
Proceedings of the 3rd Workshop on Natural Language Processing Techniques for Educational Applications,
pages 30–39, Osaka, Japan, December 12 2016.

A Comparison of Word Embeddings for English and Cross-Lingual
Chinese Word Sense Disambiguation

Hong Jin Kang1, Tao Chen2, Muthu Kumar Chandrasekaran1, Min-Yen Kan1,2

1School of Computing, National University of Singapore
2NUS Interactive and Digital Media Institute

{kanghongjin}@gmail.com
{taochen,muthu.chandra,kanmy}@comp.nus.edu.sg

Abstract

Word embeddings are now ubiquitous forms of word representation in natural language process-
ing. There have been applications of word embeddings for monolingual word sense disambigua-
tion (WSD) in English, but few comparisons have been done. This paper attempts to bridge that
gap by examining popular embeddings for the task of monolingual English WSD. Our simplified
method leads to comparable state-of-the-art performance without expensive retraining.

Cross-Lingual WSD – where the word senses of a word in a source language e come from a
separate target translation language f – can also assist in language learning; for example, when
providing translations of target vocabulary for learners. Thus we have also applied word embed-
dings to the novel task of cross-lingual WSD for Chinese and provide a public dataset for further
benchmarking. We have also experimented with using word embeddings for LSTM networks and
found surprisingly that a basic LSTM network does not work well. We discuss the ramifications
of this outcome.

1 Introduction

A word takes on different meanings, largely dependent on the context in which it is used. For example,
the word “bank” could mean “slope beside a body of water”, or a “depository financial institution” 1.
Word Sense Disambiguation (WSD) is the task of identifying the contextually appropriate meaning of
the word. WSD is often considered a classification task, in which the classifier predicts the sense from a
possible set of senses, known as a sense inventory, given the target word and the contextual information
of the target word. Existing WSD systems can be categorised into either data-driven supervised or
knowledge-rich approaches. Both approaches are considered to be complementary to each other.

Word embeddings have become a popular word representation formalism, and many tasks can be done
using word embeddings. The effectiveness of using word embeddings has been shown in several NLP
tasks (Turian et al., 2010). The goal of our work is to apply and comprehensively compare different uses
of word embeddings, solely with respect to WSD. We perform evaluation of the effectiveness of word
embeddings on monolingual WSD tasks from Senseval-2 (held in 2001), Senseval-3 (held in 2004), and
SemEval-2007. After which, we evaluate our approach on English–Chinese Cross-Lingual WSD using
a dataset that we constructed for evaluating our approach on the translation task used in educational
applications for language learning.

2 Related Work

Word Sense Disambiguation is a well-studied problem, in which many methods have been applied. Exist-
ing methods can be broadly categorised into supervised approaches, where machine learning techniques
are used to learn from labeled training data; and unsupervised techniques, which do not rely on labeled
data. Unsupervised techniques are knowledge-rich, and rely heavily on knowledge bases and thesaurus,

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

1http://wordnetweb.princeton.edu/perl/webwn?s=bank
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such as WordNet (Miller, 1995). It is noted by Navigli (2009) that supervised approaches using memory-
based learning and SVM approaches have worked best.

Supervised approaches involve the extraction of features and then classification using machine learn-
ing. Zhong and Ng (2010) developed an open-source WSD system, ItMakesSense (hereafter, IMS),
which was considered the state-of-the-art at the time it was developed. It is a supervised WSD system,
which had to be trained prior to use. IMS uses three feature types: 1) individual words in the context
surrounding the target word, 2) specific ordered sequences of words appearing at specified offsets from
the target word, and 3) Part-Of-Speech tags of the surrounding three words.

Each of the features are binary features, and IMS trains a model for each word. IMS then uses an sup-
port vector machine (SVM) for classification. IMS is open-source, provides state-of-the-art performance,
and is easy to extend. As such, our work features IMS and extends off of this backbone.

