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Preface

Welcome to the 3rd Workshop on Natural Language Processing Techniques for Educational Applications
(NLPTEA 2016), with a Shared Task on Chinese Grammatical Error Diagnosis (CGED).

The development of Natural Language Processing (NLP) has advanced to a level that affects the research
landscape of many academic domains and has practical applications in many industrial sectors. On the
other hand, educational environment has also been improved to impact the world society, such as the
emergence of MOOCs (Massive Open Online Courses). With these trends, this workshop focuses on the
NLP techniques applied to the educational environment. Research issues in this direction have gained
more and more attention, examples including the activities like the workshops on Innovative Use of NLP
for Building Educational Applications since 2005 and educational data mining conferences since 2008.

This is the third workshop held in the Asian area, with the first one NLPTEA 2014 workshop being
held in conjunction with the 22nd International Conference on Computer in Education (ICCE 2014)
from Nov. 30 to Dec. 4, 2014 in Japan. The second edition NLPTEA 2015 workshop was held in
conjunction with the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2015) from July 26-
31 in Beijing, China. This year, we continue to promote this research line by holding the workshop
in conjunction with the COLING 2016 conference and also holding the third shared task on Chinese
Grammatical Error Diagnosis. We receive 14 valid submissions for research issues, each of which was
reviewed by three experts, and have 15 teams participating in the shared task, with 9 of them submitting
their testing results. In total, there are 10 oral papers and 10 posters accepted. We also organize a keynote
speech in this workshop. The invited speaker Professor Glenn Stockwell is expected to deliver a great
talk entitled as "Technology and the Changing Face of Language Education".

We would like to thank the program committee members for their hard work in completing the review
tasks. Their collective efforts achieved quality reviews of the submissions within a few weeks. Great
thanks should also go to the speaker, authors, and participants for the tremendous supports in making the
workshop a success.

Welcome you to the Osaka city, and wish you enjoy the city as well as the workshop.

Workshop Chairs
Hsin-Hsi Chen, National Taiwan University
Yuen-Hsien Tseng, National Taiwan Normal University
Vincent Ng, The University of Texas at Dallas
Xiaofei Lu, The Pennsylvania State University

iii





Organization

Workshop Organizers

Hsin-Hsi Chen, National Taiwan University

Yuen-Hsien Tseng, National Taiwan Normal University

Vincent Ng, The University of Texas at Dallas

Xiaofei Lu, The Pennsylvania State University

Shared Task Organizers

Lung-Hao Lee, National Taiwan Normal University

Gaoqi Rao, Beijing Language and Culture University

Liang-Chih Yu, Yuan Ze University

Endong Xun, Beijing Language and Culture University

Baolin Zhang, Beijing Language and Culture University

Li-Ping Chang, National Taiwan Normal University

Program Committee

Yuki Arase, Osaka University

Rafael E. Banchs, Institute of Infocomm Research

Chris Brockett, Microsoft Research

Tao Chen, National University of Singapore

Barbara Di Eugenio, University of Illinois at Chicago

Vidas Daudaravicius, VTex Solutions for Science Publishing

Mariano Felice, Cambridge University

Cyril Goutte, National Research Council Canada

Na-Rae Han, University of Pittsburgh

Trude Heift, Simon Fraser University

Mamoru Komachi, Tokyo Metropolitan University

John Lee, City University of Hong Kong

Chen Li, Microsoft

Chuan-Jie Lin, National Taiwan Ocean University

Shervin Malmasi, Harvard University

Tomoya Mizumoto, Tohoku University

Courtney Napoles, John Hopkins University

Arti Ramesh, University of Maryland

Alla Rozovskaya, Virginia Tech

Mathias Schulze, University of Waterloo

Yukio Tono, Tokyo University of Foreign Studies

v



Elena Volodina, University of Gothenburg

Shih-Hung Wu, Chaoyang University of Technology

Jiajin Xu, Beijing Foreign Studies University

Jui-Feng Yeh, National Chiayi University

Marcos Zampieri, Saarland University

Trosten Zesch, University of Duisburg-Essen

vi



Table of Contents

Simplification of Example Sentences for Learners of Japanese Functional Expressions
Jun Liu and Yuji Matsumoto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Effectiveness of Linguistic and Learner Features to Listenability Measurement Using a Decision Tree
Classifier

Katsunori Kotani and Takehiko Yoshimi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

A Two-Phase Approach Towards Identifying Argument Structure in Natural Language
Arkanath Pathak, Pawan Goyal and Plaban Bhowmick. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

Distributed Vector Representations for Unsupervised Automatic Short Answer Grading
Oliver Adams, Shourya Roy and Raghuram Krishnapuram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A Comparison of Word Embeddings for English and Cross-Lingual Chinese Word Sense Disambiguation
Hong Jin Kang, Tao Chen, Muthu Kumar Chandrasekaran and Min-Yen Kan . . . . . . . . . . . . . . . . . 30

Overview of NLP-TEA 2016 Shared Task for Chinese Grammatical Error Diagnosis
Lung-Hao Lee, Gaoqi RAO, Liang-Chih Yu, Endong XUN, Baolin Zhang and Li-Ping Chang . . 40

Chinese Grammatical Error Diagnosis with Long Short-Term Memory Networks
Bo Zheng, Wanxiang Che, Jiang Guo and Ting Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Automatic Grammatical Error Detection for Chinese based on Conditional Random Field
Yajun Liu, Yingjie Han, Liyan Zhuo and Hongying Zan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

CYUT-III System at Chinese Grammatical Error Diagnosis Task
CHEN PO-LIN, Shih-Hung Wu, Liang-Pu Chen and ping-che yang . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Word Order Sensitive Embedding Features/Conditional Random Field-based Chinese Grammatical Er-
ror Detection

Wei-Chieh Chou, Chin-Kui Lin, Yuan-Fu Liao and Yih-Ru Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A Fluctuation Smoothing Approach for Unsupervised Automatic Short Answer Grading
Shourya Roy, Sandipan Dandapat and Y. Narahari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82

Japanese Lexical Simplification for Non-Native Speakers
Muhaimin Hading, Yuji Matsumoto and Maki Sakamoto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

A Corpus-based Approach for Spanish-Chinese Language Learning
Shuyuan Cao, Iria da Cunha and Mikel Iruskieta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Syntactic Well-Formedness Diagnosis and Error-Based Coaching in Computer Assisted Language Learn-
ing using Machine Translation

Luís Morgado da Costa, Francis Bond and Xiaoling He . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

An Aligned French-Chinese corpus of 10K segments from university educational material
Ruslan Kalitvianski, Lingxiao Wang, Valérie Bellynck and Christian Boitet . . . . . . . . . . . . . . . . . .117

Analysis of Foreign Language Teaching Methods: An Automatic Readability Approach
Nasser Zalmout, Hind Saddiki and Nizar Habash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Generating and Scoring Correction Candidates in Chinese Grammatical Error Diagnosis
Shao-Heng Chen, Yu-Lin Tsai and Chuan-Jie Lin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

vii



Grammatical Error Detection Based on Machine Learning for Mandarin as Second Language Learning
Jui-Feng Yeh, Tsung-Wei Hsu and Chan-Kun Yeh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Bi-LSTM Neural Networks for Chinese Grammatical Error Diagnosis
Shen Huang and Houfeng WANG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Chinese Grammatical Error Diagnosis Using Single Word Embedding
Jinnan Yang, Bo Peng, Jin Wang, Jixian Zhang and Xuejie Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . 155

viii



Workshop Program

December 12, 2016

09:00–09:10 Opening Ceremony

09:10–10:00 Keynote Speech

10:00–10:30 Coffee Break

10:30–12:00 Regular Paper Session

10:30–10:45 Simplification of Example Sentences for Learners of Japanese Functional Expres-
sions
Jun Liu and Yuji Matsumoto

10:45–11:00 Effectiveness of Linguistic and Learner Features to Listenability Measurement Us-
ing a Decision Tree Classifier
Katsunori Kotani and Takehiko Yoshimi

11:00–11:20 A Two-Phase Approach Towards Identifying Argument Structure in Natural Lan-
guage
Arkanath Pathak, Pawan Goyal and Plaban Bhowmick

11:20–11:40 Distributed Vector Representations for Unsupervised Automatic Short Answer
Grading
Oliver Adams, Shourya Roy and Raghuram Krishnapuram

11:40–12:00 A Comparison of Word Embeddings for English and Cross-Lingual Chinese Word
Sense Disambiguation
Hong Jin Kang, Tao Chen, Muthu Kumar Chandrasekaran and Min-Yen Kan

ix



December 12, 2016 (continued)

12:00–14:00 Luch

14:00–15:15 Shared Task Session

14:00–14:15 Overview of NLP-TEA 2016 Shared Task for Chinese Grammatical Error Diagnosis
Lung-Hao Lee, Gaoqi RAO, Liang-Chih Yu, Endong XUN, Baolin Zhang and Li-
Ping Chang

14:15–14:30 Chinese Grammatical Error Diagnosis with Long Short-Term Memory Networks
Bo Zheng, Wanxiang Che, Jiang Guo and Ting Liu

14:30–14:45 Automatic Grammatical Error Detection for Chinese based on Conditional Random
Field
Yajun Liu, Yingjie Han, Liyan Zhuo and Hongying Zan

14:45–15:00 CYUT-III System at Chinese Grammatical Error Diagnosis Task
CHEN PO-LIN, Shih-Hung Wu, Liang-Pu Chen and ping-che yang

15:00–15:15 Word Order Sensitive Embedding Features/Conditional Random Field-based Chi-
nese Grammatical Error Detection
Wei-Chieh Chou, Chin-Kui Lin, Yuan-Fu Liao and Yih-Ru Wang

15:15–15:50 Coffee Break

15:50–16:50 Poster Session

A Fluctuation Smoothing Approach for Unsupervised Automatic Short Answer
Grading
Shourya Roy, Sandipan Dandapat and Y. Narahari

Japanese Lexical Simplification for Non-Native Speakers
Muhaimin Hading, Yuji Matsumoto and Maki Sakamoto

A Corpus-based Approach for Spanish-Chinese Language Learning
Shuyuan Cao, Iria da Cunha and Mikel Iruskieta

Syntactic Well-Formedness Diagnosis and Error-Based Coaching in Computer As-
sisted Language Learning using Machine Translation
Luís Morgado da Costa, Francis Bond and Xiaoling He

x



December 12, 2016 (continued)

An Aligned French-Chinese corpus of 10K segments from university educational
material
Ruslan Kalitvianski, Lingxiao Wang, Valérie Bellynck and Christian Boitet

Analysis of Foreign Language Teaching Methods: An Automatic Readability Ap-
proach
Nasser Zalmout, Hind Saddiki and Nizar Habash

Generating and Scoring Correction Candidates in Chinese Grammatical Error Di-
agnosis
Shao-Heng Chen, Yu-Lin Tsai and Chuan-Jie Lin

Grammatical Error Detection Based on Machine Learning for Mandarin as Second
Language Learning
Jui-Feng Yeh, Tsung-Wei Hsu and Chan-Kun Yeh

Bi-LSTM Neural Networks for Chinese Grammatical Error Diagnosis
Shen Huang and Houfeng WANG

Chinese Grammatical Error Diagnosis Using Single Word Embedding
Jinnan Yang, Bo Peng, Jin Wang, Jixian Zhang and Xuejie Zhang

16:50–17:00 Closing Remarks

xi





Proceedings of the 3rd Workshop on Natural Language Processing Techniques for Educational Applications,
pages 1–5, Osaka, Japan, December 12 2016.

Simplification of Example Sentences for Learners of Japanese
Functional Expressions

Jun Liu
Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara, Japan
liu.jun.lc3@is.naist.jp

Yuji Matsumoto
Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara, Japan

matsu@is.naist.jp

Abstract

Learning functional expressions is one of the difficulties for language learners, since functional
expressions tend to have multiple meanings and complicated usages in various situations. In
this paper, we report an experiment of simplifying example sentences of Japanese functional
expressions especially for Chinese-speaking learners. For this purpose, we developed
“Japanese Functional Expressions List” and “Simple Japanese Replacement List”. To evaluate
the method, we conduct a small-scale experiment with Chinese-speaking learners on the
effectiveness of the simplified example sentences. The experimental results indicate that the
simplified sentences are helpful in learning Japanese functional expressions.

1 Introduction

In Japanese grammar, there is a large number of functional expressions consisting of one or more
words and behave like a single functional word, such as “たい (want to)、に対して(to)、なければ

ならない (must)”. Matsuyoshi et al. (2006) developed a Japanese functional expression lexicon
consisting of 292 headwords and 13,958 different surface forms. It is crucial to develop a Japanese
learning assistant system which supports Japanese language learners to learn such a large number of
complicated functional expressions.
Recently, with the help of natural language processing technology, many Japanese learning assistant

systems have been constructed. For example, Pereira and Matsumoto (2015) presents a Collocation
Assistant for Japanese language learners, which flags possible collocation errors and suggests
corrections with example sentences. Han and Song (2011), and Ohno et al. (2013) attempt to develop
Japanese learning systems for learning and using Japanese sentence patterns with the use of illustrative
examples extracted from the Web.
As mentioned above, some studies have paid attention to assist learners to learn Japanese functional

expressions. However, none of the existing studies has aimed at simplifying difficult example
sentences for the need of Chinese-speaking learners of Japanese language. In this paper, we describe
our proposed method in Section 2. Section 3 explains the result and evaluation of a small-scale
experiment for examining the effectiveness of the proposed method. Finally, we conclude in Section 4.

2 Proposed Method

In this section, we propose a method to simplify difficult Japanese sentences that contain Japanese
functional expressions for Chinese-speaking learners of Japanese language.

2.1 Making Japanese Functional Expressions List

In order to identify Japanese functional expressions, Tsuchiya et al. (2006) developed an example

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/
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database with 337 types of Japanese compound functional expressions. Shime et al. (2007) proposed
an approach to detecting 59 types of Japanese functional expressions through a machine learning
technique based on a chunking program. However, the major drawback of these studies is in the scale
of Japanese functional expressions, which does not reach the need of the five levels (from N1 to N5)
of the new Japanese-Language Proficiency Test (JLPT).
According to the requirements of the new JLPT, we manually constructed a list of Japanese

functional expressions, which consists of about 680 headwords and 4,000 types of different surface
forms. Here, we consider levels 3-5 as easy level, and levels 1-2 as difficult level, respectively. Table
1 shows some examples of Japanese functional expressions and their surface form variations.

Headword Difficulty Level Surface Forms
たあとで(after) N5 たあとで、た後で、だあとで、だ後で

かもしれない(maybe) N4 かもしれない、かもしれません、かもしれず...

にたいして(to) N3 にたいして、に対して、にたいしては、に対しては...

ざるをえない(have to) N2 ざるをえない、ざるを得ない、ざるをえず、ざるを得ず...

やいなや(as soon as) N1 やいなや、や否や

Table 1: Examples of Japanese functional expressions and surface form variations

2.2 Creating Simple Japanese Replacement List

Text simplification, defined narrowly, is the process of reducing the linguistic complexity of a text,
while retaining the original information contents and meaning (Siddharthan, 2014). Watananabe and
Kawamura (2013) introduced a Japanese simplification system with the use of a “Simple Japanese
Replacement List”. Kaneniwa and Kawamura (2013) used the same list to rewrite difficult vocabulary
automatically for Japanese learners who have non-kanji backgrounds. Kajiwara and Yamamoto (2015),
constructed an evaluation dataset for Japanese lexical simplification. They extracted 2330 sentences
from a newswire corpus and simplified only one difficult word using several Japanese lexical
paraphrasing databases. Kodaira et al. (2016) built a controlled and balanced dataset for Japanese
lexical simplification. They extracted 2010 sentences with only one difficult word in each sentence
from a balanced corpus and collected simplification candidates using crowdsourcing techniques.
Different from the previous research mentioned above, we used a large scale Japanese balanced

corpus to extract simplification candidates for difficult words and through manual selection we
constructed a “Simple Japanese Replacement List” for Chinese-speaking Japanese language learners.
For the levels of word difficulty, we consider levels 3-5 of the new JLPT as easy level, and levels 1-2
as difficult level according to the vocabulary list of the new JLPT, which consists of about 16,000
words. Besides, we consider the words which are not included in the vocabulary list of the new JLPT
as difficult words. Since a large number of Kanji characters are used both in Japanese and in Chinese,
Chinese-speaking learners can easily understand the Japanese words of Chinese origin (Japanese-
Chinese homographs), such as “安全(safety)”, “学習(study)”, “擁立(support)”, or easily guess the
meaning of many Japanese original words with the help of Kanji characters, such as “壊す(break)”,
“打つ (hit)”, “取り消す (cancel)”. Kanji characters in these Japanese words are also included in
Chinese dictionary and have the same or similar meaning with Chinese words. Therefore, we consider
these words as easy words for Chinese-speaking learners, although some of these words are difficult
words in the vocabulary list of the new JLPT.
We obtain a list of similar words associated with each difficult word which we are going to use for

replacement, using Word2vec (https://code.google.com/p/word2vec/). As the training data for the
Word2vec model, we use the Balanced Corpus of Contemporary Written Japanese (Maekawa, 2008),
which consists of about 5,800,000 sentences in various domains. Based on the list of similar words, we
choose easy words which are included in the vocabulary list of new JLPT as simplified words. If there
is no appropriate easy word in the vocabulary list of the new JLPT, we use Japanese-Chinese
homographs whose meaning is the same, or similar to Chinese words based on Japanese dictionaries
(Bunrui goihyo zouhokaiteiban, 2004; Kadokawa ruigo shin jiten, 2002; Kojien 5th Editon, 1998).
Japanese-Chinese homographs for simplification are specific for Chinese-natives. Therefore, our
“Simple Japanese Replacement List” differs from previous research mentioned above on this aspect.

2



For simplification of Japanese functional expressions, we rewrite some difficult Japanese functional
expressions using easy Japanese functional expressions or easy words in the vocabulary list of the new
JLPT based on a Japanese sentence pattern dictionary (Group Jamasi, Xu. 2001).

Original words Difficulty Level Part of speech Simplified words Difficulty Level
合鍵 (duplicate key) N1 Noun 鍵 (key) N5
負け戦 (defeat) N0 Noun 敗戦 (defeat) N0
出会う(meet) N0 Verb 会う (meet) N5

胸苦しい (tough) N1 Adjective 苦しい (tough) N3
が早いか (when) N1 Functional Expression と (when) N5
の際には (when) N2 Functional Expression の時 (when) N5/N5

Table 2: Examples of the Simple Japanese Replacement List

Finally, we created a “Simple Japanese Replacement List,” which consists of words and functional
expressions. Table 2 shows some examples in the list.

3 Experiment and Evaluation

Our aim is to obtain appropriate example sentences that ease understanding of Japanese functional
expressions. We conducted a small-scale experiment for evaluating the method for generating
simplified example sentences. For the source data, the Balanced Corpus of Contemporary Written
Japanese was used. We removed too short or too long sentences by limiting the sentence length
between 3 to 25 words and then used the remaining 4,232,120 sentences for the experimental data.
To identify occurrences of Japanese functional expressions in the extracted sentences, we used a

publicly available morphological analyzer MeCab (taku910.github.io/mecab/). We add the two lists
we created, “Japanese Functional Expressions List” and “Simple Japanese Replacement List”, into the
IPA (mecab-ipadic-2.7.0-20070801) dictionary used as the standard dictionary for MeCab, with
appropriate part-of-speech information for each expression, hoping that the morphological analyzer
MeCab extracts the usages of functional expressions automatically. The accuracy is evaluated in the
next section. Table 3 shows some example sentences of Japanese functional expressions and their
corresponding simplified sentences.

ID Original sentences Simplified sentences

1 そしてそこへ、どこからか小鳥がやって来て、その

虫をついばみました。

そしてそこへ、どこからか小鳥が来て、その虫を啄

みました。

2 したがって、いろいろな関係部門、団体等と調整し

なければならないことは言うまでもない。

だから、色々な関係部門、団体等と調整しなければ

ならないことは言う必要がない。

3 私はそれ以来、数々の失敗を経てつぎのような結論

にたどり着きました。

私はそれ以来、多くの失敗を経て次のような結論に

到達しました。

4 つめが伸びていると、皮膚を傷つけるおそれがある

ので、気をつけてください。

爪が伸びていると、皮膚を傷つける可能性があるの

で、気をつけてください。

5 その土の中から、冬眠を破られた小さな虫が顔をの

ぞかせました。

その土の中から、冬眠を破られた小さな虫が顔を見

せました。

Table 3: Examples of original sentences and simplified sentences. The words with underline are
functional expressions and the words in bold are simplified words.

3.1 Evaluation of Japanese functional expressions

In this section, we randomly extract 200 sentences from the experimental data to examine whether the
identified Japanese functional expressions are correct or not. Table 4 gives the evaluation results of
identification of Japanese functional expressions.

Correct rate Correctly extracted sentences 171 (85.5%)

Error rate Incorrectly extracted sentences 10 (5%) 29 (14.5%)Japanese functional expressions are not recognized 19 (9.5%)
Total 200 (100%)

Table 4: Evaluation results of Japanese functional expression identification
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According to Table 4, we obtained 85.5% accuracy for identifying Japanese functional expressions.
Cases of failures of functional expression identification can be viewed from the following three causes.
First, the lack of discriminative contextual information causes failure. For example, “をめぐる(with
related to)” in “決算 を めぐる 政策評価 の 問題”, is incorrectly recognized as a literal usage. Here,
both literal usage and functional usage of this expression share almost the same contexts and cannot be
distinguished only by the surrounding information used in MeCab. Second is the opposite case where
a literal usage is recognized as a functional expression. For example, in “青少年 期 から 身 につけ

て しまう”, “につけて(concerning)” was incorrectly extracted. Third, functional expressions are not
included in the current “Japanese Functional Expressions List”. For example, a colloquial expression
“わけじゃない(it does not mean that)” was not recognized as a functional expression.

3.2 Evaluation of Simplified Sentences

In this section, we evaluate the simplified sentences from the following two aspects, fluency and
readability. From the 200 example sentences that include functional expressions, we removed 36
sentences which are easy sentences since they include no difficult words. We do not need to simplify
such sentences. We then used the remaining 164 sentences for evaluation.
For the evaluation of fluency, we invited three Japanese natives to check the simplified sentences

whether they are natural Japanese sentences. Meanwhile, for readability of the simplified sentences,
we invited three Chinese-speaking learners who are all beginners of Japanese language. To compare
the readability, we provided them with the Chinese translation of the original sentences and simplified
sentences using an online translation software “Google translation” (translate.google.cn). We asked
them to read and judge which sentence is easier to understand. Tables 5 and 6 show the evaluation
results of fluency and readability respectively.

Natural sentences 142 (86.6%)
Unnatural sentences 22 (13.4%)
Total 164 (100%)

Table 5: Evaluation results of fluency of the simplified sentences

Easy to understand 132 (80.5%)
Difficult to understand 32 (19.5%)
Total 164 (100%)

Table 6: Evaluation results of readability of the simplified sentences

According to the evaluation results in Table 6, 80.5% sentences are simplified appropriately and
become easier to understand. Two cases are identified in simplification failure. One is lack of
appropriate simplified rules. For example, “請求しうる ” contains a functional expression “うる
(possible)” with the difficulty level 2. However, no corresponding simplified word for the functional
expression “うる” is found in the current “Simple Japanese Replacement List”. This case cannot be
coped with by lexical simplification. The other is the usage of inappropriate words, which is the main
reason for generation of unnatural simplified sentences. For example, “市内の青果物商を片っ端か

ら尋ねて回った。” was rewritten as “市内の野菜と果物商を一つ一つから尋ねて回った。”,
which is an unnatural sentence that produces unnatural connections for words.

4 Conclusion

In this paper, we presented our attempt to produce simplified example sentences for learning Japanese
functional expressions using “Japanese Functional Expressions List” and “Simple Japanese
Replacement List”. A small-scale experiment was conducted to verify the effectiveness of the
proposed method. The experimental results showed that simplified example sentences are helpful in
learning Japanese functional expressions. In the future, we plan to estimate the difficulty level of the
extracted example sentences automatically and offer better example sentences for Chinese-speaking
learners of Japanese language.

4



Reference
Dongli Han, and Xin Song. 2011. Japanese Sentence Pattern Learning with the Use of Illustrative Examples

Extracted from the Web. IEEJ Transactions on Electrical and Electronic Engineering, 6(5):490-496.

Group Jamashi, and Yiping Xu. 2001. Chubunban Nihongo Kukei Jiten-Nihongo Bunkei Jiten (in Chinese and
Japanese). Tokyo:Kurosio Publishers.

Tomoyuki Kajiwara, Kazuhide Yamamoto. 2015. Evaluation Dataset and System for Japanese Lexical
Simplification. In Proceedings of the ACL-IJCNLP 2015 Student Research Workshop, pages 35-40. Beijing,
China.

Kumido Kaneniwa, and Yoshiko Kawamura. 2013. Improving the Japanese simplification system for JFL/JSL
learners from non-kanji background. Journal of Japanese language education methods(in Japanese),
21(2):10-11.

Tomonori Kodaira, Tomoyuki Kajiwara, Mamoru Komachi. 2016. Controlled and Balanced Dataset for Japanese
Lexical Simplification. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics–Student ResearchWorkshop, pages 1-7, Berlin, Germany.

Kikuo Maekawa. 2008. Balanced Corpus of Contemporary Written Japanese. In Proceeding of The 6th
Workshop on Asian language Resources, pp.101-102, Stroudsburg, PA, USA.

Suguru Matsuyoshi, Satoshi Sato, and Takehito Utsuro. 2006. Compilation of a dictionary of Japanese functional
expressions with hierarchical organization. In Proc.ICCPOL, LNAI: Vol.4285, Springer:395-402.

National Institute for Japanese Language and Linguistics. 2004. Bunrui goihyo zouhokaiteiban (in Japanese).
Tokyo:Dainihontosho.

Susumu Ohno and Masando Hamanishi. 2002. Kadokawa ruigo shin jiten (in Japanese). Tokyo: Kadokawa
shoten.

Takahiro Ohno, Zyunitiro Edani, Ayato Inoue, and Dongli Han. 2013. A Japanese Learning Support System
Mathching Individual Abilities. In Proceeding of the PACLIC 27 Workshop on Computer-Assisted Language
Learning, pages 556- 562.

Lis Pereira and Yuji Matsumoto. 2006. Collocational Aid for Learners of Japanese as a Second Language. In
Proceeding of the 2nd Workshop on Natural Language Processing Techniques for Educational Applications
(NLP-TEA-2), pages 20-25, Beijing, China.

Takao Shime, Masatoshi Tsuchiya, Suguru Matsuyoshi, Takehito Utsuro and Satoshi Sato. 2007. Automatic
Detection of Japanese Compound Functional Expressions and its Application to Statistical Dependency
Analysis. Journal of Natural Language Processing(in Japanese), 14(5):167-197.

Izuru Shinmura (Ed. In chief). 1998. Kojien 5th Editon (in Japanese). Tokyo:Iwanani Press.

Advaith Siddharthan. 2014. A survey of research on text simplification. International Journal of Applied
Linguistics165:2:259-298.

Masatoshi Tsuchiya, Takehito Utsuro, Suguru Matsuyoshi, Satoshi Sato, and Seiichi Nakagawa. 2006.
Development and Analysis of An Example Database of Japanese Compound Functional Expressions. Journal
of Information Processing Society of Japan(in Japanese), 47(6):1728-1741.

Hyuma Watanabe, and Yoshiko Kawamura. 2013. Basic architecture for a Japanese simplification system.
Journal of Japanese language education methods(in Japanese), 20(2):48-49.

5



Proceedings of the 3rd Workshop on Natural Language Processing Techniques for Educational Applications,
pages 6–10, Osaka, Japan, December 12 2016.

 

Effectiveness of Linguistic and Learner Features to Listenability 
Measurement Using a Decision Tree Classifier 

 
 

Katsunori Kotani 
Kansai Gaidai University 
Hirakata, Osaka, Japan 

kkotani@kansaigaidai.ac.jp 

Takehiko Yoshimi 
Ryukoku University 
Otsu, Shiga, Japan 

yoshimi@rins.ryukoku.ac.jp 

 
  

 

Abstract 

In learning Asian languages, learners encounter the problem of character types that are 
different from those in their first language, for instance, between Chinese characters and the 
Latin alphabet. This problem also affects listening because learners reconstruct letters from 
speech sounds. Hence, special attention should be paid to listening practice for learners of 
Asian languages. However, to our knowledge, few studies have evaluated the ease of listening 
comprehension (listenability) in Asian languages. Therefore, as a pilot study of listenability in 
Asian languages, we developed a measurement method for learners of English in order to 
examine the discriminability of linguistic and learner features. The results showed that the 
accuracy of our method outperformed a simple majority vote, which suggests that a 
combination of linguistic and learner features should be used to measure listenability in Asian 
languages as well as in English. 

1 Introduction 

An important task of language teachers is to choose reading/listening materials appropriate for the 
proficiency of their learners so as to prevent decreases in learning motivation. However, this task can 
be a heavy burden for language teachers when they introduce computer-assisted language 
learning/teaching (CALL/T) techniques. Although CALL/T allows language teachers to use different 
reading/listening materials for each learner, it also increases the number of materials that they must 
evaluate for appropriateness. To address this issue, alternative methods that automatically measure the 
ease of reading comprehension (readability) have been developed. 

However, although the majority of previous studies have addressed the measurement of readability: 
Japanese by Sato et al. (2008); Chinese by Sung et al. (2015), among others, they have not addressed 
the ease of listening comprehension (henceforth, listenability). Several studies have examined 
listenability for English learners (Kiyokawa 1990; Kotani et al. 2014; Kotani & Yoshimi 2016; Yoon 
et al. 2016); however, to the best of our knowledge, no previous studies on listenability for learners of 
Asian languages such as Chinese, Korean, and Japanese have been conducted. 

The method of Kiyokawa (1990) measured listenability based on the length of sentences and the 
difficulty of words. It was hypothesized that the listenability of a sentence decreases as it becomes 
longer and contains more advanced vocabulary words. Kotani et al. (2014) suggested the possibility of 
using different linguistic elements such as phonological features, and addressed this question by 
measuring listenability based on various linguistic features, including speech rate and the frequency of 
phonological modification patterns such as linking. In addition, their method used listening test scores 
as a learner feature to measure listenability relative to proficiency. This is because sentences with less 
listenability for learners at the beginner level might be easy for those at the advanced level. However, 
because that study focused on the accuracy of measurement, the question of discriminability of 

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: 
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linguistic and learner features for the measurement of listenability remained. The discriminability of 
linguistic features was examined by Yoon et al. (2016), who used multiple regression analysis to 
measure listenability; however, they did not examine the discriminability of learner features. Hence, 
the discriminability of both linguistic and learner features still has yet to be examined. 

Given this background, the purpose of this study was to attempt to answer the following two 
research questions by measuring listenability on the basis of linguistic and learner features: 

 
(1) How accurately can listenability be measured using linguistic and learner features? 
(2) Which of linguistic and learner features are discriminative for the measurement of listenability? 
 
To answer these questions, in this study, we developed a listenability measurement method using a 

decision tree classification algorithm (Quinlan 1992) that classifies sentences into five levels of 
listenability in order to determine the accuracy of listenability measurement and the discriminability of 
linguistic and learner features to this classification. Although the linguistic and learner features 
examined were effective for listenability measurement in English, they were not English-specific, 
which suggests that they may also be useful for the measurement of listenability in Asian languages. 

2 Linguistic and Learner Features 

Listenability is measured based on linguistic and learner features. Linguistic features explain the 
difficulty of a sentence, and learner features explain the proficiency of a learner. The linguistic (Chall 
1948; Fang 1966; Kiyokawa 1990; Messerklinger 2006; Kotani et al. 2014; Kotani & Yoshimi 2016; 
Yoon et al. 2016), and learner features (Kotani et al. 2014; Kotani & Yoshimi 2016) used in this study 
were originally described elsewhere. 

Linguistic features consist of sentence length, mean word length, multiple syllable words, word 
difficulty, speech rate, and phonological modification patterns. Sentence length is calculated based on 
the number of words in a sentence. Mean word length is derived from the mean number of syllables 
per word. Multiple syllable words refer to the number of multiple syllable words in a sentence. Word 
difficulty is derived from the rate of words absent from Kiyokawa’s basic vocabulary list for words in 
a sentence. Speech rate is calculated in terms of spoken words per minute. Phonological modification 
patterns are derived from the rate of phonologically modified words in a sentence. The types of 
phonological modification patterns are: elision (elimination of phonemes), in which vowel sounds 
immediately follow a stressed syllable, such as the second “o” sound in “chocolate”; reduction 
(weakening a sound by changing a vowel to a schwa), such as vowel sounds in personal/interrogative 
pronouns, auxiliaries, modals, prepositions, articles, and conjunctions; contraction (combining word 
pairs), such as a modal with a subject noun; linkage (connecting final and initial word sounds), such as 
connected a word ending with an “n” or “r” sound with a word starting with a vowel sound, for 
example, “in an hour” and “after all”; and deduction (elimination of sounds between words), in which 
words share the same sound, for example, “good day”. 

Learner features consist of listening test scores, learning experience, visiting experience, and 
listening frequency. Listening test score refers to scores on the Test of English for International 
Communication (TOEIC). Learning experience refers to the number of months for which learners 
have been studying English. Visiting experience refers to the number of months learners have spent in 
English-speaking countries. Listening frequency refers to scores on a five-point Likert scale for the 
frequency of English use (1: infrequently, 2: somewhat infrequently, 3: moderate, 4: somewhat 
frequently, and 5: frequently). 

3 Training/Test Data 

Training/test data for a decision tree classification algorithm were constructed using the learner corpus 
of Kotani et al. (2014), which includes learners’ judgment of listenability. Listenability was judged by 
learners of English as a foreign language using scores on a five-point Likert scale (1: easy, 2: 
somewhat easy, 3: average, 4: somewhat difficult, or 5: difficult). Scores were judged on a sentence-
by-sentence basis where each learner listened to and assigned scores for 80 sentences from four news 
clips selected from the editorial and special sections for English learners on the Voice of America 
(VOA) website (http://www.voanews.com). News clips in the special section were intended for 
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learners, while news clips in the editorial section were intended for native speakers of English. The 
news clips in the special section consisted of short, simple sentences using the VOA’s basic 
vocabulary of 1,500 words; idiomatic expressions were avoided. By contrast, the news clips in the 
editorial section were made without any restrictions on vocabulary and sentence construction, as long 
as they were appropriate as news clips for native speakers of English. The speech rate of the news 
clips in the special section were two-thirds slower than those in the editorial section, which were read 
aloud at a natural speech rate of approximately 250 syllables per minute (Robb & Gillon 2007). 

The learners were 90 university students (48 males, 42 females; mean age ± SD, 21.5 ± 2.6 years) 
who were compensated for their participation. All learners were asked to submit valid scores from 
TOEIC tests taken in the current or previous year. The mean TOEIC listening score was 334.78 ± 
98.14. The minimum sore was 130 (n = 1), and the maximum score was 495 (n = 8). 

Although the training/test data should have consisted of 7,200 instances (90 learners × 80 sentences) 
for valid listenability measurement, only 6,804 instances were actually observed. Assuming that the 
missing 396 instances resulted from listening difficulties, these instances were scored as having the 
lowest listenability. Most instances (25.2%) were scored in the middle range (3) of listenability, and 
the fewest instances (15.8%) were scored in the high range (2). Listenability scores of 1, 4, and 5 were 
given by 21.7%, 20.8%, and 16.5% of the learners, respectively. 

Table 1 shows the means and SDs of the linguistic and learner features in the training/test data. 

Table 1. Descriptive statistics of linguistic (n = 80) and learner features (n = 90) 

Type Feature Mean SD 
Linguistic Sentence length 17.6 (words) 7.5 

Mean word length 1.7 (syllables) 0.3 
Multiple syllables 11.2 (words) 7.0 
Difficult words 0.4 (words) 0.1 
Speech rate 199.3 (words per minute) 49.2 
Phonological modification 
pattern 

Elision 0.0 (points) 0.1 
Reduction 0.2 (points) 0.2 
Contraction 0.1 (points) 0.1 
Linking 0.0 (points) 0.0 
Deduction 0.4 (points) 0.2 

Learner Listening test score 334.8 (points) 97.6 
Learning experience 123.2 (months) 36.6 
Visiting experience 11.3 (months) 25.8 
Listening frequency 2.1 (score) 1.1 

4 Experiment 

Listenability was measured on the basis of linguistic and learner features using a decision tree 
classification algorithm implemented on C4.5 software (Quinlan 1992). All settings were taken as 
defaults, and classification was evaluated using five-fold cross validation. 

Table 2. Confusion matrix for the test data 

Method’s 
Learner’s 

Listenability 1 Listenability 2 Listenability 3 Listenability 4 Listenability 5 

Listenability 1 1116 (71.4%) 190 169 46 42 
Listenability 2 299 293 (25.8%) 348 125 70 
Listenability 3 188 307 740 (40.8%) 439 139 
Listenability 4 72 161 463 574 (38.3%) 228 
Listenability 5 78 59 146 247 661 (55.5%) 
 
The results of the five-fold cross validation tests, as well as the confusion matrix for the test data, 

where the rows indicate the correct classification and the columns indicate the selected classes, are 
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shown in Table 2. The accuracy of classification rate was 47.0% ((1116+293+740+574+661)/7200) in 
the test data. Although this might be insufficient for validating our listenability measurement method, 
we believe that the method can still be judged as valid through a comparison with the accuracy 
attained by a simple majority vote (25.2%) as a baseline. 

We calculated the accuracy for each listenability score from 1 to 5, which is shown as bracketed 
numbers in Table 2. The accuracy varied from 25.8% (293/(299+293+348+125+70)) to 71.4% 
(1116/(1116+190+169+46+42)). As this examination was not conclusive, it remains for the future 
study to examine why the method showed the different accuracies in more detail. 

Using the five-fold cross validation test, five decision trees (I–V) were generated. In four of the five 
decision trees, the same type of linguistic and learner features were allocated at the root nodes, the 
first-level child nodes (child nodes originating from the root nodes), and the second-level child nodes 
(child nodes originating from the first-level child nodes). Parts of the decision tree (I–IV) can be seen 
in Figure 1; the different roots (V) are shown in bold. Part V of the decision tree is shown in Figure 2. 
 

 

Fig. 1. Decision tree (I–IV)                   Fig. 2. Decision tree (V) 

As the listening test score was allocated at the root node of the five decision trees, this feature was 
regarded as the most discriminative. Visiting experience was allocated at the first-level child node of 
the decision trees, and was therefore judged as the second most discriminative feature. The third most 
discriminative feature was regarded as the speech rate, because it was allocated at either the first- or 
second-level child node in each tree. 

5 Conclusion 

In this study, we examined the measurement of listenability for learners of English as a foreign 
language. We found that learner features were discriminative for the measurement accuracy. This 
finding suggests that learner features should be taken into account when measuring listenability for 
learners of Asian languages. 

Although the accuracy was not high, our method outperformed a simple majority vote. In the future, 
using this method as a baseline, we plan on developing a listenability measurement method for Asian 
languages that would outperform that for English. 
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Abstract

We propose a new approach for extracting argument structure from natural language texts that
contain an underlying argument. Our approach comprises of two phases: Score Assignment and
Structure Prediction. The Score Assignment phase trains models to classify relations between
argument units (Support, Attack or Neutral). To that end, different training strategies have been
explored. We identify different linguistic and lexical features for training the classifiers. Through
ablation study, we observe that our novel use of word-embedding features is most effective for
this task. The Structure Prediction phase makes use of the scores from the Score Assignment
phase to arrive at the optimal structure. We perform experiments on three argumentation datasets,
namely, AraucariaDB, Debatepedia and Wikipedia. We also propose two baselines and observe
that the proposed approach outperforms baseline systems for the final task of Structure Predic-
tion.

1 Introduction

The problem of argumentation mining concerns the identification of argument structures in a text. The ar-
gument structure is typically represented as a directed graph with textual propositions as nodes and both
Support and Attack relations as edges between the propositions. In their influential work, Mochales and
Moens (2011) have discussed this problem in detail together with the relevant definitions, frameworks,
and terminologies. They define the argumentation structure as consisting of various “arguments”, form-
ing a tree structure, where each argument consists of a single conclusion and one or more premise(s).
Another widely used framework is the Freeman theory of argumentation structures (Freeman, 1991;
Freeman, 2011), which treats an argument as a set of proponent or opponent propositions for a central
claim. In the present study, we follow the framework used in (Mochales and Moens, 2011).

The full task of argumentation mining can be divided into four subtasks (Mochales and Moens, 2011):

1. Segmentation: Splitting the text into propositions.

2. Detection: Identifying the argumentative propositions.

3. Classification: Classifying the argumentative propositions into pre-defined classes (e.g. premise
or conclusion in the Mochales and Moens’ framework and proponent or opponent in the case of
Freeman’s framework).

4. Structure Prediction: Building the structure by identifying the relations (the edges in the argumen-
tative graph structure) between the propositions.

Our work jointly tackles the Classification and Structure Prediction subtasks using a unified approach.
Little work has been done as far as Structure Prediction is concerned. We are familiar with only two
approaches that can be compared to our work. Lawrence et al. (2014) proposed to form bidirectional
edges between propositions in their work on 19th century philosophical texts. They used Euclidean

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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distance metric between topic measures derived from a generated topic model for the text to be studied.
They achieved a raw accuracy of 33% for linking the edges. However, they do not form directed edges
between the argumentation units, which is essential in case of arguments. Peldszus and Stede (2015)
jointly predict different aspects of the argument structure. Recent works Persing and Ng (2016; Stab
and Gurevych (2016) identified argument relations in the student essays. Discourse features (positional
features) have been used in these studies However, absence of these features in argument graph dataset
like AraucariaDB (used in our study) makes the relation classification task challenging.

This paper makes the following contributions. i). We propose a data-driven approach for identifying
argument structure in natural language text. ii). We present a detailed study over various linguistic,
structural and semantic features properties involved in the argument relation classification task. iii).
Finally, we propose a metric for evaluating performance of the structure prediction task.

2 Problem Formulation

We have used the AraucariaDB (Reed and Rowe, 2004) dataset1 to discuss the problem at hand. This
corpus consists of 661 argument structures, collected and analysed as a part of a project at the University
of Dundee (UK). We found AraucariaDB to be one of the most suitable argumentation datasets, primarily
because it is formed from natural language resources like newspapers and magazines. Fig. 1 shows an
argument structure from AraucariaDB. The edges in the tree represent a Support relation. For instance,
Node 271 and Node 272 are the children of Node 270. Therefore, 271→ 270 as well as 272→ 270 are
Support relations. For a given Support relation n1 → n2, we call the node n1 as the Text node and n2 as
the Hypothesis node. Our goal can formally be defined as follows:

Figure 1: Sample argument (Argument No. 9) from the AraucariaDB.

For a given set of propositions, with an underlying argument structure connecting these propositions,
identify the argument structure, that is structurally close to the corresponding gold standard argument.

A measure for structure similarity (which we call SimScore) is described in Section 5.2.

3 Proposed Approach

We model an argument structure as a graph, where each node represents a proposition. Given a set of
nodes N for an argument, our approach can be divided into two subtasks:2

1The AraucariaDB dataset can be downloaded and visualized with the AIFdb (Lawrence et al., 2012) framework at
http://www.arg.dundee.ac.uk/aif-corpora/araucaria.

