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Abstract

In this paper we present two methods for automatic common sense knowledge evaluation for
Japanese entries in ConceptNet ontology. Our proposed methods utilize text-mining approach,
which is inspired by related research for evaluation of generality on natural sentences using com-
mercial search engines and simpler input: one with relation clue words and WordNet synonyms,
and one without. Both methods were tested with a blog corpus. The system based on our pro-
posed methods reached relatively high precision score for three relations (MadeOf, UsedFor,
AtLocation). We analyze errors and discuss problems of common sense evaluation, both manual
and automatic and propose ideas for further improvements.

1 Introduction

The lack of commonsense knowledge has been one of main problems for creating human level intelligent
systems and for improving their tasks as natural language understanding, computer vision, or robot
manipulation.

Researchers have tackled with this deficiency usually taking one of the following three approaches.
One is to hire knowledge specialists to enter the knowledge manually and CyC (Lenat, 1995) is the most
widely known project of this kind. Second is to use crowdsourcing. In Open Mind Common Sense
project (OMCS) (Singh et al., 2002), non-specialists input phrases or words manually, which generates
knowledge in relatively short time. For making the input process less monotonous, researchers also use
Games With A Purpose (GWAPs), for instance Nāja-to nazo nazo1 (Riddles with Nadya)2 for acquiring
Japanese commonsense knowledge. Third approach is to use text-mining techniques. KNEXT (Schu-
bert, 2002), NELL3 or WebChild (Tandon et al., 2014) are famous projects for acquiring commonsense
knowledge automatically.

Last two approaches are immune to quality problems. For example, knowledge acquired through
Nadya interface reached 58% precision (Nakahara and Yamada, 2011), and NELL system reached 74%
precision (Carlson et al., 2010). This is because public contributors input and source Web texts tend to
be noisy. Therefore, acquired knowledge should be evaluated, but there is no gold standard method for
estimating whether acquired knowledge is commonsensical or not. Usually, manual evaluation by spe-
cialists or by crowdsourcing (Gordon et al., 2010) is used. However, this is costly and time-consuming,
and even specialists have different opinions on concepts’ usualness. Another method is to evaluate au-
tomatically acquired knowledge by utilizing it in some tasks. For example, there is a research using IQ
tests (Ohlsson et al., 2012) for commonsense knowledge level estimation, but it does not help improving
or refining quality of existing or newly acquired concepts.

In this paper, we present automatic evaluation system for commonsense knowledge. Our approach
is to use frequency of phrase occurrences in a Web corpus. There is a previous research using Internet
resources and Japanese WordNet (Bond et al., 2009) for evaluating generality of natural sentences from

1Original Japanese words are represented in italic throughout the paper.
2http://nadya.jp/
3http://rtw.ml.cmu.edu/rtw/
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OMCS (Rzepka et al., 2011). In that research, frequency of occurrence in Yahoo Japan search engine4

search results snippets are used to determine thresholds for eliminating noise and verb conjugation is
used to increase number of hits. Our approach for evaluating commonsense knowledge is similar but
we aim at higher precision without using commercial search engines. Currently access to commercial
engines is limited even for a researchers so we decide to introduce methods that can be used also with
relatively smaller, self-made (crawled), corpora. Our research can also improve crowdsourcing methods,
because it can decrease costs or be less time-consuming if distinctly wrong entries are automatically
filtered out. Last but not least, we work on concepts and relations while in previous research only simple
word pairs (e.g. “to throw” + “a ball”) were used.

Our contributions presented in this paper can be summarized as follows:

• We evaluate Japanese commonsense knowledge from ConceptNet (Speer and Havasi, 2012) (ex-
plained in the next section) by using phrase occurrences in a blog corpus.

• We apply proposed methods to three relation types to investigate their flexibility.

• We analyze evaluation errors, discuss problems of our methods and propose their expansion for
increasing efficiency of automatic evaluation.