Training data is required to train IMS. We make use of the One-Million Sense-Tagged Instances
(Taghipour and Ng, 2015a) dataset, which is the largest dataset we know of for training WSD systems,
in training our systems for the All Words tasks.

WSD systems can be evaluated using either fine-grained scoring or coarse-grained scoring. Under
fine-grained scoring, every sense is equally distinct from each other, and answers must exactly match.
WordNet is often used as the sense inventory for monolingual WSD tasks. However, WordNet is a fine-
grained resource, and even human annotators have trouble distinguishing between different senses of
a word (Edmonds and Kilgarriff, 2002). In contrast, under coarse-grained scoring, similar senses are
grouped and treated as a single sense. In some WSD tasks in SemEval, coarse-grained scoring was done
in order to deal with the problem of reliably distinguishing fine-grained senses.

2.1 Cross-Lingual Word Sense Disambiguation

Cross-Lingual WSD was, in part, conceived as a further attempt to solve this issue. In Cross-Lingual
WSD, the specificity of a sense is determined by its correct translation in another language. The sense
inventory is the possible translations of each word in another language. Two instances are said to have
the same sense if they map to the same translation in that language. SemEval-2010 (Lefever and Hoste,
2010)2 and SemEval-2013 (Lefever and Hoste, 2013)3 featured iterations of this task. These tasks fea-
tured English nouns as the source words, and word senses as translations in Dutch, French, Italian,
Spanish and German.

Traditional WSD approaches are used in Cross-Lingual WSD, although some approaches leverage
statistical machine translation (SMT) methods and features from translation. Cross-Lingual WSD in-
volves training by making use of parallel or multilingual corpora. In the Cross-Lingual WSD task in
SemEval-2013, the top performing approaches used either classification or SMT approaches.

2.2 WSD with Word Embeddings

In NLP, words can be represented with a distributed representation, such as word embeddings, which
encodes words into a low dimensional space. In word embeddings, information about a word is dis-
tributed across multiple dimensions, and similar words are expected to be close to each other in the
vector space. Examples of word embeddings are Continuous Bag of Words (Mikolov et al., 2013), Col-
lobert & Weston’s Embeddings (Collobert and Weston, 2008), and GLoVe (Pennington et al., 2014). We
implemented and evaluated the use of word embedding features using these three embeddings in IMS.

An unsupervised approach using word embeddings for WSD is described by Chen (2014). This ap-
proach finds representation of senses, instead of words, and computes a context vector which is used
during disambiguation.

A different approach is to work on extending existing WSD systems. Turian (2010) suggests that for
any existing supervised NLP system, a general way of improving accuracy would be to use unsupervised
word representations as additional features. Taghipour (2015b) used C&W embeddings as a starting
point and implemented word embeddings as a feature type in IMS. For a specified window, vectors for

2http://stel.ub.edu/semeval2010-coref/
3https://www.cs.york.ac.uk/semeval-2013/
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the surrounding words in the windows, excluding the target word, are obtained from the embeddings and
are concatenated, producing d ∗ (w − 1) features, where d is the number of dimensions of the vector,
and w is the window size. Each feature is a floating point number, which is the value of the vector in
a dimension. We note that (Taghipour and Ng, 2015b) only reported results for C&W embeddings, and
did not experiment on other types of word embeddings.

Other supervised approaches using word embeddings include AutoExtend (Rothe and Schütze, 2015),
which extended word embeddings to create embeddings for synsets and lexemes. In their work, they
also extended IMS, but used their own embeddings. The feature types introduced by this work bear
similarities to how Taghipour used word embeddings, but without Taghipour’s method of scaling each
dimension of the word embeddings.

To conclude, word embeddings have been used in several methods to improve on state-of-the-art re-
sults in WSD. However, to date, there has been little work investigating how different word embeddings
and parameters affect performance of baseline methods of WSD. As far as we know, there has only
been one paper comparing the different word embeddings with the use of basic composition methods in
WSD. Iacobacci (2016) performed an evaluation study of different parameters when enhancing an exist-
ing supervised WSD system with word embeddings. Iacobacci noted that the integration of Word2Vec
(skip-gram) with IMS was consistently helpful and provided the best performance. Iacobacci also noted
that the composition methods of average and concatenation produced small gains relative to the other
composition strategies introduced. However, Iacobacci did not investigate the use of (Taghipour and Ng,
2015b)’s scaling strategy, which was crucial to improve the performance of IMS.

