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Abstract

Automated citation analysis (ACA) can be im-
portant for many applications including au-
thor ranking and literature based information
retrieval, extraction, summarization and ques-
tion answering. In this study, we developed a
new compositional attention network (CAN)
model to integrate local and global attention
representations with a hierarchical attention
mechanism. Training on a new benchmark
corpus we built, our evaluation shows that
the CAN model performs consistently well on
both citation classification and sentiment anal-
ysis tasks.

1 Introduction

Citations are relations between the cited and citing
articles and are important content in literature. There
are different reasons that authors choose to cite an
article. Identifying the purpose of the citations has
important applications including faceted navigation,
citation based information retrieval, impact factor
assessment and summarization of scientific papers
(Hearst and Stoica, 2009).

ACA refers to the tasks of citation function clas-
sification and citation sentiment analysis. Pioneered
by Garfield and others (1965), a large body of
citation-related studies have been carried out to de-
velop categorization schemes for citation function
analysis. However, most of the studies are limited
to to specific domain. The classification schemes
are typically complex, containing multiple overlap-
ping categories ranging from three to 35 (Bornmann
and Daniel, 2008). In contrast, the success of ACA

depends on a small but well-defined set of cita-
tion categories. Nanba and Okumura (1999) de-
veloped a semi-ACA based on a 3-category scheme
derived from Garfield and others (1965)’s 15 cate-
gories. Similarly, Pham and Hoffmann (2003) devel-
oped rule-based approaches (cue phrases) to classify
citations into one of the four classes (basis, support,
limitation and comparison). Teufel et al. (2009)
addressed citation function classification and senti-
ment analysis jointly by a hierarchical scheme with
the top nodes for sentiment and the leaf nodes for
function classes. Agarwal et al. (2010) developed a
scheme of eight non-overlapping categories for cita-
tion function classification in biomedical literatures.
This scheme simplifies Yu et al. (2009)’s hierarchi-
cal overlapping categories. Recently, a decision-tree
based scheme was introduced to facilitate citation
context based intelligent systems (Mandya, 2012).
The citation function classes, organic and perfunc-
tory proposed by Moravcsik and Murugesan (1975)
was adapted for a facet-based classification scheme
(Jochim and Schütze, 2012).

Machine learning (ML) approaches to ACA
mainly adapted statistical classifiers including sup-
port vector machines (SVM), logistic regression
and Nave-Bayes classifier (Athar, 2011; Athar and
Teufel, 2012; Sula and Miller, 2014). The feature
set extracted includes n-grams, part-of-speech tags,
word stems, cue phrases, sentence dependency com-
ponents, named entity mentions and word and sen-
tence location based features. Despite the rich lin-
guistically motivated feature sets, ACA remains a
challenge, performing significantly worse than hu-
man. One of the reasons for this could be the lack of
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Category Description
Function Classification

Background
Citations that describe background of the main topic on the whole, or provide recent studies and
state-of-the-art approaches in a general way

Method Citations of tools, methods, data and other resources used or adapted in the citing work

Results/findings
Citations that authors used to reference others study to relate their research results
and/or findings to the cited work

Don’t know This category should be chosen if you dont know which one to select
Sentiment Classification

Negational Citations that discuss or dispute the correctness and/or weakness of the cited work
Confirmative Citations that imply to confirm, support or make use of outcomes of the cited work
Neutral Citations that are not negational nor confirmative
Don’t know This category should be chosen if you dont know which one to select

Table 1: Citation categories in our analysis scheme.

a large training corpus.
In this study, we report the development of a sim-

plified citation classification schema, a subsequent
large annotated corpus, and a deep learning frame-
work for end-to-end ACA.

2 Methods

2.1 Citation Scheme
We developed a simple citation scheme as shown in
Table 1. Following Jochim and Schütze (2012), we
defined both function classification and sentiment
classification schemes as separate facets. For func-
tion classification, we followed the widely adopted
rhetorical IMARD categories in the scientific do-
main (Day and Gastel, 2012; Sollaci and Pereira,
2004), and introduced background, method and Re-
sults/findings types. We defined the standard nega-
tional, confirmative and neutral categories for senti-
ment classification. We added a don’t know category
to both function classification and sentiment classi-
fication since a previous work shows that such a cat-
egory improved annotation quality (van Rooyen et
al., 2015).

2.2 Machine Learning Approaches
We develop deep neural models and compare them
with a baseline model for automated citation analy-
sis.