2 Japanese ConceptNet

ConceptNet is a semantic network-like ontology allowing to process commonsense knowledge. It is
created from other sources as hand-crafted OMCS or GlobalMind (Chung, 2006), JMdict5, Wiktionary6

and so on. In ConceptNet, there are two ways of representation. First is a graph structure where nodes
show concepts, and their relations such as “IsA” or “PartOf”. One set of two concepts and their rela-
tion is called an assertion. This is represented by Relation(Concept1, Concept2) abbreviated from
now as (C1,R, C2). Another way of representation is a natural sentence, and there are entries in various
languages as English, Chinese, German, Korean, Portuguese and also Japanese. In Japanese Concept-
Net concept terms are in Japanese, but relations are in English (the same is true for all non-English
languages). For this research we used latest version 5.47. Japanese ConceptNet contains 1.08 million
assertions in total, but more than 80% of them belong to “TranslationOf” relation, therefore we treated
them as irrelevant to the commonness evaluation task.

For this research we chose three relations for the first series of trials: “MadeOf” (1008 assertions),
“UsedFor” (2414 assertions), and “AtLocation” (13213 assertions). Main reason for choosing these
relations is that they can be distinctly associated with physical objects, while e.g. “RelatedTo” relation
(98.6 thousands assertions) is very often semantically vague and needs different approach for evaluating
its correctness.

3 System Overview

In this section we present an outline of our system for automatic commonness estimation of ConceptNet
assertions (see Figure 1). In the first step, our system searches a blog corpus (Ptaszynski et al., 2012) for
left C1 and right C2 concepts, and then parses snippets of search results and concepts using morphological
analyzer MeCab8. Without this process, if an assertion shows that one concept includes the other concept
such as (C1) karē (curry), (R) “MadeOf”, and (C2) karēko (curry powder), (C2) karēko end up also
matching as (C1) karē.

Concepts can be represented in multiple morphemes including not only nouns but also verbs, adjectives
or particles. If there are compound nouns in a concept, system treats them as one noun. In the next step,
our system checks whether each sentence contains a relation clue word or not. We manually selected

4http://nadya.jp/
5http://www.edrdg.org/jmdict/j_jmdict.html
6https://en.wiktionary.org/wiki/Wiktionary:Main_Page
7http://conceptnet5.media.mit.edu/downloads/current/conceptnet5_flat_json_5.4.tar.

bz2
8http://taku910.github.io/mecab/

106



Figure 1: Overview of our system for evaluating assertion by using a blog corpus and clue words.

clue words in Japanese semantically related to a given relation (R) for retrieving their co-occurrences
with concepts.

For evaluating “MadeOf” assertion, we used tsukuru (to make). For “UsedFor” assertion, we chose
tsukau (to use). Because these basic verbs do not ensure sufficient number of hits, we added their
synonyms from Japanese WordNet (Bond et al., 2009). It is a lexical database consisting of synsets
which are represented in nouns, verbs, adjectives, and adverbs. One word can be linked to multiple
meanings and even more synonyms. For instance, tsukuru (to make) has 21 synsets which provide 111
synonyms in total. Some of them are rare or semantically far from the basic clue verb. For this reason
we chose only 10 synonyms with the following procedure. First, we extracted synonyms used in two or
more synsets linked to a given clue word (relation verb), and then selected 10 synonyms with the highest
frequency in the blog corpus. To increase hit number even further, we conjugated all verbs, which gave
up to 7 forms depending on the verb type. For instance, except basic tsukau (to use) following forms
were also used as queries: tsukawa-, tsukao-, tsukae-, tsukat-, tsukai-.