We also did not find any recent work attempting to integrate modern WSD systems for real-world
education usage, and to evaluate the WSD system based on the requirements and suitability for education
use. We aim to fill this gap in applied WSD with this work.

3 Methods

As Navigli (2009) noted that supervised approaches have performed best in WSD, we focus on inte-
grating word embeddings in supervised approaches; in specific, we explore the use of word embeddings
within the IMS framework. We focus our work on Continuous Bag of Words (CBOW) from Word2Vec,
Global Vectors for Word Representation (GloVe) and Collobert & Weston’s Embeddings(C&W). The
CBOW embeddings were trained over Wikipedia, while the publicly available vectors from GloVe and
C&W were used. Word2Vec provides 2 architectures for learning word embeddings, Skip-gram and
CBOW. In contrast to Iacobacci (2016) which focused on Skip-gram, we focused our work on CBOW. In
our first set of evaluations, we used tasks from Senseval-2 (hereafter SE-2), Senseval-3 (hereafter SE-3)
and SemEval-2007 (hereafter SE-2007) to evaluate the performance of our classifiers on monolingual
WSD. We do this to first validate that our approach is a sound approach of performing WSD, showing
improved or identical scores to state-of-the-art systems in most tasks.

Similar to the work by Taghipour (2015b), we experimented with the use of word embeddings as
feature types in IMS. However, we did not just experiment using C&W embeddings, as different word
embeddings are known to vary in quality when evaluated on different tasks (Schnabel et al., 2015). We
performed evaluation on several tasks. For the Lexical Sample (LS) tasks of SE-2 (Kilgarriff, 2001) and
SE-3 (Mihalcea et al., 2004), we evaluated our system using fine-grained scoring. For the All Words
(AW) tasks, fine-grained scoring is done for SE-2 (Palmer et al., 2001) and SE-3 (Snyder and Palmer,
2004); both the fine (Pradhan et al., 2007) and coarse-grained were used in (Navigli et al., 2007) AW
tasks in SE-2007. In order to evaluate our features on the AW task, we trained IMS and the different
combinations of features on the One Million Sense-Tagged corpus (Taghipour and Ng, 2015a).

To compose word vectors, one method (used as a baseline) is to sum up the word vectors of the words
in the surrounding context or sentence. We primarily experimented on this method of composition, due to
its good performance and short training time. For this, every word vector for every lemma in the sentence
(exclusive of the target word) was summed into a context vector, resulting in d features. Stopwords and
punctuation are discarded. In Turian’s (2010) work, two hyperparameters — the capacity (number of
dimensions) and size of the word embeddings — were tuned in his experiments. We follow his protocol
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and perform the same in our experiments.
As the remaining features in IMS are binary features, they are not comparable to the word em-

beddings which can have unbounded values, leading to unbalanced influence. As suggested by
Turian (2010), we should scale down the word embeddings values to the same range as other fea-
tures. The embeddings are scaled to control their standard deviations. We implement a variant of
this technique as done by Taghipour (2015b), in which we set the target standard deviation for each
dimension. A comparison of different values of the scaling parameter, σ is done. For each i ∈ {1, 2, ..d}:

Ei ← σ × Ei
stdev(Ei)

, where σ is a scaling constant that sets the target standard deviation

Similar to Turian (2010) and Taghipour (2015b), we found that a value of 0.1 for σ works well, as
seen in Table 1. We evaluate the effect of varying the scaling factor with the feature of the sum of the
surrounding word vectors, and find that the summation feature works optimally with 50 dimensions.