2We assume only Support and Neutral relations between arguments, and the final structure to be a tree. In Section 6, we
extend this model to include Attack relations as well as linear structures.
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Score Assignment : Assign scores sn1,n2 ∈ [0, 1] for every pair of nodes n1, n2 ∈ N , n1 6= n2,. These
scores represent the degree of Support relation present in the hypothetical edge connecting n1 and n2.
Structure Prediction : Choose the tree T ∗ with the maximum sum of edge scores, i.e.,
T ∗ = argmax

T

∑
(n1,n2)∈E(T )

sn1,n2

where T can be any tree with the set of nodes N and E(T ) denotes the set of edges in T . We use the
confidence measures provided by machine learning classifiers as the edge scores in Score Assignment.
Specifically, we use binary classification with the classes being Support and Neutral. The classifier takes
as input an ordered pair (n1,n2), where n1 and n2 are the text nodes.

For Stucture Prediction, our implementation essentially iterates over all possible tree structures (for
the given set of nodes) recursively to choose the best tree. A call to the recursive function will already
have the tree structure formed upto the last level. The function iterates on all possible sets of nodes
(subset of the set of remaining nodes) for the next level. The parent of each node in the next level can be
identified (from the last level) as the node which gives rise to the best attachment score. The complexity
of our implementation is exponential in the number of nodes in the argument. Therefore, we limit the
experiments usually to arguments with 10-15 nodes.

4 Classifier Features
In this section, we describe the set of features chosen for the Score Assignment subtask. The task of Score
Assignment is similar to Recognizing Textual Entailment (RTE) or the detection of Natural Language
Inference (NLI). However, the problem is still considerably different in the case of arguments since the
types of arguments can be much more complex (Walton, 2007). To make this more evident, we have
formed a baseline for our experiments (Section 5) where we use a state-of-the-art RTE tool instead for
the Score Assignment subtask. We experimented with the features frequently used in NLI, RTE and
similar tasks. MacCartney (2009) discusses the features used for the NLI task in detail. However, some
of the frequently used features like POS n-grams, the length of propositions, POS of the main verb, etc.,
are not included in the set of features because they showed insignificant effect on the overall performance
in our experiments. We suspect this is due to the fact that many attributes of these features are already
captured in the features we have chosen.
Discourse Markers: These are the words that are indicative of argumentative discourse. Discourse
markers have persistently been used for both RTE and NLI tasks. Eckle-Kohler et al. (2015) have also
discussed the role of discourse markers in the context of argumentation mining. However, we observed
that the presence of such words are rare in the AraucariaDB dataset. We have used i). counts of the
following words in Text: as, or, and, roughly, then, since, and ii). counts of the following words in
Hypothesis: therefore, however, though, but, quite. This feature set gives rise to 11 (6+5) features.
Modal Features: These are similar to discourse markers but they do not inherently belong to either
one of Text or Hypothesis. Therefore, we take the counts of these as features for both Text as well as
Hypothesis inputs. We have used the following as the modal words: can, could, may, might, must, will,
would, should. Modal feature set, therefore, gives rise to 16 (8×2) features.
Longest Common Phrase: The number of words in the longest phrase present in both Text and Hypoth-
esis is considered as a single feature.
Common Wikipedia Entities: In many cases, a specific argument usually revolves around some con-
ceptual entities. For example, Argument 9 (Fig.1) involves the entities Steve Bracks, Labor, etc. We
have used TAGME (Ferragina and Scaiella, 2010) to annotate a text with Wikipedia entities. After we
have the annotations as a vector for both Text and Hypothesis, we take the inner product of the resulting
vectors as a single feature.
Word N-grams: Word n-grams are used very frequently as features for NLP tasks. We have used the
set of unigrams and bigrams filtered by relative likelihood of presence in Text or Hypothesis nodes in the
training data. For instance, the n-grams with higher values of p(ngram|Text)

p(ngram|Hypothesis) will be chosen from
Text nodes. The filtering is performed using a constant threshold parameter of the likelihood. We have
set the threshold parameter as 3 for all of our experiments. Since we have performed Cross Validation,
the number of features for this category will be different for each fold. The mean count for unigrams was
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115.4 and that for bigrams was 251.8. Hence, an average of 734.4 (115.4×2 + 251.8×2) n-gram features
were used over the 5 folds.
Word Vector Embeddings: Word vectors capture a variety of helpful information in the context of
natural language. We have directly used the 300-dimensional vectors trained on part of the Google
News dataset (Mikolov et al., 2013) 3. We have used the sum of word vectors over words present in
Text node to form a feature vector. To generate another feature vector, a similar process is repeated for
Hypothesis node. These vectors are concatenated to give rise to 600 features for an input pair. Using
word vectors as features can help with various attributes inherent to Support edges. First, a simple
similarity measure can be the difference of the two sum vectors, which can be well captured by using
classifiers like linear SVM. Secondly, word vectors trained over an external dataset like Google News
can provide the knowledge base for language not present in training set, which is very likely in case of
argumentation mining since the arguments are expected to be unrelated. Lastly, since word vectors are
based on contextual information, they can infer Support relation from similar contexts in training data.

5 Experiments
All of the experiments in this section are performed on the AraucariaDB arguments. The experiments
are performed in a 5-fold cross-validation framework and the mean scores are reported. The folds are
over the set of arguments rather than the pairs of text nodes in order to maintain contextual independence
between the folds. A subset of AraucariaDB arguments have been used in the following experiments4.

Measure type-1
SVM

type-2
SVM

type-2
MLP

confidenceS 0.691 0.643 0.678
confidenceN 0.425 0.356 0.306

recallS 0.759 0.677 0.677
recallN 0.532 0.681 0.692

precisionS 0.193 0.68 0.688
precisionN 0.937 0.678 0.681
accuracy 0.561 0.679 0.684

Table 1: Classifier Performance: mean values are reported for Support (S) and Neutral (N ) relations.

5.1 Classifier Performance (Score Assignment)
Support edges present in the input argument structures are directly taken as Support pair examples for
the classifier. However, the generation of Neutral pairs is not so straightforward. To that end, we have
experimented with two kinds of frameworks. Please note that the selection of training framework does
not affect the ultimate goal of structure prediction. The framework used for training the classifiers is only
limited to the Score Assignment phase.

The first framework, which we call the type-1 framework, considers all the pairs (n1,n2) as Neutral
such that n1 and n2 are text nodes belonging to the same argument and n1 → n2 is not a Support
relation. This, however, gives rise to a huge imbalance between the Support and Neutral examples. Many
classifiers fail to perform well in such imbalance. Nonetheless, this issue can be resolved in classifiers
like linear SVM, by assigning class weights inversely proportional to class frequencies (King and Zeng,
2001) in the input data. We have followed this framework for type-1 SVM. Another way to resolve the
problem of imbalance is to down-sample the Neutral relations randomly. However, random sampling
did not perform well in our experiments, and thus, we posit that a random subset might not be a good
training sample.

To counter this, we devised the type-2 framework which only considers those pairs (n1,n2) as Neutral
for which n2 → n1 is a Support relation. This gives a perfectly balanced input dataset with one Neutral
example corresponding to each Support example. Thereby, making it suitable for machine learning
classifiers. It is difficult to compare the information captured by the two frameworks. While type-1

3The pre-trained word vectors for Google News dataset are freely available at
https://code.google.com/archive/p/word2vec/.

4Due to exponential order complexity of Structure Prediction algorithm, we have selected arguments of size 10 nodes or
less. Furthermore, arguments involving relations other than Support are ignored.
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might seem to capture more information than type-2, type-1 is also prone to more noise since the data is
larger as compared to type-2.

A Multi-layer Perceptron (MLP) classifier using the type-2 framework performed better than type-1
and type-2 SVM implementations for arguments with 3 nodes in our experiments. The network is made
up of 3 hidden layers with 200 neurons for each layer.

Table 1 summarizes the results for the three classifiers. We have shown 7 performance measures for
each classifier. Specifically, we present the mean of the confidence values provided by the classifier for
each class label, which is used directly in the Structure Prediction phase. We have scaled the confidence
measure5 linearly between 0 and 1 before using it as scores for Structure Prediction. A mean confidence
of 1, therefore, will be the perfect score for Support pairs. Similarly, a mean confidence of 0 will be the
perfect score for Neutral pairs. We can observe that each classifier outperforms the others for at least
some metric. One can observe that type-2 classifiers perform better in predicting Neutral pairs. The
confidence measure is lower than type-1 and the recall is higher as well. However, the precision for
Neutral is better for type-1 SVM because of the data imbalance. Type-2 MLP gave the best accuracy in
our experiments.

5.2 Structure Prediction Performance

Since the arguments are complex in nature, our approach (Section 3) often fails to predict the entire
structure. To counter this, we formulate a measure to evaluate the similarity between the predicted tree
and the input tree. The measure, SimScore, is defined as:

SimScore(T1, T2) =
|E(T1) ∩ E(T2)|
|E(T1)|

where T1 and T2 have the same set of nodes and E(T ) is the set of edges for a tree T. This measure quite
intuitively captures the fraction of edges common to both trees. Since the set of nodes are the same, this
measure turns out to be directly related to measures like the graph edit distance (Sanfeliu and Fu, 1983).

Since our problem formulation is new, it is difficult to compare the results with existing literature for
Structure Prediction in argumentation mining. However, we compare our performance to two baselines.
The first baseline, Random, is a baseline which randomly chooses any tree structure over the given set
of nodes. It can be shown that the expected value of the SimScore(Ti, T ) for a given tree T is equal
to 1/n where n is the number of nodes in T . For the second baseline, EDITS, we use the state-of-the-
art RTE software package EDITS (Kouylekov and Negri, 2010), instead of the classifiers we proposed,
for scoring the edges. However, the metric for scoring structures remains the same as the sum of edge
scores. In this case, the entailment relation corresponds to Support relation. EDITS has also been used
previously by Cabrio and Villata (2012) in the context of argumentation mining.

Nodes Arguments SimScore
type-1 SVM type-2 SVM type-2 MLP EDITS Random

2 10 0.9 0.8 0.8 0.7 0.5
3 187 0.564 0.566 0.625 0.363 0.333
4 85 0.529 0.552 0.482 0.250 0.250
5 62 0.446 0.399 0.435 0.231 0.2
6 72 0.363 0.341 0.322 0.263 0.166
7 58 0.369 0.323 0.309 0.231 0.142
8 41 0.230 0.19 0.199 0.205 0.125
9 19 0.351 0.28 0.222 0.265 0.111

10 23 0.217 0.188 0.115 0.212 0.1
Any 557 0.459 0.442 0.447 0.289 0.234

Table 2: Structure Prediction Performance: Mean of SimScore for the arguments grouped by the num-
ber of nodes in the argument. EDITS and Random are baselines whereas type-1 SVM, type-2 SVM and
type-2 MLP are proposed approaches.

5We have used the SVM and Multi-layer Perceptron classifier implementations provided by the open source library scikit-
learn (Pedregosa et al., 2011). For the confidence measure, we have used the decision function in the case of SVM and the
predicted probability in the case of MLP. Class imbalance was handled using ‘balanced’ weighting of classes.
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In Table 2, we compare the mean value of SimScore for each classifier. We have further categorized
the results based on the number of nodes present in the argument. As evident by the Random baseline, it
is expected that the performance will degrade as the number of nodes increase. We can observe that all the
three classifiers outperform the EDITS and Random baselines by a considerable factor. For the arguments
with 3 nodes, type-2 MLP outperforms type-1 SVM and type-2 SVM. However, for arguments with
higher number of nodes, type-1 SVM performs the best. The results reported are statistically significant
with a p-value of 0.00198 after performing a two-tailed paired t-test between the type-1 SVM and the
EDITS baseline.

5.3 Ablation Study
To test the efficacy of each individual feature/feature group, we have performed a leave-one-out ablation
test. In the second column of Table 3, we report the % decrease in the mean SimScore (for any number
of nodes) when the type-1 SVM classifier is used. Following observations are made from this study.

• Discourse markers and modal features are observed to be the least effective feature groups.

• Word vectors trained on an external knowledge base are highly effective.

Feature Set % decrease in SimScore
With Word Vectors Without Word Vectors

Discourse Markers 0.09% 0.21%
Modal Features 0.27% 0.37%

Wikipedia Similarity 0.59% 0.91%
Word N-grams 1.56% 21.14%
Word Vectors 11.4% -

Longest Common Phrase 1.02% 1.22%

Table 3: Ablation Study: The decrease in Structure Prediction performance due to the removal of each
kind of feature. The second column corresponds to the experiment with word vectors feature set. The
third column corresponds to the experiment in the absence of word vectors feature set.

We conjecture that word vectors encode much more information than n-grams and other linguistic fea-
tures for Score Assignment. To support this conjecture, we perform another ablation test to judge the
effectiveness of other features in absence of word vector feature group. The results are reported in the
third column of Table 3. We observe that word n-grams are now influential with a decrease of 21.14%,
which was not the case when word vectors were present. Therefore, we can deduce that word vectors
were able to capture word n-grams to a great extent. However, discourse markers and modal features
are still not very influential. Discourse markers assume 3.21% in the set of terms in AraucariaDB while
the modal features are present with 1.89%. We hypothesize the ineffectiveness of discourse markers and
modal features to their rarity in AraucariaDB.

6 Arguments with Attack relations
Till now, we have only considered arguments which solely include Support relations. A natural exten-
sion of this approach is to support the arguments which include both Support and Attack relations. In an
Attack relation, A → B, statement in node A is used to contradict the statement of node B. We could
not find enough argumentation datasets which include attack relations in a significant proportion. We
have used two datasets, namely, Debatepedia and Wikipedia from NoDE (Cabrio and Villata, 2014)6,
a benchmark of natural argument. Although these datasets are pretty small for a machine learning ap-
proach, our approach still performs reasonably well for these datasets. The first dataset, Debatepedia,
consists of data extracted from online debate platforms (debatepedia.org and procon.org). This dataset
consists of 260 (140 Support, 120 Attack) relations. Each debate is formed by the responses for a given
topic. Fig. 2a shows an example debate from the dataset for the topic of “Violent Games”. We will treat
such a structure for a given topic as an argument. There are 22 such topics in the dataset. We ignore one
topic: “Ground Zero Mosque”, because it does not follow a tree structure. The second dataset is built

6These datasets are described in detail, and are freely available for download, at http://www-sop.inria.fr/NoDE/NoDE-
xml.html.
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(a) An example debate structure from Debatepedia for the topic of Violent
Games.

(b) An example argument from the
Wikipedia dataset.

Figure 2: Argument structures with Attack relations. Green edges indicate Support relation whereas red
edges indicate Attack relation.

on the Wikipedia revision history over a four-year period, focusing on the top five most revised articles.
The Wikipedia dataset consists of 452 pairs (215 Support, 237 Attack). We consider the structure formed
by the revision history to be an argument. Therefore, each argument will be a linear graph, as shown in
Fig. 2b. To extend our approach for decoding the best possible tree, we need to modify the algorithm to
accommodate the fact that the classifiers are no longer binary.

There are now three possible relations for an ordered pair of nodes (a,b): Support, Attack and Neu-
tral. In the earlier case (AraucariaDB), when we assumed the sole presence of Support relations, distinc-
tion between Support and Neutral also included the effect of features that are not related to directional
inference, e.g., common Wikipedia entities. However, those features are now common to both Support
and Attack relations. To account for these complications, we consider two approaches:

Two-Step Approach: In the first step, a classifier marks the pairs which have either Support or Attack
edge. We call it the Detection classifier. In a similar fashion, this classifier can also be type-1 or type-2.
In the second step, an independent classifier resolves those edges into Support or Attack. We call the
second classifier the Resolver. In the Structure Prediction phase, the Detection classifier will decide the
best tree structure and the Resolver classifier will then resolve the edges into either Support or Attack.

Single-Step Approach: A multi-class classifier resolves all the three relations: Support, Attack or
Neutral. Neutral edges are generated using the type-1 framework: any possible edge formed by nodes
within the argument which is not an existing Support or Attack edge. In the Structure Prediction phase,
the tree structure with the maximum sum of edge scores is chosen. However, the edge score will now
be confidenceS − confidenceN instead of confidenceS for each Support edge, where confidenceS

and confidenceN are the confidence scores provided by the Single-Step classifier for the Support and
Neutral labels, respectively. Similarly, an edge score of confidenceA − confidenceN will be assigned
to each Attack edge, where confidenceA is the confidence score assigned by the Single-Step classifier
for the Attack label. The confidenceN is deducted due to the missing Neutral edge if a Support edge is
chosen. It is evident that assigning confidenceS − confidenceN resolves to assigning confidenceS in
Structure Prediction when there are no Attack labels.

For experiments on these approaches, two types of features were included in addition to the features
described in Section 3:
1. Negation Discourse Markers: These markers try to capture contrast or negation sentiments in a
sentence. Examples of such markers include: can’t, never, etc. This feature set improved the Single-Step
Classifier accuracy by 1.3%.
2. Negation/Contrast Relation Indicators: Features in this category intend to capture negation or
contrast relations present in an ordered pair of sentences. We have followed the approaches proposed in
(Harabagiu et al., 2006). This feature set improved the Single-Step Classifier accuracy by 6.4%.

In this section, we follow a leave-one-out Cross Validation framework due to the small size of the
datasets. Table 4 reports the mean classification accuracies for each classifier for the two datasets. We
can see that type-2 framework performs better than type-1 for the Detection classifier. The Two-Step
classifier combines the Detection (type-2) and the Resolver classification labels. These results imply that
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Classifier Debatepedia Wikipedia
Detection (type-1) 0.804 0.535
Detection (type-2) 0.906 0.553

Resolver 0.665 0.719
Two-Step 0.560 0.493

Single-Step 0.761 0.453

Table 4: Classifier Performance for datasets with Attack relations.
Nodes Arguments T-S-1 T-S S-S

7 2 0.83 0.666 0
8 1 0.57 1 0.428 0
9 1 0.875 0.5 0.25

10 2 0.721 0.385 0.055
11 4 0.325 0.225 0.05
12 2 0.545 0.409 0
13 2 0.541 0.333 0

Any 14 0.573 0.387 0.04

Table 5: Mean SimScore for Debatepedia. T-S-1: Step 1 of the Two-Step Approach T-S: Two-Step
Approach S-S: Single-Step Approach

a Single-Step classification approach performs better than Two-Step for the Debatepedia dataset7. How-
ever, we shall see in Table 5 that the Single-Step approach performs poorly in the Structure Prediction
phase. Table 5 reports the mean SimScore after the Structure Prediction for the Debatepedia dataset.
Similar to Table 2, these results are additionally filtered by the number of nodes in the argument. The
third column T-S-1, reports performance of the Two-Step approach before the edges are resolved into
Support or Attack, i.e. there is no distinction between Support and Attack edges. This is similar to the
experiments we performed in Section 5.2. The fourth column T-S, reports the overall performance of
the Two-Step approach. The fifth column S-S, reports the performance of the Single-Step approach. We
can see that Single-Step performs poorly as compared to Two-Step approach by a large margin. Table

Nodes Arg. T-S-1 T-S T-S-WL S-S
2 142 0.507 0.366 0.366 0.274
3 103 0.441 0.305 0.262 0.203
4 34 0.254 0.156 0.176 0.098

Any 279 0.452 0.318 0.304 0.227

Table 6: Mean SimScore for Wikipedia. T-S-WL: Two-Step Approach without any restriction for linear
structures. Rest of the abbreviations as per Table 5.
6 reports the mean SimScore for the Wikipedia dataset. Here we imposed an additional restriction for
the structures to be linear. However, in the fifth column T-S-WL, we report the SimScore following the
Two-Step approach without any restriction. We observe that the Single-Step approach performs rela-
tively better for the Wikipedia dataset as compared to the Debatepedia dataset. We think this is due to
the bigger arguments in Debatepedia.

7 Conclusion
In this paper, we introduced a two-phase approach towards identification of argument structure in natural
language text. The first phase involves building models for classifying text-hypothesis pairs into argu-
ment relations. The second phase makes use of the classifier confidence scores to construct the argument
structure. We have proposed different training models to train the argument relation classifier. With the
help of ablation study, we showed that our novel use of word vectors trained on an external corpus can
be a crucial feature for such tasks, contributing as much as 11.4% towards the performance. For the final
goal of Structure Prediction, our approach predicted almost twice as many correct edges as with the ran-
dom baseline. We showed that the proposed approach can be extended to arguments containing Attack
relations as well, where our experiments predicted an average of 38% edges correctly for Debatepedia
dataset.

7Arguments having size 13 or less are used in this experiment.
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Abstract

We address the problem of automatic short answer grading, evaluating a collection of approaches
inspired by recent advances in distributional text representations. In addition, we propose an un-
supervised approach for determining text similarity using one-to-many alignment of word vec-
tors. We evaluate the proposed technique across two datasets from different domains, namely,
computer science and English reading comprehension, that additionally vary between high-
school level and undergraduate students. Experiments demonstrate that the proposed technique
often outperforms other compositional distributional semantics approaches as well as vector
space methods such as latent semantic analysis. When combined with a scoring scheme, the
proposed technique provides a powerful tool for tackling the complex problem of short answer
grading. We also discuss a number of other key points worthy of consideration in preparing
viable, easy-to-deploy automatic short-answer grading systems for the real-world.

1 Introduction

Grading is an important task in schools and colleges in order to assess students’ understanding and guide
teachers in providing instructive feedback. However, answer grading is tedious work and the prevalence
of Computer Assisted Assessment has been limited to recognition questions with constrained answers
such as multiple choice questions. In this paper, we delve into the topic of automatic assessment of
students’ constructed responses. In particular, we consider short answers which are a few words or a few
sentences long, including everything in between fill-in-the-gap and essay-type answers (Burrows et al.,
2015). Automatic short answer grading (ASAG) involves scoring a student answer given an instructor-
provided model (reference) answer. Scoring schemes may optionally be provided to indicate the relative
importance of different parts of the model answer. This is a complex natural language understanding task
owing to linguistic variations (the same answer could be articulated in different ways), the subjective
nature of assessment (multiple possible correct answers or no correct answer) and lack of consistency in
human rating. For example, in Table 1, both student answers are correct, but this may not be apparent to
a computer system.

In this paper, we employ distributed vector representation of words (Bengio et al., 2003; Mikolov et
al., 2013b) for unsupervised ASAG, a task where graded student answers are not provided as training
data (although a reference answer is still available). This has not yet been systematically explored even
though such word embeddings have proven useful in natural language processing. (However, there has
been work using embeddings for supervised ASAG Sakaguchi et al. (2015), and neural networks for
essay grading Alikaniotis et al. (2016).) We conduct an empirical study to compare the proposed method
against various other vector aggregation including naive vector addition, Word Mover’s Distance (WMD)
(Kusner et al., 2015) and paragraph vectors (Le and Mikolov, 2014) using two datasets that come from
two different domains. The first is the undergraduate computer science dataset used in Mohler et al.
(2011), while the second is a high-school English reading comprehension task which we present and
intend to share with the community for future research. An important feature of the latter dataset is the

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

20



Question What is the unexpected fact stated by the writer? (2)

Model answer The unexpected fact stated by the writer is that although the modern air-conditioned
office is an unlikely place for work related injury, more and more people working
in such places complain of disorders involving hands, wrists and other body parts.

Scoring scheme Working in modern air-conditioned offices leads to more people getting work re-
lated injury (1.5)

People complain of disorders involving hands, wrists and other body parts. (0.5)

Student 1 answer More no. of white collar workers sitting in high tech offices are complaining of
disorders involving hands, wrists, arms, shoulders, neck and back

Student 2 answer The author states that many white collar workers in hi-tech offices complain of
disorders in their hands, wrists etc. But this is very unexpected because an air
conditioned office seem an unlike place for an injury to occur.

Table 1: Example of question, model answer, scoring scheme and two student answers from English
reading comprehension dataset.

presence of a weighted scoring scheme for each question, which demonstrates promise in improving
unsupervised ASAG performance when used.

In ASAG, student answers often contain information beyond the key concepts instructors are looking
for, though those extra pieces of text typically do not affect their scores unless they are contradictory
or wrong. In order to address the shortcomings of symmetric similarity techniques, we propose an
intuitive technique, Vecalign, which uses word vector based representations for unsupervised ASAG. Our
technique computes an aggregate of word-level distances based on one-to-many word vector alignment
using the cosine similarity of the aligned words vectors. Importantly, this allows us to assess similarity
of the student answer against the model answer asymmetrically as a textual entailment problem (whether
the student answer implies the model answer), which vector space methods such as paragraph vectors
cannot do. In summary, our contributions include:

1. A comparison of the applicability of popular distributed vector representations of text for unsuper-
vised ASAG across domains.

2. Proposal of an asymmetric word vector alignment method, which exploits weighted scoring
schemes. Results indicate that such schemes show promise for improving ASAG reliability by
allowing improved expressiveness in specifying answer requirements.

3. An analysis focusing on qualitative assessment of the methods, in light of the shortcomings of
correlation metrics such as Pearson’s r. To this end, we discuss points of consideration relating to
the methods and design of questions for unsupervised ASAG.

2 Background

Our work draws on two foundational bodies of research: that of unsupervised ASAG as well as distribu-
tional semantics.

2.1 Unsupervised ASAG

Two recent surveys (Roy et al., 2015; Burrows et al., 2015) provide comprehensive views of research
in ASAG, where similarity-based ASAG techniques can be broken into categories including lexical,
knowledge-based and vector space. Among the lexical measures, one of the earliest approaches is Eval-
uating Responses with BLEU (Perez et al., 2004). It adapted the most popular evaluation measure for
machine translation, i.e., BLEU, for ASAG with a set of natural language processing techniques such as
stemming, closed-class word removal, etc. Mohler and Mihalcea (2009) conducted a comparative study
of different semantic similarity measures for ASAG including knowledge-based measures using Word-
net as well as vector space-based measures such as Latent Semantic Analysis (LSA) (Landauer et al.,
1998) and Explicit semantic analysis (Gabrilovich and Markovitch, 2006). LSA has remained a popular
approach for ASAG and been applied in many variations (Graesser et al., 2000; Wiemer-Hastings and
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Zipitria, 2001; Kanejiya et al., 2003; Klein et al., 2011). Lexical and semantic measures have been com-
bined to validate natural complementarity of syntax and semantics for ASAG tasks (Perez et al., 2005).
Wael H Gomaa (2012) compared several lexical and corpus-based similarity algorithms (13 string-based
and 4 corpus) and their combinations for grading answers on a 0-5 scale. Dzikovska et al. (2013) con-
ducted a 5-way (non-ordinal scale) Student Response Analysis challenge as a part of SemEval-2013.
However, the task had more emphasis on giving feedback on student answers, possibly using textual
entailment techniques.

2.2 Compositional distributional semantics

In recent years there has been an abundance of distributional text representation techniques based on the
distributional hypothesis that words that appear in similar contexts have similar meanings (Harris, 1968).
Popular techniques include word2vec (Mikolov et al., 2013b) and Glove (Pennington et al., 2014) in
recent times, but also concepts such as latent semantic analysis (Deerwester et al., 1990) and its variants,
as well as measures of distributional similarity (Lee, 1999; Lin, 1998). Compositional techniques build-
ing on these word vectors derive vector representations of longer pieces of text, i.e., phrases, sentences,
paragraphs and documents. An approach of averaging of bag of word representations of text snippets
was employed by early researchers such as (Landauer and Dumais, 1997; Foltz et al., 1998). While they
were the first ones to introduce the notion, these approaches do not incorporate word order and have the
adaptive capacity to represent the variety of possible syntactic relations in a phrase. Additionally, Erk
and Pad (2008) highlighted that a fixed dimensionality vector may suffer from information scalability
and not able to represent text snippets of arbitrary length. Some related models include holographic re-
duced representations (Plate, 1995), quantum logic (Widdows, 2008), discrete-continuous models (Clark
and Pulman, 2007) and compositional matrix space model (Rudolph and Giesbrecht, 2010). Grefenstette
and Sadrzadeh (2011) analyze subject–verb–object triplets and find a matrix-based categorical model
to correlate well with human judgments. In recent times there has been a slew of work towards vector
composition using neural network models. Notable of those are the paragraph vector of Le and Mikolov
(2014) and the recursive deep models of Socher et al. (2013).

Most of the papers mentioned here emphasize obtaining a good generalized vector representation of
text snippets. In the case of ASAG, our primary interest is to obtain a measure of similarity between
them. We observe that for ASAG not all words in student and model answers are equally important.
Rather, pairs of related words which appear in student and model answers are more important than some
other words. Hence a measure which identifies and aggregates over such pairs would be meaningful to
apply, such as Word Movers Distance (WMD) (Kusner et al., 2015).

3 Techniques

There are a wide range of approaches for generating scores of similarity between documents (Choi et al.,
2010). We evaluate a variety of representative distributional semantics based approaches in the task of
unsupervised grading and propose an asymmetric method based on aligning word vectors that exploits
properties of grading tasks.

3.1 Document vector approaches

We consider two approaches that create document vector representations without composing individual
word representations. We use implementations available in the gensim Python package (Rehurek, 2010).

Latent semantic analysis: Latent semantic analysis uses matrix factorization to create vector repre-
sentation of words and documents in the same space. Since it has had a long history of use in ASAG, we
consider it as a point of comparison in evaluating the other methods presented here.

Paragraph vectors: A number of more recent approaches have been proposed for creating vector rep-
resentations of larger units of text (Mitchell and Lapata, 2010; Mikolov et al., 2013a; Grefenstette et al.,
2013). The Paragraph vector method of (Le and Mikolov, 2014) provides a way to train vector represen-
tations of such larger units by using an approach similar to that of (Mikolov et al., 2013a). Importantly,
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paragraph vector representations are not compositions of word vectors and they also implicitly consider
word order to some extent, which word vector compositions generally do not. We evaluated a variety of
configurations, with the distributed bag of words model performing the best.

3.2 Word vector based approaches
We also evaluate a number of methods based directly on word vectors of the continuous bag-of-words
(CBOW) model (Mikolov et al., 2013b). This method of word vector learning has allowed for word
vectors to be trained on larger quantities of data than before, permitting state-of-the-art results in various
tasks. Two key practical advantages of this is that the 100 billion word Google News Corpus can be
harnessed and that hyperparameters do not need to be tweaked.1

Averaging word vectors: A naive approach to creating a document representation is by collapsing
word vectors into a single vector through addition or multiplication. In ASAG, this approach has been
used in the context of LSA word vectors (Perez et al., 2005). Though composition of few word vectors
has demonstrated interesting results, one problem with this method of addition is that the best dimen-
sionality for vectors of a set of paragraphs may not be the same as those for words.

Word mover’s distance: This is a measure of similarity between groups of words that is equal to the
minimum total distance the word vectors of one document must move in the vector space in order to
become the word vectors of another document (Kusner et al., 2015). This method allows words to move
to multiple other words, when a mismatch in document sizes occurs.

Targeting scoring schemes with Vecalign: We present a vector alignment method, Vecalign-asym,
designed to capitalize on a feature of assessments: the asymmetry of scoring scheme items and student
answer sizes, comparable to the word2vec alignment feature used in the supervised system of Sakaguchi
et al. (2015).

Given two textsA andB (model and student answers, respectively), non-open-class words (words that
are not nouns, verbs, adjectives or adverbs) are first removed from both. Each word is then replaced by
its word vector representation such that we now have A consisting of vectors (a1,a2, . . . ,am) and B
consisting of vectors (b1,b2, . . . ,bn). We define the one-to-many similarity using the cosine similarity
of the component word vectors:

asym(A,B) =

∑
ai∈A maxbj∈B(cos(ai,bj))

m
(1)

This similarity measure is asymmetric, and is motivated by the observation that model answers are
often more concise than student answers, since model answers typically contain only the salient points,
while student answers are frequently less to the point, without necessarily being less correct.

If a scoring scheme is available, the awarded score can be defined as the weighted average of the
asymmetric Vecalign similarity of each element in the scoring scheme with the student answer. While
other methods can similarly be used with scoring scheme, the asymmetry between the size of the student
answer and the scoring scheme suits Vecalign-asym well.

We believe that scoring schemes represent a very promising approach for both human grading and
ASAG for a variety of reasons: (a) they elicit clearer wording of specifically what the creator of the
question is looking for; (b) they allow for explicit weighting of the importance of these components; (c)
By introducing smaller scoring scheme items, each of which should be covered in a student answer, they
decompose the problem into sub-problems that have a textual entailment flavor, and more readily permit
the use of effective asymmetric metrics; (d) We additionally conjecture that scoring schemes improve
agreement between graders by making the creator think about the question more carefully by providing
clearer guidance to graders.

In addition to the asymmetric Vecalign-asym, a symmetric version can be defined by the average of the
asymmetric similarity in both directions. This is similar to the approach of the lexical similarity methods
of (Mohler and Mihalcea, 2009). We refer to this measure simply as Vecalign.

1While these vectors were trained in a supervised manner, our proposed method still remains unsupervised analogous to
how LSA has been treated as an unsupervised textual similarity measure. An interesting future study would be to train domain
specific vectors based on student answer corpora but our datasets were very small for doing the same.
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Figure 1: Questions 7 and 12 from the reading comprehension dataset. The ASAG scores come from
the vecalign approach using the scoring scheme as the gold standard. Overall correlation is less than the
average of its parts. Darker circles and triangles represent duplicate datapoints.

4 Data

We evaluate these methods on two datsets. The first is a set of questions (CSDataset), model answers and
student answers taken from an undergraduate computer science course (Mohler et al., 2011). The dataset
comprises of 87 questions from a number of assignments and examinations, with responses from 31
students. The second dataset comes from a high-school reading comprehension task for Class (Standard)
XII (12) students as a part of a course on English in the Central Board of Secondary Education (CBSE)
in India (RCDataset). The dataset comprises 14 questions, each with the recorded responses from 58
students. Along with model answers, questions in this dataset also have fine grained scoring schemes.
We will share the dataset with people who are interested in pursuing research in this field and will be
benefited by the dataset. Both datasets were tokenized with the Punkt tokenizer implementation of NLTK
(Bird, 2006) before case normalization and lower-casing.

5 Quantitative evaluation

5.1 Metrics

Pearson’s r has been used quite extensively in prior ASAG research. However, the suitability of Pear-
son’s r has been questioned in the context of ASAG (Mohler and Mihalcea, 2009) as well as in general
(Willmott, 1982). We too find issue with the use of Pearson’s r. Firstly, very different scatter plots can
yield similar correlations. Different questions result in different lines of best fit, which sullies the overall
correlation. Consider Figure 1, which presents scatter plots of one ASAG system against the human
scores. The individual correlations of the questions are both 0.72, but the overall correlation drops to
0.55. For this reason we favour question-wise correlation. Although this means that each number is
determined by fewer datapoints and the calculations are statistically less meaningful, we still find that
this evaluation is more informative. Furthermore, Pearson’s r also penalizes non-linearities. For unsu-
pervised ASAG this is not ideal, as in this case a nonlinear function cannot be learned to optimize for
linear correlation. Spearman’s ρ, while still subject to the first two problems, avoids this problem and
thus we primarily report Spearman’s ρ.

Finally, we note that using measures of correlation sidesteps the real-world issue of allocating an
actual score to the students. If the ASAG system is used for merely ranking the students, this is not a
problem. However, if we need to scale ASAG scores to appropriately grade students, it is a nontrivial
problem that is task dependent and likely requires some degree of supervision. The limitations of these
metrics motivated us to perform the qualitative evaluation of Section 6, which was influenced largely
by manual inspection of the ASAG system outputs and the relationship between scores and the gold-
standard average of human scores.
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Method Spearman’s ρ of question number
All 1 3 12 27 41 45 50 60 69 73 82 84 87

IAA .68 .76 .62 .96 .99 .54 .06 .47 1 .52 .58 und und .85
VAA .50 .83 .60 .64 .01 .17 .24 .59 .72 .88 .54 -.04 -.04 .43
VA .49 .85 .55 .58 .25 .19 .08 .62 .34 .55 .51 -.01 .01 .46
W2V-Add .32 .74 .03 .29 .12 .21 .41 .64 .26 .55 .21 -.04 .01 .18
WMD .42 .85 .02 .57 .35 .02 .17 .64 .34 .55 .44 .06 .01 .65
Para-Vec .49 .75 -.14 -.33 .17 .07 .19 .44 .30 .53 .47 .32 .04 .62
LSA .39 .65 .07 -.45 .47 -.21 .22 .52 .13 .53 -.06 -.08 .04 .54

Table 2: Spearman’s ρ of the ASAG systems on the CSDataset of Mohler et. al. (2011). There were 87
questions in total, and so only a representative sampling is presented, along with the overall correlation
across all 87 questions. Undefined numbers are indicated by und. (the correlation is undefined when the
variance along any dimension is zero).

Method Gold Spearman’s ρ of question number
All 1 2 3 4 5 6 7 8 9 10 11 12 13 14

IAA scheme .75 .73 .77 .80 .27 .86 und. .71 .70 .60 .61 .93 .65 .55 .75
VAA scheme .16 .66 .75 .73 .59 und. und. .73 .69 .56 .48 .74 .69 .71 .76
VA scheme .09 .62 .51 .70 .55 und. und. .68 .65 .53 .39 .58 .63 .66 .76
W2V-Add scheme -.16 .66 .37 .72 .46 .21 und. .64 .55 .57 .43 .48 .43 .63 .68
WMD scheme .08 .56 .16 .58 .52 -.01 und. .51 .37 .45 .36 .60 .59 .58 .68
Para-Vec scheme -.04 .54 .09 .61 .04 .10 und. .49 .35 .38 .47 .29 .52 .55 .61
LSA scheme .09 .14 .17 .60 .48 .31 und. .35 .19 .27 .33 und. .57 .43 .50
VAA ref. .29 .68 .75 .69 .36 .05 und. .71 .49 .48 .48 .74 .44 .71 .66
VA ref. .32 .61 .47 .65 .26 -.11 und. .67 .54 .46 .46 .58 .56 .66 .72
W2V-Add ref. .13 .65 .74 .62 .38 .03 und. .61 .36 .39 .46 .48 .36 .60 .52
WMD ref. .27 .62 .69 .67 .35 -.07 und. .70 .45 .46 .46 .60 .54 .61 .68
Para-Vec ref. .42 .68 .42 .61 .35 -.02 und. .60 .43 .38 .48 .32 .45 .46 .45
LSA ref. .20 .10 .47 .65 .22 .26 und. .48 .19 .16 .25 .22 .45 .35 .14

Table 3: Overall and question-wise performance of methods on the reading comprehension dataset. Gold
indicates whether the gold standard is the marking scheme or model answer.

5.2 Observations
Tables 2 and 3 present the overall and question-wise correlations of the ASAG systems against the av-
erage of the human scores. Only the reading comprehension dataset had scoring scheme associated,
hence Table 3 shows results with respect to both model answer and scoring scheme. We additionally
present the annotators’ correlation with one another as a point of reference (IAA), though these aren’t
ASAG scores. Due to space constraints, we opted to present a representative sample of the questions
from the CSdataset.2 In each table, we compare vecalign-asym (VAA), vecalign (VA), WMD (WMD),
LSA (LSA), Paragraph Vectors (Para-Vec), and word vector addition (W2V-Add). We observe that the
relative performance of models stays approximately the same across both datasets. In most cases, Para-
graph Vectors and LSA underperform the word2vec based approaches, which is an indication that the
large dataset afforded by these methods is a key advantage. Furthermore, note that results of paragraph
vector and LSA were from among the best performing hyperparameter configurations, as a number of
them were trained.

5.2.1 Comparison with human correlation
Note that the correlation of the ASAG grades cannot be fairly compared with the correlation of the
human-assigned grades, since the ASAG grades are evaluated against the average of the human scores.
However, it is nevertheless meaningful to consider when ASAG correlation is comparable to or exceeds
that of humans, as it highlights questions where automated marking might be as effective as manual
marking. It is worth noting that in the the RCDataset, the asymmetric approach harnessing the scheme

2Note, however, that the reported figure for all is across all 87 questions.
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has a higher correlation than the inter-annotator agreement on 5 out of the 14 questions. In other questions
the ASAG system is not so far behind the human agreement. The overall correlation is very low compared
to that of humans, since human marks are scored on a consistent scale between questions, whereas
ASAG grades are not. As mentioned in Section 5.1, this makes establishing correlation over a number
of questions not very informative.

5.2.2 Performance using scoring schemes
As can be seen in Table 3, in 10 out of 14 questions of RCDataset, the asymmetric approach using the
scoring scheme is the best performing approach: it has 6 out of 14 questions with a correlation over 0.7
and another 3 are over 0.6. The asymmetric vecalign method has an advantage over the other methods
that measured student answers against scheme items, since scoring scheme items are typically far smaller
than student answers. The asymmetric vecalign method is also frequently the best performer even when
evaluating against the model answer. This is also a reflection on the asymmetry of the model answer.
Student answers tend to be longer, while the provided model answer is shorter, capturing only the salient
points.

5.2.3 Ensemble performance
We experimented with a few ensemble methods where the score for answers assigned by different meth-
ods were averaged to produce a final score. These combinations involved averaging the results of ve-
calign against the model answer along with asymmetric vecalign against the scoring scheme (thus in-
tending to harness information both from the scoring scheme and model answer), as well as combinations
considering LSA and Paragraph Vectors. However, in all cases, the ensemble approach underperformed
the best constituent approach, since different methods implicitly score on different scales.

6 Discussion

We present a discussion involving qualitative assessment of the ASAG systems with respect to selected
questions from the CSDataset (“CSQ”).

6.1 Questions yielding low or undefined correlations

A number of questions have a low or undefined correlation because of a clear deficiency in the system.
For example, the model answer for CSQ27 is “run-time error”. Since “run-time” doesn’t exist in the
vocabulary of the CBOW model trained on the Google News Corpus, only “error” is considered as
relevant, and as such responses such as “compilation error” receive high scores, while “run-time” receives
none. Note that LSA did not completely fall down on this question.

In other cases, low correlation is not representative of poor system performance. Consider CSQ84. The
model answer is “push and pop”. This response was present in every student answer, and every student
answer was awarded 5/5, except for one who was awarded 4.5. Vecalign-asym awarded almost every
student’s answer a perfect score, except for one that included “pop-” as a token. Infrequent deviation
from perfect scores yields unreliable correlations.

6.1.1 Answer open-endedness and pattern matching
We observe that the more open-ended the expresssion of a legitimate answer can be, the less useful the
model answer is. However, open-endedness is an important motivation for short answers as opposed to
multiple choice questions. Therefore, a balance must be struck. For CSQ41, the model answer describes
the main advantage of linked lists as “the linked lists can be of variable length”. The notion of “variable
length” can be described in many ways that are not so easily capturable even by semantic vectors. An
answer “its resizable” was given a low score by the ASAG system. Other answers described linked lists
as being able to be “grown dynamically” and that “elements can be added to a linked list w/o defining
any size.”.

At the other end of the spectrum, there were questions where the model answer indicated that simple
pattern matching approaches for grading would suffice, and perhaps be more effective than distribu-
tional semantics based approaches. This is particularly true for jargon such as the previously mentioned
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“enqueue and dequeue” and “push and pop”. Some questions were not suitable for a short answer frame-
work at all, such as yes/no questions. In designing assessments for automatic grading, identifying where
simple pattern matching or multiple choice would suffice would improve system performance.