To investigate differences between precision and recall we introduced two separate methods with dif-
ferent matching conditions. In order to evaluate an assertion, the most natural approach would be to
match C1, R, and C2 in one sentence, e.g. “butter (C1) is made (R) from milk (C2)”. Therefore, in
our first proposed method all these three elements must occur at least once in one sentence (we call it
a “All Elements” method). Because this method is expected to achieve rather low recall, we also pro-
posed a second method requiring only C1 and C2 to co-occur in one sentence (“Concepts Only” method).
For “AtLocation” relation we selected two clue verbs with connotations of existence: "aru" for animate
and "iru" for inanimate nouns. Although both verbs are widely used, "aru" and "iru" cause significant
amount of noise because they are also used as auxiliary verbs, e.g. tabete-iru (eating). Therefore, for
“AtLocation” assertions we altered the second method used for “MadeOf” or “UsedFor” by replacing
relationsR with place-indicating particles: “C2 - ni C1” and “C2 - de C1”. Ni and de convey a preposition
function similar to “in” or “at” in English.

4 Experiments and Results

To confirm the efficiency of our proposed system in automatic evaluating commonness of a concept, we
performed series of experiments. From ConceptNet 5.4 we randomly selected 100 assertions for each of
the three relations under investigation. To create the correct data set, 10 annotators (one female student,
8 male students, one male worker, all in their 20’s) evaluated 300 assertions presented in Japanese sen-
tences. We needed to manually create these using a fixed template, because there were many cases where
ConceptNet did not contain a natural sentence in Japanese, and the way of expression was not united.
For instance, in case of (C1) banira (vanilla), (R) “MadeOf”, and (C2) gyūnyū (milk), we inserted all
elements into following template: “Banira-wa gyūnyū-kara tsukurareru” (vanilla is made from milk).
As we treated unarguably common facts starting zero point with growing peculiarity of assertinos, anno-
tators evaluated commonness of such sentences using 10 points scale (from 1 to 10, where 1 is common
sense, and 10 is non-common sense). We treated the results labelled 1-5 as usual (commonsensical,
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Table 1: Possible False / True relations between human and automatic evaluation.
System Positive System Negative

Questionnaire True TP TN
Questionnaire False FP FN

Accuracy =
TP + FN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + TN
(3)

F − score =
2× Precision×Recall

Precision + Recall
(4)

Figure 2: Equation for calculating f-score.

correct), and 6-10 as unusual (not commonsensical, incorrect).
In Table 1 and Figure 2, we show possible combinations of relations between human annotators and

system agreement, and f-score calculation equation. Experiments results showed that our proposed meth-
ods achieved high precision for each type of relation (see Tables 2, 3, and 4). These results also proved
that the proposed text-mining approach can be used to evaluate relational commonsense knowledge with-
out commercial search engines and thresholds manipulation.

5 Error Analysis

We analysed errors of “All Elements” method (C1, R, C2) by reading source sentences which caused
incorrect commonness estimations and by comparing system’s results with human annotations. It appears
that annotators’ evaluation scores differ significantly: only three assertions out from 300 were the same
(all three judged them as false). For example, Kogata reizōko-niwa hoteru-ga aru (There is a hotel in
a small refrigerator) and Tokyo-niwa Fujisan-ga aru (There is Mt. Fuji in Tokyo) were evaluated as
explicitly incorrect. Very small number of agreed evaluations shows clearly the difficulty with making
an evaluation system for commonsense knowledge due to discrepancies in human annotators opinions.

Below, we present examples explaining reasons for erroneous automatic evaluations. There are some

Table 2: Evaluation results for “MadeOf” relations (“All Elements” and “Concepts Only” methods).
MadeOf Accuracy Precision Recall F-score

All Elements Method (C1,R, C2) 0.450 0.780 0.410 0.538
Concepts Only Method (C1, C2) 0.640 0.792 0.730 0.760

Table 3: Evaluation results for “UsedFor” relations (“All Elements” and “Concepts Only” methods).
UsedFor Accuracy Precision Recall F-score

All Elements Method (C1,R, C2) 0.530 1.00 0.413 0.584
Concepts Only Method (C1, C2) 0.650 0.868 0.662 0.735