Table 1: Effects on accuracy when varying scaling factor on C&W embeddings

Method SE-2 LS SE-3 LS
C&W, unscaled 0.569 0.641
C&W, σ=0.15 0.665 0.731
C&W, σ=0.1 0.672 0.739
C&W, σ=0.05 0.664 0.735

In Table 2, we evaluate the performance of our system on both the LS and AW tasks of SE-2 (held in
2001) and SE-3’s (held in 2004), and the AW tasks of SE-2007, which were evaluated on by Zhong and
Ng (2010). We obtain statistically significant improvements over IMS on the LS tasks. Our enhance-
ments to IMS to make use of word embeddings also give better results on the AW task than the original
IMS, the respective Rank 1 systems from the original shared tasks, and several recent systems developed
and evaluated evaluated on the same tasks. We note that although our system increased accuracy on IMS
on several AW tasks, the differences were not statistically significant (as measured using McNemar’s test
for paired nominal data).

It can be seen that the simple enhancement of integrating word embedding using the baseline compo-
sition method, followed by the scaling step, improves IMS, and we get performance comparable to or
better than the Rank 1 systems in many tasks.

As word embeddings with higher dimensions increases the feature space of IMS, this may lead to
overfitting on some datasets. We believe, this is why a smaller number of dimensions work better in
the LS tasks. However, as seen in Table 3, this effect was not observed in the AW task. We also note
that relatively poorer performance in the LS tasks may not necessarily result in poor performance in the
AW task. We see from the results that the combination of (Taghipour and Ng, 2015b)’s scaling strategy
and summation produced results better than the proposal in (Iacobacci et al., 2016) to concatenate and
average (0.651 and 0.654), suggesting that the scaling factor is important for the integration of word
embeddings for supervised WSD.

3.1 LSTM Network

A Long Short Term Memory (LSTM) network is a type of Recurrent Neural Network which has recently
been shown to have good performance on many NLP classification tasks. The potential benefit of using
an approach using LSTM over our existing approach in IMS is this is that an LSTM network is able to use
more information about the sequence of words. For WSD, Kågebäck & Salomonsson (2016) explored
the use of bidirectional LSTMs. In our approach, we explore a simpler naı̈ve approach instead.

For the Lexical Sample tasks, we train the model on the training data provided for the task. For the
All Words task, we trained the model on the One Million Sense-Tagged dataset. For each task, similar to
IMS, we train a model for each word, using GloVe word embeddings as the input layer.
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Table 2: Comparison of systems by their accuracy score on both Lexical Sample and All Words tasks.
Rank 1 system refers to the top ranked system in the respective shared tasks.

Method SE-2 SE-3 SE-2 SE-3 SE-2007 SE-2007
LS LS AW AW Fine- Coarse-

grained grained
IMS + CBOW σ=0.1 (pro-
posed)

0.680 0.741 0.677 0.679 0.604 0.826

IMS + CBOW σ=0.15 (pro-
posed)

0.670 0.734 0.673 0.675 0.615 0.828

IMS 0.653 0.726 0.682 0.674 0.585 0.816
Rothe and Schütze (2015) 0.666 0.736 - - - -
Taghipour and Ng (2015b) 0.662 0.734 - 0.682 - -
(Iacobacci et al., 2016) 0.699 0.752 0.683 0.682 0.591 -
(Chen et al., 2014) - - - - - 0.826
Rank 1 System 0.642 0.729 0.69 0.652 0.591 0.825
Baseline (Most Frequent
Sense & Wordnet Sense 1)

0.476 0.552 0.619 0.624 0.514 0.789

The performance of the naı̈ve LSTM is poor in both type of tasks, as seen in Table 4. The models
converge to just using the most common sense for the AW task. A possible reason for this is overfitting.
WSD is known to suffer from data sparsity. Although there are many training examples in total, as
we train a separate model for each word, many individual words only have few training examples. We
note other attempts to use neural networks for WSD may have run into the same problem. Taghipour
and Ng (2015b) indicated the need to prevent overfitting while using a neural network to adapt C&W
embeddings by omitting a hidden layer and adding a Dropout layer, while Kågebäck and Salomonsson
(2016) developed a new regularization technique in their work.