6.1.2 Fundamental limitations of ASAG and question quality
The example of CSQ12 also highlights some fundamental limitations. Student answers that received full
marks by graders included answers such as “any number you want” and “as many as needed”. However,
the model answer was “unlimited number”, making it difficult for ASAG.

CSQ45 asks “what is the main advantage of a doubly-linked list over a basic linked list?” and uses
the model answer “all the deletion and insertion operations can be performed in constant time, including
those operations performed before a given location in the list or at the end of the list”. The correlation
between human answers for this question was only 0.06, indicating problems with the question and model
answer. Since there are multiple advantages and disadvantages of doubly-linked lists, such a question
may be more suited to a scoring scheme reference comprised of shorter items that can be matched against
the student answer. Another notable reason is that the mention of “speed” and “fast” cannot easily be
related to “constant time”.

6.1.3 Length of model answer
The model answers in the computer science course were often short and sweet, which is likely why
Vecalign-asym outperformed Vecalign. In many cases, student answers elaborated beyond what was
in the model and were thus punished by the symmetric method. The asymmetric method avoided this,
which explains its significantly better performance on some questions (e.g. CSQ60), where the model
answer is a single word.

6.1.4 Text normalization
One key step of normalization that we performed was case normalization, which demonstrated its im-
portance for word vectors. CSQ12 has a model answer “Unlimited number”. “Unlimited” has a cosine
similarity with “infinite” of only 0.22. But when lowercased, the similarity jumps to 0.48.

6.1.5 Interpretability
Since Vecalign aligns word vectors, it is usually simple to interpret how a score was arrived at for a
student answer. However aragraph vectors and LSA are notably more opaque.

6.1.6 Appropriateness of scoring schemes
Use of scoring schemes work well in conjunction with the Vecalign-asym method. However, perfor-
mance is notably worse when the scoring schemes are used with the other symmetric approaches. Since
the elements of the scoring scheme are small, it is a textual entailment problem, which is inherently
asymmetric.

7 Conclusion

Although ASAG has been investigated for many years, adoption is not widespread. This is partly because
ASAG systems often do not perform adequately and those that do perform well enough for real-world
use typically require significant manual supervision (Liu et al., 2014). In order to make ASAG more
practicable in the real-world, effort should be placed in situating available models so that it is feasible
to create reliable ASAG systems without an overly large amount human of supervision. In this paper,
we have made a contribution towards minimizing the impact of this compromise by presenting a simple,
effective, and interpretable method of word vector alignment in conjunction with the use of weighted
marking schemes, as well as evaluating a variety of alternative approaches. Another important part of
making ASAG feasible is examination of which types of questions are amiable to automation. This is an
important consideration since questions on which ASAG systems perform poorly are often also the ones
on which humans disagree.
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Abstract

Word embeddings are now ubiquitous forms of word representation in natural language process-
ing. There have been applications of word embeddings for monolingual word sense disambigua-
tion (WSD) in English, but few comparisons have been done. This paper attempts to bridge that
gap by examining popular embeddings for the task of monolingual English WSD. Our simplified
method leads to comparable state-of-the-art performance without expensive retraining.

Cross-Lingual WSD – where the word senses of a word in a source language e come from a
separate target translation language f – can also assist in language learning; for example, when
providing translations of target vocabulary for learners. Thus we have also applied word embed-
dings to the novel task of cross-lingual WSD for Chinese and provide a public dataset for further
benchmarking. We have also experimented with using word embeddings for LSTM networks and
found surprisingly that a basic LSTM network does not work well. We discuss the ramifications
of this outcome.

1 Introduction

A word takes on different meanings, largely dependent on the context in which it is used. For example,
the word “bank” could mean “slope beside a body of water”, or a “depository financial institution” 1.
Word Sense Disambiguation (WSD) is the task of identifying the contextually appropriate meaning of
the word. WSD is often considered a classification task, in which the classifier predicts the sense from a
possible set of senses, known as a sense inventory, given the target word and the contextual information
of the target word. Existing WSD systems can be categorised into either data-driven supervised or
knowledge-rich approaches. Both approaches are considered to be complementary to each other.

Word embeddings have become a popular word representation formalism, and many tasks can be done
using word embeddings. The effectiveness of using word embeddings has been shown in several NLP
tasks (Turian et al., 2010). The goal of our work is to apply and comprehensively compare different uses
of word embeddings, solely with respect to WSD. We perform evaluation of the effectiveness of word
embeddings on monolingual WSD tasks from Senseval-2 (held in 2001), Senseval-3 (held in 2004), and
SemEval-2007. After which, we evaluate our approach on English–Chinese Cross-Lingual WSD using
a dataset that we constructed for evaluating our approach on the translation task used in educational
applications for language learning.

2 Related Work

Word Sense Disambiguation is a well-studied problem, in which many methods have been applied. Exist-
ing methods can be broadly categorised into supervised approaches, where machine learning techniques
are used to learn from labeled training data; and unsupervised techniques, which do not rely on labeled
data. Unsupervised techniques are knowledge-rich, and rely heavily on knowledge bases and thesaurus,

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

1http://wordnetweb.princeton.edu/perl/webwn?s=bank
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such as WordNet (Miller, 1995). It is noted by Navigli (2009) that supervised approaches using memory-
based learning and SVM approaches have worked best.

Supervised approaches involve the extraction of features and then classification using machine learn-
ing. Zhong and Ng (2010) developed an open-source WSD system, ItMakesSense (hereafter, IMS),
which was considered the state-of-the-art at the time it was developed. It is a supervised WSD system,
which had to be trained prior to use. IMS uses three feature types: 1) individual words in the context
surrounding the target word, 2) specific ordered sequences of words appearing at specified offsets from
the target word, and 3) Part-Of-Speech tags of the surrounding three words.

Each of the features are binary features, and IMS trains a model for each word. IMS then uses an sup-
port vector machine (SVM) for classification. IMS is open-source, provides state-of-the-art performance,
and is easy to extend. As such, our work features IMS and extends off of this backbone.

Training data is required to train IMS. We make use of the One-Million Sense-Tagged Instances
(Taghipour and Ng, 2015a) dataset, which is the largest dataset we know of for training WSD systems,
in training our systems for the All Words tasks.

WSD systems can be evaluated using either fine-grained scoring or coarse-grained scoring. Under
fine-grained scoring, every sense is equally distinct from each other, and answers must exactly match.
WordNet is often used as the sense inventory for monolingual WSD tasks. However, WordNet is a fine-
grained resource, and even human annotators have trouble distinguishing between different senses of
a word (Edmonds and Kilgarriff, 2002). In contrast, under coarse-grained scoring, similar senses are
grouped and treated as a single sense. In some WSD tasks in SemEval, coarse-grained scoring was done
in order to deal with the problem of reliably distinguishing fine-grained senses.

2.1 Cross-Lingual Word Sense Disambiguation

Cross-Lingual WSD was, in part, conceived as a further attempt to solve this issue. In Cross-Lingual
WSD, the specificity of a sense is determined by its correct translation in another language. The sense
inventory is the possible translations of each word in another language. Two instances are said to have
the same sense if they map to the same translation in that language. SemEval-2010 (Lefever and Hoste,
2010)2 and SemEval-2013 (Lefever and Hoste, 2013)3 featured iterations of this task. These tasks fea-
tured English nouns as the source words, and word senses as translations in Dutch, French, Italian,
Spanish and German.

Traditional WSD approaches are used in Cross-Lingual WSD, although some approaches leverage
statistical machine translation (SMT) methods and features from translation. Cross-Lingual WSD in-
volves training by making use of parallel or multilingual corpora. In the Cross-Lingual WSD task in
SemEval-2013, the top performing approaches used either classification or SMT approaches.

2.2 WSD with Word Embeddings

In NLP, words can be represented with a distributed representation, such as word embeddings, which
encodes words into a low dimensional space. In word embeddings, information about a word is dis-
tributed across multiple dimensions, and similar words are expected to be close to each other in the
vector space. Examples of word embeddings are Continuous Bag of Words (Mikolov et al., 2013), Col-
lobert & Weston’s Embeddings (Collobert and Weston, 2008), and GLoVe (Pennington et al., 2014). We
implemented and evaluated the use of word embedding features using these three embeddings in IMS.

An unsupervised approach using word embeddings for WSD is described by Chen (2014). This ap-
proach finds representation of senses, instead of words, and computes a context vector which is used
during disambiguation.

A different approach is to work on extending existing WSD systems. Turian (2010) suggests that for
any existing supervised NLP system, a general way of improving accuracy would be to use unsupervised
word representations as additional features. Taghipour (2015b) used C&W embeddings as a starting
point and implemented word embeddings as a feature type in IMS. For a specified window, vectors for

2http://stel.ub.edu/semeval2010-coref/
3https://www.cs.york.ac.uk/semeval-2013/
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the surrounding words in the windows, excluding the target word, are obtained from the embeddings and
are concatenated, producing d ∗ (w − 1) features, where d is the number of dimensions of the vector,
and w is the window size. Each feature is a floating point number, which is the value of the vector in
a dimension. We note that (Taghipour and Ng, 2015b) only reported results for C&W embeddings, and
did not experiment on other types of word embeddings.

Other supervised approaches using word embeddings include AutoExtend (Rothe and Schütze, 2015),
which extended word embeddings to create embeddings for synsets and lexemes. In their work, they
also extended IMS, but used their own embeddings. The feature types introduced by this work bear
similarities to how Taghipour used word embeddings, but without Taghipour’s method of scaling each
dimension of the word embeddings.

To conclude, word embeddings have been used in several methods to improve on state-of-the-art re-
sults in WSD. However, to date, there has been little work investigating how different word embeddings
and parameters affect performance of baseline methods of WSD. As far as we know, there has only
been one paper comparing the different word embeddings with the use of basic composition methods in
WSD. Iacobacci (2016) performed an evaluation study of different parameters when enhancing an exist-
ing supervised WSD system with word embeddings. Iacobacci noted that the integration of Word2Vec
(skip-gram) with IMS was consistently helpful and provided the best performance. Iacobacci also noted
that the composition methods of average and concatenation produced small gains relative to the other
composition strategies introduced. However, Iacobacci did not investigate the use of (Taghipour and Ng,
2015b)’s scaling strategy, which was crucial to improve the performance of IMS.

We also did not find any recent work attempting to integrate modern WSD systems for real-world
education usage, and to evaluate the WSD system based on the requirements and suitability for education
use. We aim to fill this gap in applied WSD with this work.

3 Methods

As Navigli (2009) noted that supervised approaches have performed best in WSD, we focus on inte-
grating word embeddings in supervised approaches; in specific, we explore the use of word embeddings
within the IMS framework. We focus our work on Continuous Bag of Words (CBOW) from Word2Vec,
Global Vectors for Word Representation (GloVe) and Collobert & Weston’s Embeddings(C&W). The
CBOW embeddings were trained over Wikipedia, while the publicly available vectors from GloVe and
C&W were used. Word2Vec provides 2 architectures for learning word embeddings, Skip-gram and
CBOW. In contrast to Iacobacci (2016) which focused on Skip-gram, we focused our work on CBOW. In
our first set of evaluations, we used tasks from Senseval-2 (hereafter SE-2), Senseval-3 (hereafter SE-3)
and SemEval-2007 (hereafter SE-2007) to evaluate the performance of our classifiers on monolingual
WSD. We do this to first validate that our approach is a sound approach of performing WSD, showing
improved or identical scores to state-of-the-art systems in most tasks.

Similar to the work by Taghipour (2015b), we experimented with the use of word embeddings as
feature types in IMS. However, we did not just experiment using C&W embeddings, as different word
embeddings are known to vary in quality when evaluated on different tasks (Schnabel et al., 2015). We
performed evaluation on several tasks. For the Lexical Sample (LS) tasks of SE-2 (Kilgarriff, 2001) and
SE-3 (Mihalcea et al., 2004), we evaluated our system using fine-grained scoring. For the All Words
(AW) tasks, fine-grained scoring is done for SE-2 (Palmer et al., 2001) and SE-3 (Snyder and Palmer,
2004); both the fine (Pradhan et al., 2007) and coarse-grained were used in (Navigli et al., 2007) AW
tasks in SE-2007. In order to evaluate our features on the AW task, we trained IMS and the different
combinations of features on the One Million Sense-Tagged corpus (Taghipour and Ng, 2015a).

To compose word vectors, one method (used as a baseline) is to sum up the word vectors of the words
in the surrounding context or sentence. We primarily experimented on this method of composition, due to
its good performance and short training time. For this, every word vector for every lemma in the sentence
(exclusive of the target word) was summed into a context vector, resulting in d features. Stopwords and
punctuation are discarded. In Turian’s (2010) work, two hyperparameters — the capacity (number of
dimensions) and size of the word embeddings — were tuned in his experiments. We follow his protocol
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and perform the same in our experiments.
As the remaining features in IMS are binary features, they are not comparable to the word em-

beddings which can have unbounded values, leading to unbalanced influence. As suggested by
Turian (2010), we should scale down the word embeddings values to the same range as other fea-
tures. The embeddings are scaled to control their standard deviations. We implement a variant of
this technique as done by Taghipour (2015b), in which we set the target standard deviation for each
dimension. A comparison of different values of the scaling parameter, σ is done. For each i ∈ {1, 2, ..d}:

Ei ← σ × Ei
stdev(Ei)

, where σ is a scaling constant that sets the target standard deviation

Similar to Turian (2010) and Taghipour (2015b), we found that a value of 0.1 for σ works well, as
seen in Table 1. We evaluate the effect of varying the scaling factor with the feature of the sum of the
surrounding word vectors, and find that the summation feature works optimally with 50 dimensions.

Table 1: Effects on accuracy when varying scaling factor on C&W embeddings

Method SE-2 LS SE-3 LS
C&W, unscaled 0.569 0.641
C&W, σ=0.15 0.665 0.731
C&W, σ=0.1 0.672 0.739
C&W, σ=0.05 0.664 0.735

In Table 2, we evaluate the performance of our system on both the LS and AW tasks of SE-2 (held in
2001) and SE-3’s (held in 2004), and the AW tasks of SE-2007, which were evaluated on by Zhong and
Ng (2010). We obtain statistically significant improvements over IMS on the LS tasks. Our enhance-
ments to IMS to make use of word embeddings also give better results on the AW task than the original
IMS, the respective Rank 1 systems from the original shared tasks, and several recent systems developed
and evaluated evaluated on the same tasks. We note that although our system increased accuracy on IMS
on several AW tasks, the differences were not statistically significant (as measured using McNemar’s test
for paired nominal data).

It can be seen that the simple enhancement of integrating word embedding using the baseline compo-
sition method, followed by the scaling step, improves IMS, and we get performance comparable to or
better than the Rank 1 systems in many tasks.

As word embeddings with higher dimensions increases the feature space of IMS, this may lead to
overfitting on some datasets. We believe, this is why a smaller number of dimensions work better in
the LS tasks. However, as seen in Table 3, this effect was not observed in the AW task. We also note
that relatively poorer performance in the LS tasks may not necessarily result in poor performance in the
AW task. We see from the results that the combination of (Taghipour and Ng, 2015b)’s scaling strategy
and summation produced results better than the proposal in (Iacobacci et al., 2016) to concatenate and
average (0.651 and 0.654), suggesting that the scaling factor is important for the integration of word
embeddings for supervised WSD.

3.1 LSTM Network

A Long Short Term Memory (LSTM) network is a type of Recurrent Neural Network which has recently
been shown to have good performance on many NLP classification tasks. The potential benefit of using
an approach using LSTM over our existing approach in IMS is this is that an LSTM network is able to use
more information about the sequence of words. For WSD, Kågebäck & Salomonsson (2016) explored
the use of bidirectional LSTMs. In our approach, we explore a simpler naı̈ve approach instead.

For the Lexical Sample tasks, we train the model on the training data provided for the task. For the
All Words task, we trained the model on the One Million Sense-Tagged dataset. For each task, similar to
IMS, we train a model for each word, using GloVe word embeddings as the input layer.
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Table 2: Comparison of systems by their accuracy score on both Lexical Sample and All Words tasks.
Rank 1 system refers to the top ranked system in the respective shared tasks.

Method SE-2 SE-3 SE-2 SE-3 SE-2007 SE-2007
LS LS AW AW Fine- Coarse-

grained grained
IMS + CBOW σ=0.1 (pro-
posed)

0.680 0.741 0.677 0.679 0.604 0.826

IMS + CBOW σ=0.15 (pro-
posed)

0.670 0.734 0.673 0.675 0.615 0.828

IMS 0.653 0.726 0.682 0.674 0.585 0.816
Rothe and Schütze (2015) 0.666 0.736 - - - -
Taghipour and Ng (2015b) 0.662 0.734 - 0.682 - -
(Iacobacci et al., 2016) 0.699 0.752 0.683 0.682 0.591 -
(Chen et al., 2014) - - - - - 0.826
Rank 1 System 0.642 0.729 0.69 0.652 0.591 0.825
Baseline (Most Frequent
Sense & Wordnet Sense 1)

0.476 0.552 0.619 0.624 0.514 0.789

The performance of the naı̈ve LSTM is poor in both type of tasks, as seen in Table 4. The models
converge to just using the most common sense for the AW task. A possible reason for this is overfitting.
WSD is known to suffer from data sparsity. Although there are many training examples in total, as
we train a separate model for each word, many individual words only have few training examples. We
note other attempts to use neural networks for WSD may have run into the same problem. Taghipour
and Ng (2015b) indicated the need to prevent overfitting while using a neural network to adapt C&W
embeddings by omitting a hidden layer and adding a Dropout layer, while Kågebäck and Salomonsson
(2016) developed a new regularization technique in their work.

4 English-Chinese Cross-Lingual Word Sense Disambiguation

We now evaluate our proposal on the Cross-Lingual Word Sense Disambiguation task. One key appli-
cation of such task is to facilitate language learning systems. For example, MindTheWord4 and Word-
News (Chen et al., 2015) are two applications that allow users to learn vocabulary of a second language
in context, in the form of providing translations of words in an online article. In this work, we model this
problem of finding translations of words as a variant of WSD, Cross-Lingual Word Sense Disambigua-
tion, as formalized in (Chen et al., 2015).

In the previous section, we have validated and compared enhancements to IMS using word embed-
dings. These have produced results comparable to, and in some cases, better than state-of-the-art perfor-
mance on the monolingual WSD tasks. We further evaluate our approach for use in the Cross-Lingual
Word Sense Disambiguation for performing contextually appropriate translations of single words. To
accomplish this, we first construct a English–Chinese Cross-Lingual WSD dataset. For our sense inven-
tory, we work with the existing dictionary in the open-source educational application, WordNews (Chen
et al., 2015), which contains a dictionary of English words and their possible Chinese translations. We
finally deploy the trained system as a fork of the original WordNews.

4.1 Dataset

As far as we know, there is no existing publicly available English–Chinese Cross-Lingual WSD dataset.
To evaluate our proposal, therefore, we hired human annotators to construct such an evaluation dataset
using sentences from recent news articles. As the dataset is constructed using recent news data, it is a

4https://chrome.google.com/webstore/detail/mindtheword/fabjlaokbhaoehejcoblhahcekmogbom

34



Table 3: Accuracy of adding word embeddings to IMS, with different parameters, on SE-2, SE-3 LS and
AW tasks and SE-2007 AW task

Type Size Compose Scaling SE-2 SE-3 SE-2 SE-3 SE-2007 SE-2007
LS LS AW AW Fine- Coarse-

grained grained

C&W 50 Sum
0.05 0.666 0.734 0.679 0.673 0.594 0.818
0.1 0.671 0.738 0.678 0.673 0.6 0.819

0.15 0.666 0.732 0.675 0.672 0.598 0.817

CBOW 50 Sum
0.05 0.672 0.744 0.68 0.677 0.604 0.824
0.1 0.68 0.741 0.677 0.679 0.604 0.826

0.15 0.67 0.734 0.673 0.675 0.615 0.828

GloVe 50 Sum
0.05 0.675 0.738 0.676 0.678 0.596 0.819
0.1 0.679 0.741 0.678 0.68 0.594 0.819

0.15 0.674 0.731 0.68 0.678 0.591 0.819

CBOW 200 Sum
0.05 0.679 0.742 0.679 0.68 0.602 0.823
0.1 0.669 0.731 0.676 0.675 0.602 0.82

0.15 0.651 0.715 0.667 0.673 0.594 0.822

GloVe 200 Sum
0.05 0.682 0.741 0.68 0.682 0.6 0.823
0.1 0.666 0.73 0.677 0.679 0.591 0.827

0.15 0.654 0.706 0.674 0.675 0.591 0.826
C&W 50 Concat 0.1 0.659 0.724 0.679 0.674 0.585 0.818

CBOW
50

Concat
0.1 0.66 0.725 0.678 0.672 0.581 0.816

200 0.1 0.667 0.729 0.675 0.67 0.591 0.819

GloVe
50

Concat
0.1 0.657 0.722 0.679 0.671 0.583 0.818

200 0.1 0.664 0.728 0.677 0.669 0.587 0.817

Table 4: Accuracy of a basic LSTM approach on the Lexical Sample and All Words tasks.

Method SE-2 LS SE-3 LS SE-2 AW SE-3 AW
LSTM approach (Proposed) 0.458 0.603 0.619 0.623
IMS 0.653 0.726 0.682 0.674
(Kågebäck and Salomonsson, 2016) 0.669 0.734 - -
Rank 1 System during the task 0.642 0.729 0.69 0.652
Baseline 0.476 0.552 0.619 0.624

good representation for the use case in WordNews. To facilitate future research, we have released the
dataset to the public.5

To obtain the gold standard for this data set, we hired 18 annotators to select the right translations for
a given word and its context. There are 697 instances in total in our dataset, with a total of 251 target
words to disambiguate, that were each multiply-annotated by 3 different annotators. Each annotator dis-
ambiguated 110+ instances (15 annotators with 116 instances, 3 with 117) in hard-copy. The annotators
are all bilingual undergraduate students, who are native Chinese speakers.

For each instance, which contains a single English target word to disambiguate, we include the sen-
tence it appears in and its adjacent sentences as its context. Each instance contains possible translations
of the word. The annotators selected all Chinese words that had an identical meaning to the English tar-
get word. If the word cannot be appropriately translated, we instructed annotators to leave the annotation
blank. The annotators provided their own translations if they believe that there is a suitable translation,
but which was not provided by the crawled dictionary.

5https://kanghj.github.io/english_chinese_news_clwsd_dataset/
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The concept of a sense is a human construct, and therefore, as earlier elaborated on when discussing
sense granularity, it is may be difficult for human annotators to agree on the correct answer. Our annota-
tion task differs from the usual since we allow users to select multiple labels and can also add new labels
to each case if they do not agree with any label provided. As such, applying the Cohen’s Kappa as it
is for measuring the inter-annotator agreement as it is does not work for our annotated dataset. We are
also unable to compute the probably of chance agreement by word, since there are few test instances per
word in our dataset.

The Kappa equation is given as κ = pA−pE
1−pE

. To compute pA for κ, we use a simplified, optimistic
approach where we select one annotated label out of possibly multiple selected labels for each annotator.
We always choose the label that results in an agreement between the pair, if such a label exist. For pE

(the probability of chance agreement), as the labels of each case are different, we consider the labels in
terms of how frequent they occur in the training data. We only consider the top 3 most frequent senses for
each word due to the skewness of the sense distribution. We first compute the probability of an annotator
selecting each of the top three frequent senses, pE is then equals to the sum of the probability that both
annotators selected one of the three top senses by chance.

The pairwise value by this proposed method of κ is obtained is 0.42. We interpreted this as a moderate
level of agreement. We note that there is a large number of possible labels for each case, which is known
to affect the value of κ negatively. This is exacerbated as we allow the annotators to add new labels.

In this annotation task, as we consider the possible translations as fine-grained, the value of agreement
is likely to be underestimated in this case. Hence, we believe that clustering of similar translations during
annotation is required in order to deal with the issue of sense granularity in Cross-Lingual WSD. To
overcome this problem, we used different configurations of granularity during evaluation of our system.
For all configurations, we remove instances from the dataset if it does not have a correct sense.

We also noticed that some target words were part of a proper noun, such as the word ’white’ in ’White
House’. This led to some confusion among annotators, so we omitted instances where the target word is
part of a proper noun. Statistics of the test dataset after filtering out different cases are given in Table 5.

Table 5: Statistics of our new annotated Chinese-English crosslingual WSD dataset. Out-of-vocabulary
(OOV) annotations refer to annotations added by the annotators

Configuration # of instances # of unique target words
Include all 653 251
Exclude instances with OOV annotations 481 206
Exclude instances without at least partial agreement 412 193
Exclude instances without complete agreement 229 136

4.2 Experiments

As previously described, IMS is a supervised system requiring training data before use. We constructed
data by processing a parallel corpus, the news section of the UM-Corpus (Tian et al., 2014), and per-
forming word alignment. We used the dictionary provided by (Chen et al., 2015) as the sense inventory,
which we further expanded using translations from Bing Translator and Google Translate. For construc-
tion of the training dataset, word alignment is used to assign Chinese words as training labels for each
English target word. GIZA++ (Och and Ney, 2003) is used for word alignment. To evaluate our system,
we compare the results of the method described in (Chen et al., 2015), which uses Bing Translator and
word alignment to obtain translations. We use the configuration where every annotation is considered to
be correct for our main evaluation since this is closer to a coarse-grained evaluation.

It can be seen that word embeddings improves the performance on Cross-Lingual WSD. Similar to our
observations for monolingual WSD, the use of both CBOW and GLoVe improved performance. How-
ever, the improvements from the word embeddings feature type over IMS was not statistically significant
at 95% confidence level. This is attributed to the small size of the dataset.
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Table 6: Results of our systems on the Cross-Lingual WSD dataset, excluding named entities. Instances
with out-of-vocabulary annotations are removed. All annotations are considered correct answers.

Method Accuracy
Bing Translator + word alignment (baseline) 0.559
IMS 0.752
IMS + CBOW, 50 dimensions, σ=0.05 (proposed) 0.763
IMS + CBOW, 50 dimensions, σ=0.1 (proposed) 0.772
IMS + CBOW, 50 dimensions, σ=0.15 (proposed) 0.767

4.3 Bing Translator results

We wish to highlight and explain the poor performance of Bing Translator with our annotated dataset
as seen in Table 6. This could be because Bing Translator performs translation at the phrase level.
Therefore, many of the target words are not translated individually and are translated only as part of a
larger unit, making it less suitable for the use case in WordNews where only the translation of single
words matter. For example, when translating the word “little” in “These are serious issues and themes,
and sometimes little kids aren’t ready to process and understand these ideas”, Bing Translator provides
a translation of “这些都是严重的问题和主题，有时小小小孩孩孩 不准备处理和理解这些想法” but does
not give an alignment for the word ‘little’ but instead provides an alignment for the entire multi-word
unit “little kids”. As such, the translation would not match any of the annotations provided by our
annotators. This is an appropriate treatment since a user of an educational app requesting specifically a
translation for the single word “little” should not see the translation of the phrase.

5 Conclusion

After we have evaluated the performance of the systems on the this Cross-Lingual WSD dataset, we
integrate the top-performing system using word embeddings and the trained models into a fork of the
WordNews system. We experimented and implemented with different methods of using word embed-
dings for supervised WSD. We tried two approaches, by enhancing an existing WSD system, IMS, and
by trying a neural approach using a simple LSTM. We evaluated our apporach as well as various methods
in WSD, against initial evaluations on the existing test data sets from Senseval-2, Senseval-3, SemEval-
2007. In a nutshell, adding any pretrained word embedding as a feature type to IMS resulted in the
system performing competitively or better than the state-of-the-art systems on many of the tasks. This
supports (Iacobacci et al., 2016)’s conclusion that concluded that existing supervised approaches can be
augmented with word embeddings to give better results.

Our findings also validated Iacobacci et al. (2016)’s findings that Word2Vec gave the best perfor-
mance. However, we also note that, other than Word2Vec, other publicly available word embeddings,
Collobert & Weston’s embeddings and GLoVe also consistently enhanced the performance of IMS using
the summation feature with little effort. Other than on the Lexical Sample tasks, where smaller word em-
beddings performed better, we also found that the number of dimensions did not affect results as much
as the scaling parameter. Unlike Iacobacci et al. (2016), we also found that a simple composition method
using summation already gave good improvements over the standard WSD features, provided that the
scaling method described in (Taghipour and Ng, 2015b) was performed.

An additional key contribution of our work was to build a gold-standard English-Chinese Cross-
Lingual WSD dataset constructed with sentences from real news articles and to evaluate our proposed
word embedding approach under this scenario. Our compiled dataset was used as evaluation of the task of
translating English words on online news articles. This dataset is made available publicly. We observed
that word embeddings also improves the performance of WSD in our Cross-Lingual WSD setting.

As future work, we will examine how to expand the existing dictionary with more English words of
varying difficulty and include more possible Chinese translations, as we note that there were several
instances in the Cross-Lingual WSD dataset where the annotators did not choose an existing translation.
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Mikael Kågebäck and Hans Salomonsson. 2016. Word sense disambiguation using a bidirectional lstm. arXiv
preprint arXiv:1606.03568.

Adam Kilgarriff. 2001. English lexical sample task description. In The Proceedings of the Second International
Workshop on Evaluating Word Sense Disambiguation Systems, pages 17–20. Association for Computational
Linguistics.
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Abstract 

This paper presents the NLP-TEA 2016 shared task for Chinese grammatical error diagnosis 

which seeks to identify grammatical error types and their range of occurrence within sentences 

written by learners of Chinese as foreign language. We describe the task definition, data prepa-

ration, performance metrics, and evaluation results. Of the 15 teams registered for this shared 

task, 9 teams developed the system and submitted a total of 36 runs. We expected this evalua-

tion campaign could lead to the development of more advanced NLP techniques for education-

al applications, especially for Chinese error detection. All data sets with gold standards and 

scoring scripts are made publicly available to researchers.   

1 Introduction 

Recently, automated grammar checking for learners of English as a foreign language has attracted 

more attention. For example, Helping Our Own (HOO) is a series of shared tasks in correcting textual 

errors (Dale and Kilgarriff, 2011; Dale et al., 2012). The shared tasks at CoNLL 2013 and CoNLL 

2014 focused on grammatical error correction, increasing the visibility of educational application re-

search in the NLP community (Ng et al., 2013; 2014).  

Many of these learning technologies focus on learners of English as a Foreign Language (EFL), 

while relatively few grammar checking applications have been developed to support Chinese as a For-

eign Language(CFL) learners. Those applications which do exist rely on a range of techniques, such as  

statistical learning (Chang et al, 2012; Wu et al, 2010; Yu and Chen, 2012), rule-based analysis (Lee et 

al., 2013) and hybrid methods (Lee et al., 2014). In response to the limited availability of  CFL learner 

data for machine learning and linguistic analysis, the ICCE-2014 workshop on Natural Language 

Processing Techniques for Educational Applications (NLP-TEA) organized a shared task on diagnos-

ing grammatical errors for CFL (Yu et al., 2014). A second version of this shared task in NLP-TEA 

was collocated with the ACL-IJCNLP-2015 (Lee et al., 2015). In conjunction with the COLLING 

2016, the third NLP-TEA features a shared task for Chinese grammatical error diagnosis again. The 

main purpose of these shared tasks is to provide a common setting so that researchers who approach 

the tasks using different linguistic factors and computational techniques can compare their results. 

Such technical evaluations allow researchers to exchange their experiences to advance the field and 

eventually develop optimal solutions to this shared task. 

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: 

http://creativecommons.org/licenses/by/4.0/ 
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The rest of this paper is organized as follows. Section 2 describes the task in detail. Section 3 intro-

duces the constructed datasets. Section 4 proposes evaluation metrics. Section 5 reports the results of 

the participants’ approaches. Conclusions are finally drawn in Section 6. 

2 Task Description 

The goal of this shared task is to develop NLP techniques to automatically diagnose grammatical er-

rors in Chinese sentences written by CFL learners. Such errors are defined as redundant words (de-

noted as a capital “R”), missing words (“M”), word selection errors (“S”), and word ordering errors 

(“W”). The input sentence may contain one or more such errors. The developed system should indi-

cate which error types are embedded in the given sentence and the position at which they occur. Each 

input sentence is given a unique sentence number “sid”. If the inputs contain no grammatical errors, 

the system should return: “sid, correct”. If an input sentence contains the grammatical errors, the out-

put format should include four items “sid, start_off, end_off, error_type”, where start_off and end_off 

respectively denote the positions of starting and ending character at which the grammatical error oc-

curs, and error_type should be one of the defined errors: “R”, “M”, “S”, and “W”. Each character or 

punctuation mark occupies 1 space for counting positions. Example sentences and corresponding notes 

are shown as follows.  
 

TOCFL (Traditional Chinese) HSK (Simplified Chinese) 

 Example 1 

Input: (sid=A2-0007-2)  聽說妳打算開一個慶

祝會。可惜我不能參加。因為那個時候我有

別的事。當然我也要參加給你慶祝慶祝。 
Output: A2-0007-2, 38, 39, R 

(Notes: “參加”is a redundant word) 

 

 Example 2 

Input: (sid=A2-0007-3)  我要送給你一個慶

祝禮物。要是兩、三天晚了，請別生氣。 

Output: A2-0007-3, 15, 20, W 

(Notes: “兩、三天晚了”should be “晚了兩、

三天”) 

 

 Example 3 

Input: (sid=A2-0011-1)  我聽到你找到工

作。恭喜恭喜！ 

Output: A2-0011-1, 2, 3, S 

             A2-0011-1, 9, 9, M 

(Notes: “聽到”should be “聽說”. Besides, a 

word “ 了 ”is missing. The correct sentence 

should be “我聽說你找到工作了”. 

 

 Example 4 

Input: (sid=A2-0011-3)  我覺得對你很抱

歉。我也很想去，可是沒有辦法。 

Output: A2-0011-3, correct 

 Example 1 

Input: (sid=00038800481)  我根本不能了解这

妇女辞职回家的现象。在这个时代，为什么

放弃自己的工作，就回家当家庭主妇？ 
Output: 00038800481, 6, 7, S 

             00038800481, 8, 8, R 

(Notes: “了解”should be “理解”. In addition, 

“这” is a redundant word.) 

 

 Example 2 

Input: (sid=00038800464)我真不明白。她们可

能是追求一些前代的浪漫。 
Output: 00038800464, correct 

 

 Example 3 

Input: (sid=00038801261)人战胜了饥饿，才努

力为了下一代作更好的、更健康的东西。 
Output: 00038801261, 9, 9, M 

             00038801261, 16, 16, S 

(Notes: “能” is missing. The word “作”should 

be “做”. The correct sentence is “才能努力为了

下一代做更好的”) 

 

 Example 4 

Input: (sid=00038801320)饥饿的问题也是应

该解决的。世界上每天由于饥饿很多人死

亡。 

Output: 00038801320, 19, 25, W 

(Notes: “由于饥饿很多人” should be “很多人

由于饥饿”) 
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Table 1: Example sentences and corresponding notes.   

3 Datasets 

The learner corpora used in our shared task were taken from two sources: the writing section of the 

computer-based Test Of Chinese as a Foreign Language (TOCFL) (Lee et al., 2016) and the writing 

section of the Hanyu Shuiping Kaoshi(HSK, Test of Chinese Level)(Cui et al, 2011; Zhang et al, 

2013). 

Native Chinese speakers were trained to manually annotate grammatical errors and provide correc-

tions corresponding to each error. The data were then split into two mutually exclusive sets as follows.  

(1) Training Set: All sentences in this set were used to train the grammatical error diagnostic sys-

tems. Each sentence with annotated grammatical errors and their corresponding corrections is 

represented in SGML format, as shown in Fig. 1. For the TOCFL track, we provide 10,693 training 

sentences with a total of 24,492 grammatical errors, categorized as redundant (4,472 instances), miss-

ing (8,739), word selection (9,897) and word ordering (1,384). For the HSK track, we provide 10,071 

training sentences with a total of 24,797 grammatical errors, categorized as redundant (5,538 in-

stances), missing (6,623), word selection (10,949) and word ordering (1,687). 

In addition to the data sets provided, participating research teams were allowed to use other public 

data for system development and implementation. Use of other data should be specified in the final 

system report. 

 

<DOC> 

<TEXT id="A2-0005-1"> 

我聽說你打算開一個慶祝會。對不起，我要參加，可是沒有空。你開一個慶祝會的

時候我不能會參加，是因為我在外國做工作。 

</TEXT> 

<CORRECTION> 

我聽說你打算開一個慶祝會。對不起，我要參加，可是沒有空。你開慶祝會的時候

我不能參加，是因為我在外國工作。 
</CORRECTION> 

<ERROR start_off=”31”end_off=”32” type=”R”></ERROR> 

<ERROR start_off=”42”end_off=”42” type=”R”></ERROR> 

<ERROR start_off=”53”end_off=”53” type=”R”></ERROR> 

</DOC> 

Figure 1: A training sentence denoted in SGML format.  

 

(2)Test Set: This set consists of testing sentences used for evaluating system performance. Table 2 

shows statistics for the testing set for both tracks. About half of these sentences are correct and do not 

contain grammatical errors, while the other half include at least one error. The distributions of error 

types (shown in Table 3) are similar with that of the training set. 

 

Track #Sentences #Correct #Erroneous 

TOCFL 3,528 (100%) 1,703 (48.27%) 1,825 (51.73%) 

HSK 3,011 (100%) 1,539 (51.11%) 1,472 (48.89%) 

Table 2: The statistics of testing set for both tracks. 

 

Track #Error #R #M #S #W 

TOCFL 
4,103  

(100%) 

782 

 (19.06%) 

1,482 

(36.12%) 

1613 

(39.31%) 

226 

(5.51%) 

HSK 
3,695 

(100%) 

802 

(21.71%) 

991 

(26.82%) 

1620 

(43.84%) 

282 

(7.63%) 

Table 3: The distributions of error types for both tracks. 
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4 Performance Metrics 

Table 4 shows the confusion matrix used for evaluating system performance. In this matrix, TP (True 

Positive) is the number of sentences with grammatical errors are correctly identified by the developed 

system; FP (False Positive) is the number of sentences in which non-existent grammatical errors are 

identified as errors; TN (True Negative) is the number of sentences without grammatical errors that 

are correctly identified as such; FN (False Negative) is the number of sentences with grammatical er-

rors which the system incorrectly identifies as being correct.  

The criteria for judging correctness are determined at three levels as follows. 

(1) Detection-level: Binary classification of a given sentence, that is, correct or incorrect, should be 

completely identical with the gold standard. All error types will be regarded as incorrect.  

(2) Identification-level: This level could be considered as a multi-class categorization problem. All 

error types should be clearly identified. A correct case should be completely identical with the gold 

standard of the given error type.  

(3) Position-level: In addition to identifying the error types, this level also judges the occurrence 

range of the grammatical error. That is to say, the system results should be perfectly identical with the 

quadruples of the gold standard.  

The following metrics are measured at all levels with the help of the confusion matrix. 

 False Positive Rate = FP / (FP+TN) 

 Accuracy = (TP+TN) / (TP+FP+TN+FN) 

 Precision =  TP / (TP+FP) 

 Recall = TP / (TP+FN) 

 F1 = 2*Precision*Recall / (Precision + Recall) 

 

Confusion Matrix 
System Results 

Positive (Erroneous) Negative(Correct) 

Gold Standard 
Positive TP (True Positive) FN (False Negative) 

Negative FP (False Positive) TN (True Negative) 

Table 4: Confusion matrix for evaluation. 

 

For example, for 4 testing inputs with gold standards shown as “00038800481, 6, 7, S”, 

“00038800481, 8, 8, R”, “00038800464, correct”, “00038801261, 9, 9, M”, “00038801261, 16, 16, S” 

and “00038801320, 19, 25, W”, the system may output the result as “00038800481, 2, 3, S”, 

“00038800481, 4, 5, S”, “00038800481, 8, 8, R”,  “00038800464, correct”, “00038801261, 9, 9, M”, 

“00038801261, 16, 19, S” and “00038801320, 19, 25, M”. The scoring script will yield the following 

performance. 

 False Positive Rate (FPR) = 0 (=0/1)  

 Detection-level 

 Accuracy = 1 (=4/4) 

 Precision = 1 (=3/3) 

 Recall = 1 (=3/3) 

 F1 = 1 (=(2*1*1)/(1+1)) 

 Identification-level 

 Accuracy = 0.8333 (=5/6) 

 Precision = 0.8 (=4/5) 

 Recall =  0.8 (=4/5) 

 F1 =  0.8 (=(2*0.8*0.8)/(0.8+08)) 

 Position-level 

 Accuracy = 0.4286 (=3/7) 

 Precision = 0.3333 (=2/6) 

 Recall = 0.4 (=2/5) 

 F1 = 0.3636 (=(2*0.3333*0.4)/(0.3333+0.4)) 
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5 Evaluation Results 

Table 5 summarizes the submission statistics for the 15 participating teams including 8 from universi-

ties and research institutes in P.R.C (ANO, BFSU-TZT, BISTU, CCNU, HIT, PKU, SKY and YUN-

HPCC), 4 from Taiwan, R.O.C. (CYUT, NCTU+NTUT, NCYU and NTOU), 2 from European (in-

cluding Dublin with NTU (TWIRL) and Saarland with Harvard (MAZA) and 1 private firm (Sogou 

Inc.). In the official testing phase, each team could opt to participate in either one or both of the 

TOCFL and HSK tracks. Each participating team was allowed to submit at most three runs for each 

track. Of the 15 registered teams, 9 teams submitted their testing results, for a total of 36 runs includ-

ing 15 TOCFL runs (denoting as #TRuns) and 21 HSK runs  (#HRuns). 

Table 6 shows the testing results for the TOCFL track. The NCTU+CYUT team achieved the low-

est false positive rate (denoted as “FPR”) of 0.1362. Detection-level evaluations are designed to detect 

whether a sentence contains grammatical errors or not. A neutral baseline can be easily achieved by 

always reporting all testing sentences as correct without errors. According to the test data distribution, 

the baseline system can achieve an accuracy of 0.4827. All systems performed above the baseline. The 

system result submitted by CYUT achieved the best detection accuracy of 0.5955. We use the F1 score 

to reflect the tradeoffs between precision and recall. The NCYU provided the best error detection re-

sults, providing a high F1 score of 0.6779. For identification-level evaluations, the systems need to 

identify the error types in a given sentences. The system developed by CYUT provided the highest F1 

score of 0.3666 for grammatical error identification. For position-level evaluations, CYUT achieved 

the best F1 score of 0.1248. Perfectly identifying the error types and their corresponding positions is 

difficult in part because no word delimiters exist among Chinese words in the given sentences.   

Table 7 shows the testing results for the HSK track. The CCNU team did not submit the result by 

the due date. The SKY team achieved the lowest false positive rate of 0.0481. At the detection-level, 

the accuracy baseline is 0.5111. Eight runs from 5 teams failed to pass the baseline. The system result 

submitted by SKY achieved the best detection accuracy of 0.6659. For the F1 score, HIT provided the 

best error detection results, as high as 0.6628. In both the identification-level and position-level 

evaluations, HIT achieved the best F1 scores of 0.5215 and 0.3855, in different runs. At the position-

level, system performance varied considerably among the teams, from 0.0007 to 0.3855. For the HSK 

track, better F1 scoresat the identification-level and position-level are achieved than in the TOCFL 

track. Note that, for teams participating in both two tracks, system performances didn’t simply in-

crease from TOCFL to HSK, indicating that differences in data sets had a complex impact on system 

performance. 