2.2.1 Long Short Term Memory
Long short-term memories (LSTMs) based mod-

els are variations of recurrent neural nets and have
been introduced to solve the gradient vanishing

problem (Hochreiter, 1998). It has an ability
to model long-term dependencies of a word se-
quence (or context) and has achieved notable suc-
cess in a varity of NLP tasks like machine trans-
lation (Sutskever et al., 2014), speech recognition
(Graves et al., 2013) and textual entailment recogni-
tion (Bowman et al., 2015). In the context of citation
analysis, LSTMs read citation context to construct a
dense vector representation of the citation for classi-
fication.

Let xt and ht be the input and output at time step
t. Given sequence of input tokens x1, . . . , xl (l is the
number of tokens in input text) an LSTM with hid-
den size k computes a sequence of the output states
h1, . . . , hl as

it = σ(W1xt +W2ht−1 + b1) (1)

i′t = tanh(W3xt +W4ht−1 + b2) (2)

ft = σ(W5xt +W6ht−1 + b3) (3)

ot = σ(W7xt +W8ht−1 + b4) (4)

ct = ft � ct−1 + it · i′t (5)

ht = ot � tanh(ct) (6)

where W1, . . . ,W8 ∈ Rk×k and b1, . . . , b4 ∈ Rk

are the training parameters. σ and � denote the
element-wise sigmoid function and the element-
wise vector multiplication. The memory cell ct and
hidden state ht are updated by reading a word to-
ken xt at a time. The memory cell ct then learns to
remember the contextual information that are rele-
vant to the task. This information is then provided
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to the hidden state ht by using a gating mechanism
and the last hidden state hl summarizes the all rele-
vant information. it, ft and ot are called gates. Their
values are defined by non-linear combination of the
previous hidden state ht−1 and the current input to-
ken xt and range from zero to one. The input gate
it controls how much information needs to flow into
the memory cell while the forget get ft decides what
information needs to be erased in the memory cell.
The output ot finally produces the hidden state for
the current input token. The final representation vec-
tor hl is subsequently given to a multi-layer percep-
tron (MLP) with softmax output layer for classifi-
cation.

Bi-directional LSTMs read the input sequence
in both forward and backward directions and have
shown to improve further NLP tasks (Jagannatha
and Yu, 2016). We implemented Bi-directional
LSTM models for citation classification; here we
concatenate the last vector representations of the two
LSTMs for the subsequent layers.

Studies have shown that LSTMs based models do
not work well on memorizing long sequences (Bah-
danau et al., 2015). To overcome this limitation, we
introduce the attention models.

2.2.2 Global Attention
Attention mechanisms allow NN models to selec-

tively focus on the most task-relevant part of input
sequence. As a result, rather than treating every in-
put vector equally, attention models assign weights
to the vectors. Since attention models are able to
bring out a past and possibly distant input vector to
current time step with the blending operation, it also
mitigates the information flow bottleneck in RNNs.

We extend the LSTMs based models with a global
attention mechanism. This type of attention mecha-
nism is implemented by a neural network that takes
a sequence of vectors (usually output vectors of
LSTMs) and selectively blends those vectors into a
single attention vector. We adopt the attention archi-
tecture proposed by Hermann et al. (2015).

Concretely, the global attention considers all the
output vectors h1, . . . , hl to construct an attention
weighted representation of the input sequence. Let
S ∈ Rk×l be a matrix of the LSTMs output vectors
h1, . . . , hl and ol ∈ Rl be a vector of ones. An at-
tention weight vector α, an attention representation

r and the final representation h′ are defined as

M = tanh(W aS +W hhl ⊗ ol) (7)

α = softmax(w>M) (8)

r = Sα> (9)

h′l = tanh(W sr +W xhl) (10)

where W a,W h,W s,W x ∈ Rk×k are learnable ma-
trices and w> is transpose of learnable vector w ∈
Rk. With the outer product W hhl ⊗ ol we repeat
the transformed vector of hl l times and then com-
bine the resulting matrix with the projected output
vectors.

2.2.3 Compositional Attention Network
The global attention introduced in the previous

section does not incorporate subsequence informa-
tion as it considers the whole input as a single com-
ponent. However, natural language and its text form
are composed of a set of semantic units. For ex-
ample, a document can be broken down into para-
graphs, the paragraphs into sentences, and the sen-
tences into words. Inspired by this, we propose our
CAN model. The proposed attention is also hierar-
chical in a sense that it consists of different attention
layers. CAN attends locally over the input subse-
quences and globally over the whole input and selec-
tively composes these two types of attention repre-
sentations with a second layer attention to construct
a higher level representation. We use the standard
neural attention network (Equation (8 - 10)) from
the previous section as a main building block in our
CAN.