4 English-Chinese Cross-Lingual Word Sense Disambiguation

We now evaluate our proposal on the Cross-Lingual Word Sense Disambiguation task. One key appli-
cation of such task is to facilitate language learning systems. For example, MindTheWord4 and Word-
News (Chen et al., 2015) are two applications that allow users to learn vocabulary of a second language
in context, in the form of providing translations of words in an online article. In this work, we model this
problem of finding translations of words as a variant of WSD, Cross-Lingual Word Sense Disambigua-
tion, as formalized in (Chen et al., 2015).

In the previous section, we have validated and compared enhancements to IMS using word embed-
dings. These have produced results comparable to, and in some cases, better than state-of-the-art perfor-
mance on the monolingual WSD tasks. We further evaluate our approach for use in the Cross-Lingual
Word Sense Disambiguation for performing contextually appropriate translations of single words. To
accomplish this, we first construct a English–Chinese Cross-Lingual WSD dataset. For our sense inven-
tory, we work with the existing dictionary in the open-source educational application, WordNews (Chen
et al., 2015), which contains a dictionary of English words and their possible Chinese translations. We
finally deploy the trained system as a fork of the original WordNews.

4.1 Dataset

As far as we know, there is no existing publicly available English–Chinese Cross-Lingual WSD dataset.
To evaluate our proposal, therefore, we hired human annotators to construct such an evaluation dataset
using sentences from recent news articles. As the dataset is constructed using recent news data, it is a

4https://chrome.google.com/webstore/detail/mindtheword/fabjlaokbhaoehejcoblhahcekmogbom

34



Table 3: Accuracy of adding word embeddings to IMS, with different parameters, on SE-2, SE-3 LS and
AW tasks and SE-2007 AW task

Type Size Compose Scaling SE-2 SE-3 SE-2 SE-3 SE-2007 SE-2007
LS LS AW AW Fine- Coarse-

grained grained

C&W 50 Sum
0.05 0.666 0.734 0.679 0.673 0.594 0.818
0.1 0.671 0.738 0.678 0.673 0.6 0.819

0.15 0.666 0.732 0.675 0.672 0.598 0.817

CBOW 50 Sum
0.05 0.672 0.744 0.68 0.677 0.604 0.824
0.1 0.68 0.741 0.677 0.679 0.604 0.826

0.15 0.67 0.734 0.673 0.675 0.615 0.828

GloVe 50 Sum
0.05 0.675 0.738 0.676 0.678 0.596 0.819
0.1 0.679 0.741 0.678 0.68 0.594 0.819

0.15 0.674 0.731 0.68 0.678 0.591 0.819

CBOW 200 Sum
0.05 0.679 0.742 0.679 0.68 0.602 0.823
0.1 0.669 0.731 0.676 0.675 0.602 0.82

0.15 0.651 0.715 0.667 0.673 0.594 0.822

GloVe 200 Sum
0.05 0.682 0.741 0.68 0.682 0.6 0.823
0.1 0.666 0.73 0.677 0.679 0.591 0.827

0.15 0.654 0.706 0.674 0.675 0.591 0.826
C&W 50 Concat 0.1 0.659 0.724 0.679 0.674 0.585 0.818

CBOW
50

Concat
0.1 0.66 0.725 0.678 0.672 0.581 0.816

200 0.1 0.667 0.729 0.675 0.67 0.591 0.819

GloVe
50

Concat
0.1 0.657 0.722 0.679 0.671 0.583 0.818

200 0.1 0.664 0.728 0.677 0.669 0.587 0.817

Table 4: Accuracy of a basic LSTM approach on the Lexical Sample and All Words tasks.