 

Participant (Ordered by abbreviations of names) #TRuns #HRuns 

NLP Lab, Zhengzhou University (ANO) 0 2 

Beijing Foreign Studies University (BFSU-TZT) 0 0 

Beijing Information Science and Technology University (BISTU) 0 0 

Central China Normal University (CCNU) 0 1 

Chaoyang University of Technology (CYUT) 3 3 

Harbin Institute of Technology (HIT) 0 3 

Institute of Computational Linguistics, Peking University (PKU) 3 3 

Saarland University & Hardvard Medical School (MAZA) 0 0 

National Chiao Tung University & 

National Taipei University of Technology (NCTU+NTUT) 
3 0 

National Chiayi University (NCYU) 3 3 

National Taiwan Ocean University (NTOU) 0 0 

NLP Lab, Zhengzhou University (SKY) 0 3 

Beijing Sogou Inc. (Sogou) 0 0 

Dublin City University & National Taiwan University (TWIRL) 0 0 

School of Information Science and Engineering,  

Yunnan University (YUN-HPCC) 
3 3 

Table 5: Submission statistics for all participants. 
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Table 6: Testing results of TOCFL track. 
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Table 7: Testing results of HSK track.

46



Table 8 summarize the approaches and resources for each of the submitted systems. ANO and 

CCNU did not submit reports on their develop systems. Though neural networks achieved goodper-

formances in various NLP tasks, traditional pipe-lines were still widely implemented in the CGED 

task. CRF, as a sequence labelling model with flexible feature space, was chosen by CYUT, HIT, 

NCTU+NTUT and SKY in their system pipe-lines. The CRF based systems model with carefully de-

signed feature templates could maintain the performance with neural networks at the same level in the 

HSK track. The HIT systems using CRF model and LSTM networks achieved the best F1 scores in the 

three levels. Moreover, CYUT system is simply based onthe CRF model with multiple feature tem-

plates in the TOCFL track. 

In summary, none of the submitted systems provided superior performance using different metrics, 

indicating the difficulty of developing systems for effective grammatical error diagnosis, especially in 

CFL contexts. From organizers’ perspectives, a good system should have a high F1 score and a low 

false positive rate. Overall, the CYUT, NCTU+NTUT, HIT and SKY teams achieved relatively better 

performances.  

 

Team Approach 
Word/Character 

Embedding 

Additional 

Resources 

CYUT CRF --- NLP-TEA-1&NLP-TEA-2 

HIT CRF+LSTM networks Character  Embedding --- 

NCTU+NTUT W2V+CRF Word Embedding 

Sinica Balanced Corpus v4.0 

LDC Chinese Gigaword v2 

CIRB0303 

Taiwan Panorama Magazine 

TCC300 

Wikipedia(ZH_TW) 

NLP-TEA-1&NLP-TEA-2 

NCYU RNN+LSTM networks Word Embedding NLP-TEA-1&NLP-TEA-2 

PKU Bi-LSTM networks Word Embedding NLP-TEA-1&NLP-TEA-2 

SKY Ngram+CRF --- --- 

YUN-HPCC CNN/LSTM networks Word Embedding Wikipedia(ZH) 

Table 8: Summary of approaches and additional resources used by the submitted systems. 

 

6 Conclusions 

This study describes the NLP-TEA 2016 shared task for Chinese grammatical error diagnosis, includ-

ing task design, data preparation, performance metrics, and evaluation results. Regardless of actual 

performance, all submissions contribute to the common effort to develop Chinese grammatical error 

diagnosis system, and the individual reports in the proceedings provide useful insights into computer-

assisted language learning for CFL learners. 

We hope the data sets collected and annotated for this shared task can facilitate and expedite future 

development in this research area. Therefore, all data sets with gold standards and scoring scripts are 

publicly available online at http://ir.itc.ntnu.edu.tw/lre/nlptea16cged.htm.  
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Abstract

Grammatical error diagnosis is an important task in natural language processing. This paper
introduces our Chinese Grammatical Error Diagnosis (CGED) system in the NLP-TEA-3 shared
task for CGED. The CGED system can diagnose four types of grammatical errors which are
redundant words (R), missing words (M), bad word selection (S) and disordered words (W). We
treat the CGED task as a sequence labeling task and describe three models, including a CRF-
based model, an LSTM-based model and an ensemble model using stacking. We also show in
details how we build and train the models. Evaluation includes three levels, which are detection
level, identification level and position level. On the CGED-HSK dataset of NLP-TEA-3 shared
task, our system presents the best F1-scores in all the three levels and also the best recall in the
last two levels.

1 Introduction

Chinese has been considered as one of the most difficult languages in the world. Unlike English, Chinese
has no verb tenses and pluralities, and there usually exist various ways to express the same meaning in
Chinese. Consequently, it is common for non-native speakers of Chinese to make grammatical errors of
various types in their writings. The goal of Chinese Grammatical Error Diagnosis (CGED) is to build
a system that can automatically diagnose errors in Chinese sentences. Evaluation is carried out in three
levels, based on the detection of error occurrences in a sentence, as well as their types and positions.

In this work, we formalize the CGED task as a sequence labeling problem, which assigns each Chi-
nese character in a target sentence with a tag indicating both the error type (R, M, S, W) and position
(Beginning, Inside). Therefore, the CGED task can be readily solved with a typical conditional random
fields (CRF) model (Lafferty et al., 2001).

However, the main challenge for CGED is that the detection of errors usually requires long-term
dependencies. For example, in Table 1, the grammatical error at “表示(represent)” may not be detected
until the last word “损害(damage)” shows up. Traditional models with features extracted from a limited
context window may not be able to handle these situations.

Neural network-based models have been extensively used in natural language processing (NLP) during
recent years, due to their strong capability of automatical feature learning. In particular, the long short-
term memory (LSTM) (Hochreiter and Schmidhuber, 1997) based recurrent neural networks (RNN)
have been proved to be highly effective in various applications that involves sequence modeling, such as
language modeling, named entity recognition (Lample et al., 2016) and parsing (Vinyals et al., 2015),
etc. Therefore, in this paper, we propose to use LSTM-based RNNs to solve the CGED problem. In order
to leverage both the merits of CRF models and LSTM models, we further present an ensemble model
using Stacking (Nivre and McDonald, 2008). Evaluations on the NLP-TEA-3 shared task for CGED
show that our models achieve the best F1-scores in all levels and the best recall in two levels.

The rest of the paper is organized as follows: Section 2 gives the definition of the CEGD task. Section 3
describes how LSTM network is used to predict errors and what other works we have done. Section 4

∗Email correspondence.
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shows the evaluation results. Section 5 gives some related works. Section 6 gives conclusion and future
work of this paper.

2 Task Definition

The shared task of CGED in NLP-TEA-3 is defined as follows: given a Chinese sentence, a CGED
system is expected to diagnose four types of grammatical errors, including redundant words (R), missing
words (M), bad word selection (S) and disorder words (W). Once an error is found, the system should
be able to recognize its beginning and ending positions.

Table 1 and Table 2 show two examples in the dataset:

这1 种2 材3 料4 表表表5 示示示6 吸7 烟8 引9 起10 了11 人人人12 们们们13 多14 么15 大16 的17 损18 害19 。20

Error Interval 5, 6 12, 13

Error Type S R

Correction
这种材料表表表明明明吸烟引起了多么大的损害。

This material shows how much harm smoking causes.

Table 1: Two errors are found in the sentence above, one is bad word selection (S) error from position 5
to 6, the other one is redundant words (R) error from position 12 to 13.

但1 是2 文3 章4 中5 的6 妻7 子8 是是是9 还还还10 有11 意12 识13 的14 ，15 她16 还17 有18 活19 的的的20 意21 义22 。23

Error Interval 9, 10 20, 20

Error Type W M

Correction
但是文章中的妻子还还还是是是有意识的。她还有活着着着的意义。

But the wife in the passage is still conscious, she still has a meaning to live.

Table 2: Two errors are found in the sentence above, one is disordered words (W) error from position 9
to 10, the other one is missing words (M) error in position 20.

3 Methodology

In this work, we treat the CGED task as a sequence labeling problem. Specifically, given a sentence x,
our model generates a corresponding label sequence y. Each label in y is a token from a specific tag set.
Here we have tag ‘O’ indicating correct characters, ‘B-X’ indicating the beginning positions for errors
of type ‘X’ and ‘I-X’ as middle and ending positions for errors of type ‘X’.

We first examine the traditional CRF model and use symbolical represented features. Then we propose
our LSTM-based model that use distributed feature representations. At last, we present an ensemble
model that combines the two models using Stacking.

In this section, we will first introduce how we prepare the data, and then describe the three models we
used in this task.

3.1 Data Preparation

Since the CGED task involves identifying the error boundaries, segmenting a sentence into words will
bring a lot of misalignments between the words and the endpoints of a corresponding error interval. An
example of misalignment is shown in Table 3. Therefore, we decided to solve the problem at character
level. Other than the misaligned interval problem, there are many error intervals of different types which
may overlap with others. One way to avoid this overlapping problem is to deal with the four types of
errors separately. However, we think the four types of errors may have mutual effects on each other,
so we pre-processed the training data so that we can keep as many errors as possible by deleting the
least numbers of overlapped error intervals. We finally deleted a small part of error intervals which is
acceptable. An example of overlapping problem is shown in Table 4.
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如1 果2 你3 是4 青5 少6 年7 你8 多9 想10 自11 己12 的13 未14 来15 ；16 那17 你18 可可可19 以20 禁禁禁烟21−22 了23 。24

Error Interval 19, 19 21, 21

Error Type M S

Correction
如果你是青少年你要多想想自己的未来；那你就就就可以戒戒戒烟了。

If you are a teenager you should think about your future so you can quit smoking.

Table 3: An misalignment example. The two characters “禁(forbid)” and “烟(cigarette)” would be one
word after segmenting the sentence into words, which would cause a misalignment problem because
only the character “禁(forbid)”.

每1 年2 暑3 假4 是是是5 我我我6 们们们7 运运运8 动动动9 员员员10 来来来11 说说说12 很13 苦14 的15 时16 候17 。18

Error Interval 5, 12 6, 6

Error Type W M

Correction
每年暑假对对对我我我们们们运运运动动动员员员来来来说说说是是是很苦的时候。

Every summer is hard for us athletes.

Table 4: An overlapping example. The two error intervals are overlapped. In this situation, we will delete
the least number of intervals to eliminate the problem.

One kind of features that may be useful in this task is the Part-of-speech (POS) of words. Table 5
shows a snapshot of training data after the pre-processing. Note that our task is being solved at the
character level, so we split the POS tag of a word to character level by attaching position indicators (‘B-’
and ‘I-’) to the POS of a word.

Character POS Label

像 B-p O
我 B-r B-W
对 B-p I-W
不 B-d B-M
吸 B-n O
烟 I-n O
者 I-n O
来 B-u O
说 I-u O

Table 5: A snapshot of our training data after the pre-processing

In the training phase, a sentence is first segmented into terms. Each term is consisted with a character,
a corresponding POS tag and an error type tag.

3.2 CRF-Based Model
CRF has been successfully used in various natural language processing applications, especially sequence
labeling tasks. Formally, the model can be defined as:

P (y | x) =
1

Z (x)
exp (Σkλkfk) (1)

where Z(x) is the normalization factor, fk is a set of features, λk is the corresponding weight. In this
task, x is the input sentence, and y is the corresponding error type label. The feature templates are
defined in Table 6. We use stochastic gradient descent (SGD) for training, with L2 regularization to
prevent overfitting.
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Feature templates
00: chi+k,−2 ≤ k ≤ 2
01: chi+k ◦ chi+k+1,−1 ≤ k ≤ 0
02: posi+k,−2 ≤ k ≤ 2
03: posi+k ◦ posi+k+1,−2 ≤ k ≤ 1
04: posi+k ◦ posi+k+1 ◦ posi+k+2,−2 ≤ k ≤ 0

Unigram Features
yi ◦ 00− 04

Bigram Features
yi−1 ◦ yi

Table 6: feature templates of CRF-based model. chi refers to the ith character, posi refers to the POS of
ith character, yi refers to the output tag of ith character.

3.3 LSTM-Based Model

LSTM network is a variant of recurrent neural network (RNN) and have better ability to capture long-
term dependencies. At each time step t, LSTM networks read a current input vector xt and the hidden
state of the previous time step ht−1, and use them to compute a new hidden state ht.

Vanilla RNNs (Pascanu et al., 2013) typically suffer from the gradient vanishing problem while LSTM
networks solve it with an extra memory “cell” (ct). Specifically, LSTM networks are controlled by three
kinds of gates, each gate consists of a sigmoid neural net layer and a point-wise multiplication operation.
The three gates are input gate, forget gate and output gate. The input gate controls what proportion of
the current input to pass into the memory cell (it), and the forget gate controls what proportion of the
previous memory cell to “forget” (ft). When here comes the input xt, the memory cell is updated as
follows:

it = σ (Wixxt +Wihht−1 +Wicct−1 + bi) (2)

ft = σ (Wfxxt +Wfhht−1 +Wfcct−1 + bf ) (3)

ct = ft � ct−1 + it � tanh (Wcxxt +Wchht−1 + bc) (4)

where σ represents point-wise logistic sigmoid function, and � is the point-wise Hadamard product.
The output gate (ot) controls the hidden state ht at each time step, and they are computed as follows:

ot = σ (Woxxt +Wohht−1 +Wocct + bo) (5)

ht = ot � tanh (ct) (6)

We use the hidden state ht to calculate the output label at each time step at last. The architecture of
our bidirectional LSTM-based model is illustrated in Figure 1. We used the concatenation of character
embeddings and bigram embeddings as lexicalized input features at each position.

The character embeddings are initialized randomly. To obtain the bigram embeddings, we first convert
the original character sequence to a bigram sequence. For example, the bigram sequence of sentence “我
是中国人” will be [“我是”, “是中”, “中国”, “国人”]. Then we can train bigram embeddings readily
using word2vec (Mikolov et al., 2013) on the resulting bigram sequences. In addition, we also used the
POS of words as a discrete feature to improve the performance of our model.

We give the comparison between LSTM-based model with unigram feature and LSTM-based model
with bigram and also unigram feature in next section. We also adjusted the model by tuning the value of
the input dimension of LSTM and the dimension of bigram embeddings.
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Figure 1: An illustration of the LSTM-based model. The concatenated character embedding, POS em-
bedding and two bigram embeddings are used as the input of the neural network.

3.4 Stacking Model

After preliminary experiments using the two models above, we found that the LSTM-based model has a
high recall rate and the CRF-based model has a high precision rate. To take advantage of both models,
we further present an ensemble model using stacking (Nivre and McDonald, 2008).

We conducted 10-fold cross-validation on the training dataset and obtained the tagging results auto-
matically. Then we put the result of the CRF-based model as a discrete feature to the LSTM layer by
adding an additional feature to the input layer of LSTM. We expect that by combining the two models
together, the LSTM-based model can achieve higher precision rate.

Results show that after combining the two models, the recall of the LSTM-based model increases, but
unfortunately, the precision decreases. The reason could be the results of CRF-based model help LSTM
find errors which LSTM-based model wasn’t able to find. We will discuss it specifically in the next
section.

4 Experiments

4.1 Data and Settings

We obtain the full dataset from the shared task CGED-HSK of NLP-TEA-3 for training and validation,
of which 16,142 sentences are used for training and the rest 4000 sentences for validation. The ratio
of training dataset size to validation dataset size is about 4:1. Table 7 shows the data distribution in
the CGED-HSK training data. In addition, we use the Chinese Gigawords to get the pretrained bigram
embeddings. For the CRF-based model, we adopt the CRFsuite toolkit (Okazaki, 2007).

The criterias for evaluation include:

(1) Detection level: this is a binary classification of a given sentence, i.e. correct or incorrect should be
completely identical with the gold standard. All error types will be regarded as incorrect.

(2) Identification level: this could be considered as a multi-class categorization problem. In addition
to correct instances, all error types should be clearly identified.

(3) Position level: besides identifying the error types, this level also judges the positions of erroneous
range. That is, the system results should be perfectly identical with the quadruples of gold standard.
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Type Train Validation

Redundant 4374 1074

Missing 5250 1203

Selection 8533 2177

Disorder 1196 291

Correct 8086 2002

Table 7: Data statistics.

4.2 Experiment Results

We first conduct experiments with the CRF-based and the LSTM-based model. After that, we examine
the effect of Stacking by taking the output of the CRF model as features of the LSTM model.

4.2.1 Results on Validation Dataset
We use the validation dataset to select the best hyper-parameters in both the CRF-based model and the
LSTM-based model. Table 8 shows the results. As we can see, the LSTM-based model (LSTM (U+B))
has better Recall and F1-score than the CRF-based model, but lower in precision. Besides, the bigram
embeddings has a very significant impact on the LSTM-based model.

Model
Detection Level Identification Level Position Level

P R F1 P R F1 P R F1

CRF 0.7500 0.2282 0.3500 0.7154 0.1663 0.2699 0.6507 0.1296 0.2162

LSTM (U) 0.5188 0.2908 0.3727 0.4458 0.1925 0.2689 0.3329 0.1197 0.1761

LSTM (U+B) 0.6526 0.3629 0.4664 0.5625 0.2484 0.3446 0.4115 0.1587 0.2290

Stacking 0.6344 0.3909 0.4837 0.5401 0.2565 0.3478 0.3797 0.1513 0.2164

Table 8: Results on Validation Dataset. ‘U’ in the bracket after LSTM refers to using unigram of charac-
ters and ‘B’ refers to using bigram of characters.

4.2.2 Results on Evaluation Dataset
When testing on the final evaluation dataset, we merged our training dataset and validation dataset, and
retrain our models. Table 9 shows the results of our three submissions.

Submission
Detection Level Identification Level Position Level

P R F1 P R F1 P R F1

HIT-Run1 0.6111 0.712 0.6577 0.5146 0.5219 0.5182 0.4034 0.3691 0.3855

HIT-Run2 0.6108 0.7099 0.6566 0.5224 0.5094 0.5185 0.397 0.3483 0.3711

HIT-Run3 0.6071 0.7296 0.6628 0.5002 0.5447 0.5215 0.3695 0.3697 0.3696

Table 9: Results on Evaluation Dataset.

The three models we submitted includes the LSTM-based model (HIT-Run1), Stacking model (HIT-
Run2) and LSTM-based model with some post-process (HIT-Run3). The post-process mainly includes
changing the ‘I-X’ errors without a ‘B-X’ error before it into a single ‘B-X’ error. This increases the
recall rate on three levels but slightly decreases the precision.
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The stacking model increases the precision on the identification level while it reduces overall per-
formance. The reason could be that our CRF-based model doesn’t have good feature templates or the
inherent properties of the task.

Our system presents the best F1 scores in all three levels and also the best recall rates in the last two
levels on evaluation dataset. However, the results of this task are not that credible because there are many
ways to correct a wrong Chinese sentence. For example, deleting some redundant words may replace
errors of missing words.

5 Related Works

In NLP-TEA-1 (Yu et al., 2014) shared task for CGED, there were four types of errors, which were
the same as the task of this year. The evaluation was only based on detection of error occurrence,
disregarding the recognization of boundaries. In NLP-TEA-2 (Lee et al., 2015) shared task for CGED,
the participating systems are required to not only detect the errors but also locate them. Evaluations were
focused on traditional Chinese texts rather than simplified Chinese, and one sentence includes one error
at most in last two years.

There have been several studies focused on Chinese grammatical error detection. Wu et al. (2010)
proposed a method using both Relative Position Language Model and Parse Template Language Model
to detect Chinese errors written by US learner. Yu and Chen (2012) proposed a classifier to detect word-
ordering errors in Chinese sentences from the HSK dynamic composition corpus. Lee et al. (2013)
proposed linguistic rule based Chinese error detection for second language learning. Lee et al. (2014)
developed a sentence judgment system using both rule-based and n-gram statistical methods to detect
grammatical errors in Chinese sentences. However, all of these previous works used hand-crafted fea-
tures which may be incomplete and cause the loss of some important information. Comparatively, our
neural network approaches have strong capability of automatical feature learning and are completely
data-driven.

6 Conclusion

This paper describes our system in the NLP-TEA-3 task for CGED-HSK. We explored the CRF-based
model, the LSTM-based model and further used stacking to combine the two models. We achieved
highest F1 scores in all three levels and highest Recall rates in identification level and position level.

In our future work, we plan to try more methods such as bagging or adding more features to the CRF-
based model. Since Chinese grammar is flexible and irregular, it is difficult to judge the credibility of
these results on testing data. In our future work, we will try more models and find better ways to judge
the result if possible.
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Abstract 

    In the process of learning and using Chinese, foreigners may have grammatical errors due to 

negative migration of their native languages. Currently, the computer-oriented automatic detec-

tion method of grammatical errors is not mature enough. Based on the evaluating task ----

CGED2016, we select and analyze the classification model and design feature extraction method 

to obtain grammatical errors including Mission(M), Disorder(W), Selection (S) and Redundant 

(R) automatically. The experiment results based on the dynamic corpus of HSK show that the 

Chinese grammatical error automatic detection method, which uses CRF as classification model 

and n-gram as feature extraction method. It is simple and efficient which play a positive effect 

on the research of Chinese grammatical error automatic detection and also a supporting and 

guiding role in the teaching of Chinese as a foreign language. 

1 Introduction 

As China's status is improved and its influence in the world is increasing, more and more foreigners 

begin to learn Chinese. The HSK is an international standardized test for Chinese language proficiency 

of non-native speakers. From the analysis of the examination papers for many years, we can see that 

foreigners who study Chinese often make grammatical errors such as Mission(M), Disorder(W), Selec-

tion (S) and Redundant (R), owing to their language negative migration, over-generalization, teaching 

methods, learning strategies and other reasons.  

Automatic detection of Chinese grammatical errors is really a challenge for many researchers. There 

is no space between word and word in Chinese corpus. If words in Chinese corpus are separated from 

each other, we can use combination of multiple features such as words, part of speech tagging (POS) 

and word frequency to detect grammatical errors, automatically. But errors of word segmentation and 

part of speech tagging will be accumulated in, and then have a negative effect on automatic detection of 

grammatical errors.  

Examples are as follows: 

The original sentence:                         
a) 他现在的工作是研究生物                      His present  job is studying biology 

b) 他站起身来                                              He stands up 

c) 他明天起身去北京                                  He leaves  Beijing tomorrow                        
After word segmentation: 

a) 他/现在/的/工作/是/研究/生物          His / present  / job / is / studying / biological  

b) 他站/起 /身/来                                       He stands / up  

c) 他/明天/起身/去 /北京                         He / leaves for / Beijing / tomorrow  

                                                           
 This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: 

http://creativecommons.org/licenses/by/4.0/ 
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In example a, the “研究生物 (study biology)” will arise segmentation ambiguity, in example b and c, 

“起身 (get up)” has two different way of divisions which has a bad effect on automatic detection of 

grammatical errors. In this respect, current automatic detection methods have poor performance, we 

need actively explore effective automatic detection methods which can help reduce workload of artificial 

detection and play a positive guiding role in teaching Chinese as a foreign language. With some gram-

matical errors and error cause found by these methods, teaching Chinese as a foreign language will be 

well guided. 

For many researchers, CGED evaluating task provides a platform to study automatic detection of 

Chinese grammatical errors. CGED 2016 evaluating task divides the Chinese grammatical errors into 

four categories: Mission(M), Disorder(W), Selection (S) and Redundant (R), and includes three tasks 

such as Detection Level, Identification Level and Position Level. 

In order to achieve Chinese grammatical error automatic detection, we first consider the problem of 

Chinese grammatical errors as a classification problem, and then use rule-based method, statistical learn-

ing method or the fusion of multiple classification methods. Through analysis and comparison, we use 

CRF to complete three tasks including Detection Level, Identification Level and Position Level.  

The rest of this paper is organized as follows: Section 2 briefly introduces related work in this field. 

Section 3 introduces the statistical learning method CRF and its tools. Section 4 discusses the realization 

of Chinese grammatical error automatic detection which includes data preprocessing, data feature ex-

traction, model selection and result analysis. Finally, conclusion and prospects are arranged.  

2 Related work 

In the aspect of automatic detection of grammatical errors, the study of English is more deep. 

Anubhav Gupta (2014) proposed a rule-based approach that relies on the difference in the output of two 

POS taggers, to detect verb forms, lexical and spelling errors, but fuzzy or erroneous input of the POS 

tagger could result in an erroneous output. In order to solve context-sensitive spelling correction, an 

algorithm combining Winnow variable and weighted majority voting was proposed by Andrew R. Gold-

ing (1999), but in this way we need to improve the adaptability of the algorithm to unfamiliar test sets. 

Anoop Kunchukuttan (2014) proposed two enhancements based on statistical machine translation for 

all types of errors. Although it is possible to use a simple set of methods to increase recall rate, it also 

leads to a decrease in precision. 

Relevant works related to Chinese grammatical error detection are much less compared with that of 

English. Chi Hsin Yu and Hsin-Hsi (2012) proposed a classifier based on CRF model to detect Chinese 

text disorder. Shuk-Man Cheng (2014) proposed a support vector machine model to further explore the 

problem of word order reordering. Yang Xiang and Xiaolong Wang (2015) used an ensemble learning 

method which learns and trains the corpus to identity the grammatical errors and error types, but the 

detection of the error location is not ideal. Xiupeng Wu and Peijie Huang (2015) used a hybrid model 

that integrates rule-based and N-gram statistical method to detect the Chinese grammatical errors, which 

can identify the error types well and point out error position, but rules are needed summarizing manually. 

Lung-Hao Lee and Liang-Chih Yu (2014) introduced a sentence-level detection system that integrates 

multiple rules and N-gram statistical features. Generally speaking, relevant rule are needed in most of 

the Chinese grammatical error automatic detection summarizing manually, and these existing methods 

on the error position are not ideal at present. 

3 CRF 

3.1  CRF model 

CRF (Random Field Conditional) is a distinguished indirect graph model. In an indirect graph G =
(V, E), where V be the set of end point, E be the set of indirect edges, Y = {𝑌v|v ∈ V },  that is, each node 

in V corresponds to a random variable which is in the range of possible tag set {y}. If we observe the 

sequence X as a condition and each random variable 𝑌𝑣 satisfies the following Markov characteristic: 

p(𝑌𝑣|X, 𝑌𝑤 , w ≠ v) = p(𝑌𝑣|X, 𝑌𝑤 , w~v)                      (1) 

where denotes that two nodes are adjacent in graph G, then (X, Y) is a conditional random field. Model 

diagram is shown in Figure 1. 
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Fig.1 Schematic diagram of conditional random field model 

 

For the first time, Lafferty introduced CRF into natural language processing, and the choice of CRF 

potential function is greatly influenced by the maximum entropy model, and first-order chain structure 

is applied to construct the CRF model. In graph G = (V, E), the largest group which is the edge in graph 

G contains only two adjacent nodes.  

We define the form of each potential function as follows: 

 ∅𝑦𝑐
(𝑦𝑐) = exp (∑ 𝜆𝑘𝑘 𝑓𝑘(𝑐, 𝑦|𝑐, 𝑥))                       (2) 

Where 𝑦|𝑐 denotes the random variable corresponding to the node in the C group, 𝑓𝑘(𝑐, 𝑦|𝑐, 𝑥) is a 

Boolean feature function, then p (y | x) is: 

p(y|x) =
1

𝑍(𝑥)
exp (∑ ∑ 𝜆𝑘𝑘𝑐𝜖𝐶 𝑓𝑘(𝑐, 𝑦𝑐 , 𝑥))           (3) 

where 𝑍(𝑥) is the normalization factor. 

𝑍(𝑥) = ∑ exp (∑ ∑ 𝜆𝑘𝑘𝑐𝜖𝐶 𝑓𝑘(𝑐, 𝑦𝑐 , 𝑥))𝑦                  (4) 

3.2 CRF ++ tool selection 

CRF-based tools are currently available such as crf++, flexcrf, pocket crf.  

First of all, crf++ is the first order crf, flexcrf is the second order crf, because n-order crf training time 

required (p is the number of markers, T is the first order crf training time, N is the order), so compared 

with crf++, flexcrf needs more training time. 

 Second, pocket crf does not provide a command line, and there is only one example that shows how 

to complete the training and testing, and pocket crf does not identify the space, so pocket crf string input 

file must be strictly separated by 0x09. In contrast, crf++ has a command line, and can ignore all spaces 

and 0x09 between the columns. So in this experiment, we use the CRF++ tool 0.58 version1. 

4 CRF-based automatic detection of Chinese grammatical errors 

According to the above discussion, we choose CRF as the statistical learning method and CRF++ as 

the tool of automatic detection. Through data preprocessing, feature selection, training and cross vali-

dation, the automatic detection result of test data, result analysis are given. 

4.1 Data preprocessing 

The main work of data preprocessing is to preprocessing the training data set of CGED 2016, and 

then the training corpus format is adjusted to the input format required by CRF++. The correct sentences 

and the wrong sentences are extracted from the corpus according to artificial annotation, and then the 

corpus are automatically marked according to the wrong position and the wrong type.  

Example of original training corpus: 

<DOC> 

<TEXT id="200405109523100360_2_6x2"> 

                                                           
1 https://code.google.com/archive/p/crfpp/downloads. 
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妈妈对爸爸劝戒烟的原因就是我的健康。非吸烟者比吸烟者得病率更高，这个所有的人知道。 

</TEXT> 

<CORRECTION> 

妈妈劝爸爸戒烟的理由就是我的健康。非吸烟者比吸烟者得病率更高，这个所有的人都知道。 

</CORRECTION> 

<ERROR start_off="3" end_off="3" type="R"></ERROR> 

<ERROR start_off="4" end_off="6" type="W"></ERROR> 

<ERROR start_off="10" end_off="11" type="S"></ERROR> 

<ERROR start_off="39" end_off="39" type="M"></ERROR> 

</DOC> 

Preprocessed training corpus: 

妈/C  妈/C  对/R  爸/W  爸/W  劝/W  戒/C  烟/C  的/C  原/S  因/S  就/C  是/C  我/C  的/C  

健/C  康/C  。/C  非/C  吸/C  烟/C  者/C  比/C  吸/C  烟/C  者/C  得/C  病/C  率/C  更/C  高

/C  ，/C  这/C  个/C  所/C  有/C  的/C  人/C  知/M  道/C  。/C 

妈/C  妈/C  劝/C  爸/C  爸/C  戒/C  烟/C  的/C  理/C  由/C  就/C  是/C  我/C  的/C  健/C  康

/C  。/C  非/C  吸/C  烟/C  者/C  比/C  吸/C  烟/C  者/C  得/C  病/C  率/C  更/C  高/C  ，/C  

这/C  个/C  所/C  有/C  的/C  人/C  都/C  知/C  道/C  。/C 
Note:  1. /C, /M, /W, /S, /R represent Correct, Mission, Disorder, Selection and Redundant. 

      2. punctuation, letters, etc. are also followed by the corresponding label. 

4.2 Feature Selection 

In practice, the feature selection directly affects the performance of the model. The more features are 

selected, the more time is required when the feature is analyzed and the model is trained, may be the 

more complex the model is. Therefore, selecting better features not only can simplify the model, but 

also can reduce the running time. In the statistical machine learning method CRF, this experiment adopts 

feature length of 5 and 7, then uses bi-gram and tri-gram model to extract features. We conduct cross 

validation for two kinds of sequence length features, and results are shown in the table1. 

Sequence length 5 7 

False Positive Rate 0.0518 0.0811 

 

Detection Level 

Precision 0.7192 0.6623 

Recall 0.1284 0.1489 

F1-Score 0.2179 0.2431 

 

Identification Level 

Precision 0.6142 0.5588 

Recall 0.0798 0.0962 

F1-Score 0.1413 0.1641 

 

Position Level 

Precision 0.3981 0.4286 

Recall 0.0332 0.0569 

F1-Score 0.0612 0.1005 

Table 1 cross validation results 

 

Through the comparison of Precision, Recall and F1-Score, False Positive Rate has an increase of 

2.93% when the sequence length is 7, but there are different levels of promotion in the recall rate of 

Detection Level, Identification Level and Position Level, F1 is also better than the sequence length 5. 

4.3 Results and analysis 

The results of the closed test with the training data of CGED2016 are shown in Table 2. Considering 

the influence of the size of the training data on the model, we add 2015 TOCFL training data to 2016 

HSK training data for closed test, the results are shown in Table 2. 
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Training corpus 2016 HSK data  2015 TOCFL and  

2016 HSK data  

False Positive Rate 0.0759 0.0596 

 

Detection Level 

Precision 0.7055 0.6515 

Recall 0.1323 0.1361 

F1-Score 0.2227 0.2252 

 

Identification Level 

Precision 0.6258 0.5516 

Recall 0.0923 0.0896 

F1-Score 0.1609 0.1541 

 

Position Level 

Precision 0.4381 0.3414 

Recall 0.0430 0.0377 

F1-Score 0.0784 0.0680 

Table 2 closed test results 

 

We compare and analyze the closed results, and then select the HSK data of 2016 and TOCFL data 

of 2015 as training data, as shown in Table 3. 

 

 

Training corpus 

 

Correct 

 

Error  

Sum  
R S M W 

2016 HSK 10072 5532 10942 6619 1691 20144 

2015 TOCFL 2205 430 849 620 306 4410 

Table 3 Training data distribution table 
Note: 1. Each of these error statements may contain multiple types of errors or include multiple identical types of errors. 

     2. 2015 TOCFL corpus is converted to HSK for use 

 

In the three results we submitted, SKY_Run2.txt and SKY_Run3.txt are generated by model which 

is strained by feature template with the sequence length of 5 and 7. These two submitted results have 

best performance on all three tasks, especially False Positive Rate, Accuracy and Precision indicators, 

but work badly in recall rate. Our team achieved the lowest false positive rate of 0.0481 in 2016 CGED 

evaluating task.  

The evaluation results are as follows: 

Submission results SKY_Run1.txt SKY_Run2.txt SKY_Run3.txt 

False Positive Rate 0.0695 0.0481 0.0559 

 

Detection Level 

Accuracy 0.6523 0.6579 0.6659 

Precision 0.8326 0.8746 0.8652 

Recall 0.3614 0.3505 0.3750 

F1-Score 0.5040 0.5005 0.5232 

 

Identification 

Level 

Accuracy 0.6605 0.6765 0.6849 

Precision 0.8235 0.8821 0.8744 

Recall 0.2732 0.2972 0.3815 

F1-Score 0.4132 0.4446 0.4669 

 

Position Level 

Accuracy 0.6073 0.6376 0.6477 

Precision 0.6153 0.7054 0.7144 

Recall 0.1783 0.2217 0.2430 

F1-Score 0.2765 0.3373 0.3627 

Table 4 Evaluation results 

 

From the analysis of the results, we can see that feature templates with two kinds of sequence length 

use bigram and trigram models to extract features and select more features, thus greatly improve Preci-

sion, but have a serious impact on recall rate. 

As for Position Level task, SKY_Run3.txt plays better than SKY_Run2.txt, and has good perfor-

mance on Accuracy, Precision, Recall and F1-Score indicators, so feature template with sequence length 
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7 plays better. When the length of the sequence becomes longer, the effect of position level task is better. 
But if the length is too long, the learning process will become difficult and the model will become more 

complex. Compared with the first two tasks, the results in Position Level are not ideal. Since the open 

source tool based on the statistical machine learning method CRF only supports chained sequences, 

when the sequence length is 5 and 7, the long sentences can’t be analyzed on the whole, which affects 

the automatic detection of Chinese grammatical errors. 

5 Conclusion and prospect 

In this paper, we use statistical learning method CRF and n-gram feature extraction method to achieve 

Chinese grammatical error automatic detection. It can be seen from the evaluation results that the CRF 

model has a good performance in the automatic detection of Chinese grammatical errors, especially 

False Positive Rate and Precision. But in the overall quantity of Chinese grammatical errors, the errors 

that are detected are too few, which affects the overall performance. 

In general, CRF has great potential in automatic detection of Chinese grammatical errors. Compared 

with HMM (Hidden Markov Model), it has no strict independence assumption, and its feature design is 

flexible. Compared with the regular method, it can predict more flexible grammatical errors. It is also 

simpler than multiple classifier fusion methods. The only thing we need to do is to manually mark the 

corpus for CRF learning. In the following work, we will collect more corpus of Chinese grammatical 

errors to improve the performance of the model, and we will also consider mutual information and other 

methods for feature extraction. 
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Abstract 

This paper describe the CYUT-III system on grammar error detection in the 2016 NLP-TEA Chinese 

Grammar Error Detection shared task CGED. In this task a system has to detect four types of errors, 

including redundant word error, missing word error, word selection error and word ordering error. Based 

on the conditional random fields (CRF) model, our system is a linear tagger that can detect the errors in 

learners’ essays. Since the system performance depends on the features heavily, in this paper, we are going 

to report how to integrate the collocation feature into the CRF model. Our system presents the best detec-

tion accuracy and Identification accuracy on the TOCFL dataset, which is in traditional Chinese. The same 

system also works well on the simplified Chinese HSK dataset. 

1 Introduction 

Chinese essay writing is hard for foreign learners, not only on the aspect of learning pictograph Chinese 

characters but also on that of  learning Chinese grammar that has no strong syntax rules. An automatic 

grammar error detection system might help the learners to get instant feedback when they are writing 

an essay in a computer aided language learning environment (Shiue and Chen, 2016).  

In order to develop a grammar error detection system with the statistical natural language processing 

technology, developers need a large learner corpus (Chang et al., 2012). However, currently there is no 

publicly available large leaner corpus in Chinese essay writing. That puts off the research in this field. 

The NLP-TEA workshop has been holding a Chinese Grammar Error Detection (CGED) shared task in 

the workshop for two years since 2014 (Yu et al., 2014) (Lee et al. 2015). They provides a set of learner 

corpus and a clear definition on 4 major Grammar error types in the foreign learner corpus. The shared 

tasks stimulated the research and drew many participants.  

The goal of the shared task is to develop a system that can detect the four types of grammar errors in 

learner corpus. Comparing to the task definition of CGED in 2014 and 2015, the major difference in this 

year is the sentences might contain multiple errors. And the organizers provide two data sets: one is in 

traditional Chinese, the TOCFL dataset; the other is in simplified Chinese, the HSK dataset. Figure 1 

and 2 are examples of the four error types, where redundant word is abbreviated ‘R’, missing word ‘M’, 

word selection error ‘S’, and word ordering error ‘W’.  

Based on the conditional random fields (CRF) model, we build a linear tagger that can detect the 

errors in learners’ essays. The major improvement of our system is integrating the collocation feature 

into the CRF model. Since there is no publicly available Chinese collocation dataset, we will also report 

how we collect collocation. 

   The paper is organized as follows: Section 2 describes our methodology, section 3 shows our system 

architecture, section 4 is the discussion, and the final part is the conclusions. 
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Figure 1. Examples of TOCFL (Traditional Chinese) from 2016 NLP-TEA CGED shared task 

[http://nlptea2016.weebly.com/shared-task.html] 

Figure 2. Examples of HSK (Simplified Chinese) from 2016 NLP-TEA CGED shared task 

[http://nlptea2016.weebly.com/shared-task.html] 

   
 

TOCFL (Traditional Chinese) 
Example 1: 

Input: (sid=A2-0007-2) 聽說妳打算開一個慶祝會。可惜我不能參加。因為那個時候我有別的

事。當然我也要參加給你慶祝慶祝。 

Output: A2-0007-2, 38, 39, R 

(Note: “參加” is a redundant word) 

 
Example 2: 

Input: (sid=A2-0007-3) 我要送給你一個慶祝禮物。要是兩、三天晚了，請別生氣。 

Output: A2-0007-3, 15, 20, W 

(Note: "兩、三天晚了" should be "晚了兩、三天") 

 
Example 3: 

Input: (sid=A2-0011-1) 我聽到你找到工作。恭喜恭喜！ 

Output: A2-0011-1, 2, 3, S 
              A2-0011-1, 9, 9, M  

(Notes: "聽到" should be "聽說". Besides, a word "了" is missing. The correct sentence 

should be "我聽說你找到工作了") 

 
Example 4: 

Input: (sid=A2-0011-3) 我覺得對你很抱歉。我也很想去，可是沒有辦法。 

Output: A2-0011-3, correct  

HSK (Simplified Chinese) 
Example 1: 
Input: (sid=00038800481) 我根本不能了解这妇女辞职回家的现象。在这个时代，为什么

放弃自己的工作，就回家当家庭主妇？ 

Output: 00038800481, 6, 7, S 
              00038800481, 8, 8, R 
(Notes: “了解” should be "理解". In addition, "这" is a redundant word.) 

 
Example 2: 
Input: (sid=00038800464) 我真不明白。她们可能是追求一些前代的浪漫。 

Output: 00038800464, correct 
 
Example 3: 
Input: (sid=00038801261) 人战胜了饥饿，才努力为了下一代作更好的、更健康的东西。 

Output: 00038801261, 9, 9, M 
              00038801261, 16, 16, S 
(Notes: "能" is missing. The word "作" should be "做". The correct sentence is "才能努力

为了下一代做更好的") 

 
Example 4: 
Input: (sid=00038801320) 饥饿的问题也是应该解决的。世界上每天由于饥饿很多人死

亡。 

Output: 00038801320, 19, 25, W 
(Notes: "由于饥饿很多人" should be "很多人由于饥饿") 
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2. Methodology 
Our system is based on the conditional random field (CRF) (Lafferty et al., 2001). CRF model can 

cooperate with various kind of linguistic features. We believe that the word itself, its POS, and the 

appearance of collocation words or not are the major components. In our system, we use the template 

technology to generate 49 combinatorial features. The technology is briefly described in the following 

sub-sections. 

2.1. Conditional Random Fields 

CRF has been used in many natural language processing applications, such as named entity recognition, 

word segmentation, information extraction, and parsing. To perform different tasks, it requires different 

feature sets and labelled training data. The CRF can be regarded as a sequential labelling tagger. Given 

a sequence data X, the CRF can generate the corresponding label sequence Y based on the trained model. 

Each label Y is taken from a specific tag set, which needs to be defined in different tasks. X is a data 

sequence to be labelled, and output Y is a corresponding label sequence. While each label Y is taken 

from a tag set, how to define and interpret the label is a task-depended work for the developers. 

Mathematically, the model can be defined as: 

P(𝑌|𝑋) =
1

𝑍(𝑋)
exp(∑ 𝜆𝑘𝑓𝑘𝑘 )                                                                   (1) 

where Z(X) is the normalization factor, f𝑘 is a set of features, 𝜆𝑘 is the corresponding weight. In this 

task, X is the input sentence, and Y is the corresponding error type label. As in the previously work, we 

define the tag set as: {O, R, M, S, D}, corresponding to no error, redundant, missing, selection, and 

word ordering respectively (Chen et al., 2015).  Figure 3 shows a snapshot of our working file. The first 

column is the input sentence X, and the fourth column is the labelled tag sequence Y. The second column 

is the Part-of-speech (POS) of the word in the first column. The combination of words and the POSs 

will be the features in our system. The POS set used in our system is listed in Table 1, which is a 

simplified POS set provided by CKIP1. 