Let R ∈ Rk×z be a matrix of the representations
r1, . . . , rz (z is the number of input subsequences,
i.e. the number of sentences in the input) learned by
local attentions and r the output of the global atten-
tion. We then obtain the final attention representa-
tion r′ and the final output h′′ as follows.

M ′ = tanh(W ′aS +W ′hr ⊗ oz) (11)

α′ = softmax(w′>M ′) (12)

r′ = Rα′> (13)

h′′ = tanh(W ′sr′ +W ′xr) (14)
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Figure 1: Compositional attention network. r1, r2 and r3 are the locally attended vectors of the output subsets and r is the globally

attended vector of the whole output. In the second layer attention, we selectively blend these vectors and obtain the higher level

representation r′.

The W matrices and the w vectors of this model can
be tied together. When tied, the number of param-
eters is equal to that of the global attention mod-
els. Therefore, this attention network introduces no
parametric complexity to compare with the classic
global attention model. Figure 1 depicts the over-
all structure of this model (Equation (1–6), (8–9)
and (12–14)). The input consists of the three sub-
sequences [x1, x2, x3], [x4, x5, x6] and [x7, x8, x9].
The local attention vectors r1, r2 and r3 are con-
structed by attending over the LSTM outputs for
the each subsequence. Similarly, the global atten-
tion vector r is obtained by attending over the whole
output sequence h1, . . . , h9. In the second layer at-
tention, these representation are composed for the
higher level representation r′. The final representa-
tion h′′ can be obtained according to Equation (9).

The intuition behind our CAN is to attentively
compose words within a sentence to construct a lo-
cal attention vector for each sentence and then these
attention vectors are further composed in a second
layer attention to learn a whole document represen-
tation. We tie the parameters of local, global and the
second layer attentions so CAN is forced to learn to
compose both the word and sentence presentations
attentively.

We also build the bi-directional variation of these
models by feeding the concatenated outputs of the
forward and backward LSTMs. Due to the concate-
nated outputs, the size of theW matrices and w vec-
tor become 2k × 2k and 2k respectively, increasing
the number of parameters to be trained.

2.2.4 Baseline Classifier
We implemented a baseline model, which in-

cludes extraction of TF-IDF statistics of n-grams (1,
2 and 3-grams) from each citation for feature sets
and a support vector machine (SVM) classifier with
a linear kernel. For the SVM model, we performed a
grid search over its hyper-parameters (including the
regularization parameter, C) by using the develop-
ment set for evaluation. Once the best parameters
were found, the final SVM model was learned on
both the training and development sets and tested on
the test set.

2.3 Data Collection, AMT Annotation and
Gold Standard Datasets

In order to increase the generalization of data, we
maximizes the total number of selected articles.
Specifically, we selected a total of 5,000 citation
sentences from 2,500 randomly selected PubMed
Central articles (we randomly selected two citation
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Corpus #docs Avg. #sents Max. #sents #classes Class Distribution
Yelp 2013 335,018 8.9 151 5 .09/.09/.14/.33/.36
IMDB 348,415 14.02 143 10 .07/.04/.05/.05/.08/.11/.15/.17/.12/.18

Table 2: Statistics for the document-level sentiment datasets.

sentences from each article). We then developed
guidelines and deployed an annotation task in a
crowdsourcing platform, Amazon Mechanical Turk
(AMT).

Each citation was labeled by five annotators. We
provide the AMT annotators the previous and the
next sentences of the citation sentence to enrich the
context. We designed a quality control (attention
check questions) and ended the AMT session if the
AMT workers failed to answer correctly the atten-
tion check questions. To evaluate the quality of an-
notation, we asked a domain expert (a MD) to inde-
pendently annotate 100 citation sentences randomly
selected from our corpus and used it as the gold stan-
dard to evaluate inter-annotator agreement with the
AMT workers.

