usually consist of short phrases and
incomplete sentences.

Number of documents 263
Number of tokens 63,488
Number of [abstract, token] pairs 35,650
Average no. tokens per document 241
Positive labels 5,757 (9%)

Table 3: Corpus statistics

4.2 Experimental setup

Sentences were tokenized, lower-cased and stop
words were removed . Each token was paired with
its abstract to form an [abstract, token] pair to
uniquely correlate the token with the medical ab-
stract where it appeared (e.g. [abstract 3, ”interven-
tion”], [abstract 129, ”intervention”]). A binary
classifier was implemented to label each token as
belonging to an arm or not (scikit-learn implemen-
tation of Support Vector Machine, Pedregosa et al.
(2011)). Due to the imbalance of classes (9% posi-
tive), the class weights in the model were adjusted to
be inversely proportional to the class frequencies in
the corpus. We performed five-fold cross validation.

12https://github.com/rlsummerscales/
bibm2011corpus
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Model Precision (var) Recall (var) F1 (var)
baseline 12.9 (2.7e-04) 88.6 (5.6e-04) 22.5 (6.2e-04)
coref 19.7 (7.5e-04) 82.7 (8.4e-04) 31.8 (14.4e-04)

Table 4: Results averaged across 5-folds on the two models with their variances in parentheses.

Feature Mean Range Variance
b-o-w 1.78 1-24 2.71
drugbank 0.09 0-1 0.08
tf-idf 6.06 1-141.1 42.67
coref max counts 0.14 0-15 0.31
coref num chains 0.10 0-6 0.11

Table 5: Feature statistics

4.3 Features
The following features, summarized in Table 5, were
used in the machine learning algorithm.
bag-of-words The number of times the token oc-
curs within its medical abstract (i.e., the count of
[abstract, token] pairs for the given token and ab-
stract). As evident in Table 5, abstracts can be quite
repetitive in their vocabulary, but on average a to-
ken appears only a couple of times within the same
abstract.
drugbank Whether the token exists in the Drug-
Bank database version 4.313. The clinical trials often
compare the efficacy of different drugs, such that in-
tervention arms would contain drug names. How-
ever, note from Table 5 that most words are not
drugs, keeping in mind that interventions also con-
sist of therapies, behavior changes and other non-
drug-related treatments.
tf-idf: Term frequency-inverse document frequency
for term t in document d for corpus D:

tf -idft,d = tft,d ∗ (idft,D + 1), (1)

where: tft,d = ft,d

idft,D = log
|D|

|{d ∈ D : t ∈ d}|
One is added in the equation (1) so that terms with

zero idf (those that occur in all documents of a train-
ing set) are not entirely ignored. The goal of this
metric is to capture how informative a word is. For

13http://www.drugbank.ca/system/downloads/
4.3/drugbank.xml.zip

example, the token mandometer (an arm) from the
abstract in Table 2 has a tf-idf measure of 26.29,
whereas intervention (not an arm) has a value of 3.7.
On average, the tokens are slightly more informative
than common words such as intervention.

coreference:

The Coreference Resolution annotator packaged in
Stanford Core NLP 3.014 (a model that stacks
mention-pair and entity-centric systems) is used to
calculate the maximum number of times the token
occurs in a single coreference chain within the same
medical abstract (max counts) and the number of
chains the token appears in the same medical ab-
stract (num chains). This tool was chosen because
it is publicly available and yields state-of-the-art re-
sults on the 2012 CoNLL data set. The corefer-
ence features aim to capture the discourse salience
of arms in medical abstracts. As mentioned before,
the (max counts, num chains) values for mandome-
ter are (3,2), but for intervention are (2,1). Note
from Table 5 that although a token can occur very
frequently in a single chain (max counts) and across
many chains (max chains), a token on average is not
part of a chain at all. This observed statistic lends
weight to the use of coreference features as a mea-
sure of salience. Previous work has employed other
features such as dependency trees and other pred-
icate argument structures to capture this discourse
salience. Summerscales (2013) implemented a form
of post-hoc coreference resolution as a way to clus-
ter labeled words into groups, for example into a
control group versus an intervention group. How-
ever, the present study uses the coreference fea-
tures at the front end to detect the mentions, and is
presently not concerned with differentiating among
the different arms.

14http://nlp.stanford.edu/software/
stanford-corenlp-full-2015-12-09.zip
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5 Evaluation

Table 4 summarizes the evaluation scores. The re-
sults of the classifier are evaluated against the spans
of text that were annotated as arms, following Sum-
merscales (2013). Because an arm consists of sev-
eral contiguous words (e.g. mandometer group), we
want to ensure the classifier is able to correctly label
the more informative words in that span (mandome-
ter vs. group). A labeled group of words is consid-
ered a match for an annotated group if they consist of
the same set of words, ignoring had, group(s), and
arm. For example, a labeled span of mandometer
for the annotated span mandometer group is a true
positive. On the other hand, a labeled span of only
group is a false positive. Although the scores are rel-
atively low for both models, we emphasize the goal
of this experiment is not to achieve state-of-the-art
results but to investigate the viability of salience for
arm identification. Further, we are being strict in our
evaluation, compared to prior work (e.g., Summer-
scales (2013) ).