Method SE-2 LS SE-3 LS SE-2 AW SE-3 AW
LSTM approach (Proposed) 0.458 0.603 0.619 0.623
IMS 0.653 0.726 0.682 0.674
(Kågebäck and Salomonsson, 2016) 0.669 0.734 - -
Rank 1 System during the task 0.642 0.729 0.69 0.652
Baseline 0.476 0.552 0.619 0.624

good representation for the use case in WordNews. To facilitate future research, we have released the
dataset to the public.5

To obtain the gold standard for this data set, we hired 18 annotators to select the right translations for
a given word and its context. There are 697 instances in total in our dataset, with a total of 251 target
words to disambiguate, that were each multiply-annotated by 3 different annotators. Each annotator dis-
ambiguated 110+ instances (15 annotators with 116 instances, 3 with 117) in hard-copy. The annotators
are all bilingual undergraduate students, who are native Chinese speakers.

For each instance, which contains a single English target word to disambiguate, we include the sen-
tence it appears in and its adjacent sentences as its context. Each instance contains possible translations
of the word. The annotators selected all Chinese words that had an identical meaning to the English tar-
get word. If the word cannot be appropriately translated, we instructed annotators to leave the annotation
blank. The annotators provided their own translations if they believe that there is a suitable translation,
but which was not provided by the crawled dictionary.

5https://kanghj.github.io/english_chinese_news_clwsd_dataset/
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The concept of a sense is a human construct, and therefore, as earlier elaborated on when discussing
sense granularity, it is may be difficult for human annotators to agree on the correct answer. Our annota-
tion task differs from the usual since we allow users to select multiple labels and can also add new labels
to each case if they do not agree with any label provided. As such, applying the Cohen’s Kappa as it
is for measuring the inter-annotator agreement as it is does not work for our annotated dataset. We are
also unable to compute the probably of chance agreement by word, since there are few test instances per
word in our dataset.

The Kappa equation is given as κ = pA−pE
1−pE

. To compute pA for κ, we use a simplified, optimistic
approach where we select one annotated label out of possibly multiple selected labels for each annotator.
We always choose the label that results in an agreement between the pair, if such a label exist. For pE

(the probability of chance agreement), as the labels of each case are different, we consider the labels in
terms of how frequent they occur in the training data. We only consider the top 3 most frequent senses for
each word due to the skewness of the sense distribution. We first compute the probability of an annotator
selecting each of the top three frequent senses, pE is then equals to the sum of the probability that both
annotators selected one of the three top senses by chance.

The pairwise value by this proposed method of κ is obtained is 0.42. We interpreted this as a moderate
level of agreement. We note that there is a large number of possible labels for each case, which is known
to affect the value of κ negatively. This is exacerbated as we allow the annotators to add new labels.

In this annotation task, as we consider the possible translations as fine-grained, the value of agreement
is likely to be underestimated in this case. Hence, we believe that clustering of similar translations during
annotation is required in order to deal with the issue of sense granularity in Cross-Lingual WSD. To
overcome this problem, we used different configurations of granularity during evaluation of our system.
For all configurations, we remove instances from the dataset if it does not have a correct sense.

We also noticed that some target words were part of a proper noun, such as the word ’white’ in ’White
House’. This led to some confusion among annotators, so we omitted instances where the target word is
part of a proper noun. Statistics of the test dataset after filtering out different cases are given in Table 5.

Table 5: Statistics of our new annotated Chinese-English crosslingual WSD dataset. Out-of-vocabulary
(OOV) annotations refer to annotations added by the annotators

Configuration # of instances # of unique target words
Include all 653 251
Exclude instances with OOV annotations 481 206
Exclude instances without at least partial agreement 412 193
Exclude instances without complete agreement 229 136

4.2 Experiments

As previously described, IMS is a supervised system requiring training data before use. We constructed
data by processing a parallel corpus, the news section of the UM-Corpus (Tian et al., 2014), and per-
forming word alignment. We used the dictionary provided by (Chen et al., 2015) as the sense inventory,
which we further expanded using translations from Bing Translator and Google Translate. For construc-
tion of the training dataset, word alignment is used to assign Chinese words as training labels for each
English target word. GIZA++ (Och and Ney, 2003) is used for word alignment. To evaluate our system,
we compare the results of the method described in (Chen et al., 2015), which uses Bing Translator and
word alignment to obtain translations. We use the configuration where every annotation is considered to
be correct for our main evaluation since this is closer to a coarse-grained evaluation.