We built two gold standard datasets to use for
training and for evaluation. The first dataset is com-
posed of labels agreed by at least three of the five
annotators (three label matching). This resulted in
3,422 citations for the function analysis and 3,624
citations for the sentiment analysis. The second
dataset is more relaxed in which we selected a la-
bel given by the majority of the five annotators. In
this setting, we included a label that may fail inclu-
sion by the first approach. For example, even if only
two annotators agreed on a label, we will include it
in our gold standard dataset because it represents a
clear majority vote (the rest of three labels all differ).
As a result, this dataset included 4,426 citations for

the function classification and 4,423 citations for the
sentiment classification.

2.4 CAN for Document-level Sentiment
Analysis

In order to test the robustness of the CAN model,
we also evaluate it for sentiment analysis on two
publically available large-scale datasets: the IMDB
movie review and Yelp restaurant review datasets.
Particularly, we used the pre-split datasets by Tang
et al. (2015). Each document in the datasets is asso-
ciated with human ratings and we use these ratings
as gold labels for sentiment classification. Table 2
reports the statistics for the datasets.

2.5 Experimental Settings
During the experiment, citations labeled with don’t
know were removed from the training data. Each
dataset was split into 200/200/rest for dev/test/train
sets with a stratified sampling. A stratified sampling
is performed to preserve percentage of the citations
for each class in each set. We experimented with us-
ing only the citation sentence as input example and
the expansion with both the previous and the next
sentences.

We used ADAM (Kingma and Ba, 2014) for op-
timization of the neural models. The size of the
LSTM hidden units was set to 200. All neural mod-
els were regularized by using 20% input and 30%
output dropouts and an l2 regularizer with strength
value 1e-3. A word2vec (Mikolov et al., 2013)

Citation Analysis Task Class Citation Distribution
Majority Voting Three Label Matching

Function classification

Background 30.5% 20.5%
Method 23.9% 18.2%

Results/findings 45.3% 38.3%
Don’t know 0.1% 0.06%

Sentiment classification

Negational 4.8% 2.6%
Confirmative 75% 59.8%

Neutral 19.8% 19%
Don’t know 0.2% 0.1%

Table 3: Statistics for our automated citation analysis corpus.
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Model Majority Voting Three Label Matching
Train Test Train Test

SVM 99.19 54.27 87.5 53.89
LSTMs 59.71 59.55 63.05 66.42
LSTMs + Global Attention 69.02 65.73 69.05 68.61
Bi-LSTMs 62.14 64.04 67.31 67.88
Bi-LSTMs + Global Attention 72.58 64.6 67.4 68.61

Table 4: Citation function classification results. Single citation sentence is presented as input.

model trained on a collection of PubMed Central
documents transformed citation context to word vec-
tors with size of 200 (Munkhdalai et al., 2015). The
parameters of CAN are tied and equal to that of the
global attention. The neural models were trained
only on the training set while SVM model was built
on both training and development sets. We use the
development set to evaluate the neural models for
each epoch to choose the best model. Each model
was given 30 epochs, which was empirically found
to be enough time for the models to converge to an
optima. The final performances of the methods were
reported on the test set. The average training time
for the neural network models was approximately
three hours on a single GPU (GeForce GTX 980).

3 Results

Table 3 lists the detailed statistics of our AMT an-
notated corpus. The overall agreement between the
expert’s annotation and the AMT annotation was
63.1% and 64.7% for function and sentiment anal-
ysis tasks. For the function classification, a majority
of citations were annotated as results and findings.
As shown in Table 3, for the sentiment classifica-
tion, 4.8% was labeled as Negational while 75% and
19.8% were Confirmative and Neutral. This shows
that the citations bias towards a positive statement,
resulting a highly unbalanced class distribution.

3.1 Citation Function Analysis

Table 4 lists the results of the function classification
by using only citation sentences as input to the mod-
els. The SVM baseline obtains the lowest training
error. As the models become complex the perfor-
mance increases. However, some cases like the Bi-
LSTMs based global attention model tend to overfit
the training data. The unidirectional LSTMs with
global attention achieves the best F1-score in both
settings when only the citation sentence is input.

Table 5 shows the performance where the inputs
are represented by a larger context of the previous,
citation and next sentences. We treated the each sen-
tence related to a citation as a subsequence and ap-
plied our CAN. Here the bi-directional LSTMs with
CAN is the clear winner in terms of the test perfor-
mance. This model achieves 75.86% F1-score im-
proving the results of the previous model by nearly
7% in the three label matching setup. Unlike the
compositional models, the performance of the global
attention models decreased in response to additional
context given in the input. Furthermore, the mod-
els tend to get a higher F1-score in the three label
matching setup because this setting has an extra an-
notation noise filter in selecting the gold labels.