Our system is built on the base of CRF++ (Kudo, 2007), a linear-chain CRF model software devel-

oped by Kudo2. In the training phase, a training sentence is first segmented into terms. Each term is 

labelled with the corresponding POS tag and error type tag. Then our system uses the CRF++ leaning 

algorithm to train a model. The features used in CRF++ can be expressed by templates. The format of 

each template is %X[row, col], where row is the number of rows in a sentence and column is the number 

of column as we shown in Figure 3. The feature templates used in our system are the combination of 

terms and POS of the input sentences. All the templates are listed in Table 2. An example on how a 

sentence is represented is given in Table 3. For example, the first feature template is “Term+POS”: if 

an input sentence contains the same term with the same POS, the feature value will be 1; otherwise the 

feature value will be 0. The second feature template is “Term+Previous Term”: if an input sentence 

contains the same term bi-gram, the feature value will be 1; otherwise the feature value will be 0. 

 

Figure 3 A Snapshot of a training sentence example in our system 

                                                 
1 http://ckipsvr.iis.sinica.edu.tw/ 
2 http://crfpp.sourceforge.net/index.html 

Term POS collocation Tag 

一 DET N O 

個 M N O 

小時 N N O 

以前 POST Y O 

我 N Y O 

決定 Vt Y O 

休息 Vi N O 
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Table 1. Simplified CKIP POS tags3 

POS  

A Adjective 

C Conjunction 

POST Postposition 

ADV Adverb 

ASP Tense marker 

N Noun and pronoun 

DET Article and Numeral 

M Chinese classifier 

Nv Nominalization 

T Chinese particles 

P Preposition 

Vi Intransitive verbs 

Vt Transitive verbs 

2.2. Collocation 

Collocation is useful lexicon knowledge for error correction in language learning (Ferraro et al., 2014). 

In his computational linguistic research papers, Smadja defined that collocations has four characteristics 

(Smadja, 1993). Firstly, collocations are arbitrary combinations of any lexicon, not syntactic or gram-

matical combinations. Secondly, collocations are domain depended, which means collocations are like 

terminology in one domain and it is hard to understand for outsider. Thirdly, collocations are recurrent, 

that means collocations are not exceptions, but rather often are repetitions in a given context. Lastly, 

collocations are cohesive lexical clusters, the presence of one word of a collocation often implies the 

rest of the collocation will appear in the context. 

    (Manning and Schütze, 1999) defined that a COLLOCATION is an expression consisting of two or 

more words that correspond to some conventional way of idea delivering. And there are three charac-

teristics. The first is the non-compositionality, i.e. the meaning of the expression cannot be predicted 

from the meaning of the parts. The second is the non-substitutability, i.e. substitute near-synonyms for 

the components of a collocation will not be a collocation. The last is the Non-modifiability that is col-

locations cannot be freely modified with additional lexical material or through grammatical transfor-

mations.  

2.3. The collection of Chinese collocation pairs 

In the experiments, two methods are used to collect collocation pairs. The first is to select manually 

some collocation pairs from publicly available printed collocation dictionaries. We collect 80,040 col-

location pairs (Chen et al., 2016). The second method is to use T-score to determine if the pair in a 

corpus is collocation or not. 

    We extract collocation from 874 correct sentences provided by NLP-TEA2. After word segmentation 

and POS tagging, our system focuses on content words, i.e. nouns, verbs, adverbs and adjectives only. 

Using the T-test technic, our system extracts 7,746 collocation pairs from all possible 10,581 pairs. The 

null hypothesis is: two terms appears independently, not a collocation pair. 

The T-test formula is: 

t =
x̅−μ

√𝑆2

𝑁

                                                                                 (2) 

where x̅ is the sample mean, 𝑠2is the sample variance, N is the sample size, and μ is the mean of the 

distribution. If the t statistic is above a threshold, we can reject the null hypothesis. The null hypothesis 

here is that the two words are independent (Manning and H. Schütze, 1999).  

                                                 
3 National Digital Archives Program, “CKIP POS,” http://ckipsvr.iis.sinica.edu.tw/ 
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Table 2. Sample statistics of word frequency in the training set 

Sample 

pairs 

Term 1 # of term 1 Term 2 # of 

term 2 

# of term 1 and 2 

in one sentence 

Pair 1 繼續(continue) 7 工作(work) 14 4 

Pair 2 媽媽(Mother) 9 台灣(Taiwan) 26 1 

 

For example, in our corpus with total N=4869 terms, the frequency of the term “continue” is 7, the 

frequency for term ” work” is 14, and the frequency of ” continue work” is 4, then we can calculate the 

t-score as follows: 

𝐻0:P(continue work)=P(continue)*P(work)=
7

4869
∗

14

4869
= 4.1337 ∗ 10−6 = 𝜇 

Since 4.1337 ∗ 10−6 is near 0, thus 𝑠2 = 𝑃(1 − 𝑃) ≈ P. There are 4 times these two terms appear to-

gether in one sentence, therefore: 

x̅ =
4

4869
≈ 8.21523 ∗ 10−4. Then we can get the T-score: 

T-Score(continue work)=
x̅−μ

√𝑆2

𝑁

 ≈
8.21523∗10−4−4.1337∗10−6

√8.21523∗10−4

4869

≈ 1.98994. 

This t value of 1.98994 is larger than 0.96817, the threshold we chose. So we can reject the null hypoth-

esis that “continue work” occurs independently and it is a collocation. 

 

For the second example, frequency of the term “Mother” is 9, the frequency for term ”Taiwan” is 26, 

and the frequency of ”Mother Taiwan” is 1, then we can calculate the t-score as follows: 

𝜇 = P(Mather  Taiwan) = P(Mather) ∗ P(Taiwan) =
9

4869
∗

26

4869
≈ 9.870435 ∗ 10−6 

And x̅ =
1

4869
≈ 2.05380 ∗ 10−4 

Again, according to Bernoulli trial, since x̅ is very small, 𝑠2 ≈  x̅. 

T-Score(Mather  Taiwan)=
x̅−μ

√𝑆2

𝑁

 ≈
2.05380∗10−4−9.870435∗10−6

√2.05380∗10−4

4869

≈ 0.95194. 

This t value of 0.95194 is not larger than 0.96817, the threshold we chose. So we cannot reject the null 

hypothesis that “Mother  Taiwan” occurs independently and it is not a collocation. 
 

Table 3.  Templates and the corresponding value 

Template Corresponding Features 

U01:%x[0,0]/%x[0,1] Term+POS 

U02:%x[0,0]/%x[-1,0] Term+previous Term 

U03:%x[0,0]/%x[-1,1] Term+previous POS 

U04:%x[0,1]/%x[-1,0] POS+previous Term 

U05:%x[0,1]/%x[-1,1] POS+previous POS 

U06:%x[0,0]/%x[-1,0]/%x[-1,1] Term+previous Term+previous POS 

U07:%x[0,1]/%x[-1,0]/%x[-1,1] POS+previous Term+previous POS 

U08:%x[0,0]/%x[-2,0] Term+previous previous Term 

U09:%x[0,0]/%x[-2,1] Term+previous previous POS 

U010:%x[0,1]/%x[-2,0] POS+previous previous Term 

U011:%x[0,1]/%x[-2,1] POS+previous previous POS 

U012:%x[0,0]/%x[-2,0]/%x[-2,1] Term+previous previous Term+previous pre-

vious POS 

U013:%x[0,1]/%x[-2,0]/%x[-2,1] POS+previous previous Term+previous pre-

vious POS 

U014:%x[0,0]/%x[1,0] Term+next Term 

U015:%x[0,0]/%x[1,1] Term+next POS 

U016:%x[0,1]/%x[1,0] POS+next Term 

U017:%x[0,1]/%x[1,1] POS+next POS 
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U018:%x[0,0]/%x[1,0]/%x[1,1] Term+next Term+next POS 

U019:%x[0,1]/%x[1,0]/%x[1,1] POS+next Term+next POS 

U020:%x[0,0]/%x[2,0] Term+next next Term 

U021:%x[0,0]/%x[2,1] Term+next next POS 

U022:%x[0,1]/%x[2,0] POS+next next Term 

U023:%x[0,1]/%x[2,1] POS+next next POS 

U024:%x[0,0]/%x[2,0]/%x[2,1] Term+next next Term+next next POS 

U025:%x[0,1]/%x[2,0]/%x[2,1] POS+next next Term+next next POS 

U026:%x[0,0]/%x[0,2] Term+C 

U027:%x[0,0]/%x[-1,2] Term+previous C 

U028:%x[0,2]/%x[-1,2] C+previous C 

U029:%x[0,0]/%x[-1,0]/%x[-1,1]/%x[-

1,2] 

Term+previous Term+previous POS+previ-

ous C 

U030:%x[0,1]/%x[-1,0]/%x[-1,1]/%x[-

1,2] 

POS+previous Term+previous POS+previous 

C 

U031:%x[0,0]/%x[-2,2] Term+previous previous C 

U032:%x[0,1]/%x[-2,2] POS+previous previous C 

U033:%x[0,0]/%x[1,2] Term+next C 

U034:%x[0,1]/%x[1,2] POS+next C 

U036:%x[0,1]/%x[2,2] POS+next next C 

U037:%x[0,0]/%x[-2,0]/%x[-2,1]/%x[-

2,2] 

Term+previous previous Term+previous pre-

vious POS+previous previous C 

U038:%x[0,1]/%x[-2,0]/%x[-2,1]/%x[-

2,2] 

POS+previous previous Term+previous pre-

vious POS+previous previous C 

U039:%x[0,0]/%x[1,0]/%x[1,1]/%x[1,2] Term+next Term+next POS+next C 

U040:%x[0,1]/%x[1,0]/%x[1,1]/%x[1,2] POS+next Term+next POS+next C 

U041:%x[0,0]/%x[2,0]/%x[2,1]/%x[2,2] Term+next next Term+next next POS+next 

next C 

U042:%x[0,1]/%x[2,0]/%x[2,1]/%x[2,2] POS+next next Term+next next POS+next 

next C 

U043:%x[-1,1]/%x[0,1]/%x[1,1] previous POS+POS+next POS 

U044:%x[-1,0]/%x[0,0]/%x[1,0] previous Term+Term+next Term 

U045:%x[-1,0]/%x[0,0]/%x[1,1] previous Term+Term+next POS 

U046:%x[-1,0]/%x[0,1]/%x[1,2] previous Term+POS+next POS 

U047:%x[-1,1]/%x[0,0]/%x[1,0] previous POS+Term+next Term 

U048:%x[-1,1]/%x[0,0]/%x[1,1] previous POS+Term+next POS 

U049:%x[-1,1]/%x[0,1]/%x[1,0] previous POS+POS+next Term 

U050:%x[-1,0]/%x[0,1]/%x[1,1] previous Term+POS+next Term 

3. System architecture 

Our system flowchart is shown in Figure 4. The training phrase consists of two steps: 1. Collecting 

collocation. 2. Training the CRF with the help of collocation detection, word segmentation and POS 

tagging results. In the first training phrase, a large Chinese corpus is used as the training set. After the 

word segmentation and POS tagging, the corpus is used to collect collocations as we described in section 

2.2. In the second training phrase, the collocations appeare in the same sentence or not is used as one 

separate feature for CRF tagger training. 

     The test phrase is straightforward. The test sentence is first segmented into words with POS tag, after 

detecting the appearance of collocation terms or not, the sentence is prepared as the input of CRF model. 

The CRF model will give one output tag to each term. The tag indicate error detection, error type, and 

also error position at the same time. 
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Figure 4.System Flowchart 

4. Experiments 

The system evaluation metrics of CGED shared task includes three levels. We focus on the identification 

level: this level is a multi-class categorization problem. All error types should be identified, i.e., Redun-

dant, Missing, Word ordering, and Selection. The metrics used are accuracy, precision, recall, and F1-

score.  

4.1. Experiment Settings 

We send respectively three runs for both data set this year, and the major difference for each experiment 

settings is the size of training set. Our system is based on traditional Chinese processing, the simplified 

Chinese is translated into traditional Chinse by Microsoft Word in advance. Our training data consists 

of data from NLP-TEA1(Chang et al.,2012) Training Data, Test Data, and the Training Data from NLP-

TEA2 and NLP-TEA3. Table 4 shows the number of sentences in our training set. 

Run1 settings: Use all the available data as the training set. For TOCFL, the training set is the union 

of the training sets in the NLP-TEA1, NLP-TEA2, and TOCFL in NLP-TEA3. For HSK, the training 

set is the union of the one used for TOCFL and HSK in NLP-TEA3. 

Run2 settings: Almost the same as those in Run1, the only difference is the correct sentences are 

excluded from the training set. We believe that they provide no help for finding errors. 

Run3 settings: Almost the same as those in Run1. The difference is how our system treats the contin-

uous errors. If two errors of the same type occurred continuously, our system will combine them as one 

longer error. For example, two errors of the same type: 

A2-0019-1, 10, 12, S 

A2-0019-1, 13, 13, S 

will be reported as: 
A2-0019-1, 10, 13, S. 

Training Set
Simplified to Traditional&Word 

Segmentation & POS tagging
Collect Collocation Words of the 

Extract Content Words

Check the Collocation Words as 
the additional feature

Construct the new features for 
CRF model

Train the CRF model

Test Set
Simplified to Traditional&Word 

Segmentation & POS tagging
Tagging with the trained CRF 

model

Tagging ResultEvaluate the System
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Table 4.  Training set size 

size NLP-TEA1 NLP-TEA2 NLP-TEA3 

Redundant 1830 434 10010 

Correct 874 0 0 

Selection 827 849 20846 

Disorder 

(word ordering) 

724 306 3071 

Missing 225 622 15701 

4.2. Experimental results 

In the formal run of NLP-TEA-3 CGED shared task, there are 5 participants, and each team submits 3 

runs in TOCFL, totally 15 runs. There are 8 participants in HSK, totally 21 runs. Table 5 shows the false 

positive rate. Our system has 0.082 false positive rate. The average of all runs is calculated from 15 runs 

for TOCFL and 21 runs for HSK. 

Table 6, Table 7, and Table 8 show the formal run result of our system compared with the average in 

Detection level, Identification level, and Position level respectively. Our system achieves the highest 

Accuracy in Detection Level(TOCFL) and Identification-Level (TOCFL). The numbers in boldface are 

the best performance among all formal runs. 

  

Table 5: The false positive rate in Detection Level (the lower the better) 

Submission 
False Positive Rate 

(TOCFL) 

False Positive Rate 

(HSK) 

CYUT&III-Run1 0.3470 0.4016 

CYUT&III-Run2 0.3558 0.4191 

CYUT&III-Run3 0.3635 0.4016 

Average of all runs 0.4812 0.4956 

 

Table 6: Performance evaluation in Detection Level  

 

Detection Level(TOCFL) Detection Level(HSK) 

Accuracy Precision Recall F1 Accuracy Precision Recall F1 

Run1 0.5955 0.6259 0.5419 0.5809 0.6141 0.6003 0.6304 0.615 

Run2 0.5955 0.6236 0.5501 0.5846 0.6118 0.5951 0.644 0.6186 

Run3 0.5941 0.6205 0.5545 0.5856 0.6141 0.6003 0.6304 0.615 

Average of 

all formal 

runs 0.5442 0.5700 0.5679 0.5455 0.5627 0.5807 0.6237 0.5688 

 

Table 7: Performance evaluation in Identification Level 

 

Identification-Level (TOCFL) Identification-Level (HSK) 

Accuracy Precision Recall F1 Accuracy Precision Recall F1 

CYUT-Run1 0.5154 0.46 0.3021 0.3647 0.5714 0.5306 0.4376 0.4797 

CYUT-Run2 0.5133 0.4567 0.3061 0.3666 0.5662 0.5238 0.4509 0.4846 

CYUT-Run3 0.5078 0.4472 0.3001 0.3592 0.5715 0.5306 0.4352 0.4782 

Average of 

all formal 

runs 0.39118 0.32647 0.27321 0.2716 0.4555 0.4310 0.3705 0.3720 
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Table 8: Performance evaluation in Position Level. 

 

Position-Level (TOCFL) Position-Level (HSK) 

Accuracy Precision Recall F1 Accuracy Precision Recall F1 

CYUT-Run1 0.3113 0.1461 0.1089 0.1248 0.3202 0.2037 0.2138 0.2086 

CYUT-Run2 0.3061 0.1432 0.1092 0.1239 0.3143 0.2034 0.2225 0.2125 

CYUT-Run3 0.3088 0.1196 0.0768 0.0935 0.3304 0.1814 0.144 0.1605 

Average of 

all formal 

runs 0.2402 0.0846 0.0459 0.0597 0.2892 0.2059 0.1366 0.1529 

5. Discussion and Conclusions 

This paper reports our approach to the NLP-TEA-3 CGED Shared Task evaluation. By integrating the 

collocation as an additional feature into CRF model, we build a system that can achieve the task. The 

approach uniformly deals with the four error types: Redundant, Missing, Selection, and Word ordering. 

Our system presents the best accuracy in detection level, best accuracy and F1 in identification level, 

and best recall and F1 in position-level at the TOCFL official run.  

 Due to the limitation of time and resource, our system is not tested under different experimental 

settings. In the future, we will use a larger corpus to extract more collocations to improve the perfor-

mance on error diagnosis. 
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Abstract 

This paper discusses how to adapt two new word embedding features to build a more efficient 
Chinese Grammatical Error Diagnosis (CGED) systems to assist Chinese foreign learners (CFLs) 
in improving their written essays. The major idea is to apply word order sensitive Word2Vec 
approaches including (1) structured skip-gram and (2) continuous window (CWindow) models, 
because they are more suitable for solving syntax-based problems. The proposed new features 
were evaluated on the Test of Chinese as a Foreign Language (TOCFL) learner database 
provided by NLP-TEA-3&CGED shared task. Experimental results showed that the new 
features did work better than the traditional word order insensitive Word2Vec approaches. 
Moreover, according to the official evaluation results, our system achieved the lowest (0.1362) 
false positive (FA) and the highest precision rates in all three measurements among all 
participants. 

1 Introduction 

In recent years, the rise of Asian economies and nearly 20 years of rapid development of China has led 
to a corresponding interest in the study of Standard Chinese ("Mandarin") as a foreign language, the 
official language of mainland China and Taiwan. 

However, it might be a great challenge for those CFLs to learn how to write an essay or report in 
Chinese. Because approximately 3,000 Chinese characters and 5,000 words are required  for receiving 
Test of Chinese as a Foreign Language (TOCFL) certificate in advanced level1. Beside, Chinese is an 
analytic language, in that they depend on syntax (word order and sentence structure) rather than 
morphology, i.e., changes in form of a word, to indicate the word's function in a sentence. And Chinese 
also makes heavy use of grammatical particles to indicate aspect and mood, such as like 了 (le , 
perfective), 還 (hái, still), 已經 (yǐjīng, already), and so on. 

CFLs often make four types of grammatical errors, including (1) disorder, (2) missing, (3) redundant 
and (4) selection, for example: 
l Disorder: 我要送給你一個慶祝禮物。要是兩、三天晚了，請別生氣 ("兩、三天晚了" 

should be "晚了兩、三天") 
l Missing: 我聽說你找到工作。恭喜恭喜！(“工作” should be “工作了”) 
l Redundant: 今天是我大學畢業了 (“今天是” should be “今天”) 
l Selection: 我等在教室沒那麼久老師就來了 (“那麼” should be “多”) 

To detect those grammatical errors is not an easy task. Recently, researchers have proposed many 
approaches for CGED task. They could be roughly divided into two categories including (1) hybrid 
linguistic rules+language modelling and (2) pure classification-based methods.  

																																																								
1	http://www.sc-top.org.tw/english/eng_index.php	
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For example, Lee et al. (2013) applied a set of handcrafted linguistic rules with syntactic information 
to detect errors occurred in Chinese sentences written by CFLs. Lee et al. (2014) then further 
implemented a sentence judgement system that integrated both rule-based an and n-gram statistical 
methods to detect grammatical errors in Chinese sentences. Lin and Chen (2015) proposed a system 
which measured the likelihood of sentences generated by deleting, inserting, or exchanging characters 
or words in which two sentence likelihood functions were proposed based on frequencies of space re-
moved version of Google n-grams.  

On the other hand, Xiang (2015) utilized an ensemble classifier random feature subspace method for 
CGED task. Cheng et al. (2014) proposed a CRF-based method to detect word ordering errors and a 
ranking SVM-based model to suggest the proper corrections. Finally, Chen et al. (2015) and Yeh et al. 
(2015) also adopt CRFs and collected a set of common grammatical error rules for building CGED 
systems. 

Among these two methods, the classification-based approach, especially the CRF-based one is quite 
promising. Because, CRFs treat the CGED problem as a sequence-to-sequence mapping task, it could 
then model well the word ordering and sentence structure. However, traditional CRF-based approaches 
often only take current and few neighbouring words and their POS tags as the input features. This may 
limit CRFs’ horizon vision. Besides, word-based features will result in the sparse training data problem, 
since the total number of Chinese words is more than 160,0002. 

To alleviate these two difficulties, this paper would like to discuss how to adapt word embedding 
features to alleviate the sparseness issue and especially how to extract two new word order sensitive 
embedding features proposed by Wang (2015) to capture ordering information. The major idea is to 
apply word order sensitive Word2Vec approaches including (1) Structured Skip-gram and (2) CWindow 
models. Because they seriously take word ordering information into account and are therefore more 
suitable for solving syntax-based problems. By this way, we hope we could build a more efficient CGED 
system. 

2 System Implementation for NLP-TEA-3&CGED shared task 

The block diagram of our proposed system is shown in Fig. 1. It has a CRF-based traditional Chinese 
parser for word segmentation and POS tagging frontend and a CRF-based CGED backend. But the major 
enhancement comparing with other CRF-based approaches is that it applies the word order sensitive 
Word2Vec module to extract word embedding vectors and then does word clustering to generate input 
features for CRF-based CGED module. 

 
 

 
 

Figure 1: The block diagram of the proposed word ordering sensitive embedding feature/CRF-based 
Chinese Grammatical Error Detection system. 

 

																																																								
2	https://www.moedict.tw/about.html	
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In the following subsections, several system components will be discussed in more detail, including 
(1) traditional Chinese parser, (2) word order sensitive Word2Vec, (3) grammatical rule and (4) CRF-
based CGED models. 

2.1 Traditional Chinese Parser 

The parser used in this system (as shown in Fig. 2) is a CRF-based system for traditional Chinese. It has 
three main modules including (1) text normalization, (2) word segmentation and (3) POS tagging. 
 
 

 
 

Figure 2: The schematic diagram of the proposed Chinese parser. 
 
 

This parser was trained using Sinica Balanced Corpus ver. 4.03. Its performance is as follows: The F-
measure of the word segmentation is 96.72% for the original database and 97.50% for the manually 
corrected corpus. The difference between precision and recall rate is less than 0.06%. The accuracy of 
the POS (47-type) tagging is 94.97%. 

It is worth noting that this CRF-based Chinese word segmentation and parser is originally built for 
automatic speech recognition (ASR). So another purpose of this study is to examine how generalization 
and sophistication our parser is. Since Chinese words are not well defined (without word boundaries), a 
high quality Chinese word segmentation and parser is essential for building an effective word embedding 
representation and a good CGED system. 

2.2 Word Order Sensitive Embedding Feature Extraction 

One way to alleviate the sparse training data problem is to use word classes instead of words themselves 
as the input features for CRF-based CGED system. The most widely used tools for building word 
clustering are the models described in (Mikolov 2013a, b, c), including the “Skip-gram” and the 
“Continuous Bag-of-Words” (CBOW) models. However, since these models only give a word a single 
embedding feature vector, they are insensitive to word order and may not be suitable for CGED tasks. 

Therefore, in this paper, we will adopt two new word order sensitive embedding approaches including 
(1) CWindow and (2) Structured Skip-gram (see Fig. 3) models proposed by Wang (2015) to take word 
ordering information into account. 

Basically, CWindow defines a output predictor O ∈ ℝ (|V |×(2c×d)) that takes a (2c × d)-dimensional 
vector  [e(w−c), …, e(w−1), e(w1), …, e(wc)] (the embeddings of the context words) as input. Words in 
different position hence have different weights. Structured Skip-gram, on the other hand, defines a set 
of c × 2 output predictors (O−c, ..., O−1, O1, Oc), with size O ∈ ℝ <(|V |)×d, to predict the outputs 
according to their positions. These two models then will generate word order sensitive embeddings 
features. By this way, it should be easier for CGED system to detect abnormal word ordering or sentence 
structures. 

																																																								
3	http://www.aclclp.org.tw/use_acbc_c.php		
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Figure 3: Illustration of the CWindow and Structured Skip-gram models. 
 

2.3 Error-Prone Words 

To detect some common grammatical errors often made by CFLs, a set of error patterns could be used 
to assist CGED system. For example, Yeh (2015) checked the following words in his CRF-based CGED 
system: 
l Quantifiers 

ü #. of human: “位” or “個” 
ü #. of animals: “隻”, “匹”, “頭”, or “條” 
ü #. of things: “件” 
ü #. of buildings: “座” or “棟” 
ü #. of vehicle: “臺”, “輛”, “架” or “艘” 

l Error-prone words (word + POS) 
ü “把 (let)” + “Nh” or “Na” or “Nep” 
ü “跟(with)”  + “VA” or “Nh” or “Na” 
ü “應該(maybe)” or “好像(like)” or “到底(at last)” + “Nh” or “Na” 
ü “已經(already)” + “Neqa” or “Neu” 
ü  “Neqa” or “Neu” + “P” or “Na” or “VA” 

After some literature survey, it is found that CFLs also often use “是(is)”, “的(of)” and “了(finish)” 
incorrectly. Therefore, this work will specially considers a set of 9 error-prone words including “把(let)”, 
“跟(with)”, “應該(maybe)”, “好像(like)”, “到底(in the end)”, “已經(already)”, “是(is)”, “的(of)” and 
“了(finish)”. Here are some real error examples produced by CFLs (from TOCFL learner corpus): 
l Redundant: “把(let)”, “是(is)” or “的(of)” or “了” 

ü 看著我把搖搖頭。(“看著我把搖搖頭” should be “看著我搖搖頭”)  
ü 她是很漂亮。(“她是很漂亮” should be “她很漂亮”) 
ü 張愛文住在台北，他是十六歲。(“他是十六歲” should be “他十六歲”) 
ü 我想請你在日本料理的餐廳吃飯，好不好？(“我想請你在日本料理的餐廳吃飯” 

should be “我想請你在日本料理餐廳吃飯”) 
ü 幸虧沒有別的人先買走了。 (“幸虧沒有別的人先買走了” should be “幸虧沒有別的人

先買走”) 
l Disorder: “跟(with)”, “應該(should)”, “好像(seem)”, “到底(in the end)” 

ü 要不要下了課去西門跟我看電影？(“要不要下了課去西門跟我看電影” should be “要不
要下了課跟我去西門看電影”) 

ü 家長也應該不讓小孩子亂玩網路遊戲。(“家長也應該不讓小孩子亂玩網路遊戲” 
should be “家長也不應該讓小孩子亂玩網路遊戲”) 

ü 到底我哪裡有錯？(“到底我哪裡有錯” should be “我到底哪裡有錯”) 
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ü 現在我跟這瑞典人的關係是已經很好的朋友。(“現在我跟這瑞典人的關係是已經很好
的朋友” should be “現在我跟這瑞典人的關係已經是很好的朋友”) 

l Selection: “好像” 
ü 我覺得為了知道他們的想法，學生應該學他們的文化。好像他們的生活方式，歷史

甚麼的。(“好像他們的生活方式” should be “例如他們的生活方式”)  
l Missing: “了(finish)” 

ü 你找到工作，恭喜恭喜！(“你找到工作” should be “你找到工作了”) 

2.4 CRF-based Chinese Grammatical Error Detection 

The performance of CRF-based model is mainly decided by the quality of feature engineering. In this 
work, five different features and four sets of feature templates are designed for building our CRF-based 
CGED system. 

First, the five features are (1) word length, (2) POS, (3) reduced POS4, (4) word class index, (5) error-
prone word indicator. Fig. 4 shows an example of how these features are putting together with the 
grammatical error-type ground-truth to form a training data file. 
 

 
 

Figure 4: An example list of features and error-type ground-truth for training our CRF-based CGED 
model. The columns from left to right are word, word length, POS, reduced POS, word class index, 

error-prone word indicator and grammatical error-type ground-truth, respectively. 
 

Second, the four sets of feature templates are specified in Table 1. They consider some combinations 
of the five features (and their n-grams). It is worth noting that the fourth template “(POSn-1 EPWIn 
POSn+1)” could be treated as a generalization of the “Error-prone words (word + POS)” pattern proposed 
in Yeh (2015) (mentioned in previous subsection). 

 
 

Features Features Templates 

Word Class Cn-2, Cn-1, Cn, Cn+1, Cn+2, (Cn-2 Cn-1 Cn), (Cn Cn+1 Cn+2), (Cn-1 Cn Cn+1), (Cn-2 Cn-1 
Cn Cn+1 Cn+2) 

POS+RPOS (RPOSn-2 RPOSn-1 POSn), (RPOSn-1 POSn RPOSn+1), (POSn RPOSn+1 RPOSn+2) 
RPOS+Word Class (RPOSn-2 RPOSn-1 Cn), (RPOSn-1 Cn RPOSn+1), (Cn RPOSn+1 RPOSn+2) 

Error-Prone Word Indicator (POSn-1 EPWIn POSn+1) 
 

Table 1: List of feature templates designed for building our CRF-based CGED system. Here “C” , 
“POS”, RPOS and EPWI are the word class index, POS, reduced POS and error-prone word indicator, 

respectively. 

																																																								
4 http://ckipsvr.iis.sinica.edu.tw/cat.htm	
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3 NLP-TEA 3 & CGED Shared Task 

The goal of the NLP-TEA3&CGED shared task is to develop systems to automatically diagnose Chinese 
sentences written by CFLs. The systems should indicate where and what type of errors are embedded in 
CFLs’ sentence. 

In the following experiments, the effectiveness of the error-prone word templates was first checked. 
Then the performance of the new “CWindow” and “Structured Skip-gram” were compared with the 
original “Skip-gram” and the “CBOW” models. Finally, the official evaluation results of our three 
CWindow-based submissions were discussed. 

3.1 TOCFL learner database 

The TOCFL learner database (NLP-TEA3) provided by the organizers was used to develop our CGED 
system. In order to enlarge the pool of training samples, the data sets of the two previous editions of this 
shared task, i.e., NLP-TEA1 (Yu et al. (2014)) and NLP-TEA2 (Lee et al. (2015)) are also added together. 
In the end, there are in total 63,462 sentences for system development. Table 2 shows the statistics of 
different grammatical error types on the development dataset. 
 

Error-type #. of errors  
Disorder   1,980 

Redundant   4,971 
Missing       90 

Selection 10,686 
Correct 35,141 

 
Table 2: Statistics of the numbers of error-types made by CFLs on our training corpus. 
 
The development data was further divided into a training and a testing subsets by a ratio of 9:1. 

Therefore, there are 57,116 and 6,346 sentences in the training and testing subsets, respectively. 

3.2 Model Settings 

Four types of embedding representations including CBOW, Skip-gram, Structured Skip-gram and 
CWindow models were built using the modified Word2Vec toolkit5,6. They were all trained using the 
same set of text corpora including (1) LDC Chinese Gigaword Second Edition7, (2) Sinica Balanced 
Corpus ver. 4.0, (3) CIRB03038 (Chinese Information Retrieval Benchmark, version 3.03), (4) Taiwan 
Panorama Magazine9, (5) TCC30010 and (6) Wikipedia (ZH_TW version). 

In all methods, the vector size was set to 300 and using a context window of 13 (6+1+6) words. To 
speed up the computation, the probability of a target word was estimated with the hierarchy Softmax 
method. After the vector space is established, k-mean algorithm was utilized to cluster all words into 
1,024 classes. 

Finally, the CRF++ toolkit developed by Kudo11 was utilized to build our CRF-based CGED system. 
It is worth noting although there are four different Word2Vec frontends but the CRF backend is the same 
(except the input word class features) for all following experiments. 

3.3 Preliminary Results on Development Dataset 

First of all, Table 3 shows the impact of (with and without) error-prone words evaluated using a 
CWindow/CRF-based system. According the results, it indicates that those special words did help to 

																																																								
5https://code.google.com/p/word2vec/  
6 https://github.com/dav/word2vec 
7https://catalog.ldc.upenn.edu/LDC2005T14 
8http://www.aclclp.org.tw/use_cir.php 
9 http://www.aclclp.org.tw/use_gh_c.php 
10 http://www.aclclp.org.tw/use_mat.php - tcc300edu 
11 https://taku910.github.io/crfpp/  
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improve the performance of our CRF-based CGED system. Therefore, those error-prone words will be 
considered in all systems reported below. 
 
 

Approach Accuracy Precision Recall F1 
Without 89.91% 52.17% 10.69% 17.75% 

With 89.89% 52.32% 10.89% 18.03% 
 

Table 3: Performance comparison on the effectiveness of adding the error-prone words feature 
templates on a CWindow/CRF-based CGED system. 

 
Second, Table 4 showed the performance of the Structured Skip-gram-, CWindow-, Skip-gram- and 

CBOW-based CGED systems (all take error-prone words into account). It is found that CWindow 
achieved the best F1-score. Because F1-score is the most balanced performance measurement, all our 
submissions will use the CWindow-based approach. 
 

Approach Accuracy Precision Recall F1 
Skip-gram 89.59% 44.57% 10.49% 16.98 

CBOW 89.91% 52.00% 10.32% 17.22 
Structured Skip-gram 90.02% 56.97% 10.19% 17.29 

CWindow 89.89% 52.32% 10.89% 18.03 
 

Table 4:Performance of the Structured Skip-gram-, CWindow-, Skip-gram- and CBOW-based CGED 
systems (all take error-prone words into account). 

 

3.4 Official Evaluation Results 

Three runs (NCTU+NTUT-Run1, Run2 and Run3) were submitted to NLP-TEA 2016 CGED shared 
task for official evaluation. All submissions are CWindow-based systems, since CWindow achieved the 
best performance in preliminary experiments. The only difference between these three runs is that they 
have different FA performance (i.e., different operating points). Table 5 shows the official evaluation 
results of our three submissions. 

Among three submissions, Run1 has the lowest FA and highest precision rate in all three 
measurements comparing with other participants. Especially, Run1 achieved 0.1362 FA, 0.4603 
accuracy, 0.2542 precision and 0.0483 recall rate in position-level. Since FA is the most important factor 
that influences users’ experiences on CGED applications, the proposed approach is quite promising. 
 
 

 
 

Table 5: Official TOCFL evaluation results of NLP-TEA3&CGED shared task. 
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4 Conclusion 

In this paper, a word order sensitive embedding features/CRF-based CGED system was proposed and 
implemented for participating the NLP-TEA-3&CGED shared task. The experimental results showed 
that the proposed new features did work better than the traditional word order insensitive Word2Vec 
approaches. Moreover, according to the official evaluation results, our system achieved the lowest FA 
(0.1342) and the highest precision rates in all three measurements among all participants. Therefore, the 
proposed approach is a promising one and will be further explored in the near future. Finally, the latest 
version of our traditional Chinese parser is available on-line at http://parser.speech.cm.nctu.edu.tw. 
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Abstract

We offer a fluctuation smoothing computational approach for unsupervised automatic short an-
swer grading (ASAG) techniques in the educational ecosystem. A major drawback of the ex-
isting techniques is the significant effect that variations in model answers could have on their
performances. The proposed fluctuation smoothing approach, based on classical sequential pat-
tern mining, exploits lexical overlap in students’ answers to any typical question. We empirically
demonstrate using multiple datasets that the proposed approach improves the overall performance
and significantly reduces (up to 63%) variation in performance (standard deviation) of unsuper-
vised ASAG techniques. We bring in additional benchmarks such as (a) paraphrasing of model
answers and (b) using answers by k top performing students as model answers, to amplify the
benefits of the proposed approach.

1 Introduction

In this paper, we deal with the problem of automatic assessment of students’ constructed answers in
natural language in an educational environment. In particular, we are interested in short answers: a few
words to a few sentences long (everything in between fill-in-the-gap and essay type answers (Burrows et
al., 2015)) and refer to the task as Automatic Short Answer Grading (ASAG). An example ASAG task
is shown in Table 1. This is a non-trivial task owing to: linguistic variations (a given answer could be
articulated in many different ways); subjective nature of assessment (multiple possible correct answers
or no correct answer); lack of consistency in human rating (non-binary scoring on an ordinal scale within
a range); etc.

Question How are overloaded functions differentiated by the compiler?

Model
Ans

Based on the function signature. When an overloaded function is called,
the compiler will find the function whose signature is closest to the
given function call.

Stud#1 It looks at the number, types, and order of arguments in the function call

Stud#2 By the number, and the types and order of the parameters.

Table 1: A question, model answer, and stu-
dent answers from a computer science course
(Mohler and Mihalcea, 2009). These will be
used as a running example in the paper.

The number and type of its parameters.

The compiler selects the proper functions to execute based on number, types and
order of arguments in the function call.

It selects the proper function to execute based on number, types and order of argu-
ments in the function call.

The compiler selects proper function to execute based on number, types and order
of arguments in the function call.

Is based on number, types, and order of arguments in the function call.

Compiler selects proper function to execute based on number, types and order of
arguments in the function call.

Table 2: A few other possible model answers
to the same question shown in Table 1.

Two recent survey papers by Roy et al. (2015) and Burrows et al. (2015) provide comprehensive
views of research in ASAG. Both papers have grouped prior research based on the types of approaches
used as well as the extent of human supervision needed. They report that a large fraction of prior work
in ASAG uses various textual similarity measures (lexical, semantic etc.) to obtain a similarity value
between student and model answers and convert those values to grades appropriately. Such unsuper-
vised ASAG techniques largely reduce the need of instructor involvement either for training the ASAG
system (as done in supervised ASAG (Sukkarieh et al., 2011; Madnani et al., 2013; Ramachandran et

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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al., 2015)) or for providing all possible variations of model answers (e.g. concept mapping based ap-
proaches (Burstein et al., 1999; Leacock and Chodorow, 2003)). However, the unsupervised ASAG
techniques suffer from two shortcomings which motivate the main contribution of this work. First, vari-
ations in model answers can significantly affect their performance. Consider a few equivalent model
answers in Table 2 of our running example question (shown in Table 1). Replacing the instructor pro-
vided model answer with any of these is not expected to change human evaluation of student answers.
However doing so make unsupervised ASAG techniques exhibit alarming fluctuations. An intrigued
reader may make a forward reference to Figure 3 to see the fluctuation in performance of four unsuper-
vised ASAG techniques against equivalent model answers to the question. This is a pragmatic concern
as it shows that unsupervised ASAG techniques’ performance significantly fluctuate depending on how
model answers are specified. We will address this shortcoming in this paper. The second shortcom-
ing is that there is no standardization in respect of how model answers are written across datasets or
even within a dataset. The model answer in Table 1 is more detailed and self-contained than the model
answer “Abstraction and reusability” for another question “What are the main advantages

associated with object-oriented programming?” from the same dataset. Owing to such variation
and key additional factors such as types of questions (definition, interpretation, comparison etc.), it is
unlikely that any one of these ASAG techniques that rely solely on model answers would work well
across all types of questions. While this is an important problem to be addressed, we do not deal with it
in this paper.

There are two reasons behind the first shortcoming of the unsupervised ASAG techniques. The first is,
all words (generally, n-grams) in the model answer are given equal importance to compute the score of a
student answer, whereas instructors typically give emphasis on certain key words (or concepts). Second,
there can be diverse ways to express a correct answer but the model answer may not capture all possible
ways. These lead to the primary contribution of this work, which is to propose a fluctuation smoothing
approach to make unsupervised ASAG techniques more consistent and effective. The proposed approach
is generic; it works across lexical, knowledge based, and vector space based ASAG techniques. It is
based on an intriguing finding that short answers to a question typically contain significant lexical overlap
among them and such overlapping text portions are usually coupled to the correct answer to the question.1

Based on similar motivation, Ramachandran et al. demonstrated effectiveness of using students’ answers
to a question to extract patterns for short answer scoring (2015). They used a graph based approach to
extract patterns from groups of questions and their answers towards constructing regular expression alike
patterns for short answer scoring. While they used a supervised approach using the extracted patterns as
features, our approach is completely unsupervised - hence easier to test on new datasets and in real life.
Secondly, we opine that regular expression based features can be constraining towards generalization
and real life usage for free text answers.

Our approach is implemented in two steps. In the first step, we propose a variant of the sequential
pattern mining problem (Agrawal and Srikant, 1995) to identify n-grams with high support that are
more common (than the rest of the n-grams) among student answers. In the second step, we deduce our
fluctuation smoothing approach by re-weighing different parts of the model answers in a manner propor-
tional to their support values which in turn are used by the unsupervised ASAG techniques. Intuitively,
the proposed technique brings in diversity by upweighing certain scoring words (n-grams) in the model
answer (for our running example, the upweighed words include call and overload) and introducing new
words (n-grams) which are not present in the model answer (e.g. parameter, argument, type) but have
possibly affected instructors’ scores. In the sequel, we use the words approach, method, and technique
synonymously. We also use the phrases fluctuation smoothing and stabilization synonymously.

Our contributions: The contributions and novelty of this work are summarized below.

• We present vulnerabilities of unsupervised ASAG techniques arising from their sole dependence

1We hasten to add that this finding may not always be true. For example, occasionally, instructors design difficult and tricky
questions to mislead students towards incorrect answers. However, we have empirically found lexical overlap to pervade the
answers in our datasets. Additionally, we propose a conservative variant of our fluctuation smoothing approach that does not
get affected by common mistakes made by a large number of students.
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on the way model answers are written by instructors. These are potential roadblocks for practical
adoption of these techniques and motivate our work in this paper.
• We propose a fluctuation smoothing approach, based on sequential pattern mining (Agrawal and

Srikant, 1995), for unsupervised ASAG techniques by leveraging textual overlap between students’
short answers. (§ 2.2)
• We empirically demonstrate on multiple datasets that the proposed approach improves the overall

performance and significantly reduces the variation in performance. We bring in additional bench-
marks such as (a) paraphrasing of model answers and (b) using top-k best answers by students as
model answers, to convincingly demonstrate the efficacy of the proposed approach (§ 3.3)
• We create and offer a new dataset on high-school English reading comprehension task in a Central

Board of Secondary Education (CBSE) school in India. (§ 3.1)

2 Proposed Approach for ASAG

In this section, we first describe unsupervised ASAG techniques building upon popular lexical, knowl-
edge based, and vector space based methods. In the following section, we describe the proposed fluctu-
ation smoothing approach.