Table 4: Evaluation results for “AtLocation” relations (“All Elements” and “Concepts Only” methods).
AtLocation Accuracy Precision Recall F-score

All Elements Method (C1,R, C2) 0.500 0.615 0.285 0.390
Concepts Only Method (C1, C2) 0.550 0.582 0.696 0.634
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cases where, an assertion was judged as non-commonsense knowledge but sentences in the corpus sug-
gested otherwise. For instance, (C1) furaipan (frying pan), (R) “MadeOf”, and (C2) arumi (aluminum)
elements were discovered in the sentence Wagaya-wa moppara daisō-de utteiru saisho-kara arumi-no
furaipan-to setto-ni natteiru-node tukutte-masu (In my house we always make it because it is in a set
with an aluminum frying pan sold by Daisō). The system matched “make” as “we make” (meaning “to
cook”), but it should be related to “aluminum frying pan” (meaning “frying pan made of aluminum”).

Another problem arises from the fact that some concepts in ConceptNet are not written in simple,
commonsensical manner or are simply strange. For example, for (R) “MadeOf” we have (C1) aisatsu
(greeting) and (C2) genshō-kara yomitorareru imi (meaning that can be read from a phenomenon). The
reason is that in knowledge gathering systems like Nadya or GlobalMind some contributors try to be
original. It is difficult to remove all inappropriate assertions by knowledge providers, so they end up
remaining in the database. Annotators judged the given assertion above as non-commonsense knowledge.
However, in some cases such as (C1) esukarēta (escalator), (R) “UsedFor”, and (C2) ue-ni agattari oritari
suru (to go up and down) or (C1) henken (prejudice), (R) “MadeOf”, and (C2) taishō-ni tai-suru jōhō-no
ketsujo (information shortage of object information) were judged as common sense. From these results
we can conclude that contributors provided semantically correct knowledge, although their input was
unorthodox on the lexical level.

Evaluation also seems to depend on how the assertion was presented in the questionnaire. For asser-
tions like (C1) eiga (movie), (R) “UsedFor”, and (C2) kanshō-suru (to watch), it would be more natural
to say eiga-wo kanshō-suru (to watch a movie) than kanshō-suru-niwa eiga-wo tsukau (for watching a
movie is used) which we created to keep all forms consistent. Kanshō-suru (to watch) implicitly indi-
cates tsukau (to use), therefore it is difficult to create a natural sentence in such cases without allowing
synonyms or more specific verbs.

Different problems were caused by the fact that the proposed system did not use part of speech in-
formation during the matching processing. This led to ambiguity which is visible in an example of the
following assertion: (C1) sutorēto (undiluted), (R) “MadeOf”, and (C2) arukōru (alcohol). Sutorēto has
two meanings: “directly”/ “frankly” and “undiluted”. While it was correctly evaluated as uncommon by
majority of evaluators, the system labelled “alcohol is made of straight” as common. This is because
the following corpus sentence was retrieved and used for matching: Shōsei-mo kyō byōin-no kensa-de,
shinitaku-nai nara, kyō-kara arukōru-wo tate-to storēto-ni iwaremashita (At the hospital, I was also told
straight that if I do not want to die, I should give up alcohol). Shōsei-mo means “I also”, while written
with the same Chinese character as sei-mo it can be read umo which is one of conjugated forms of umu
(to give birth) used as a clue word and lack of morphological recognition caused system to incorrectly
assume that “straight can be born from alcohol”. There was another example for the assertion (C1) tōri
(street), (R) “AtLocation”, and (C2) kuruma (car). The assertion suggests “street” (tōri) can be found at a
“car” (kuruma), so the concepts (C1) and (C2) were naturally negated by the human subjects (cars can be
found on the streets, not the opposite). However, the system evaluated the assertion as common, because
noun tōri was incorrectly matched as a verb which is one of conjugated forms of tōru (to pass). This error
was caused by the following corpus sentence: kono-mae, chikaku-wo kuruma-de tōri-mashita. (recently,
I passed near by car). Above examples show that although it significantly increases the processing time,
part of speech information should be added in future.