Model Majority Voting Three Label Matching
Train Test Train Test

SVM 81.19 45.72 99.97 58.44
LSTMs 53.08 56.74 61.4 59.85
LSTMs + Global Attention 58.97 57.48 77.38 64.96
LSTMs + CAN 60.55 60.11 66.64 73.28
Bi-LSTMs 55.56 56.17 74.49 67.88
Bi-LSTMs + Global Attention 60.28 56.88 66.7 66.42
Bi-LSTMs + CAN 71.34 60.67 79.76 75.57

Table 5: Citation function classification results. Citation sentence + its left and right sentences are used as input.
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Model Majority Voting Three Label Matching
Train Test Train Test

SVM 82.89 74.5 96.39 70.73
LSTMs 75.25 75.14 73.45 74.48
LSTMs + Global Attention 76.24 76.27 77.38 75.86
Bi-LSTMs 75.84 75.7 73.78 75.17
Bi-LSTMs + Global Attention 75.65 77.4 80.77 74.48

Table 6: Citation sentiment classification results. Single citation sentence is presented as input.

Model Majority Voting Three Label Matching
Train Test Train Test

SVM 82.87 75 85.72 71.95
LSTMs 75.25 75.7 73.54 73.79
LSTMs + Global Attention 76.14 75.14 74.68 74.48
LSTMs + CAN 79.18 76.04 73.78 78.1
Bi-LSTMs 76.24 75.7 73.57 73.79
Bi-LSTMs + Global Attention 75.52 75.7 74.8 74.48
Bi-LSTMs + CAN 75.5 75.44 74.51 75.18

Table 7: Citation sentiment classification results. Citation sentence + its left and right sentences are used as input.

3.2 Citation Sentiment Classification

Table 6 shows the evaluation results when the ci-
tation sentences are the input. The LSTMs based
global attention models obtain the best F1-scores on
the test sets. In Table 7, we report the results of the
wider context input (citation sentence + its left and
right sentences). Here the CAN models perform the
best. Similar to the function classification results,
the extra context information provides an increasing
performance if the model is able to properly exploit.

Despite the same number of training parameters,
our compositional attention mechanism significantly
improved the performance.

3.3 CAN for Document-level Sentiment
Analysis

Table 8 lists our document-level sentiment analysis
result on the restaurant and movie review datasets.
The CAN model achieves a state-of-the-art by lo-
cally and globally composing sentences with its hi-
erarchical attention. The Conv-GRNN and LSTM-
GRNN are the best-performing models from Tang et
al. (2015)’s and are stacked models of convolutional
network and RNNs. Our attention models achieve
lower MSEs than the stacked models.

We also analyzed whether lengths influence the
performance. We split the Yelp dataset into
train/dev/test so the models see only documents with

Figure 2: Result on varying length-documents.

length up to 15 sentences during training and clas-
sifies much longer documents with length up to 30
sentences during test. Figure 2 plots the test per-
formance over different lengths. The two atten-
tion models perform identically on seen lengths ex-
cept that the global attention model obtains a perfor-
mance gain on the shorter documents with up to five
sentences. However, for unseen lengths (the right
side of the green line) the performance of the com-
positional attention network remains almost consis-
tent and in contrast the global attention starts to de-
crease in general. This shows the compositional
ability of our neural net.
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Model Yelp 2013 IMDB
Accuracy MSE Accuracy MSE

SVM (Tang et al., 2015) 59.8 0.68 40.5 3.56
Conv-GRNN (Tang et al., 2015) 63.7 0.56 42.5 2.71
LSTM-GRNN (Tang et al., 2015) 65.1 0.5 45.3 3.0
LSTMs + Global Attention (Ours) 63.82 0.57 38.82 2.25
LSTMs + CAN (Ours) 64.49 0.55 44.16 2.5

Table 8: Results of document-level sentiment classification. MSE: mean squared error (lower is better).

4 Conclusion

We have developed a generic and simple categoriza-
tion scheme and a new benchmark corpus for auto-
matic citation analysis. We presented several neural
attention networks for the task and evaluated them
by using the benchmark corpus. Among these at-
tention mechanisms our original model, we called
compositional attention network, performed consis-
tently well on both citation function and citation sen-
timent classification tasks by attentively composing
additional contextual information provided. In an
extended experiment, we have also shown that the
compositional attention network generalizes better
to examples with unseen longer lengths thanks to its
compositional operation.
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