5.1 Baseline

The baseline model includes the features for how
many times a token appears in a single abstract
(b-o-w), whether the token exists in the Drug-
Bank (drugbank), and the term-frequency inverse-
document-frequency measure for the token (tf-idf).

5.2 With Coreference

The coref model additionally includes the maximum
number of times the token appears in a single coref-
erence chain for a given abstract (max counts), and
the number of coreference chains the tokens appears
in for a given abstract (num chains).

5.3 Error Analysis

The coref model performed better than the base-
line model in almost all the metrics: precision (im-
proved 6.8 points) and F1 (+9.3). Additionally, these
improvements are consistent across all the cross-
validation runs, as illustrated in Figure 1. Adding
the coreference features lowers recall by 5.9 points.
To understand the results in more detail, we compare
the confusion matrices of the two models. The raw
counts in Figure 2 illustrate the class imbalance of
the data, giving the impression that a false positive

Figure 1: F1 score across the 5 runs in gray, with mean
in the thick black line. The lines connect results in the
baseline model to results of the the same folds in the coref
model.

is more likely than a false negative. The normalized
confusion matrices in Figure 3 show that false nega-
tives are a higher percentage of the errors than false
positives, so that the positive class is the harder one
to label.

Given that false negatives are the most common
errors across both models, we analyze their occur-
rences first. The control arm is the most susceptible
to this type of error, as it is not as salient in the dis-
course as the experimental arms. The control words
are typically drawn from a finite and small vocabu-
lary (e.g. control, placebo, sham, standard), so their
tf-idf scores are usually low. The false negative rate
worsens in the coref model partly because it places
more weight on discourse salience, and control arms
are often not part of a coreference chain, compared
with experimental arms. We refer back to the ab-
stract presented in Table 1. A small ablation study
was conducted to determine that the b-o-w feature is
able to correctly label standard (count=4) as part of
an arm. With the coreference features, the word is
no longer labeled as an arm, as it does not appear in
any coreference chain.

Next, we analyze the false positives across both
models. Given that all the features (except drug-
bank) in both models are aimed at extracting salient
words, they also pick out other relevant PICO infor-
mation. For example, both models incorrectly la-
bel knee as part of an arm in the following abstract,
where each of these mentions is, in fact, annotated
as part of an outcome:
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Figure 2: The raw counts of the confusion matrices for
the baseline and coref models.

...reduce the incidence of knee and ankle injuries
in young people participating in sports. The rate
of acute injuries to the knee or ankle. A struc-
tured programme of warm-up exercises can pre-
vent knee and ankle injuries...
Another issue with false positives is that the gold

data is not comprehensively annotated. Note that in
Table 2, the annotator failed to label the third occur-
rence of mandometer as an arm, although both mod-
els attempt to classify it as such. However, striving
for a thoroughly annotated data set is not realistic,
and so the models should be more robust to these
gaps and inconsistencies. The false positive rate im-
proves in the coref model partly because the coref-
erence features prove to be a better measure of dis-
course salience for the intervention arms. As noted
earlier, repetition in medical abstracts is not limited
to the words describing the arm. For example, in the
abstract from Table 1, the baseline model incorrectly
labels the high-frequency tokens eating, months and
mean as parts of an arm. The coref model instead
correctly labels these as negative, given that they do
not occur in a coreference chain.

Finally, we note that the coreference features help
in grouping together words with conflicting tf-idf
measures. In the abstract from Table 1, the baseline
model correctly labels mandometer (tf-idf=26.3),
but misses group (tf-idf=4.2). However, the coref
model correctly labels the entire span mandometer
group as an arm, because both of these tokens appear
together in a mention and have the same coreference
features.

6 Conclusion

We introduced a new approach to identify the arms
in a clinical trial abstract by creating coreference

Figure 3: The normalized confusion matrices for the
baseline and coref models.

features aimed at capturing the discourse salience of
arms. The coreference features were shown to help
in classifying a word as part of an arm, confirming
the intuition that mentions of arms throughout the
abstract often corefer. However, we note this pattern
holds more for the experimental than control arms.
The error analysis also revealed that arms are not
the only concepts that are coreferent: other PICO
elements such as the outcome often have the same
features. This observation could motivate a model
that jointly labels these PICO elements along with
the arms, since one would inform the other. There
are several other recurring linguistic patterns yet to
be explored that could further aid in arm identifica-
tion, such as apposition:

A computerised device, Mandometer, providing
real time feedback...

and paraphrasing:

..half were produced automatically with a larger
volume of material...The larger booklets produced
automatically were...

Another avenue of research is to investigate how
these linguistic features pattern across abstracts in
the same review. For example, finding the para-
phrases across all abstracts that study the same treat-
ment (as defined in a systematic review) could yield
finer-grained information on the language used to
describe that intervention. To compensate for the
inconsistent and small number of annotations, label
propagation might be used to retrieve clusters of re-
lations and find the structure in the data.

As noted earlier, the present study focused on the
effect of salience on arm identification. In a future
study, we plan to implement Summerscales (2013)
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as a strong baseline (which achieved an F-score of
0.69) to understand whether coreference can still
yield improved results when compared to a model
that nears state-of-the-art performance.
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