Another obvious problem is the insufficient corpus size. Even if an assertion represents common sense,
it does not always exist in the corpus. We also found problems related not only to concepts (C1, C2) but
also to relations (R), which co-occur with different objects or subjects in the corpus. For instance, for
assertion (C1) nattō (fermented soybeans), (R) “MadeOf”, and (C2) tōfu (bean curd), following sentence
was retrieved from the corpus: O-tōfu-mo nattō-mo daisuki-nanode, kondo tsukutte-mimasu (I’ll try to
make fermented soybeans and tofu because I love them). Both concepts can be made but there is no
relation indicating what is made with what.
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6 Discussion and Additional Tests

Considering “All Elements” method, when compared to “MadeOf” and “UsedFor” relations, “AtLoca-
tion” reached lower f-score. This is because for “MadeOf” and “UsedFor” assertions we used verbs (and
their synonyms) with wide meaning like “tsukuru” (to make) and “tsukau” (to use), but we did not find
their appropriate equivalents for “AtLocation”. As presented earlier, we replacedRwith place-indicating
particles and added them to concepts: “C2-de C1” and “C2-ni C1”. However this method did not bring
satisfying results (see end of the sections)

For “MadeOf” and “UsedFor” relations f-score is higher for “Concepts Only” than for “All Elements”
method due to the higher recall. Taking “UsedFor” relation as example, 53 assertions agreed with human
annotators in “All Elements” method, but 12 more correct ones were retrieved when “Concepts Only”
method was used. For “MadeOf” relation, our intuition was that retrievals would also be more precise
when “All Elements” method is used it was impossible to retrieve correct relations as: (C1) shōmei kigu
(lighting equipment), (R) “MadeOf” and (C2) garasu (glass), (C1) makura (pillow), (R) “MadeOf” and
(C2) menka (cotton), (C1) borushichi (borscht), (R) “MadeOf” and (C2) gyūniku (beef). However, only
in this case precision was lower forR (C1, C2) retrievals (see Table 2).

To improve recall, using only two elements in one sentence is better. However we believe that if the
task is to decrease number of assertions for human evaluation, precision is more important. Insufficient
corpus and too few appropriate clue words seem to be two main remaining problems. The former is
relatively easier to solve by further extension of web-crawling process. On the other hand, the latter
is difficult because a concept often depends on context and there is no universal clue word to cover all
cases. For example, (C1) memo (note), (R) “UsedFor”, and (C2), monooboe (memorizing) did not occur
in the corpus together as (C1, R, C2), but when we checked (C1, C2), the following sentence was found:
Monooboe-no ii hito-hodo memo-wo toru (The faster learner the more notes he takes). Theoretically we
could utilize the verb toru (to take) as “UsedFor” clue word for finding other assertions, but this would
cause substantial amount of noise because the semantic scope of “to take” is too wide. (C1) ōbun (oven),
(R) “UsedFor”, and (C2) pan-wo yaku (to bake a bread), did not occur in any sentence. Similarly, in
Haitte sugu, me-no mae-niwa pan-wo yaku obun (Soon after you enter, in front of you, there will be an
oven for baking bread), it would be better to use yaku (to bake) instead of tsukau (to use).

As shown in the previous section, annotators’ evaluation scores differ largely, therefore it is difficult
to unambiguously determine if a given evaluation is commonsensical or not. In order to see if the system
can be more precise, we repeated evaluation with removed clearly doubtful assertions which were judged
from 4 - 7 (see Table 5, 6, 7). Results indicate that with this restriction in “All Elements” method can
reach higher precision for all three relations and that “All Elements” achieved higher precision than
“Concepts only” method. Consequently, as shown in Table 2, we managed to confirm that the reason
why precision of “All Elements” method was lower than in the case of ”Concepts Only” method is that
annotators’ evaluations were highly inconsistent.