2.1 Unsupervised ASAG Techniques
The basic premise of unsupervised ASAG techniques is: higher the similarity between the model and a
student answer, higher the score the latter receives. Typically these measures output a score between 0
and 1 which are subsequently scaled by the maximum attainable score for a question. Building on these
measures, we present an unsupervised technique leveraging the asymmetric nature of ASAG tasks i.e.
student answers to be evaluated against the model answer and not the other way. Given two texts, model
answer M and a student answer S, we conduct standard pre-processing operations such as stopword
removal and stemming. The score of S with respect to M is then defined as:

asym(M,S) =
1
k

k∑
i=1

max
sj∈S

(sim(mi, sj)) (1)

where mi and sj are pre-processed n-grams of M and S respectively and k is the number of n-grams in
M . For n = 1, mi and sj are words of M and S; and k is the length of M with respect to number of
words. sim(., .) is a textual similarity measure of one of the following types:

• Lexical: In this category, we consider lexical overlap (LO) between model and student answers. It is
a simple baseline measure which looks for exact match for every content words (post pre-processing
e.g. stopword removal and stemming).
• Knowledge based: These measures employ a background ontology to arrive at word level semantic

similarity values based on various factors such as distance between two words, lowest common
ancestor, etc. Mohler and Mihalcea (2009) compared eight different knowledge-based measures to
compute similarities between words in the model and student answers using Wordnet. We select the
best performing one in this category, the measure proposed by Jiang and Conrath (JCN) (Jiang and
Conrath, 1997) as shown below:

sim(mi, sj) = [IC(mi) + IC(sj)− 2× IC(LCS(mi, sj))]−1

where, LCS(mi, sj) is the least common subsumer of mi and sj in Wordnet (Miller, 1995),
IC(w) = −log P (w) and P (w) is the probability of encountering an instance of word w in a
large corpus.
• Vector space based: In this category, we have chosen one of the most popular measures of semantic

similarity, namely, Latent Semantic Analysis (LSA) (Landauer et al., 1998) trained on a Wikipedia
dump. We also consider the recently popular word2vec tool (W2V) (Mikolov et al., 2013) to obtain
vector representation of words which are trained on 300 million words of Google news dataset and
are of length 300. Both LSA and W2V build on several related ideas towards capturing importance
of context to obtain vector representation of words e.g. the distributional hypothesis “Words will
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occur in similar contexts if and only if they have similar meanings” (Harris, 1968). Similarity
between words is the measured as the cosine distance between corresponding word vectors in the
resultant vector space using the well known dot product formula.

2.2 Fluctuation Smoothing

2.2.1 Intuition

In unsupervised ASAG techniques, each student answer is compared against the model answer inde-
pendently to arrive at a score indicating goodness of the student answer. These techniques give equal
importance to each word of the model answer, whereas an instructor would often look for certain key
words (equivalently, concepts, phrases etc.) such as the word signature in the model answer shown in
Table 1. Second, there could be alternate ways of expressing equivalent correct answers different from
the instructor provided model answer, such as the notion of (function) signature being rightly expressed
by number, types and order of arguments for our running example. Both of these phenomena contribute
towards fluctuations in performance of unsupervised ASAG techniques.

Towards addressing this issue, we exploit a fact that student answers to a question, as a collection, are
expected to share more commonalities than any random collection of text snippets. Furthermore, we
observe that such commonalities are likely to influence instructor given scores irrespective of whether
or not they are a part of the model answer. Hence, extracting and incorporating these commonalities in
an ASAG technique should help smoothing the fluctuation exhibited by unsupervised ASAG techniques
relying solely on instructor given model answers. In the first step of the proposed two-step fluctuation
smoothing approach, we apply a variant of the sequential pattern mining algorithm (Agrawal and Srikant,
1995) to identify frequent common n-grams in student answers. In the second step, we either upweigh
n-grams present in the model answer or add new n-grams, with weights proportional to their support.

2.2.2 Technique

Sequential patterns in the context of text has been used to capture non-contiguous sequence of words for
classification and clustering (Jaillet et al., 2006). Prior work has reported that for such tasks, sequential
patterns have more reliable statistical properties than commonly used lexical features e.g. n-grams in
NLP domain (Sebastiani, 2002). For short answers too, our observation was that sequential patterns
are more statistically significant and less noisy than n-grams and hence developed our approach based
on sequential patterns. The following two steps, namely, mining high support n-grams and updating
unsupervised ASAG scoring are repeated for all questions.

Step 1: Mining High Support n-grams

The objective of this step is to extract commonly occurring patterns and quantify the notion of common-
alities using support:

1. A student answer (si) is converted to a sequence of words (wi
1, w

i
2, . . . , w

i
k) by performing standard

pre-processing operations such as stopword removal and stemming as well as task specific pre-
processing viz. question word demoting.

2. An n-gram p, is a sequence of n consecutive tokens from si i.e. p = wi
j , w

i
j+1, . . . , w

i
j+n−1.

It is imperative to note that these n-grams are not n consecutive words from the original model
answer. Hence they may not make semantic sense when considered in isolation. For example, a few
frequent n-grams for various n of our running example are (number, type, order, argument,

call),(base, number, type, order), (proper, execute, base).

3. The support of p is defined as sup(p)= |{si:p∈si}|
|{si}| ;∀i i.e. the fraction of student answers containing

p. Connecting to our intuition, n-grams with high support are commonalities among answers we
are looking for.

85



Step 2: Updating Unsupervised ASAG Scoring

1. Sort n-grams in decreasing order of their support.

2. For every n-gram p assign a weight w, where w = sup(p) × f + count(p,M) and the function
count(., .) returns the number of times the n-gram p appears in M (0, if it does not). The multi-
plicative factor f ensures differential weighing of the same n-gram appearing in multiple questions.
The intuition being in the longer model answer, an n-gram obtained the same support amidst larger
number of n-grams hence should have higher weights. Experimentally we find that average length
of answers gives the best performance across various datasets.

3. Update the asymmetric similarity measure as below by incorporating the weights and with appro-
priate normalization.

asym(M,S) =
1∑k′

i=1wi

k′∑
i=1

wi max
sj∈S

(sim(mi, sj)) (2)

where wi is the weight of mi and k′ is the new length of M with respect to the number of n-grams.

To illustrate, for our running example’s model answer, some of the words which get higher weights
are (in decreasing order of weights) are function, overloaded, call, compiler etc. whereas
new words such as type, argument, number, order, parameter, proper etc. get added to
the model answer. In a conservative smoothing variant, we increase the support of n-grams which
has count(., .) > 0 i.e. only the word which appear in the instructor provided model answer.
We call this conservative as it prevents introducing n-grams which might arise from a common
misconception among large number of students.

3 Performance Evaluation

In this section, we present empirical answers to the following questions. Given n valid model answers
to a question, what is the extent of fluctuation exhibited by the unsupervised ASAG techniques and
smoothing achieved by the proposed approach (Fluctuation Smoothing Performance)? Secondly, are
there alternate ways of bringing in diversity instead of relying on single instructor provided model an-
swer? How do they compare against the proposed approach of leveraging student answers as a source of
diversity (Aggregate Performance)?

3.1 Datasets

We evaluate the proposed fluctuation smoothing technique on three datasets. (i) CSD: This is one of the
earliest ASAG datasets consisting of 21 questions with 30 student answers evaluated each on a scale of
0-5 from an undergraduate computer science course (Mohler and Mihalcea, 2009). Student answers were
independently evaluated by two annotators and automatic techniques are measured against their average.
(ii) X-CSD: This is an extended version of CSD with 81 questions by the same authors (Mohler et al.,
2011). (iii) RCD: We created a new dataset on a reading comprehension assignment for Standard-12
students in Central Board of Secondary Education (CBSE) in India. The dataset contains 14 questions
answered by 58 students. The answers were graded by two expert human raters based on model answers,
again on a scale of 0-5 and optional scoring scheme.

All datasets have less than (total number of questions × total number of students) answers as presum-
ably some students did not answer some questions. We mark such missing entries as “No Answer” and
corresponding groundtruth scores as zero.

3.2 Performance Metric

A wide variety of metrics have been used in the ASAG literature with no standard one. Pearson’s r and
quadratic weighted Cohen’s κ are the two most popular one which we use, though the suitability of the
former for ASAG has been questioned (Mohler and Mihalcea, 2009). For every question we compute r
and κ and reported values are average over all questions for each dataset.
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3.3 Quantitative Results
Fluctuation Smoothing Performance: Towards generating valid model answers for each question, we
select those student answers which were graded as perfect 5/5 by the instructor with respect to the model
answer. We consider each of them (and the instructor provided model answer) as a model answer in turn
and score all student answers using the unsupervised ASAG techniques - with and without fluctuation
smoothing (i.e. Equation (1) and Equation (2) respectively). For our running example, there are 20
perfect scoring student answers (some of those are shown as examples in Table 2). Resultant Pearson’s
r of scores and associated fluctuations can be seen in Figure 3. Firstly, it is clear that all techniques
suffer from fluctuation in performance as they rely solely on the model answers to score student answers
(red dashed lines). Secondly, it is visually evident that the fluctuation smoothed technique (blue solid
lines) shows significantly less variability than respective non-smoothed ones. Corresponding standard
deviation (SD) values clearly support the observation. Table 3 shows aggregate SD in performance of
all methods for three datasets under no smoothing and the proposed smoothing technique along with its
conservative variant. Each big cell, bordered with double lines, shows the SD numbers for a (technique,
metric) combination. It is evident that the proposed smoothing technique reduces fluctuations across all
settings, often significantly, going up to 63% for (LSA,CSD) combination. This is a clear demonstration
of the efficacy of the proposed fluctuation smoothing approach. Expectedly, the conservative approach
gives less smoothing effect supporting our intuition that student answers bring in diverse views not
captured in instructor provided model answers.

Aggregate Performance: At the core of it, the proposed fluctuation smoothing technique is essentially
synthesizing a super model answer for every question. It does so by bringing in additional and diverse
snippets of possible correct answers from the corresponding student answers. Next we ask the question if
there are other possible ways of bringing in diverse views of correct answers. Towards that we consider
the following two possible variants:

Paraphrasing: Using freely available paraphrase generators 2 we created four different paraphrases
for each model answer and applied the proposed smoothing technique. For example, for the model
answer of our running example (Table 1), one paraphrased model answer is “Predicated on the

function signature. When an overloaded function is called, the compiler will find

the function whose signature is most proximate to the given function call.”

Answers of top-k Students: We selected five best performing students for each dataset and their an-
swers are chosen as model answers.Note that their answers to all questions may not be necessarily cor-
rect, but their overall performances were better than the rest of the students.

Each of these options is used as a source of diversity to reweigh different parts of the model answer
(as shown in Equation 2). Figures 1 and 2 show Pearson’s r and Cohen’s κ for CSD with unsupervised
ASAG techniques. Default refers to the scenario when no diversity source is used (Equation 1) and
the remaining are with various diversity options described. Across all settings, we note that average
performance of unsupervised techniques are comparable. The “stabilized-proposed” option emerges as
the best, albeit jointly in some cases, though the differences are significant. However, by bringing in
diversity we can reduce fluctuation in performance as we already demonstrated in Table 3 and Figure 3.
We make similar observations on XCSD and RCD.

Finally, we obtain better r value for CSD compared to the values reported by Mohler and Mihalcea
in their paper (2009) for these two techniques. We believe that this is owing to bigger size of Wikipedia
corpus on which LSA was trained (compared to what it was in 2009) as well as our asymmetric similar-
ity measure (compared to their symmetric measure) and possibly difference in preprocessing (we used
WordnetLemmatizer instead of more commonly used Porter stemmer etc.).

4 Prior Art

Recent survey papers by Roy et al.(2015) and Burrows et al. (2015) provide comprehensive views of
research in ASAG. Both of them have grouped prior research based on types of approaches used as

2http://paraphrasing-tool.com/; http://www.goparaphrase.com/; https://spinbot.com/; http://paraphrase.generalconnection.com/
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Figure 1: Aggregate Pearson’s r for CSD.
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Figure 2: Aggregate Cohen’s κ for CSD.

Pearson’s r Quadratic κ
CSD XCSD RCD CSD XCSD RCD

LO
no smoothing 0.11 0.11 0.10 0.12 0.14 0.06
all students - cons 0.11 0.11 0.10 0.12 0.14 0.06
all students 0.05 0.05 0.06 0.07 0.09 0.04

JCN
no smoothing 0.10 0.10 0.12 0.09 0.10 0.07
all students - cons 0.09 0.09 0.11 0.09 0.10 0.06
all students 0.05 0.04 0.06 0.05 0.05 0.02

LSA
no smoothing 0.11 0.08 0.09 0.12 0.12 0.03
all students - cons 0.09 0.06 0.09 0.10 0.09 0.02
all students 0.04 0.03 0.05 0.05 0.04 0.01

W2V
no smoothing 0.11 0.10 0.09 0.13 0.14 0.04
all students - cons 0.09 0.08 0.08 0.10 0.11 0.04
all students 0.05 0.04 0.05 0.06 0.06 0.01

Table 3: Aggregate standard deviation (SD) in performance (lower the better) of all techniques under
the proposed smoothing technique (all students), its conservative variant (all students-cons) against the
default no smoothing option. Best performances for each (metric, dataset) combination are emphasized
(bold).

well as extent of human supervision needed. In this section, we cover relevant unsupervised ASAG
techniques (e.g. lexical, knowledge-based, vector space etc.). Among the lexical measures, Evaluating
Responses with BLEU (ERB) due to Perez et al. (2004) adapted a popular evaluation measure for
machine translation, BLEU (Papineni et al., 2001) for ASAG with a set of NLP techniques such as
stemming, closed-class word removal, etc. This work initially appeared as part of an ASAG system,
Atenea (Alfonseca and Pérez, 2004) and later as Willow (Pérez-Marín and Pascual-Nieto, 2011). Mohler
and Mihalcea (2009) conducted a comparative study of different semantic similarity measures for ASAG
including knowledge-based measures using Wordnet as well as vector space-based measures such as
LSA (Landauer et al., 1998) and Explicit Semantic Analysis (ESA) (Gabrilovich and Markovitch, 2006).
LSA has remained a popular approach for ASAG and been applied in many variations (Graesser et al.,
2000; Kanejiya et al., 2003; Klein et al., 2011). Lexical and semantic measures have been combined
to validate natural complementarity of syntax and semantics for ASAG tasks (Perez et al., 2005). A
combination of different string matching and overlap techniques were studied by Guetl on a small scale
dataset (2008). Gomaa and Fahmy compared several lexical and corpus-based similarity algorithms
and their combinations for grading answers in 0-5 scale (2012). This central reliance on instructor
provided model answer of all these techniques leads to significant variation in performances even when
it is replaced by another equivalent model answer.
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Figure 3: Fluctuation in Pearson’r of unsupervised ASAG techniques. It can be seen that unsuper-
vised ASAG techniques with proposed fluctuation smoothing (blue solid lines) are significantly flatter
than without smoothing (red dotted lines). Values within parenthesis are standard deviation (SD) value
without and with smoothing respectively.

Dzikovska et al. conducted a 5-way Student Response Analysis challenge as a part of SemEval-2013
(2013). However, the task had more emphasis on giving feedback on student answers possibly using
textual entailment techniques. ASAG can be seen as related to the task of textual entailment (Levy et al.,
2013) especially when the elements of a model answer are compared against student answers. Textual
entailment has seen a notable amount of work with a variety of shared tasks (Marelli et al., 2014; Xu et al.,
2015) and vector space models have been considered as well (Zhao et al., 2015). Although the techniques
are mostly supervised, the tasks and features used in such systems are relevant for consideration.

5 Conclusion and Future Work

In this paper, we introduced a fluctuation smoothing computational approach for unsupervised ASAG
techniques in educational ecosystem. It addressed a major drawback - the significant effect that variations
in model answers could have on the performance of these techniques. We empirically demonstrated with
experimentation that the proposed approach at least retains (and in most cases, improves) the overall
performance and significantly reduces the variation in performance of unsupervised ASAG techniques.
We introduced additional benchmarks such as (a) paraphrasing of model answers and (b) using top-k
best answers by students as model answers for comparing against the proposed approach. We intend
to contribute a new dataset on high-school English reading comprehension task in a Central Board of
Secondary Education (CBSE) school in India. In future, we would like to evaluate the proposed technique
on other standard datasets such as SemEval-2013 dataset and Kaggle ASAP dataset (Kaggle, 2015).
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Abstract 
1This paper introduces Japanese lexical simplification.  Japanese lexical simplification is the 
task of replacing complex words in a given sentence with simple words to produce a new 
sentence without changing the original meaning of the sentence.  We propose a method of 
supervised regression learning to estimate complexity ordering of words with statistical 
features obtained from two types of Japanese corpora.  For the similarity of words, we use a 
Japanese thesaurus and dependency-based word embeddings.  Evaluation of the proposed 
method is performed by comparing the complexity ordering of the words. 

1 Introduction 

According to the statistical data collected by Ministry of Justice, there are about two million 
foreigners living in Japan today.  Around half of them do not have Japanese proficiency.  It has been a 
problem for foreigners since most of information is provided in Japanese. Lexical simplification is a 
process to make a sentence more readable for non-native speakers by replacing complex words to 
simpler ones that retain the same meaning.  A number of studies on lexical simplification have been 
conducted in recent years. Since the task of lexical simplifications is related with development of other 
tasks in natural language processing such as words similarity or paraphrasing words. Most of studies 
in simplification are conducted in English.  Since there are much larger data and many tools available 
for English compared with other languages.  In this paper, we tackle the sentence simplification 
problem in Japanese.  We propose a method for estimating complexity of Japanese words and for 
obtaining semantically similar words for the replacement of complex words. 

2 Related Work 

Dominant approaches of previous work in simplification are hybrid approaches, which combine 
deep semantic and monolingual machine translation (Narayan and Gardent, 2014), word alignment 
approach (Coster and Kauchak, 2011; Paetzold and Specia 2013; Horn, et al., 2014) or language 
modeling approach (Kauchak, 2013). The main limitation of these methods is that they depend on 
parallel corpus between simple and complex sentences such as English Wikipedia, Simple English 
Wikipedia or Newsela corpus (Xu et al., 2015).  

Another approach is to implement the simplification task of complex words by replacing them with 
the extract synonym words obtained from databases such as thesaurus (Devlin and Tait, 1998; De 
Belder and Moens, 2010), from dictionary definition or from WordNet (Kajiwara et al.,2013).  
Thesauri can provide good synonyms while their coverage is limited.  Recent work (Glavasˇand 
Stajner, 2015; Paetzold and Specia, 2016) approached the word embedding model (Mikolov et al., 
2013) to estimate word similarity and aims to mitigate the limitation of thesauri and parallel corpora. 

The next approach is to identify complex words and choose simpler words for replacing them, 
while keeping the same meaning of the original complex words. Identifying complex words is 

                                                
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: 
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common work before doing the simplification task (Carroll et al., 1998; Baustista et al., 2009; 
Paetzold and Specia, 2016).  Estimation of word complexity is mostly based on their frequencies 
(Devlin and Tait, 1998; De Belder and Moens, 2010; Kauchak et al., 2014, Kajiwara et al., 2015), their 
length (Bautista et al.,2009), judgment by user study (Paetzold and Specia, 2016), technical words in 
specific domains (Kauchak et al., 2014), basic vocabularies for children (Kajiwara et. al, 2013), 
Japanese Language Proficiency Test levels, or Easy Japanese corpus (Moku et al.,2012).  The recent 
work of (Kodaira et al., 2016) used crowdsourcing to for collecting simplification candidates of words.  

Our approach uses more than one resource.  We first use a thesaurus since thesauri produce the best 
candidates of synonyms.  For addressing the limitation of a thesaurus, we utilize dependency-based 
word embedding (Levy and Goldberg, 2014) since it is shown that dependency-based embedding 
highlights less topical and more functional similarity than the skip-gram models. For identification of 
complexity of words, we use existing approaches like frequency, words used by children, technical 
words, and Japanese Language Proficiency Test levels. 

3 Data 

In our experiments, we use Japanese raw corpora.  We combine Balanced Corpus of Contemporary 
Written Japanese (BCCWJ)1 and Mainichi Newspaper Corpus to estimate word similarity, Japanese 
Language Proficiency Test vocabularies list, a corpus of compositions written by Japanese Elementary 
and Junior High School students (Miyagi, 2015), a corpus of compositions written by Japanese 
Elementary School Children (Sakamoto, 2010), and Bunrui Goi Hyo Database Japanese thesaurus2. 

4 Proposed Method 

4.1 Grouping Similar Words 

The purpose of this task is to find groups of words that have similar meaning.  In our experiment we 
use Bunrui-Goi-Hyo (BGH for short), a Japanese thesaurus. This thesaurus is manually constructed.  It 
comprises about 100K words.  In BGH, all the words are arranged by their meaning.  We extract all 
the groups of words at the bottom level as similar words.  Since the number of words are limited, some 
words do not appear in BGH.  As we mentioned in Section 2, we propose to use dependency-based 
embedding approach (Levy and Goldberg, 2014) to improve the grouping of words especially for 
those words that do not appear in BGH.  

4.2 Level of Word Complexity  

The purpose of this task is to predict the complexity level of words based on Japanese Language 
Proficiency Test (JLPT) level (Hmeljak. 2009).  JLPT is the standard test of Japanese for foreign 
learners and classifies words into five levels:  N1 is the most advanced level, N2 is the high level, N3 
is the intermediate level, N4 is the lower level, N5 is the beginner level.  In the JLPT list, there are 
approximately 800 N5 level words, 1,500 N2 level words, 3,750 N3 level words, 6,000 N2 level 
words, and 10,000 N1 level words. 

Vocabulary lists always have limited coverage of lexical entries.  To cope with this limitation, we 
use a machine-learning approach to predict the complexity levels of words that are not included in the 
JLPT vocabulary list.  We choose a linear regression model in this task. We examined several features 
for the linear regression model to predict the JLPT level of a given word.  The features we use are: 

1. Unigram frequency: Most of research in simplification uses frequency of words to determine 
the complexity of words. Sentences that are simple to understand mostly use high frequency 
words or well-known words (Kauchack et al., 2014; Glavasˇand Stajner, 2015). 

2. Words in children’s corpora: Children basically use simple words, kanjis, and expressions.  
Words used by children are considered as easy words. 

3. Technical Words: Technical words are in many cases complex words and commonly used in 
specific domains.  To measure specificity, we use Jensen–Shannon divergence of words over 
domains.  The frequency distribution of a target word over domains is compared with the 

                                                
1 http://pj.ninjal.ac.jp/corpus_center/bccwj/en/ 
2 https://www.ninjal.ac.jp/archives/goihyo/ 
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average distribution of all words over domains.  Those words that have low scores have similar 
distributions over domains, meaning they appear various domains and are considered as general 
words.  In contrast, those that have high scores are considered as technical and complex words 
because they tend to appear in specific domains. 

𝑺𝑫(𝑷| 𝑸 =  
𝑷 𝐥𝐨𝐠𝑷𝑸+ 𝑸𝒍𝒐𝒈𝑸𝑷

𝟐  

In this formula of Jensen-Shannon divergence, P is the normalized frequency distribution of 
target word over all domains and Q is averaged normalized distribution of all words in the 
corpus.  We used the genres defined in the BCCWJ corpus as different domains. 

All these features can be the measurement of word complexity levels and we use them in our linear 
regression model. 

5 Experiment 

We divide our experiment into four steps. We start with pre-experiment, words similarity, complex 
words identification, and word replacement. 

5.1 Pre-Experiment 

This section describes preparation of the data.  We use the Japanese morphological analyser MeCab 
to word segmentation and POS tagging of Mainichi Newspaper, BCCWJ, and the children’s corpora. 
Since some words do not need to be the target of simplification, we make rules based on POS tags of 
words.  In the following rules, we changed all words sharing the same POS as one word: 

1. All words with POS ‘記号’ (symbol) such as “、, 。, 「, 」” are changed to ‘Symbol’. 
2. All words with POS ‘数’ (number) such as “十(ten), 四(four), ５” are changed to ‘Number’.  
3. All words with POS ‘人名’ (people name) such as “山田(Yamada) are changed ‘People’. 
4. All words with POS ‘組織’(organization) such as 東芝(Toshiba) are change to ‘Organization’. 
5. All words with POS ‘地域’(Region) such as “奈良(Nara) are change to ‘Place’.  
6. All names of day, month and year such as “月曜日(Monday), ９月(September), 九月

(September), ２０１６年 (2016), ２８平成 (2016)” are change to ‘Date’. 
All of those words are not simplified.  The result of this step is used in other steps.  

5.2 Words Similarity  

Using the BCCWJ and Mainishi corpora, we calculate the similarity of words by using the 
available tools of dependency-based word embeddings (Levy and Goldberg, 2014).  We prepare the 
training data using Japanese dependency parser CaboCha for finding the dependency relation of words 
in sentences.  Then we calculate the similarity of words as we showed in Section 4.1.  This task is to 
augment the groups of similar words that do not appear in BGH.  The following is an example of 
grouped words by the dependency-based word embedding: {処分, 認定, 申請, 給付, 承認, 決議, 届
出, 登記, 規制, 譲渡} 

5.3 Word Complexity Order 

We counted all unigram frequency of words in Children’s corpus, and combination of BCCWJ-
Mainichi Newspaper.  Then we divided the BCCWJ and Mainichi corpora into 19 categories.  Then 
we calculate the frequency of each word in each category to know the distribution of the word over the 
categories.  Based on the distribution of words over the categories, we calculated the Jensen-Shannon 
divergence values of words. This task is to know the technicality of words. 

About 10,000 words in the JLPT vocabulary list are already divided into 5 levels.  For each word in 
JLPT level, we calculated its log frequency in the BCCWJ-Mainichi corpus, log frequency in the 
children’s corpus, and J-S divergence value, and use them for the features of linear regression. 

After training, we apply the regression function to the other words that are not in the JLPT list to 
predict their complexity levels.  Since the level of the easiest words is 5 and that of the most complex 
words is 1, higher values on test data indicate easier and lower value indicate more complex words. 
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5.4 Word Replacement 

We already have groups of similar words (Section 5.2) and complexity ordering of words (Section 
5.3).  In this section, we combine these results.  In order to replace a complexity word with a simpler 
synonym, we first start an experiment with words of POS 名詞 (Noun) tag.  

When we input a sentence, first thing to do is morphological analysis of the sentence using MeCab, 
then select all words with POS 名詞 (Noun).  For each selected word, we check it in the same group of 
similar words and compare the complexity of the selected word with other candidates, then choose the 
one with the highest complexity value.  Table 1 shows the result of replacement of complex words 
with simpler synonyms so as to make it more readable for foreigners.  From Table 1, we see that ‘人情
本’(Novel) is a complex word that has similar meaning with 小説 (Novel).  While 人情本 has mean-
ing of old novels that were written in the Edo era, learners do not need to know that kind of words, the 
important information is that that word means a kind of novels.  

 
Original Sentence Simplified sentences 

私は人情本より詩の方が好きです 私は小説より詩の方が好きです 
芸の秘奥をきわめる 芸の秘伝をきわめる 
代数は僕の得意な学科だ 数学は僕の得意な学科だ 
ご尊名はよく承っております ご名前はよく承っております 

Table 1 :  Result of word replacement 

6 Evaluation 

We evaluate word complexity orders provided by the trained liner regression model.  We use 
another JLPT data collected from JLPT books, summing up to 20,000 words.  We divide this data into 
training and test data.  Then we test how the complexity levels of pairwise test words are correctly 
predicted.  We experimented the comparison as shown in Table 2.  From the table, we can see that in 
one different level, the average of accuracy is about 61.89%, that in two different levels is 72.13%, 
that in three different levels is 79.8%, and that in four different levels is 87%. We did not do the eval-
uation of group of similarity in BGH since it is a thesaurus constructed by human.  

 
Categories Compared Levels Accuracy Average 

One different level 

N1 and N2 61.14% 

61.89 % N2 and N3 61.61% 
N3 and N4 58.92% 
N4 and N5 65.90% 

Two different level 
N1 and N3 70.90% 

72.13 % N2 and N4 69.23% 
N3 and N5 74.28% 

Three different level N1 and N4 76.91% 79. 8 % N2 and N5 82.69 
Four different level N1 and N5 87.81% 87.81% 

Table 2: Results of word difficulty level comparison 

7 Conclusion and Future Work 

We proposed an approach for Japanese lexical simplification.  Our main task is divided into two 
parts.  The first is word similarity estimation and the second is word complexity ordering.  We used 
combination of several Japanese corpora to implement word embedding and linear regression models.  
Our experiments showed the order of word complexity is usable to select simpler similar words.  
Because of limited space, we did not discuss problems caused by lexical replacement.  The last row in 
Table 1 shows a problem caused by word replacement from “尊名” to “名前”.  The prefix existing in 
the original sentence “ご” fits with the former word but not with the latter word.  This type of problem 
caused by word combination is one of the important problem to be tackled by our future work. 
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Abstract 

Due to the huge population that speaks Spanish and Chinese, these languages occupy an important posi-
tion in the language learning studies. Although there are some automatic translation systems that benefit 
the learning of both languages, there is enough space to create resources in order to help language learn-
ers. As a quick and effective resource that can give large amount language information, corpus-based 
learning is becoming more and more popular. In this paper we enrich a Spanish-Chinese parallel corpus 
automatically with part of-speech (POS) information and manually with discourse segmentation (fol-
lowing the Rhetorical Structure Theory (RST) (Mann and Thompson, 1988)). Two search tools allow 
the Spanish-Chinese language learners to carry out different queries based on tokens and lemmas. The 
parallel corpus and the research tools are available to the academic community. We propose some ex-
amples to illustrate how learners can use the corpus to learn Spanish and Chinese.  

1 Introduction1 

As the most spoken two languages in the world, Spanish and Chinese are very important in the lan-
guage learning field. Because of the different phonetics and written characters and extensive grammat-
ical rules, syntactic structure and discourse elements between this language pair, it is not easy to carry 
out the Spanish-Chinese language learning tasks. Here we give some examples in order to show some 
morphological, syntactic and discourse similarities and differences between Spanish and Chinese that 
a language learner has to know and practice. 

Among other issues, Chinese students that are learning Spanish as L2 need to know that Spanish 
language is not a gender neutral language, so the distinction of grammatical gender is crucial between 
masculine and feminine (among irregular constructions). There are some adjectives with a particular 
ending for feminine (‘JJ+a’2 such as pública ‘feminine_public’, extranjera ‘feminine_foreigner’, china 
‘feminine_chinese’) and for masculine (‘JJ+o’ such as moderno ‘masculine_modern’, chino ‘mascu-
line_chinese’, rico ‘masculine_rich’). In Chinese, for example, the masculine chino and feminine chi-
na are translated as “zhongguo” (中国) (‘China’).  
  
  Ex.13: 
1.1.1 Sp: Aunque aún no contamos con resultados, intuimos que el modelo será más amplio que el 

del sintagma nominal.  
            [Aunque aún no contamos con resultados,]Unit1 [intuimos que el modelo será más amplio que 

el del sintagma nominal.]Unit2 
 [DM still no get results,] [we consider that the model will more extensive than the sentence 
group nominal.]  

                                                
This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence 
details: http://creativecommons.org/licenses/by/4.0/ 
1 This work has been supported by a Ramón y Cajal contract (RYC-2014-16935) to Iria da Cunha and it has been partially 
financed by TUNER (TIN2015-65308-C5-1-R) to Mikel Iruskieta. 
2 In the Stanford parser JJ means adjective. 
3 All the examples have been extracted from the corpus. 
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           [Aunque aún no contamos con resultados,]Unit1 [intuimos que el modelo será más amplio que 
el del sintagma nominal.]Unit2 

[DM4 still no get results,] [we consider that the model will more extensive than the sentence 
group nominal.]5  

1.1.2 Sp: Intuimos que el modelo será más amplio que el del sintagma nominal, aunque aún no con-
tamos con resultados.  

           [Intuimos que el modelo será más amplio que el del sintagma nominal,]Unit1 [aunque aún no 
contamos con resultados.]Unit2 

[We consider that the model will more extensive than the sentence group nominal,] [DM still 
no get results.] 

   1.2 Ch: 尽管还没有取得最终结果，但是我们认为该模型已囊括了语段模型涉及的内容。 

[尽管还没有取得最终结果，]Unit1 [但是我们认为该模型已囊括了语段模型涉及的内

容。]Unit2 

[DM1 still no get results,] [DM2 we consider that the model contains the sentence group 
nominal.] 

1.3 Eng: Although we haven’t got the results yet, we consider that the model will be more extensive 
than the nominal sentence group. 

 
In Example 1, we can see that the Spanish passage has a similar discourse structure to the Chinese 

passage. Both passages start the text with a discourse marker in the first unit. However, the usage of 
discourse markers in both languages is different. To show same meaning, in Chinese, it is mandatory 
to include two discourse markers: one marker is “jinguan” (尽管), at the beginning of the first unit, 
and another marker is “danshi” (但是), at the beginning of the second unit. These two discourse mark-
ers are equivalent to the English discourse marker ‘although’. By contrast, in Spanish, just one dis-
course marker “aunque” is being used at the beginning of the first unit, and this discourse marker is 
also equivalent to the English discourse marker although. Moreover, the order of the discourse units in 
the Spanish passage can be changed and it makes sense syntactically, but the order cannot be changed 
in the Chinese passage, because neither syntactically nor grammatically makes sense. 
 
  Ex.2: 

2.1 Sp: La automatización de la gestión terminológica no es una mera cuestión de producir progra- 
mas informáticos, aunque ésta sea una labor de por sí costosa.  

           [La automatización de la gestión terminológica no es una mera cuestión de producir progra- 
mas informáticos,]Unit1 [aunque ésta sea una labor de por sí costosa.]Unit2 

           [The automation of the management terminological no is a merely question of producing 
programs informatics, DM this is a work which costly.] 

   2.2 Ch: 术语管理自动化不仅仅是建立开销巨大的信息系统的问题。 

           [术语管理自动化不仅仅是建立开销巨大的信息系统的问题。]Unit1 
           [Terminology management automation is not only produce costly program informatics.] 

2.3 Eng: Although this is a work which costly, the automation of the terminological management is 
not only a merely question of producing programs informatics. 

 
In Example 2, there are two units in the Spanish passage meanwhile in the Chinese passage there is 

just one unit to show the same meaning. In the Spanish passage, the DM aunque ‘although’ is at the 
beginning of the second unit; in contrast, there is no corresponding DM in the Chinese passage and a 
translation strategy has been used. The Chinese phrase “kaixiaojuda” (开销巨大) (‘great costly’) in-
cludes the same meaning of the second Spanish unit and is part of the whole sentence in the Chinese 
passage. 

                                                
4 DM means discourse marker. In this work, we use the definition of DM by Portolés (2001). DMs are invariable linguistic 
units that depend on the following aspects: (a) distinct morph-syntactic properties, (b) semantics and pragmatics and (c) 
inferences that made in the communication. 
5 In this work, we give an English literal translation for both Spanish examples and Chinese examples in order to make the 
readers understand the content better.  
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These examples show that a comparative study could provide useful discourse information for lan-
guage learning. Comparative or contrastive studies of discourse structures reveal information to identi-
fy properly equivalent discourse elements in the language pair and the information helps language 
learning.  

An important source for language learning is corpus. As a large electronic library, a corpus can 
provide a large amount of linguistic information (Wu, 2014). In addition, Johns (2002) indicates that a 
corpus-based research could help the language learners get large amount of language information easi-
ly. 

This paper aims to create a Spanish-Chinese parallel corpus annotated automatically with POS and 
annotated manually with discourse information in order to help Spanish-Chinese language learning 
with a friendly online environment to perform POS-based queries, as “it has been demonstrated that 
discourse is a crucial aspect for L26 learners of a language, especially at more advanced level” (Neff-
van Aertselaer, 2015: 255).  

In the second section, we mention some works related to our work. In the third section, we include 
information about our research approach. In the fourth section, we explain how to use our corpus for 
Spanish-Chinese language learning. In the last section, we present the conclusions and look ahead at 
our future work. 

2 Related Work 

Corpus-based studies for different language pairs learning exist, including some works for Spanish and 
Chinese. On the one hand, for example, we highlight the following corpus-based language learning 
studies: 

i) In order to help language learning and translation tasks between English and Chinese, Qian (2005) 
created an English-Chinese parallel corpus with functions of sentence search, calculation of words, 
search of texts and authors.  

ii) To compare the similarities and differences between English and Chinese from different aspects, 
such as aspect marking, temporal adverbials, passive construction, among other interesting topics, 
Xiao and McEnery (2010) used the FLOB corpus (Albert-Ludwigs, 2007)7 and The Lancaster Corpus 
of Mandarin Chinese (LCMC) (McEnery and Xiao, 2004)8, which is designed as a Chinese parallel 
corpus for FLOB. The study offers a great amount of language information that is useful for English-
Chinese language learning. 

iii) To compare both languages via different language activities, such as exploration of language 
differences, comparative discourse analysis and semantic analysis Lavid, Arús and Zamorano (2010) 
developed a small online English-Spanish parallel corpus. Then, based on the activity results, they 
give some linguistic suggestions for English-Spanish teaching, which can also help the English-
Spanish language learners to comprehend the language differences between both languages. 

On the other hand, corpus-based studies for Spanish-Chinese language learning are still few:  
i) Yao (2008) uses film dialogues to elaborate an annotated corpus, and compares the Spanish and 

Chinese discourse markers in order to give some suggestions for teaching and learning Spanish and 
Chinese.  

ii) Yang (2008) compares the discourse structure of proverbs between Spanish and Chinese based 
on the novel Don Quijote in order to give some conclusions for the Spanish-Chinese translation works, 
and language teaching and learning tasks.  

iii) Taking different newspapers and books as the research corpus, Chien (2012) compares the Span-
ish and Chinese conditional discourse markers to give some conclusions of the conditional discourse 
marker for foreign language teaching between Spanish and Chinese.  

iv) Wang (2013) uses Pedro Almodóvar’s films La mala educación and Volver as the corpus to ana-
lyze how the subtitled Spanish discourse markers can be translated into Chinese, so as to make a 
guideline for human translation and audiovisual translation between the language pair.  

                                                
6 L2 means second language. 
7 The FLOB Corpus: http://www.helsinki.fi/varieng/CoRD/corpora/FLOB/ [Last consulted: 27 of July of 2016].  
8 The Lancaster Corpus of Mandarin Chinese: http://www.lancaster.ac.uk/fass/projects/corpus/LCMC/ [Last consulted: 27 of 
July of 2016].  
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v) Cao, da Cunha and Bel (2016) annotate all the cases of the Spanish DM aunque (‘although’) and 
their corresponding Chinese translations in The United Nations Multilingual Corpus (UN) (Ra-
falovitch and Dale, 2009; Eisele and Yu, 2010). They analyze the used translation strategies in the 
translation process and give some suggestions for how to translate this Spanish DM into Chinese. 

vi) Several Spanish-Chinese parallel corpus exist and have been used for different research purposes, 
including Spanish-Chinese language learning, these corpora are: (a) The Holy Bible (Resnik, Olsen 
and Diab, 1999), (b) The United Nations Multilingual Corpus (UN) (Rafalovitch and Dale, 2009; 
Eisele and Yu, 2010) and (c) Sina Weibo Parallel Corpus (Wang et al., 2013). 

The above mentioned works are great achievements that offer different approaches for language 
learning. However, comparing to our work, none of them gives a friendly environment to consult 
Spanish-Chinese parallel corpus based on POS and segmented discourse information, showing how 
foreign language learners can apply this information to improve or learn languages.  

3 Research Approach 

3.1 Theoretical Framework 

In this study, we use the Rhetorical Structure Theory (RST), proposed by Mann and Thmopson (1988), 
which a widely used theory for discourse analysis. RST offers discourse information from two 
approaches: linear segmentation and rhetorical annotation. Under RST, linear segmentation is 
compased with Elementary Discourse Units (EDUs) (Marcu, 2000). But in linear segmentation 
different discourse phenomena can be studied, such as the position of the DM, the number of DMs, etc.  

Discourse-annotated corpus can provide valuable insights into L2 discourse aspects, problems, and 
solutions (Vyatkina, 2016). Thus, information and examples of discourse segmentation are useful for 
those language learners who have an advanced level, that is, students that should be competent to 
solve complicated discourse questions. 

3.2 Elaboration of the Research Corpus  

The previous mentioned Spanish-Chinese parallel corpora are not adequate for language learning pur-
poses between Spanish and Chinese from discourse level. For example, the texts in the Holy Bible 
cannot represent the modern language; the Spanish-Chinese UN Corpus is not a direct translated cor-
pus, which affects the discourse structure; and the texts in the Sina Weibo Parallel Corpus are tweets 
that do not include a complex discourse structure. In order to use formal and natural expressed texts, 
we decide to use the Spanish-Chinese parallel corpus by Cao, da Cunha and Iruskieta (in press), which 
is especially designed for discourse studies with formal texts. 

In their corpus, 100 texts are included: the longest text contains 1,774 words and the shortest one 
includes 111 words. The genres of the texts are: (a) Abstract of research paper, (b) News, (c) Adver-
tisement and (d) Announcement. The corpus contains seven domains: (a) Terminology, (b) Culture, (c) 
Language, (d) Economy, (e) Education, (f) Art and (g) International affairs.  

Firstly we enriched this corpus automatically with POS information by using Freeling (Carreras et 
al., 2004) for Spanish and the Stanford parser (Levy and Manning, 2003) for Chinese. Then, we seg-
mented and harmonized the Spanish and Chinese texts into EDUs to obtain a gold standard segmented 
corpus. Two Chinese experts and two Spanish experts carried out the segmentation work manually, by 
using the RSTTool (O’Donnell, 2000) following Iruskieta, da Cunha and Taboada’s (2015) segmenta-
tion and harmonization criteria. Finally, we developed a free online interface that allows students of 
Spanish or Chinese to do different linguistic queries that can help their language learning process9. 

3.3 Level Requirement for the Spanish-Chinese Language Learning with the Corpus 

In this study, for the Chinese users who learn Spanish, we adopt the language level standardizations of 
Instituto Cervantes, the official Spanish organization to check the language level for L2 Spanish learn-

                                                
9 The access of the interface is the following: http://ixa2.si.ehu.es/rst/zh/. 
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ing10; for the Spanish users who learn Chinese, we adopt the language level standardizations of Han-
ban (汉办), the official organization of Chinese government for L2 Chinese learning11.  

As we have mentioned, the corpus by Cao, da Cunha and Iruskieta (in press) includes specialized 
texts from different sources, which include terminology from several domains. Therefore, the users of 
our annotated-corpus and search tool should have an intermediate or advanced level of the language. 
As the webpage of Instituto Cervantes indicates, in the Spanish initial level only some basic expres-
sions and vocabulary are learned. Also, the webpage of Hanban (汉办) offers similar information 
about the Chinese initial level. 

In order to use our annotated-corpus and search tool, the appropriate levels for Spanish foreign lan-
guage learners are level B2 (intermediate level) and level C (including C1 and C2) (advanced level). 
Level B2 requires language users to understand complex texts with different topics. Level C1 requires 
understanding a wide variety of long and demanding texts, and also writing and expressing well-
structured texts in Spanish. Level C2 is a more advanced level and requires Spanish learners have 
enough linguistic competence to prove a spontaneous capacity of adaptation to any context, with a 
great deal of semantic and grammatical precision. 

The appropriate level for Chinese foreign language learners is level 4 (intermediate level) and ad-
vanced level (level 5 and level 6). Level 4 requires language learners to know a certain amount of 
words and produce texts related to a wide range of topics, in order to maintain a fluent communication 
with native speakers. Level 5 requires learners to read magazines, newspapers, and films and give a 
full-length speech. Level 6 language learners should easily comprehend written and spoken infor-
mation in Chinese. 

4 Spanish-Chinese Language Learning with the Corpus 

As we have mentioned, the aim of the annotated-corpus and the search tool is to help language learn-
ers of both languages by providing them with real examples that can be extracted by means of differ-
ent linguistic queries including linguistic information: morpho-syntactic information and discourse-
segmentation information. 

On the one hand, regarding morpho-syntactic information, a Chinese foreign language-learning 
student can search any wanted Chinese tokens or lemmas, and a Spanish foreign language-learning 
student can carry out the search in an inverse way. Here we give a real example by using the search 
tool for Spanish. The word that we use is the Spanish word profesor (‘teacher’). By using the search 
tool, we can search the token of profesor or the lemma of this word. We give some lemma search 
results of profesor as the example. The results are presented in Figure 112.  
 