It can be seen that word embeddings improves the performance on Cross-Lingual WSD. Similar to our
observations for monolingual WSD, the use of both CBOW and GLoVe improved performance. How-
ever, the improvements from the word embeddings feature type over IMS was not statistically significant
at 95% confidence level. This is attributed to the small size of the dataset.
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Table 6: Results of our systems on the Cross-Lingual WSD dataset, excluding named entities. Instances
with out-of-vocabulary annotations are removed. All annotations are considered correct answers.

Method Accuracy
Bing Translator + word alignment (baseline) 0.559
IMS 0.752
IMS + CBOW, 50 dimensions, σ=0.05 (proposed) 0.763
IMS + CBOW, 50 dimensions, σ=0.1 (proposed) 0.772
IMS + CBOW, 50 dimensions, σ=0.15 (proposed) 0.767

4.3 Bing Translator results

We wish to highlight and explain the poor performance of Bing Translator with our annotated dataset
as seen in Table 6. This could be because Bing Translator performs translation at the phrase level.
Therefore, many of the target words are not translated individually and are translated only as part of a
larger unit, making it less suitable for the use case in WordNews where only the translation of single
words matter. For example, when translating the word “little” in “These are serious issues and themes,
and sometimes little kids aren’t ready to process and understand these ideas”, Bing Translator provides
a translation of “这些都是严重的问题和主题，有时小小小孩孩孩 不准备处理和理解这些想法” but does
not give an alignment for the word ‘little’ but instead provides an alignment for the entire multi-word
unit “little kids”. As such, the translation would not match any of the annotations provided by our
annotators. This is an appropriate treatment since a user of an educational app requesting specifically a
translation for the single word “little” should not see the translation of the phrase.

5 Conclusion

After we have evaluated the performance of the systems on the this Cross-Lingual WSD dataset, we
integrate the top-performing system using word embeddings and the trained models into a fork of the
WordNews system. We experimented and implemented with different methods of using word embed-
dings for supervised WSD. We tried two approaches, by enhancing an existing WSD system, IMS, and
by trying a neural approach using a simple LSTM. We evaluated our apporach as well as various methods
in WSD, against initial evaluations on the existing test data sets from Senseval-2, Senseval-3, SemEval-
2007. In a nutshell, adding any pretrained word embedding as a feature type to IMS resulted in the
system performing competitively or better than the state-of-the-art systems on many of the tasks. This
supports (Iacobacci et al., 2016)’s conclusion that concluded that existing supervised approaches can be
augmented with word embeddings to give better results.

Our findings also validated Iacobacci et al. (2016)’s findings that Word2Vec gave the best perfor-
mance. However, we also note that, other than Word2Vec, other publicly available word embeddings,
Collobert & Weston’s embeddings and GLoVe also consistently enhanced the performance of IMS using
the summation feature with little effort. Other than on the Lexical Sample tasks, where smaller word em-
beddings performed better, we also found that the number of dimensions did not affect results as much
as the scaling parameter. Unlike Iacobacci et al. (2016), we also found that a simple composition method
using summation already gave good improvements over the standard WSD features, provided that the
scaling method described in (Taghipour and Ng, 2015b) was performed.

An additional key contribution of our work was to build a gold-standard English-Chinese Cross-
Lingual WSD dataset constructed with sentences from real news articles and to evaluate our proposed
word embedding approach under this scenario. Our compiled dataset was used as evaluation of the task of
translating English words on online news articles. This dataset is made available publicly. We observed
that word embeddings also improves the performance of WSD in our Cross-Lingual WSD setting.

As future work, we will examine how to expand the existing dictionary with more English words of
varying difficulty and include more possible Chinese translations, as we note that there were several
instances in the Cross-Lingual WSD dataset where the annotators did not choose an existing translation.
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