To see if we can improve f-score without losing precision, we used separate C-R pairs for retrieval.
For “MadeOf” and “UsedFor” relations, our system counted (C1, R) and (C2, R) in the corpus. For
(R) “AtLocation”, we set iku (to go), kuru (to come), and hataraku (to work) as R relations, and this
method shows capability to improve f-score of the automatic evaluation of assertions. If both expressions
(C1, R) and (C2, R) occur in the corpus separately, it increases possibility that a given assertion is
commonsensical. The results (see Table 8) show that For (R)“MadeOf” and (R) “UsedFor”, f-score
is higher than for “All Elements” method, but it did not reach the level of “Concepts Only” method.
However, for (R) “AtLocation”, f-score is relatively higher than other two methods. This shows that
whether C2 stands for place or not plays an important role in evaluating assertions.

7 Conclusion and Future Work

Commonsense knowledge evaluation task is harder than commonsense knowledge acquisition, because
for the latter you can acquire relatively high quality as errors look like a small fraction of all retrievals and
there is a tendency for ignoring them. However, for evaluation task, more precise judgement is needed
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Table 5: Evaluation results for “MadeOf” relations (“All Elements” and “Concepts Only” methods)
without doubtful assertions.

MadeOf Accuracy Precision Recall F-score
All Elements Method (C1,R, C2) 0.464 0.870 0.426 0.571
Concepts Only Method (C1, C2) 0.679 0.837 0.766 0.800

Table 6: Evaluation results for “UsedFor” relations (“All Elements” and “Concepts Only” methods)
without doubtful assertions.

UsedFor Accuracy Precision Recall F-score
All Elements Method (C1,R, C2) 0.479 1.00 0.390 0.561
Concepts Only Method (C1, C2) 0.667 0.903 0.682 0.778

Table 7: Evaluation results for “AtLocation” relations (“All Elements” and “Concepts Only” methods)
without doubtful assertions.

UsedFor Accuracy Precision Recall F-score
All Elements Method (C1,R, C2) 0.547 0.765 0.342 0.473
Concepts Only Method (C1, C2) 0.594 0.630 0.763 0.690

Table 8: Evaluation results for each relations when (C1,R) and (C2,R) were used.
Relation Method Accuracy Precision Recall F-score

MadeOf (C1,R) and (C2,R) 0.620 0.786 0.705 0.743
UsedFor (C1,R) and (C2,R) 0.550 0.872 0.513 0.646

AtLocation (C2,R) 0.590 0.619 0.696 0.650

to deal not only with those errors from acquisition systems but also with often wrong input from human
annotators.

In this paper we present a new text-mining approach for automatic commonsense knowledge evalua-
tion. “All Elements” method using both concepts and their relation achieved precision of over 70% on
average for the three following ConceptNet relations: “MadeOf” (78.0%), “UsedFor” (100.0%) and “At-
Location” (61.5%). We described how different concepts and relation combinations can be utilized and
showed their strengths and weaknesses. From the error analysis we revealed main problems which are
database contributors originality, the insufficient corpus size, discrepancies in evaluators’ opinions, and
setting proper clue words. Especially the first problem shows that it is often hard to evaluate concepts
stored in their current form. To solve it, instead of using a concept as it is, its more frequently used
synonymic concepts should be utilized. For example, in the case of assertion (C1) shōmei kigu (lighting
equipment), (R) “MadeOf”, and (C2) garasu (glass), our system could search for “lamp” instead of the
“lighting equipment” (there were 11 hits instead of 0 when we tried this for “All Elements” method). In
near future, we plan to increase the number of annotators, because commonsense knowledge differs de-
pending on subjects and their particular experiences. We will also experiment with different clue words
for higher recall without losing precision.

Our methods are also planned to be utilized in commonsense knowledge acquisition system as its
self-evaluation module. We are also going to test our idea in different languages used in ConceptNet.
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