 
Figure 1: Search result of the Spanish lemma profesor with the result of two different forms profesores 

‘teachers’ and profesor ‘(masculine) teacher’ 
 

A Chinese learner can find different POS structures in our corpus, for example, all the words which 
end with ‘a’ that are adjectives (española ‘feminine_Spanish’, pública ‘feminine_public’, his-

                                                
10 A detailed explanation of the Spanish level for L2 learners can be consulted: 
http://dele.cervantes.es/en/information/levels/spanish_levels.html [Last consulted: 17 of September of 2016] 
11 The detailed explanation of the Chinese level for L2 learners can be consulted: http://english.hanban.org/node_8002.htm 
[Last consulted: 17 of September of 2016] 
12 Due to the limitation of the required pages, here the space doesn’t allow us to show the whole lemma research result of the 
Spanish word profesor. Also, we only give the partial results in the following figures.  
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panoamericana ‘feminine_hispanicamerican’, etc.) or feminine words ended with ‘ora’ that are nouns 
(directora ‘feminine_director’, coordinadora ‘feminine_coordinator’, editora ‘feminine_editor’ etc.) 
to learn how feminine is used in real texts.  

Also, a language learner can search the wanted token with “exact match”, “start with” or “ends 
with”. This function can help students of Chinese to learn different phrases by searching just one char-
acter. We use the Chinese word fa (发)13 to explain how to search those phrases related with the char-
acter fa (发). Figure 2 shows some of the search results: the words starting with fa (发) are fasong (发
送) (‘to send’), fayangguangda (发扬光大) (‘to flourish’), and fazhan (发展) (‘to develop’). With dif-
ferent match functions, a Spanish student can learn different words including a specific character, in 
this case fa (发).  
 

 
Figure 2: Chinese words starting with the word fa (发) 

 

Moreover, language learners can also search by POS information for both Spanish and Chinese. 
Based on the character fa (发), we give another real example in the corpus. A Spanish student can 
search the Chinese lemma that start with fa (发) but play as verb. Figure 3 shows partial results that 
match the search requirement.  
 

 
Figure 3: Search result of verbs that start with fa (发) 

 

The partial results in Figure 3 gives us four different Chinese verbs starting with fa (发): (a) fasong 
(发送) (‘to send’), (b) fayangguangda (发扬光大) (‘to flourish’), (c) fabu (发布) (‘to publish’) and (d) 
faxing (发行) (‘to issue’).  

The POS information also has another function in our corpus. In Chinese, some words have two 
categories; the category can be a verb and a noun at the same time (Yu, Duan and Zhu, 2005). Hence, 
under this circumstance, it is hard to choose the category of a word for L2 students of Chinese. POS 
information helps to distinguish the category of a word. For example, the Chinese noun xuyao (需要) 
(‘requirement’) can also be the verb ‘to need to’. In the corpus, when including xuyao (需要) in the 

                                                
13 In Chinese, the verb fa (发) has various meanings, such as “to have over”, “to express”, “to expand”, “to begin to”, among 
others. [Consulted from: Xiandai hanyu cidian (现代汉语词典)] 
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lemma column and choosing “VV”14 as a POS, seven results are obtained, as Figure 3 shows. Mean-
while, there is one result of xuyao (需要) as a noun in Figure 4.  
 

 
Figure 3: Search results of xuyao (需要) as verb 

 

 
Figure 4: Search result of xuyao (需要) as noun 

 

A Spanish student who uses the corpus to learn Chinese can distinguish the words that have more 
than one category easily by using the combination of lemma and POS, and also check their contexts of 
use. 

The interface we created allows the search of maximum four tokens/lemmas at the same time, that 
is, it is possible to do complex queries. This is useful to obtain different language information, such as 
the use of adjectives in a phrase. For example, if a Spanish student knows the phrase xibanyayu ketang 
(西班牙语课堂), ‘Spanish class’ in Chinese, and wants to search for more adjectives associated to the 
word ketang (课堂) (‘class’), which could be inserted in the middle of the two units of the phrase, he 
could do the following complex query: i) lemma xibanyayu (西班牙语 ) (‘Spanish’), ii) POS 
information “JJ”15, and iii) lemma ketang (课堂) (‘class’) (see Figure 5). 

 

 
Figure 5: Example of the search for an adjective in a phrase 

 

Figure 6 includes the search results of the example. Two results are obtained, including the same 
adjective related to the noun ketang (课堂) (‘class’): xuni (虚拟) (‘virtual’). 

 

 
Figure 6: Result of the search for an adjective between xibanyayu (西班牙语) and ketang (课堂) 

 

                                                
14 In the Stanford parser VV means verb and NN means noun. 
15 In parsing research, J means adjective. 
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Another similar search function is illustrated in Figure 9. The Chinese word kecheng (课程) 
(‘course’) is a noun and, by using the search of POS information, different adjectives related with 
kecheng (课程) are extracted. Figure 9 shows three results of the adjective that can be combined with 
kecheng (课程): changgui (常规), yiban (一般) and putong (普通). All of them mean ‘regular’ in Eng-
lish. In this case, three different words with the same meaning are extracted.  
 

 
Figure 9: Search result of the category adjective with the noun kecheng (课程) 

 

The search tools and the POS information are important for Spanish-Chinese language learning but, 
on the other hand, discourse segmentation information is also relevant to support Spanish-Chinese 
language learning. The Spanish-Chinese language learners can compare the similarities and differ-
ences by using the segmentation of the parallel texts. Table 1 includes an example of discourse seg-
mentation difference in our corpus. 

 

Spanish Chinese English translation of the 
Spanish text 

[La empresa española Aritex 
ha colaborado con la Corpora-
ción de Aeronaves Comercia-
les de China (COMAC) en la 
fabricación del C919, primer 
avión comercial diseñado y 
fabricado por China.] EDU1 

[西班牙 Aritex 公司与中国商

飞(COMAC)合作，]EDU1 

[参与了中国首架国产 C 919
大型客机的制造过程。]EDU2 

[The Spanish company Aritex 
has collaborated with 
Commercial Aircraft 
Corporation of China 

(COMAC) in making the 
C919, the first commercial 

aircraft designed and 
manufactured by 

China.]EDU1 
Table 1: The segmentation difference between a parallel Spanish-Chinese 

 

In this Spanish-Chinese parallel example, the whole Spanish sentence is an EDU, while the Chinese 
sentence is divided into two coordinated EDUs. This happens because of a translation strategy: in the 
Chinese translation, the Spanish phrase en la fabricación (‘in the production’) has been translated into 
canyule (‘have participated in the production’), which has an elliptical subject “Aritex Company” and 
forms a coordinated part of EDU1 in Chinese passage.   

Other useful information that foreign language learners can obtain from this parallel annotated-
corpus is related with DMs. For example, they can compare the different DMs used in both languages. 
Taking the Chinese DMs ruo (若) (‘if’) and ze (则) (‘then’), Table 2 shows two Spanish-Chinese par-
allel passages from the corpus. 

Table 2 shows that in Spanish there are two sentences while in Chinese there is only 1 sentece. 
EDU1 and EDU2 in the Spanish passage correspond to EDU1 in the Chinese passage, and EDU3 in 
the Spanish passage corresponds to EDU2 in the Chinese passage. The number of different EDUs in 
Spanish and Chinese passages is due to the Spanish DM para (‘for’ or ‘in order to’) in the first 
sentence and the used translation strategy. The Spanish DM para is the signal of a PURPOSE relation. 
Therefore, the first sentence is segmented into two EDUs. The translation strategy causes the Chinese 
translation as one sentence. In the Spanish passage, there is no DM for holding a discourse relation 
between the two complete sentences. Instead, in the Chinese passage, there are two DMs at the 
beginning of each EDU, one DM is ruo (若), which means ‘if’ in English, and another DM is ze (则), 
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which means ‘then’. The two DMs represent a CONDITION relation. In Chinese, it is necessary to use 
two DMs (ruo and ze) at the same time at the beginning of each EDU. 

 

Spanish Chinese English translation of the 
Spanish text 

[Los resultados que se obtie-
nen no son aún los que se 

precisarían]EDU1 [para efec-
tuar un vaciado absolutamen-
te automático.]EDU2 [Se ha 

de encontrar el equilibrio en-
tre la cobertura (recall) y la 
precisión (precision).]EDU3 

[若上述过程中获得的结果仍

无法完全自动构建一个精确的

术语条目，]EDU1 

[则必须在覆盖度（召回率）

和精确度（精确性）之间达到

平衡。]EDU2 

[The obtained results are still 
cannot be completely required 
to make a precisely term au-
tomatically.]EDU1 [It must 

find a balance between cover-
age (recall) and accuracy 

(precision).]EDU2 

Table 2: The difference of DMs between a Spanish-Chinese parallel sentence 
 

The Spanish-Chinese language learners can consult any segmentation case in the corpus by using 
the “Bilingual EDUs” column, which is manually aligned. The different search functions are adequate 
for different learning tasks carried out by Spanish-Chinese language learners. 

Besides of the discourse segmentation information, in the future we will annotate and align the dis-
course structure for the whole corpus.  Spanish and Chinese learners will obtain aligned relational dis-
course information for language learning related to the following aspects: nuclearity, discourse rela-
tion, discourse structure and central discourse unit. 

5 Conclusion and Future Work 

As a complementary methodology, the use of corpora is a very adequate and useful strategy for lan-
guage learning in comparison with the traditional methods (Baker, 2007). In this work, we introduce 
the first online POS-tagged, discourse-based segmented and manually aligned Spanish-Chinese paral-
lel corpus for foreign language learning purposes between this language pair. This corpus offers sever-
al search possibilities for different Spanish-Chinese language learning needs. For Spanish L2 learners 
and Chinese L2 learners, their level must be intermediate or advanced to use the research corpus. 

In the future, we will annotate the discourse structure of the whole corpus under RST. This parallel 
Spanish-Chinese discourse treebank will be available online, together with the search tool. It will be 
possible to search for parallel passages including a specific RST relation.  
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Abstract

We present a novel approach to Computer Assisted Language Learning (CALL), using deep syn-
tactic parsers and semantic based machine translation (MT) in diagnosing and providing explicit
feedback on language learners’ errors. We are currently developing a proof of concept system
showing how semantic-based machine translation can, in conjunction with robust computational
grammars, be used to interact with students, better understand their language errors, and help
students correct their grammar through a series of useful feedback messages and guided language
drills. Ultimately, we aim to prove the viability of a new integrated rule-based MT approach to
disambiguate students’intended meaning in a CALL system. This is a necessary step to provide
accurate coaching on how to correct ungrammatical input, and it will allow us to overcome a cur-
rent bottleneck in the field — an exponential burst of ambiguity caused by ambiguous lexical items
(Flickinger, 2010). From the users’interaction with the system, we will also produce a richly
annotated Learner Corpus, annotated automatically with both syntactic and semantic information.

1 Introduction
Asserting if a sentence is grammatical or ungrammatical is, nowadays, a fairly easy task. The real chal-
lenge lies in answering questions like: where is the error?, what is its correct form?, or what is its intended
meaning?. But especially in language learning environments (e.g. classrooms), where context is often
poor, and students are requested to make up random sentences, context alone is usually not enough to
answer the questions above. In fact, the pool of possible corrections of an ungrammatical sentence that
arises from ambiguity (i.e. possible intended meanings) has been identified as the bottleneck of CALL
systems (Flickinger, 2010), mainly because each possible meaning may trigger a different correction and
explanation. Inside a traditional classroom, there is less of a problem since a human instructor can inter-
act with the student to find the intended meaning. We propose to take advantage of high-quality machine
translation (MT) and dialog-based computer-student interactions to similarly disambiguate learners’in-
tended meaning and use this information to provide accurate and personalized grammar corrections and
coaching. Consider the example below:

1. *That dog like the cat happy.

The fact that (1) is ungrammatical is easy to determine. Existing computational grammars have been
doing so for many years. The real challenge is answering questions like: what is wrong with (1)? or, what
is the correct form of (1)?

Many systems struggle with these same questions. In a real life situation, context could possibly suffice
to understand the utterance’s intended meaning. But let us consider a situation where students were asked
to make up a sentence that would make use of the words dog and cat. In this case, there is no context
from which to extract clues about the intended meaning. It only seems natural that, should the teacher
share another language with the student, they would make use of it to ask: What did you mean?
This work is licenced under a Creative Commons Attribution 4.0 International Licence.
Licence details: http://creativecommons.org/licenses/by/4.0/
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Figure 1: Semantic disambiguation example (Chinese
speaker learning English)

We propose a new design of language
tutoring systems that leverages on state-of-
the-art NLP technology to provide explicit
feedback on users’language errors. Fig-
ure 1 exemplifies the practical reach of the
system we are building. The existence of
many possible corrections of an ungram-
matical sentence will trigger interaction be-
tween the system and the student. If there
are multiple possible intended meanings,
then it uses MT technology to ask what was
meant, using the student’s first language.
After this, it can accurately provide hints
about the errors. The use of MT in meaning
disambiguation in CALL is, to the best of
our knowledge, completely unprecedented,
and it will enable systems to detect and pro-

vide feedback on many classes of grammatical errors with great confidence. In other words, our system
leverages information across languages to find the exact intended meaning before correcting the student,
helping push for a new state-of-the-art in CALL research. Venturing guesses, as is customary in these
kinds of systems, can lead students into confusion, especially if the proposed correction had a different
meaning than the one initially intended by the student.

The MT-Enabled Bilingual Online Language Tutor prototype we are developing focuses on entry level
Mandarin as Second Language (L2) learners using English as their source language. At the end of the
project, it will be evaluated, in a blended learning environment, by a large cohort of undergraduate students
of the first level of Mandarin L2 at Nanyang Technological University. And while the goal of this project is
to build a proof of concept system usable for early Mandarin learners, we are also catering for extensibility
to further levels, bidirectionality, and even adding new languages in the future.

More technically, our system integrates precise syntactic parsers and semantics-based MT (Bond et al.,
2005, 2011) to leverage information across languages. We are also integrating results from surveying
word meanings and syntactic structures used by different levels of Mandarin L2, and the most common
writing mistakes made by Mandarin L2 learners. This survey is guiding our design and implementation
of mal-rules (‘error-production rules’), a type of grammar rule that selectively accepts ungrammatical
sentences (Schneider and McCoy, 1998), but marking them as ungrammatical. These rules can then be
used both to identify grammar errors and to reconstruct the semantics of ungrammatical inputs (Bender
et al., 2004), which can then be used by the MT component to enable source-language interaction and
feedback.

In the following section of this paper (2) we will discuss the motivation and significance of our system,
followed by a survey of previous works in section (3). Section (4) will describe, in detail, the system
implementation and our current implementation stage. Finally, we conclude and outline some future
work.

2 New Learning Trends and Language Education
It is well known that Learning Sciences are rapidly entering a new era of online mediated education. A
proof of this is the fact that many of the main players in the worldwide education system have identified
the need of belonging to these new virtual learning spaces — joining existing or developing their own
online learning platforms.

Concepts like Massive Open Online Courses (MOOCs) have only been around for a few years, and still
this new learning paradigm has already caused an unprecedented change in worldwide education (Yuan
et al., 2013). Unfortunately, the number of Massive Open Online Language Courses (MOOLC) available
is proportionately very small — e.g. Perifanou and Economides (2014) report having found only 30 such
courses in 2013. There is, easily arguable, not a lack of demand for such language courses, but a lack of
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technological infrastructure to support them.
And even though a considerable amount of research has been conducted in the last decades with regard

to distance language learning, designing an efficient language learning course or developing a language
learning platform is a very complex process. Perifanou and Economides (2014) states the ideas of peda-
gogy and assessment as being central challenges of these types of courses.

Our project was designed improve pedagogy — how the students learn a second language, based on
improved feedback. It is targeted at university-level language learners, and will provide a scalable peda-
gogical infrastructure for online language learning. It can both be used in a blended learning environment,
accompanying normal classroom style lectures, or it could eventually be further developed into a fully
self-contained, self-paced online language course.

3 CALL: An overview

Artificial Intelligence (AI)’s contributions to CALL systems have, up to date, been mainly focused
on problems like error classification, user modeling, expert systems, and Intelligent Tutoring Systems
(Schulze, 2008; Gamper and Knapp, 2002). Following Gamper and Knapp (2002)’s survey on CALL
systems, we known CALL systems differ mainly in the features they possess. Many of these systems
have some domain knowledge, allowing detailed feedback to the learner, while others just guide students
through a virtually designed course. Some present adaptive user models incorporating automated speech
synthesis and recognition. Most systems use NLP techniques for analysis, but only a few also have gen-
eration capability. Some systems focus on one basic language skill (e.g. reading, writing, listening, or
speaking), while others look for broader coverage. Some systems have a larger focus on grammar, others
on vocabulary, and some even specialize in dialog interaction.

But ultimately, CALL systems are only a medium for language teaching. A study conducted by Nagata
(1996) showed that it is not the medium itself (e.g. a computer, a book, etc.) that determines success
in learning, it is the quality of the feedback produced by that medium that affects the results. This is
why a language teacher is likely to be a better medium than a book, and the same reason why a properly
designed CALL system can also be a better medium than a workbook, assuming that such systems can
give valuable interactive feedback to the learner.

One of the main issues pointed out by Gamper and Knapp (2002) was that most CALL systems concen-
trate mainly on syntax and give less attention to semantic components, and only very few try to address
the problem of pragmatics. At the same time, the integration of MT technology is also quite rare, and
when is used, it mainly tries to give support to the training of translation skills.

More recently, a few CALL systems have started to use semantics to empower their precision and
performance. An example of this is the adaptation of two high precision descriptive grammars (English
and Norwegian) with semantic generation capacity into full-fledged CALL systems (Hellan et al., 2013;
Flickinger and Yu, 2013; Flickinger, 2010; Bender et al., 2004). Both systems identify generation as cru-
cial to their coaching feature. They apply the idea of semantically robust mal-rules, where the semantics
of ungrammatical input is reconstructed by carefully designed rules that try to mimic common mistakes
made by language learners.

The problem arises with the fact that each sentence allows a number of possible semantic representa-
tions (depending on the ambiguity of the lexicon and the strictness of the grammar rules). And while it
is, in many cases, impossible to predict the intended meaning of the user’s sentence, one solution is to
make an educated guess with some statistical analysis (Hellan et al., 2013).

Still, previous systems (Hellan et al., 2013; Flickinger, 2010; Bender et al., 2004) report ambiguity as
one of their central challenges. Balancing between the flexibility of the grammar and a high accuracy in
disambiguating the intended analysis for each student sentence is essential to make the right diagnoses
of errors (Flickinger, 2010). Even though statistical analysis may be tempting to solve this ambiguity,
picking the incorrect intended meaning may mislead learners into thinking that they made an error that
they did not. Up until today, the solution has been to reduce and control the lexicon in order to avoid
ambiguity. The unfortunate consequence of this is that not all lexical entries can be equally represented
in these systems.
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4 Approach and Implementation
In this section we will describe the infrastructure and previous research grounding this project. We will
also motivate and explain the concepts of graded lexical semantics and syntax, along with the choice
of using the Open Multilingual Wordnet as a lexical ontology. We will finish by briefly introducing the
relation between Learner Corpora and mal-rules, and their usage in CALL systems.

4.1 Integration of Descriptive Syntax and Semantics
The effort of creating a large-coverage, high-precision descriptive grammar is very time consuming
(Copestake and Flickinger, 2000). For this reason, we chose to adapt existing grammars instead of creat-
ing new systems from scratch. Furthermore, we also needed the grammars to share some kind of semantic
representation to be used for both parsing and generating across languages (i.e. to translate across lan-
guages using these grammars). We therefore selected grammars from the Deep Linguistic Processing
with HPSG Initiative (DELPH-IN: Uszkoreit, 2002). DELPH-IN partners have agreed to and dedicated
many years towards open-source multilingual parallel grammar development using Head Driven Phrase
Structure Grammar theory (Sag et al., 2003) integrated with a computational semantics representation
based on Minimal Recursion Semantics (MRS: Copestake et al., 2005; Copestake, 2007).

Concerning our specific languages of interest, for English we used the English Resource Grammar
(ERG: Flickinger, 2000; Copestake and Flickinger, 2000), a grammar with a very large lexicon and wide
coverage of syntactic phenomena; and for Mandarin Chinese ZHONG (Fan et al., 2015) 1 a more recent
grammar with a solid coverage of core phenomena.

DELPH-IN grammars have been used in machine translation (Bond et al., 2005, 2011). DELPH-IN’s
MT work flow is based on semantic transfer systems — a source language is parsed by an HPSG grammar
and a collection of underspecified semantic representations (i.e. MRSs) are generated and transferred to
the target language’s grammar — these then generate sentences encoding the same semantics in the target
language.

4.2 Graded Lexical Semantics and Graded Parsers
Any CALL system must model some lexical semantics. Let us consider the example word present. Any
mid or large sized dictionary of English would include multiple senses for this word. In the Princeton
English Wordnet (Fellbaum, 1998), for example, there are 18 possible senses. Here is a selection of seven
of those senses:

1. (noun) something presented as a gift; 2. (noun) a verb tense that expresses actions or states at the
time of speaking; 3. (adjective) being or existing in a specified place; 4. (verb) to give an exhibition
of to an interested audience; 5. (verb) to introduce; 6. (verb) to give as a present; to make a gift of;
7. (verb) to recognise with a gesture prescribed by a military regulation;

Considering the examples above, it is easy to acknowledge that lexical ambiguity is real. In real life
situations, context is usually enough to disambiguate the intended sense. However, some of these senses
are not commonly used in everyday situations, and can perhaps be ignored in the context of foreign lan-
guage learning. Not even native speakers ever have full control of the lexical inventory of their language.
So it is unreasonable to expect that an average user of English as a Foreign Language would be proficient
using the word present as the verbal form to recognise with a gesture prescribed by a military regulation.

When considering many of the other common senses of present, it is important to note that language
learners acquire different senses distributed in time (or language levels), either by necessity or by curricu-
lar requirement. Dewaele and Ip (2013) present a conclusive study that strongly relates Foreign Language
Classroom Anxiety (FLCA) with Second Language Tolerance of Ambiguity (SLTA). Dealing with sec-
ond language ambiguity is an important source of language use anxiety. This is also evident in the way
most language courses are structured, as it is common practice to protect language learners from all the
possible senses of a word until the language complexity so demands. Gradually learning to cope with

1http://moin.delph-in.net/ZhongTop
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ambiguity is directly correlated with proficiency in any given language: the incremental aspect of this
process is a very important notion to take into consideration.

Exploiting this incremental increase in ambiguity can be effectively used to minimize syntactic ambi-
guity. Descriptive grammars can be adapted to exploit this notion of natural gradual complexity of the
learning process. Constraining the available lexicon by language levels, or even to the specific lexicon a
user is known to possess, can help reduce ambiguity, by ignoring what the student could not have intended
because it was out of their current knowledge.

We are building a model of language level based on a survey of the following resources: the first and
second level of the Hanyu Shuiping Kaoshi (HSK) official language examinations, the first volume of
the textbook New Practical Chinese Reader (Xun, 2010), Chinese Link: Beginning Chinese, Simplified
Character Version, Level 1/Part 1 (Wu et al., 2010) and supplementary materials presented to the first
level of Mandarin Chinese, as taught at our home institution.

These materials are being currently surveyed for their natural increment of lexical senses introduced
to students. In addition, these same sources also contain information concerning syntactic complexity.
In principle, the more complex syntactic structures are, the greater the likelihood that these would be
introduced at later stages of language curricula. Following the same idea of gradually introducing lexical
items into the descriptive grammars, we also argue that the same can be done with syntactic rules and
constructions (e.g. minimize syntactic ambiguity by removing grammatical rules to which the student
has not yet been introduced).

Both lexical and syntactic information is stored in a graded fashion in a database, relating statistical
information about the syntactic structures’ distribution across language levels, exams and curricula. This
information will allow us to simplify descriptive grammars to a level of strictly necessary syntactic com-
plexity to any surveyed language level — a system we named Graded Parser. By limiting the number of
rules necessary to describe a specific language level, graded parsers can help avoid unnecessary ambigu-
ity.

The surveyed lexical information will also be integrated in the Open Multilingual Wordnet (OMW)
(Bond and Foster, 2013), a very large union of free wordnets. The OMW tightly integrates the English
Princeton Wordnet (Fellbaum, 1998) and the Chinese Open Wordnet (Wang and Bond, 2013), allowing
us to leverage on its structure to aid in the MT components.

4.3 Learner Corpora
First language transfer is widely accepted to play an important role in foreign language learning (Gass,
1988). Because of this, many CALL systems have been implemented for pairs of languages (i.e. a specific
source language is considered in the development process) (Gamper and Knapp, 2002). CALL systems
should be aware of the most common mistakes its users are known to make. For instance, missing the
copula to be is a common mistake made by native Chinese speakers learning English (Schneider and
McCoy, 1998). And, along the same lines, using an unnecessary copula (是 shì) in adjectival predication
constructions is a common mistake made by native English speakers learning Mandarin.

The study of learner corpora focuses on the collection and analysis of language learner data. This data
is especially of interest to CALL research if it has been error-tagged (i.e. all the errors in the corpus have
been described with a set of tags: Granger, 2003). Before one can hope to design error detection and
correction systems, it is necessary to survey errors contained in some learner corpora (Granger, 2003).
Also, the appropriateness of the error correction in CALL systems is often measured against these kind
of corpora (Schulze, 2008).

Even though producing an error-tagged corpus is very time-consuming, the huge return on invested
resources is undeniable (Granger, 2003). For instance, documented and organized data can be used to
customize the exercises in accordance with the learners’proficiency level and/or mother tongue back-
ground (Granger, 2003). Semantically annotated Learner Corpora are a good resource to predict the
intended meaning of students (Hellan et al., 2013). And finally, the ungrammatical inputs collected by
learner corpora can also be useful by providing examples of unparseable sentences for descriptive gram-
marians.

111



Many learner corpora are available for English learners coming from a Mandarin language background.
Unfortunately, there seems to be an absence of readily available learner corpora made from Mandarin Chi-
nese language learners. For this reason we are collecting and are currently annotating a learner corpus
of Mandarin learners, using English as their source language. This learner corpus and the example sen-
tences from the textbooks surveyed in Section 4.2 are being annotated using IMI (Bond et al., 2015), a
multilingual semantic annotation environment that has been adapted to our needs.

4.4 Mal-rules
Mal-rules (also called ‘error-production rules’) (Schneider and McCoy, 1998) are a specific kind of rules
that extend a descriptive grammar to make it accept (parse) ungrammatical phenomena. These mal-rules
can be used to identify specific language errors, often triggering helpful messages to language learners.
Consider the examples (2) and (3), below:

2. *Dogs is cute. S_mal_agreement

NP

N

Dogs

VP

V

is

A

cute

3. *狗
gǒu
dog

是
shì
be

可爱
kě ài
cute

“dogs are cute”

S

NP

N

狗

VP

V-shi-adj-mal

是

A

可爱

A descriptive grammar of English should reject (2) as a proper sentence. But if the intention were to
capture the agreement error (between the subject NP and the VP), then expanding the English grammar
with a mal-rule will serve this purpose perfectly. The node identified by S_mal_agreement, is a simple
example of a mal-rule that was designed to explicitly allow a disagreement between the subject and the
main clause. Similarly, a prescriptive grammar of Mandarin should reject (3) as a proper sentence, since
the use of copula with adjectival predicates is not recommended (except in rare cases where pragmatics
take a more prominent role). But as seen in (3), we can easily catch this error by adding a mal-lexical-
entry, in this case named V-shi-adj-mal to flag the use of a copula that takes an adjectival complement.
(3) is the first of many such mal-constructions to be implemented in our system, many more will follow.

The names of these rules are important, since checking the nodes of a parse tree can easily identify
that the sentence was not grammatical because there is a mal (or any another tag) in the name of one of
the nodes. The full rule name or lexical entry can be used to identify the specific kind of error and hence
allow a system to say, for example, “there is something wrong with the agreement in that sentence”, for
(2), or “you should not use是 before an adjective” for (3).

The mal-rules can be applied selectively. They can, for example, be used for parsing but not for gen-
eration (Bender et al., 2004), or to allow one type of error but not other. Also, because the grammars we
are working with produce a semantic representation, these mal-rules are being designed to reconstruct
the semantics of ungrammatical sentences, in a way that allows the generation of corrected counterparts
(Bender et al., 2004). In some cases, the same error triggers multiple different mal-rules, each one recon-
structing different semantics, so as to mimic different possible intended meanings by the student.
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4.5 Our System’s Architecture

Figure 2: CALL system flowchart

In this section we will bring together all
the previously presented details to elab-
orate on the design of our CALL system.
Figure 2 presents a flowchart view of the
coming description.

The final system will be web-based
(accessible from any computer, tablet or
phone with an internet connection). At
the top of this system we have an au-
thentication module. This ID will al-
low the system to retrieve all the neces-
sary information to launch the tutoring
system. The Student Model is the cen-
ter of information. There we can find
the vocabulary known by each student,
the grammatical complexity the student
is expected to work with, and the entire
history of the student’s interaction with
the system (e.g. previous completed ex-
ercises, previous mistakes, time spent
with each exercise, etc.).

Once the student is identified, the sys-
tem allows two main tasks: Vocabulary
Introduction and Exercise Randomiser.
The Vocabulary Introduction module is
directly linked to the new OMW extensions previously described (i.e. identifying individual lexical senses
to specific language levels), allowing the student to preview necessary vocabulary in the target language.
All the previously previewed vocabulary is stored in the Student Model and it feeds the Exercise Ran-
domiser module.

The Exercise Randomiser module makes use of the previously known lexicon and the Syntactic Knowl-
edge Base (SKB) to generate a one-sentence composition exercise, where learners must select words out
of a randomly generated pool of words to compose a grammatical sentence. The number and type of
spurious words that will be generated will be taken into account to determine its difficulty. The stu-
dents inputted sentences will be stored in a Learner Corpus and sent to the Parser module. The Mal-Rule
Enhanced Graded Parser module comprises the mal-rule enhanced grammars and a Semantic Transfer
Machine Translation system.

The basic workflow of this module is as follows: if a parse is possible without activating mal-rules,
then the solution is considered grammatical, the student is congratulated and the system returns to the
beginning. If, on the other hand, one or more mal-rules are necessary to parse the student’s solution, then
there are two possible scenarios:

• there is no ambiguity about what errors were made: in this case the system can output a message
prompting the student about the error made. The error tags will be added to the Learner Corpus, and
the student will be asked to submit a new solution to the same problem until he/she can solve it; or

• there is ambiguity in the student’s intended meaning, and different mal-rules that convey different
meanings were triggered: in this case the system can’t immediately output where the student made a
mistake without first finding the intended meaning. In this case the solution of the student will enter
the Ambiguity Solver module.

The MT Based Ambiguity Solver is a basic dialog system (similar to Figure 1) that will request help
from the student to decide what the intended meaning was, and thus which errors were made. This
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module assumes that mal-rules have been constructed with robust semantics (i.e. reconstructing the right
semantics for each particular error encoded in the rule). This will allow the system to use the reconstructed
semantic representation to generate correct sentences. If there is a huge amount of ambiguity to solve,
then parse ranking algorithms can help select the most probable set of intended meanings. This set of
probable meanings is translated from target to source languages, and the student will be prompted to
choose his/her intended meaning, between a set of translations.

Having found the student’s intended meaning, a simple backwards analysis can be made to check which
mal-rules were used to generate the selected choice. The ungrammatical solution will be stored in the
learner corpus tagged with its intended meaning. The system will use the mal-rules used to generate the
student’s intended meaning in order to trigger an appropriate coaching message.

Finally, the system also has to account for completely unexpected sentences. Assuming the grammar
will only be enhanced with common errors made by language learners, the system is likely to find inputs
that it neither considers a grammatical input, nor does it have mal-rules that can help parse it. Also,
students may still use a perfectly grammatical structure that the system is not expecting the student to
use (given its graded architecture). In these cases, the system cannot say that the input is ungrammatical.
Instead, a sentence that cannot be parsed can generate some general comments like: “You should not try
to create sentences with structures you haven’t learned yet. Try to make simpler sentences!”. This is both
uncommitted to the grammaticality of the input, and pedagogical in the sense that it tries to focus the
student on his/her curriculum. These sentences should be flagged for the instructor to examine and give
feedback on.

We hope to employ a few tricks to make the system friendlier to the students. For example, it can make
intelligent use of ambiguous and unambiguous lexical entries to spare the student from having to take this
disambiguation step too often. Also, when considering ambiguous input, it can automatically take the
most probable intended meaning by default and output something like “If you mean A, then you need to
be careful about mistake X. If you did not mean A, then help me understand what you meant by selecting
from B, C or D.”

The learner corpus compiled from this process will have very rich information when compared to other
similar corpora. This system will not only collect statistics of common syntactic errors made by learners,
but will also link these mistakes with the semantic annotation concerning the intended meaning. Also,
when students are prompted to help the system disambiguate their solutions, an implicit parallel bilingual
corpus is being created. The system will constantly be feeding itself information that makes it more
intelligent, allowing interesting expansion over time.

5 Conclusions and Future Work
In this paper we have described a system that will hopefully help push for a new state-of-the-art on-
line learning environments, by closely integrating semantics-based MT with computational grammars.
Though still in an early stage of development, we have shown how we can use cutting-edge grammati-
cal and semantic research research to build a system focused on reinforcing grammatical knowledge to
Mandarin Chinese L2 learners.

Expandability (within the same language), adaptability to other languages and a component based ar-
chitecture is at the core of our research agenda. So we expect not only that this system will be a useful
resource for Mandarin L2 students, but that it can also help CALL research to further explore the integra-
tion of semantics, MT and other NLP field into its field.

At a pedagogical level, our approach empowers language educators, allowing them to focus their lec-
tures on other major language skills (e.g. listening and speaking) rather than drilling. Educators can rely
on CALL systems to provide personalized grammatical feedback to each individual student, and better
attend to their individual struggles. At the same time, our system is designed for the students, provid-
ing them autonomy in self-paced study, and allowing them to spend more time practicing parts of the
curriculum where they struggle the most.

We intend to evaluate this tool both with an intrinsic evaluation (how many errors can be correctly
identified in a learner corpus) and an extrinsic one (in a classroom, does using this improve students test
scores).
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Abstract 

 This paper describes a corpus of nearly 10K French-Chinese aligned segments, produced by post-

editing machine translated computer science courseware. This corpus was built from 2013 to 2016 with-

in the MACAU project, by native Chinese students. The quality, as judged by native speakers, is ade-

quate for understanding (far better than by reading only the original French) and for getting better 

marks. This corpus is annotated at segment-level by a self-assessed quality score. It has been directly 

used as supplemental training data to build a statistical machine translation system dedicated to that sub-

language, and can be used to extract the specific bilingual terminology. To our knowledge, it is the first 

corpus of this kind to be released.  

1 Introduction 

The ongoing MACAU project, started in 2012 at the University of Grenoble, aims at providing multi-

lingual access to course material taught at the university (Kalitvianski et al, 2015). It is motivated by 

the fact that many foreign students struggle with understanding material taught in French, and have to 

spend extra time in dictionary lookup and translation to fully comprehend the meaning.  

The MACAU platform1 is designed to create multilingual versions of initially monolingual course ma-

terial by producing machine translations into the desired language, and by providing an interface that 

allows readers to post-edit these translations, segment by segment, until the desired level of quality is 

achieved.  

A direct by-product of this activity is a bilingual corpus of post-edited sentences, constituting full 

courses, exercises and so on, concerning several fields of theoretical and practical computer science. 

Such a corpus could be employed as supplemental data for training a custom machine translation sys-

tem. It can also serve for extraction of domain-specific lexicon.  

In this paper we describe the data, provide corpus statistics, and delineate potential uses for the cor-

pus.  

2 The MACAU corpus 

In this section we describe the MACAU project within which this corpus was constructed, and give 

the corpus’ characteristics. 

2.1 The MACAU project 

The MACAU project has been ongoing since 2012. Its purpose is to help foreign students access edu-

cational material produced by the university in their native tongues, as those are the ones they under-

stand best.  

This is achieved by post-editing machine-translated documents, segment by segment. The post-

edition is done via the iMAG web interface (Boitet et al, 2008). An iMAG is an interactive multilin-

gual access gateway, which allows its users to visit a web page in the language of their choice while 

preserving its layout.  

Pages are automatically segmented into translation units, typically sentences or titles. Segments are 

substituted by either a machine translation output if the segment is not found in the dedicated transla-

tion memory, or by the best post-edition available if the segment has been post-edited. Users can con-

tribute corrections directly on the page by hovering the mouse pointer over the segment they desire to 

                                                 
1 Currently migrating to macau.imag.fr 
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correct, which makes a post-editing palette appear. The quality of a post-edition is explicitly “self-

assessed” by the post-editor through a score in [0..20]. That score can later be revised, for example by 

other Chinese students using the Chinese version to study. Note that the interface allows to see the tar-

get (Chinese) and source (French) versions to appear side by side, so that, while learning some topic in 

computer science, Chinese students can also progress in French.  

Post-editing through the iMAG interface is typically 3 times faster than translation from scratch 

(15-20 mins vs. 1 hour per standard page of 250 words). Also, for the post-editor, such an interface has 

the benefit of allowing post-editors to see the segment within its context. 

 

 
Figure 1: a chapter of a course on computational complexity, in bilingual view,  

with a post-editing window displayed over a segment. 

 

For the MACAU project, the source documents are provided by teachers and also by students, and 

cover subjects concerning bachelor and master-level computer science. Table 1 below describes the 

quantity and the subject matters included in the corpus.  

 

Subject matter Content type Pages (html) 

Introduction to Propositional and First-Order Logic Full book 45 

C programming Teacher lectures 14 

Object-oriented programming Teacher lectures 13 

Computational Complexity Lecture notes 13 

Human-Machine interaction Teacher lectures 7 

Formal Languages and Parsing Teacher lectures, hand-outs 5 

Modelling of digital systems Exam paper 2 

AI and automatic planning Exam paper 2 

Introduction to Ergonomics Student report 1 

Table 1. Current status of the MACAU platform 

 

Post-editing was performed by three Chinese-speaking university students, selected for their 

knowledge of the courses. Two were masters’ students, one was a third year bachelors’. All have been 

taught the subject in French.  

Students were selected on the basis of their knowledge of Chinese, their familiarity with the subject 

matters, and their interest in the task. They were explained the purpose of the task, and practiced on 

training documents before post-editing those that are included in the corpus. They received some 

monetary compensation for their work (as interns). 
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The students were asked to post-edit machine-generated translations segment by segment, through 

the iMAG interface, until an acceptable Chinese formulation of each segment was obtained. They 

were also told that the priority was not literary quality, but rather understandability. A group of two 

other native Chinese speakers subsequently verified the correctness a subset of randomly selected 

translations.  

2.2 Corpus characteristics 

The corpus is a collection of 9662 aligned French-Chinese segments, extracted from courseware in 

HTML. This corpus is cleaned of all HTML markup, however it does contain other non-linguistic el-

ements, such as mathematical and logical formulas.  

 The segmentation was produced automatically and has not been corrected manually, therefore 

some segments correspond to fragments of sentences, and, more rarely, to two sentences fused togeth-

er. Primary translations were obtained automatically via Google Translate.  

The average source segment length is ~72 characters, or about 11 French words, and the median 

length is 53 characters. 25% of the source segments are less than 26 characters long and another 25% 

are over 100 characters long. Moreover, the corpus contains 108860 words, of which 8819 are unique 

French tokens.  

The corpus initially contained many redundancies, but has been substantially cleaned. The remain-

ing few source redundancies differ by their Chinese translations. The quality of the segments, as 

judged by bilingual readers, is considered adequate for understanding.  
 

La complexité d'un programme pseudo-Pascal est l'ordre 

de grandeur du nombre d'instructions élémentaires à exé-

cuter sur une entrée de taille n. 

伪帕斯卡程序的复杂性是基本指令的数量级上的大小为

n条输入运行。 

Question: Sont-ils décidables dans le modèle de calcul 

déterministe? 
问题：他们是能用确定性计算解决的问题吗？ 

(a ⇒ b )∧( b ⇒ c )∧¬( a ⇒ c ) est insatisfaisable. ( a ⇒ b )∧( b ⇒ c )∧¬( a ⇒ c )是不可满足的。 

Voici la référence principale, et son résumé, qui nous 

semble tout à fait clair. 
这里是主要的参考和总结，这似乎是相当清楚的。 

Ces trois formules n'ont pas de variables libres. 这三个公式没有自由变量。 

Table 2. Examples of segments from the corpus 

 

This corpus is now available on GitHub2. 

3 Building a specialized MT system for that sublanguage 

One possible use of this corpus is the training of a specialized MT system for educational documents.  

3.1 Motivations and method 

We are interested in increasing the usage quality of machine translation systems. We measure usage 

quality as a function of post-edition times related to an estimate of the human translation time, which 

by default is assumed to be 60 minutes per standard 250 word page.    

 

                     (1) 
Formula 1: A measure for the usage quality of a MT system. 

 

For example, Q = 40% is Tpetotal = 30 mn/p (8/20), and Q = 90% if Tpetotal = 5 mn/p (18/20). 

 

This corpus has been used by Wang (2015) as supplemental data for training a specialized Moses 

(Koehn et al. 2007) probabilistic machine translation system through incremental training, yielding 

better usage quality than a generalistic PMT system. 

                                                 
2 https://github.com/macau-getalp/macau 
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3.2 Usage of Moses incremental training  

When new training data is available, a way of adding it to an existing model is incremental training. It 

is an iterative process that avoids the time-consuming retraining of a new model from scratch3.  

The V0 of the system was trained on 100K bilingual segments from the MultiUN corpus (Eisele et al, 

2010). Batches of 5000 segments taken from several in-domain corpora were iteratively added, includ-

ing a raw form of this corpus that contained 16000 unfiltered segments. 

3.3 Evolution of post-editing times 

After 16 iterations, results show that the incremental training method reduces post-edition times, in a 

short amount of time (16 iterations, about 90 hours of computation, without ever recompiling every-

thing). This system yields a usage quality of 70%, with 15 mins/std_page, better than Google Trans-

late. 

 
Figure 2: observed reduction in post-edition times after incremental training 

 

The BLEU score (Papineni et al. 2002) improved as well, going from 13.8% after the first iteration 

to 48.3% after the last one. 

Conclusion 

We have presented a bilingual parallel corpus of nearly 10K aligned French-Chinese segments, pro-

duced over three years in the course of the MACAU project. This corpus is released under a free li-

cense and will be periodically updated as new post-editions become available. To our knowledge, this 

is the first corpus of this kind to be published 

The multilingual access platform being open to everyone, this corpus can be extended by anyone by 

post-editing either pre-existing or newly uploaded documents, something that we encourage. 

Although a large-scale evaluation of the usefulness of the platform will be carried out in the near fu-

ture, we have already observed that the process of post-editing improves understanding and exam 

grades. An example of this is a student whose exam grade rose from 2.5/20 to 11/20 after a month of 

post-editing material related to the subject. Undoubtedly, several factors were at play, but this appears 

to be an interesting avenue of investigation.  

                                                 
3 The details of the incremental training process are described here: 

http://www.statmt.org/moses/?n=Advanced.Incremental 
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Abstract

Much research in education has been done on the study of different language teaching
methods. However, there has been little investigation using computational analysis to
compare such methods in terms of readability or complexity progression. In this paper,
we make use of existing readability scoring techniques and our own classifiers to ana-
lyze the textbooks used in two very different teaching methods for English as a Second
Language – the grammar-based and the communicative methods. Our analysis indicates
that the grammar-based curriculum shows a more coherent readability progression com-
pared to the communicative curriculum. This finding corroborates with the expectations
about the differences between these two methods and validates our approach’s value in
comparing different teaching methods quantitatively.

1 Introduction

In today’s highly interdependent economies and intercultural exchange, learning a second lan-
guage has become increasingly valued. With over 1.5 billion speakers, including 360 million
native speakers, English is the most common second language worldwide. The study of differ-
ent language teaching methods has been a dominant research pillar of education literature, with
numerous contributions spanning various domains (Allen and Widdowson, 1974; Richards and
Renandya, 2002) However, there has been little investigation using computational analysis of
various teaching methods, and how they compare against each other in terms of readability or
complexity progression.

In this paper, we make use of existing readability scoring techniques to analyze the textbooks
used in two very different teaching methods for English as a Second Language (ESL). The first
method follows a grammar-based approach, and is represented with school textbooks spanning
grades 1 through 12 of the educational system of a non-English speaking country (Palestine).
The second method uses a communicative approach, and is represented with four graded text-
books from a generic ESL course called Lane’s English as a Second Language Course. We
use several commonly used readability scoring metrics, and we implement machine learning
readability classifiers exploiting various syntactic and lexical features. We employ these tools
to make inferences regarding the language readability progression, with increasing grade levels,
for the two teaching methods and their affiliated textbooks.

In the next section, we discuss some related work. This is followed by a detailed presentation
of our dataset (Section 3) and readability algorithms (Section 4). We finally present and discuss
our results in Section 5.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/.
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2 Related Work

2.1 Foreign Language Teaching Methods
Previous ESL teaching methods relied heavily on grammar-based methods, where there is more
focus on sentence structure rather than sentence flow. This trend continued throughout the 60s
and 70s (Richards and Renandya, 2002), and found its way into many ESL school-based curric-
ula still in use today. Recently, more consideration is given to the actual needs and backgrounds
of the learners themselves (Lane, 1978). Teaching methods have generally shifted away from
grammar-based methods and have come to rely more on lexical factors such as frequency and
word count. The communicative approach later emerged (Allen and Widdowson, 1974), fo-
cusing on linguistic patterns, and facilitated by audio support. However, this approach has been
criticized since relying on pure communicative contexts would still require building up sufficient
vocabulary and grammar knowledge beforehand (Lane, 1978). Many of the English language
textbooks for non-native speakers follow a variation of this approach. These textbooks exhibit
more emphasis on grammar and vocabulary in the early grade levels, then shift to a more com-
municative approach in subsequent grades. The school textbooks used in this paper follow this
trend. Another recent variation for learning English focuses much more on the communicative
approach, but with emphasis on gradual rules and patterns. When students are exposed to these,
they can experience proper communication and gather the momentum to carry them through the
new and unfamiliar parts. This approach is used for Lane’s course.

2.2 Previous Work on Readability Analysis
In the scope of this paper, analyzing the readability of a given text involves quantifying lexical
and syntactic features of the text and obtaining a measure of its difficulty or readability. Some
of the early contributions for readability scoring date back to the 40s, using approximate and
generic regression formulas to get an indicative score of the observed readability. These scores
reflect the readability of the text in terms of grade levels or bound score tag. Such algorithms
include:

• Flesch Reading Ease scores (FRE) (Flesch and others, 1949): Scores run from 0 to 100,
with lower FRE scores indicating more complex, i.e. less readable text.

• The Flesch-Kincaid Grades (FKG) (Kincaid et al., 1975): Text readability is expressed
through the most fitting grade tag from around 0.3 to 12, 12 being the highest.

• Dale-Chall (DC) scores (Dale and Chall, 1948): A grading scheme similar to FKG is ap-
plied (ranging from 4.9-or-lower to 9.0-9.9), but with greater emphasis placed on vocabu-
lary by using a list of 3000 commonly used words in English.

These formulas and others were usually obtained from manual computation of regression mod-
els fitted on parameters quantifying text complexity (DuBay, 2008). The most commonly used
quantifications relied on counting occurrences from vocabulary word lists considered rare or
difficult, and on measuring other text attributes that were easy to compute, such as average sen-
tence length in words, average word length in syllables, and so on. It should be noted that these
traditional formulas, while lauded for their ease of computation and use, were also criticized
for being too superficial to accurately capture the multiple factors that influence text readability
(Redish, 2000). The issue of automatic readability scoring has also been covered extensively in
more recent literature. Benjamin (2011) presented a survey of text readability methods within
various contexts,(Crossley et al., 2007; Zhang et al., 2013) further discuss how to extract the best
readability features selection and readability performance. These papers present and compare
several readability calculation methods and text cohesion issues, some of which are extensions to
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the more traditional scores involving more elaborate feature analysis. As computational methods
for natural language processing and machine learning matured, researchers began addressing the
readability issue from this new angle, with increasingly promising results (Francois and Milt-
sakaki, 2012). More recent attempts at readability scoring, including (Collins-Thompson, 2014;
Pilán et al., 2014; Pilán et al., 2016), discuss utilizing machine learning and Support Vector Ma-
chines (SVM), among other classifiers, to predict readability levels. Collins-Thompson (2014)
discusses feature set selection, and classification algorithm choices, among other implementa-
tion details. Existing work analyzing second languages mostly treats the foreign language as a
single coherent entity, without looking into different methods or resources for the learning pro-
cess (Collins-Thompson, 2014), and without delving into the various factors that might affect
the learning process such as contexts, teaching methods, teaching resources, or the students’
first language. Our work investigates readability progression spanning several grade levels of
two sets of textbooks, each of which follows a different ESL teaching method. We apply estab-
lished formulaic algorithms and build our own machine learning classifier to assess readability.

3 Dataset

The grammar-based textbooks we use in this paper pertain to the English language curriculum of
a non-English speaking country (Palestine), henceforth referred to as the Palestinian Curriculum
Textbooks (PCT). The communicative textbooks are from Lane’s English as a Second Language
Course, henceforth referred to as Lane’s Course Textbooks (LCT). The textbooks are divided
into 12 grades for PCT (spanning grades 1 through 12) and four consecutive levels for LCT
(beginner, advanced beginner, intermediate, advanced intermediate). The PCT textbooks are
grouped into four parts, as shown in Table 1, and detailed in the following section.

In some of the experiments, we also include a control corpus comprised of four excerpts from
literature used for teaching various school grades in the State of New York, henceforth referred
to as New York Curriculum Textbooks (NYCT).

We perform a number of pre-processing steps for all the textbooks, including eliminating
irrelevant fragments, such as repeated instructions or text intended for instructors rather than
students.

PCT LCT
Level 1 Grades 1-3 Part 1 (Beginner)
Level 2 Grades 4-6 Part 2 (Advanced Beginner)
Level 2 Grades 7-9 Part 3 (Intermediate)
Level 4 Grades 10-12 Part 4 (Advanced Intermediate)

Table 1: Restructuring the curricula into four parts.

3.1 PCT: Grammar-Based Method
In the Palestinian educational system, English is taught as a second language from first grade, all
through high school and the first year of university. Softcopies of the textbooks were acquired
through direct communication with the Palestinian ministry of education.

The PCT textbooks, originally distributed across 12 grades, were restructured into four levels,
each one covering three consecutive grades, as shown in Table 1. The purpose of this restruc-
turing is twofold. Firstly, grade-level granularity does not provide sufficient tokens/types for
reliable analysis, whereas a more coarse-grained structure would remedy that. Additionally,
sectioning the corpus into four parts makes it comparable in structure to the LCT corpus. Table
2 presents some statistics of the school textbooks dataset after restructuring the textbooks. The
table shows the number of tokens and types for each of the designated groups.
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PCT LCT NYCT Samples
Tokens Types Tokens Types Tokens Types

Level 1 13,942 1,276 17,724 1,665 902 381
Level 2 51,385 3,049 30,839 1,721 1,209 434
Level 3 126,149 6,042 52,316 2,862 993 411
Level 4 215,527 11,400 47,107 3,086 1,175 494

Table 2: Dataset statistics: Palestinian Curriculum Textbooks (PCT), Lane’s Course Textbooks
(LCT), and New York Curriculum Textbooks (NYCT) samples

3.2 LCT: Communicative Method

Lane’s course, LCT, is a generic English learning textbook with four different levels: Beginner,
Advanced Beginner, Intermediate and Advanced Intermediate. The textbooks are designed per
the communicative teaching method. It also uses a controlled vocabulary set that is gradually
augmented with new words that can be put together and inflected in various ways. Table 2
provides statistics about LCT, grouped by the different parts.

In addition to difference in teaching method between PCT and LCT, we observe other factors
that could affect the readability evaluation. PCT targets learners with a specific first language
(L1), which might influence the structure and language of the corresponding textbooks. LCT,
on the other hand, is not tailored to a specific type of learner. PCT is also designed to be taught
over a 12-year period, spanning the Palestinian educational system, while LCT is not restricted
to any specific duration. In fact, LCT is most likely be taught at a much accelerated pace.

Another major difference between the two curricula is the age range of the intended target
audience. PCT’s target learners fall within the 6-18 age bracket, whereas LCT likely caters to
an older target audience, although no explicit mention of that was found in the textbooks.

3.3 NYCT Samples

For samples of English learning as L1, we use excerpts of English literature recommended for
various grades within the educational system of the State of New York. The full text for the
works of literature were difficult to get ahold of. We used excerpts of each piece instead, which
was sufficient for our purposes. Table 2 presents some details and statistics of the used texts.

4 Readability Algorithms

In this section, we present the different readability algorithms we employ in this paper. We group
them in two sets. First are conventional readability algorithms that have been extensively used
for English. And second are two Support Vector Machine (SVM) readability classifiers that we
train on the specific datasets – PCT and LCT. All readability algorithms are applied to all the
datasets discussed above. The results are discussed in Section 5.

4.1 Conventional Readability Analysis Algorithms

We use three traditional readability analysis tools: Flesch Reading Ease scores (FRE), Flesch-
Kincaid Grades (FKG) and Dale-Chall (DC) scores. Both FRE and FKG rely on the same
text features to quantify readability: word length and sentence length, but they vary in relative
weights attributed to these factors, as well as the interpretation of their respective scores. While
FRE increasing scores indicate decreasing reading difficulty, FKG results of increasing grade
levels correlate with increasing reading difficulty.

The DC formula also considers average sentence length; however, it differs from the previous
two tools by relying on reader comprehension of familiar vs. difficult words. In DC, familiar
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words are defined by a set of 3,000 words considered accessible to 4th grade level US students
and above. Any words outside that list are considered difficult.

4.2 Readability Classification Using Machine Learning

The traditional readability algorithms discussed above provide a generic view of text. To create
a more domain and context-specific readability analysis, we build our own machine learning
classifiers trained on the specific datasets we study in this paper (PCT and LCT). In designing
our classifiers, we build on previous contributions that study relevant features for readability
analysis using SVM (Heilman et al., 2008; Petersen and Ostendorf, 2009; Feng et al., 2010).1

We use a number of lexical and syntactic features, which we discuss next.

Lexical features The lexical features reflect the significance of the words and vocabulary of
the analyzed text towards the overall readability of the text, capturing word and phrase-level (as
bigrams) attributes. The following lexical features are used in the classifier learning: unigrams,
bigrams, syllable counts, types-to-tokens ratio (TTR), and ratio of function words, such as arti-
cles, particles and pronouns, among others. Pre-processing includes lowercasing and punctua-
tion removal.

Syntactic features We use the Stanford Parser (De Marneffe et al., 2006) to obtain dependency
parses for the sentences. The Stanford Parser produces syntactic structures in the form of triplets,
containing the relation name, governor (and its POS) and dependent (and its POS). We only use
the POS tags of the governor and dependent words and their relation name. The idea is to use
the de-lexicalized syntactic patterns that are observed in the document.

We measure the accuracy of the classifiers using 10-fold cross-validation on the training
datasets. The cross-validation accuracy scores for PCT are noticeably higher than those of LCT,
with around 83% and 72% respectively. We cannot draw any concrete readability conclusions
based on the classifier accuracy since the training used different training datasets with different
sizes.

5 Results and Analysis

We first present an overview of the vocabulary sizes in Section 5.1, and the results for the read-
ability algorithms in Section 5.2. Then we discuss the results for the readability classifier in
Section 5.3.

5.1 Vocabulary Size and Growth Rate

Coverage Growth Coverage Intersection
PCT LCT PCT LCT

Level 1 9.6% 29.4% 29.9% 23.9%
Level 2 25.5% 46.9% 27.3% 36.6%
Level 3 53.4% 74.67% 24.2% 42.7%
Level 4 100.0% 100.0% 21.3% 52.4%

Total Vocabulary 13,388 5,442 13,388 5,442

Table 3: The Coverage Growth presents ratios of PCT and LCT cumulative vocabularies over
their respective total vocabularies. The Coverage Intersection presents ratios of intersections of
PCT and LCT cumulative vocabularies over their respective total vocabularies.

1We use the SVM Scikit-learn API (Pedregosa et al., 2011) provided in the NLTK package (Loper and Bird,
2002).
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PCT LCT NYCT Samples
DC FRE FKG DC FRE FKG DC FRE FKG

Level 1 5.43 84.85 3.06 7.08 72.03 5.16 6.69 78.13 2.93
Level 2 7.53 75.17 3.87 6.43 77.14 3.95 8.36 70.21 6.10
Level 3 7.72 71.35 4.65 7.43 65.02 5.03 8.13 68.30 5.93
Level 4 9.02 61.37 6.32 7.24 71.40 4.47 9.68 58.46 7.09

Table 4: Readability scores of all datasets: Palestinian Curriculum Textbooks (PCT), Lane’s
Course Textbooks (LCT), and New York Curriculum Textbooks (NYCT) samples

In Table 3, we present two sets of results comparing the vocabulary progression at different
levels for PCT and LCT – Coverage Growth and Coverage Intersection.

Coverage Growth Coverage Growth is defined as the ratio of PCT and LCT cumulative vo-
cabularies over their respective total vocabularies:

Coverage Growth(PCT ) =
|PCT1,i|
|PCT1,4| Coverage Growth(LCT ) =

|LCT1,i|
|LCT1,4|

Where PCT1,i and LCT1,i represent the cumulative vocabulary for Level 1 up to Level i of
PCT and LCT, respectively. The actual counts of total vocabularies are indicated in the last row
of Table 3. The difference between PCT and LCT is stark. LCT introduces a relatively bigger
portion of the overall vocabulary at Level 1, and maintains a smaller growth rate than PCT. PCT,
on the other hand, starts with a relatively small percentage of the vocabulary at Level 1, but
maintains a much higher growth rate. This difference in vocabulary growth rates is consistent
with the expected vocabulary use in the grammar-based and communicative methods.

Coverage Intersection Coverage Intersection is defined as the ratio of the intersection of
PCT and LCT cumulative vocabularies over their respective total vocabularies. The Coverage
Intersection formula below is for PCT, to calculate the metric for LCT replace the denumerator
with the corresponding LCT values.

Coverage Intersection(PCT ) =
|PCT1,i ∩ LCT1,i|
|PCT1,4|

While the total vocabulary of PCT is over twice as large as LCT, the intersection between the
two only accounts for half of LCT and one-fifth of PCT. Furthermore, while the intersection ratio
of PCT in Level 1 is higher than that for LCT in Level 1, the intersection ratios for PCT drop
slowly, while those for LCT grow at a higher rate. These observations indicate that in addition to
the difference in vocabulary coverage growth discussed above, the choice of vocabulary is rather
different. This is likely to affect how readability algorithms will perform on these two textbook
collections.

5.2 Conventional Readability Analysis Algorithms
Table 4 shows the various readability scores (DC, FRE, FKG) of the different textbook sets
(PCT, LCT, NYCT) for Levels 1 through 4.

For PCT, the figures indicate that the overall complexity tends to increase with higher levels,
as seen with the higher grade values for the DC and FKG, and the decreasing FRE values (in-
dicating less ease, higher complexity). To examine the consistency across the different metrics,
we calculated the correlation coefficient R (Pearson) scores for the three pairs. The R value for
FKG and DC is 0.93, FKG and FRE is -0.983 and DC and FRE is -0.981. The high R values
indicate a significant correlation between the readability scores, and hence show consistency of
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Input text
(PCT)

Classifier result
(LCT)

Grades 1-3 Part 2
Grades 4-6 Part 3
Grades 7-9 Part 1

Grades 10-12 Part 1

Input text
(LCT)

Classifier result
(PCT)

Part 1 Grade 10 -12
Part 2 Grades 4 - 6
Part 3 Grades 7 - 9
Part 4 Grades 10-12

Table 5: Classifying the texts of each set by the classifier of the other.

Input text
(NYCT)

Classifier result
(PCT)

Classifier result
(LCT)

The Stupid Smelly Bus (2nd grade) Grades 1 - 3 Part 2
The Giver (6th grade) Grades 7 - 9 Part 4

A House on Mango Street (8th grade) Grades 10 - 12 Part 1
Things Fall Apart (12th grade) Grades 10 - 12 Part 4

Table 6: Classifying the US excerpts (NYCT Samples) by each of the classifiers.

the readability behavior. It is worth noting here is that the negative correlation is the result of the
FRE score indicating the ease, rather than the complexity, of the readability.

For LCT, the readability scores show no clear pattern with the course levels they indicate as
they progress. Level 1 shows noticeable high scores across all metrics for a beginner’s course,
for example. FRE, DC and FKG values show clear fluctuations in the overall complexity values
they reflect. The fluctuations in all these metrics, however, seem to correlate with each other
as shown at the table, indicating that the fluctuating behavior is not a result of bias at certain
metrics. The correlation coefficient R scores for the three pairs also show consistency here as
well. The R value for FKG and DC is 0.773, FKG and FRE is -0.737 and DC and FRE is -
0.92. The high R values indicate a correlation between the readability scores, and hence show
consistency of the readability behavior

Finally, for NYCT Samples, the results match the actual grade designation of the texts. This
also agrees with the pattern of the L2 school textbooks (PCT) in following an incremental grade
growth.

5.3 Domain-Specific Readability: Machine Learning Classification
Table 5 presents the results for the text of each level of each collection (PCT or LCT) as an input
to the classifier trained on the other textbook collection (LCT or PCT, respectively). The results
for LCT show that the tags do not follow a clear readability progression pattern. The results for
PCT, on the other hand, fit the original grade progression pattern of the educational system well.

Table 6 shows the results for classifying the NYCT Samples by both classifiers. The results
show a more structured readability progression pattern for the PCT classifier, similar to the
patterns we have seen before for this set. The results for LCT classifier, however, do not follow
the original levels progression of the NYCT Samples. This indicates no clear pattern of the
readability progression of LCT, as seen for the previous results. Finally, the NYCT Samples
have higher readability levels than both PCT and LCT, which matches the intuition of studying
English as an L1 versus L2 language.

5.4 Discussion
The major observation throughout the different experiments conducted in this paper indicate that
LCT, as an example of an ESL textbook using the communicative-based teaching method, shows
lack of coherent readability/complexity progression with the various teaching levels. PCT, on
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the other hand, used as an example of the grammar-based teaching method, showed a clear
complexity progression with increasing grades. More samples of both approaches need to be
analyzed before making a generalization, but this should serve as a cue. Moreover, results indi-
cate that the complexity of both sets is relatively lower than that of the US text samples, as an
L1. The lack/presence of the progression structure may indicate higher/lower dependency on the
textbooks themselves in the learning process, where the lack of structure in LCT might poten-
tially be compensated by more effort from the teacher’s side. The domain-specific readability
classifier, implemented using machine learning approaches, served well in supporting the vo-
cabulary progression claim also by showing clear progression complexity for the PCT classifier
when classifying the NYCT texts, compared to the LCT classifier.

6 Conclusions and Future Work

We presented a computational approach for analyzing ESL teaching methods. We did so
by performing readability progression analysis on textbooks following two different methods
(grammar-based and communicative). Our experiments indicated that the grammar-based cur-
riculum showed a more coherent readability progression compared to the communicative cur-
riculum. This finding corroborates with the expectations about the differences between these
two methods and validates our approach’s value in comparing different teaching methods quan-
titatively.

Future work includes analyzing more textbooks that follow each of the covered teaching meth-
ods, along with other methods. It will also be interesting to consider L2 language teaching for
varied L1 languages. The two curricula we studied were differently paced. It will also be inter-
esting to consider other curricula targeting different initial age-groups and with different planned
durations. Finally, we will extend the classifier to be able to classify other texts to the most rel-
evant teaching method and level, which may be of great value to education research.
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Abstract 

Grammatical error diagnosis is an essential part in a language-learning tutoring system.  Based 
on the data sets of Chinese grammar error detection tasks, we proposed a system which meas-
ures the likelihood of correction candidates generated by deleting or inserting characters or 
words, moving substrings to different positions, substituting prepositions with other preposi-
tions, or substituting words with their synonyms or similar strings.  Sentence likelihood is 
measured based on the frequencies of substrings from the space-removed version of Google n-
grams.  The evaluation on the training set shows that Missing-related and Selection-related 
candidate generation methods have promising performance.  Our final system achieved a pre-
cision of 30.28% and a recall of 62.85% in the identification level evaluated on the test set. 

1 Introduction 

Although that Chinese grammars are not defined as clearly as English, Chinese native speakers can 
easily identify grammatical errors in sentences.  This is one of the most difficult parts for foreigners to 
learn Chinese.  They are often uncertain about the proper grammars to make sentences.  It is an inter-
esting research topic to develop a Chinese grammar checker to give helps in Chinese learning.  There 
have been several researches focusing on Chinese (Wu et al., 2010; Chang et al., 2012; Yu and Chen, 
2012; Lee et al., 2014). 

There are 3 evaluation tasks focusing on Chinese grammatical error diagnosis.  CGED 2014 (Yu et 
al., 2014) defined four kinds of grammatical errors: redundant, missing, selection, and disorder.  At 
most one error occurred in one sentence.  The evaluation was based on error detection and error classi-
fication in sentence level.  CGED 2015 (Lee et al., 2015) further required the positions of the errors.  
CGED 2016 tested on the ability of finding multiple errors in one sentence. 

This paper is organized as follows.  Section 2 describes Chinese grammatical error diagnosis task.  
Section 3 defines the sentence likelihood scoring function.  Section 4 explains how correction candi-
dates are generated for different error types.  Section 5 clarifies the details of decision making.  Sec-
tion 6 shows the evaluation results and Section 7 concludes this paper. 

2 Task Definition 

The task of Chinese grammatical error diagnosis (CGED) is defined as follows.  Given a sentence, a 
CGED system should first decide if there is any error occurring in the sentence.  If so, report its error 
type, starting and ending positions. 

Errors are divided into four types: redundant, missing, selection, and disorder, which are shortly ex-
plained here.  All examples are selected from CGED-2015 training set. 

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: 
http://creativecommons.org/licenses/by/4.0/ 
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 Redundant: some unnecessary character appears in a sentence 

[A2‐0598, Redundant, 3, 3] 

(X)  他是真很好的人 (*He is a really very good man.) 

(O) 他是很好的人  (He is a very good man.) 

 Missing: some necessary character is missing in a sentence 

[B1‐0046, Missing, 4, 4] 
(X)  母親節一個禮拜就要到了  (*Mother’s Day is coming in one week.) 

(O) 母親節再一個禮拜就要到了  (Mother’s Day is coming in one more week.) 

 Selection: a word is misused and should be replaced by another word 

[B1‐1544, Selection, 1, 2] 

(X)  還給原來的地方只花幾秒鐘而已 

(*It only takes a few seconds to return it to its original place.) 

(O) 放回原來的地方只花幾秒鐘而已 

(It only takes a few seconds to put it back to its original place.) 

Note that sometimes a SELECTION error looks like a missing or redundant case rather than a 
misused word.  It is because there are many one-character words in Chinese.  An example is 
given as follows. 

[B1‐1546, Selection, 5, 5] 

(X)  關於跟你見的事  (*About the seeing with you…) 

(O) 關於跟你見面的事  (About the meeting with you…) 

 Disorder: some words’ locations should be changed 

[B1‐2099, Disorder, 4, 6] 

(X)  當然我會一定開心  (*Of course I will be certainly happy.) 

(O) 當然我一定會開心  (Of course I will certainly be happy.) 

CGED systems were evaluated in 3 levels: detection level for whether each sentence has errors; identi-
fication level for what type the error is; and position level for where the error appears (in terms of 
Chinese characters).  Evaluation metrics are well-known accuracy, precision, recall, and F-measure. 

3 Sentence Likelihood Scoring 

The systems proposed in this paper were based on our previous work of (Lin and Chen, 2015).  Our 
contributions include proposing candidate generation for Selection-type errors (described in Section 4), 
and observing the effects of factors in the candidate generation methods and sentence scoring func-
tions.  We also examined how to propose multiple errors in a given sentence so that our system can be 
evaluated on the CGED 2016 test set. 

In our previous work (Lin and Chen, 2015), we have defined a sentence likelihood scoring function 
to measure the likelihood of a sentence to be common and correct.  This function uses frequencies 
provided in the Chinese Web 5-gram dataset in a way described as follows. 

Chinese Web 5-gram1 consists of real data released by Google Inc. which were collected from a 
large amount of webpages in the World Wide Web.  Entries in the dataset are unigrams to 5-grams.  
Frequencies of these n-grams are also provided.  Some examples from the Chinese Web 5-gram data-
set are given in the left part of Table 1. 

In order to avoid interference of word segmentation errors, we decided to use substrings instead of 
word n-grams as the scoring units of likelihood.  When scoring a sentence, frequencies of all sub-
strings in all lengths are used to measure the likelihood. 

 

                                                 
1 https://catalog.ldc.upenn.edu/LDC2010T06 
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Gram  Text  Freq Length Text  Freq 

Unigram  稀釋劑  17260 9  稀釋劑  17260 

Bigram  蒸發量  超過  69 15  蒸發量超過  69 

Trigram  能量  遠  低於  113 15  能量遠低於  113 

4‐gram  張貼  色情  圖片  或  73 18  張貼色情圖片或  73 

5‐gram  幸好  我們  發現  得  早 155 24  幸好我們發現得早  155 

Table 1. Examples of Google N-grams (before and after Space Removal) 

Frequencies of substrings are derived by removing space between n-grams in the Chinese Web 5-gram 
dataset.  For instances, n-grams in the left part of Table 1 will become the strings in the right part, 
where length of a substring is measured in bytes and a Chinese character often occupies 3 bytes in 
UTF-8 encoding.  Note that if two or more different n-grams are transformed into the same substring 
after removing the space, they become one entry and its new frequency is the summation of their 
original frequencies.  Simplified Chinese words were translated into Traditional Chinese in advanced. 

Some notations are explained as follows.  Given a sentence S, let SubStr(S, n) be the set of all sub-
strings in S whose lengths are n bytes, and Google String Frequency gsf(u) be the frequency of a 
string u in the modified Chinese Web 5-gram dataset.  If a string does not appear in that dataset, its gsf 
value is defined to be 1 (so that its logarithm becomes 0). 

Equation 1 gives the equation of length-weighted string log-frequency score SL(S).  Each substring 
u in S contributes a score of the logarithm of its Google string frequency weighted by u’s length n.  
The value of n starts from 6, because most content words are not shorter than 6 bytes (i.e. two Chinese 
characters). 
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This function was also explained in the work of Lin and Chu (2015).  Please refer to that paper for ex-
amples of how to compute the sentence generation likelihood scores. 

4 Correction Candidate Generation 

4.1 Character or Word Deletion (Case of Redundant) 

Generating correction candidates in the case of Redundant type is quite straightforward: simply re-
moving any substring in an arbitrary length.  However, in order not to generate too many unnecessary 
candidates, we only do the removal under three special cases: removing one character, removing two-
adjacent characters, and removing one word whose length is no longer than two Chinese characters.  
The examples are as follows, where org is the original sentence and new is a correction candidate. 

[B1‐0764] org:  我  很  想到  跟  你  見面 
(By removing characters) 

new: 很想到跟你見面 (by removing 我) 

new: 我想到跟你見面 (by removing 很) 
…… 

new: 我很想到跟你見 (by removing 面) 

new: 想到跟你見面  (by removing 我很) 

new: 我到跟你見面  (by  removing很想) 

…… 

new: 我很想到跟你  (by removing 見面) 
(By removing one word) 

new: 很想到跟你見面 (by removing 我) 

new: 我想到跟你見面 (by removing 很) 

new: 我很跟你見面  (by removing 想到) 
…… 

new: 我很想到跟你  (by  removing見面) 

Given a sentence with n characters constituting m words (whose lengths are not longer than 2 Chinese 
characters), removing one character will generate n candidates, removing two adjacent characters will 
generate n1 candidates, and removing one word will generate m candidates. 

Obviously all candidates generated by removing one word were also generated by other two meth-
ods.  We would like to see the efficiency of each method in terms of accuracy and the size of candi-
date set. 
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4.2 Character Insertion (Case of Missing) 

The idea of generating correction candidates in the case of Missing type is to insert a character or a 
word into the given sentence.  But it is impractical to enumerate candidates by inserting every known 
Chinese characters or words.  We observed the CGED 2015 training set (Lin and Chen, 2015) and col-
lected 34 characters which were commonly missing in the essays written by Chinese-learning foreign 
students.  Table 2 shows some of these frequent missing characters in the training data.  These 34 
characters occurred at least three times and covered 73.7% of the missing errors in the CGED 2015 
training set. 

Char  Freq Char Freq Char Freq

的  74  有  24  要  13 

了  65  會  18  在  12 

是  44  就  17  過  12 

都  34  很  16  讓  11 

Table 2. Examples of Frequent Missing Characters 

Insertion happens between characters or words as usual.  Examples of insertion between characters are 
as follows. 

[B1‐0764] org: 我  很  想到  跟  你  見面 
(By inserting between characters) 

new: 的我很想到跟你見面  (by inserting 的 before 我) 

new: 我的很想到跟你見面  (by inserting 的 between 我 and 很) 

...... 

new: 我很想到跟你見面的  (by inserting 的 after 面) 

new: 了我很想到跟你見面  (by inserting 了 before 我) 

...... 

new: 我很想到跟你見面買  (by inserting 買 after 面) 

Given a sentence with n characters constituting m words in total, insertion between characters will 
generate 34(n+1) candidates and insertion between words will generate 34(m+1) candidates. 

4.3 Substring Moving (Case of Disorder) 

Generating correction candidates in the case of Disorder type is also straightforward: simply moving 
any substring in any length to another position to its right (not to its left so that no duplication will be 
produced).  Examples of substring moving are as follows. 

[B1‐0764] org: 我  很  想到  跟  你  見面 
(By moving a substring to a new position between characters) 

new: 很我想到跟你見面  (by moving 我 to the position between 很 and 想) 

new: 很想我到跟你見面  (by moving 我 to the position between 想 and 到) 

...... 

new: 很想到跟你見面我  (by moving 我 to the position after 面) 

new: 想我很到跟你見面  (by moving 我很 to the position between 想 and 到) 

...... 

new: 面我很想到跟你見  (by moving 我很想到跟你見 to the position after 面) 

Given a sentence with n characters, there are (nk) substrings whose lengths are k (1  k  n1).  A 
substring with lengths k at the position t (1  t  nk+1) can be moved to (nkt+1) new positions.  
By summing on all k and t, there will be (n3n)/6 candidates by moving substrings to positions be-
tween characters.  Similarly, there will be (m3m)/6 candidates by moving substrings to positions be-
tween words for a sentence with m words.  The number will grow fast if the given sentence is long. 
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4.4 Preposition Substitution (Case 1 of Selection) 

In our observation, some selection errors are misuse of prepositions.  But unlike the case in English, it 
is not the most major errors in selection type. 

To generate the correction candidates for preposition substitutions, we first extracted all preposi-
tions in the Academia Sinica Balanced Corpus (ASBC for short hereafter, cf. Chen et al., 1996).  An 
input sentence is word-segmented and POS-tagged automatically before hand.  Correction candidates 
are generated by replacing each preposition (whose POS is “P”) in the given sentence by other prepo-
sitions.  Examples of preposition substitution are as follows, where only the word “跟” (with) is a 
preposition. 

[B1‐0764] org: 我  很  想到  跟(P)  你  見面 
(By moving a substring to a new position between characters) 

new: 我很想到在你見面  (by replacing 跟 by 在) 

new: 我很想到為你見面  (by replacing 跟 by 為) 

...... 

There are 243 prepositions in ASBC.  Given a sentence containing k prepositions, 243k correction 
candidates will be generated. 

4.5 Synonym Substitution (Case 2 of Selection) 

In our observation, another type of selection errors is misuse of words which are synonyms.  As we 
known, even synonyms cannot freely replace each other without considering context. 

To generate the correction candidates for synonym substitutions, we consulted a Chinese thesaurus, 
Tongyici Cilin2 (the extended version; Cilin for short hereafter).  A given sentence is word-segmented 
before hand.  Correction candidates are generated by replacing each word in the given sentence by its 
synonyms in Cilin if any.  Examples of synonym substitution are as follows. 

[B1‐0764] org: 我  很  想到  跟  你  見面 
(By moving a substring to a new position between characters) 

new: 我很悟出跟你見面  (by replacing 想到 by its synonym 悟出) 

new: 我很想開跟你見面  (by replacing 想到 by its synonym 想開) 

...... 

new: 我很想到跟你相會  (by replacing 見面 by its synonym 相會) 

The number of candidates depends on the number of Cilin terms and their synonyms in a given sen-
tence.  Generally the number is not too large. 

4.6 Similar String Substitution (Case 3 of Selection) 

In our observation, we found a special type of selection errors that the misusing words were lexically 
similar to the correct ones.  It should be the case when the writer tried to use a word but misused an-
other word with similar looking, such as “仔細” (carefully) and “細節” (details). 

To generate but not over-generate the correction candidates for similar string substitutions, we first 
collected all 2-character words in ASBC and Cilin.  Correction candidates are generated by replacing 
each 2-character word in the given sentence by another 2-character word having at least one character 
in common, such as “仔細” and “細節” where “細” appears in both words, or “合適” (suitable, adjec-
tive) and “適合” (suiting, verb) where both characters appear in both words.  Examples of similar 
string substitution are given in the next page. 

The number of candidates depends on the number of 2-character words and their similar words in a 
given sentence.  Generally the number is not small. 

 
 

                                                 
2 http://ir.hit.edu.cn/ 

http://www.ltp-cloud.com/ 
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[B1‐0764] org: 我  很  想到  跟  你  見面 
(By moving a substring to a new position between characters) 

new: 我很想出跟你見面  (by replacing 想到 by a similar string 想出) 

new: 我很思想跟你見面  (by replacing 想到 by a similar string 思想) 

...... 

new: 我很想到跟你面向  (by replacing 見面 by a similar string 面向) 

5 Error Detection and Classification 

5.1 Error Decision 

All correction candidates, as well as the original sentence, are scored by the sentence likelihood func-
tion in Eq 1.  They are ranked according to their likelihood scores.  If the top-1 sentence is the original 
sentence, report it as a “Correct” case.  Otherwise, output the first top 2 candidates as errors by report-
ing their corresponding error types and occurring positions.  If the top-2 candidate conflicts with the 
top-1 candidate in position (i.e. they are overlapped), discard it and take the next candidate until 2 er-
rors are reported or the rank of the original sentence is reached.  Moreover, if more than 2 candidates 
have the same scores, report them all (if no position confliction). 

The choice of 2 is based on the average errors appearing in a sentence in the CGED 2016 training 
set, which are 1.314 errors in one sentence.  To increase recall, we decide to propose 2 errors for each 
sentence.  We have also done an observation by propose only 1 error for one sentence.  We found that 
the precision was not improved but the recall was greatly harmed. 

5.2 Selection Error Classification Fixing 

For a correction candidate of the Redundant type, if the deleted character appears in a multi-character 
word in the original sentence, it should be a Selection-type error.  An example is given as follows. 

[B1‐0764] Redundant => Selection 

(X)  我  很  想到  跟  你  見面 (*I really want to to meet you.) 

(O)  我  很  想  跟  你  見面 (I really want to meet you.) 

In this example, the deleted character “到” appears in a 2-character word “想到” in the original sen-
tence.  This error will be classified into Selection type because the word “想到” (think-of) should be 
corrected into “想” (want).  Our system will check the word boundary in the original sentence to fix 
this error type classification. 

Similarly for a correction candidate of the Missing type, if the inserted character appears in a multi-
character word in the new sentence, it should be a Selection-type error.  An example is given as fol-
lows. 

[B1‐1047] Missing => Selection 

(X)  我  真  很  怕  (*I am real scared.) 

(O) 我  真的  很  怕  (I am really scared.) 

In this example, the inserted character “的” appears in a 2-character word “真的” in the new sentence.  
This error will be classified into Selection type because the word “真” (real) should be corrected into 
“真的” (really).  Our system will check the word boundary in the new sentence to fix this error type 
classification. 

6 Experiments 

6.1 Evaluating of Correction Candidates in Individual Methods 

Table 3 shows the evaluation results when each candidate generation method is used individually.  
These methods were evaluated on the whole CGED 2016 training set.  The names in the “Method” 
column represent the following candidate generation methods: 
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 RDN_char: deleting one character 
 RDN_2char: deleting two adjacent characters 
 RDN_word: deleting one word 
 MIS_char: inserting frequent missing characters between characters 
 MIS_word: inserting frequent missing characters between words 
 WDO_char: moving substrings based on characters 
 WDO_word: moving substrings based on words 
 SEL_P: substituting prepositions 
 SEL_CLN: substituting with synonyms in Cilin 
 SEL_SIM: substituting with similar 2-character words 
 SEL_R1C: fixed Selection type from RDN_char cases 
 SEL_R2C: fixed Selection type from RDN_2char cases 
 SEL_M1C: fixed Selection type from MIS_char cases 
 SEL_M1W: fixed Selection type from MIS_word cases 

Method  #Cands  P  R  F1  Method  #Cands  P  R  F1 

RDN_char  433613  13.72  3.03 4.97 SEL_P  6433812 10.03  9.88  9.95

RDN_2char  390096  6.92  0.40 0.75 SEL_CLN  10862488 8.22  25.68  12.46

RDN_word  281069  13.62  3.21 5.20 SEL_SIM  49465905 5.00  9.67  6.60

MIS_char  16215314  6.48  15.56 9.15 SEL_R1C  (206825) 8.03  0.13  0.26

MIS_word  11337266  6.54  15.41 9.18 SEL_R2C  (140564) 0.60  0.01  0.02

WDO_char  14247107  1.47  2.16 1.75 SEL_M1C  (152175) 8.28  14.49  10.53

WDO_word  4278827  1.36  1.91 1.59 SEL_M1W (151986) 8.33  14.47  10.58

Table 3. Evaluation Results of Individual Candidate Generation Methods 

In Table 3, the “#Cands” columns show the number of correction candidates generated by different 
methods.  Note that the numbers of candidates of the fixed Selection types are included in the Redun-
dant and Missing sets.  Moreover, only those candidates whose scores are higher than the original sen-
tences can have the chance to fix their error types.  P, R, and F1 stand for precision, recall, and F1 
measure, respectively.  All evaluations were done in position level (cf. Section 2). 

As we can see in Table 3, Selection-related methods achieved better performance.  Maybe it is be-
cause Selection is the major error type in the dataset.  The missing-related methods achieved good re-
calls while the Redundant-related methods achieved good precisions, but recall dominates the experi-
mental results in this observation.  The missing-related methods also provided many correct candidates 
for Selection type. 

The Disorder-related methods were surprisingly poor.  Although a correct answer in this type could 
be generated, too many incorrect candidates were also generated and lowered the rank of the correct 
candidate.  The performance of RDN_2char was also poor.  We will discard these two methods in the 
final system. 

6.2 Evaluating of Correction Candidates by All Methods on the Training Data 

We have tried every combination of generation methods and evaluated their performances when pro-
posing top-2 candidates.  Table 4 shows the performance of the best system and its comparisons 
evaluated in position level.  P, R, and F1 stand for precision, recall, and F1 measure, respectively. 

The best system used only Missing-related and Selection-related candidate generation methods.  By 
comparing S2 with S1, adding candidates from Redundant-related method did not affect the perform-
ance at all.  But by removing Missing-related candidates (S3 and S4), the performance would drop in a 
certain degree. 

To see the effect of 3 different Selection-related methods, each method was discarded from the best 
system.  As we can see, synonym substitution was the best because its absence (S6) decreased the per-
formance the most. 

However, if we chose the best system as our final system, we would never be able to capture the 
Redundant-type and Disorder-type errors.  We still used them in the final systems. 
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#  Systems  P  R  F 

S1  MIS_char, SEL_M1C, SEL_M1W, SEL_P, SEL_CLN, SEL_SIM  9.11  30.95  14.08

S2  MIS_char, SEL_M1C, SEL_M1W, SEL_P, SEL_CLN, SEL_SIM, RDN_char 9.11  30.95  14.08

S3  MIS_char, SEL_P, SEL_CLN, SEL_SIM  8.64  29.03  13.32

S4  SEL_P, SEL_CLN, SEL_SIM  8.40  27.53  12.87

S5  MIS_char, SEL_M1C, SEL_M1W, SEL_CLN, SEL_SIM  8.91  30.26  13.76

S6  MIS_char, SEL_M1C, SEL_M1W, SEL_P, SEL_SIM  7.66  23.05  11.50

S7  MIS_char, SEL_M1C, SEL_M1W, SEL_P, SEL_CLN  9.07  30.81  14.02
Table 4. Evaluation Results of Overall Systems on the Training Data 

  Detection Level  Identification Level  Position Level 

  P  R  F  P  R  F  P  R  F 

S8  51.73 100.00  68.19 30.28 62.17 40.73 2.03 13.55  3.53 

S9  51.73 100.00  68.19 29.78 62.85 40.41 2.02 13.50  3.52 
Table 5. Evaluation Results of Final Systems on the Test Data 

6.3 Evaluating on the Test Data 

Two final systems S8 and S9 were evaluated on the CGED 2016 test set.  Table 5 shows the evalua-
tion results.  The definitions of S8 and S9 are as follows: 

 S8: RDN_char, RDN_word, MIS_char, SEL_* 
 S9: RDN_char, RDN_word, MIS_char, SEL_*, WDO_word 

As we can see in Table 5, the two systems have similar performance.  It means that the candidates 
from Missing-related and Selection-related methods dominate the systems.  But the system with the 
Disorder-related method WDO_word is a little worse than the system without using it, which is consis-
tent to our previous observation. 

7 Conclusion 

This paper describes the design of our Chinese grammatical error diagnosis system.  Correction candi-
dates corresponding to 4 error types are first generated.  The sentence likelihood scores of these candi-
dates are measured based on web frequencies provided in the space-removed version of Google n-
grams.  Top-2 candidates are reported as errors. 

Redundant correction candidates are generated by deleting characters or words; Missing candidates 
are generated by inserting frequently missed characters into position between characters or words; 
Disorder candidates are generated by moving sequences of characters or words to different positions; 
Selection candidates are generated by substituting prepositions with other prepositions and substituting 
words with their synonyms in Tongyici Cilin. 

The best system uses the candidates generated for Missing and Selection types.  Adding candidates 
for Redundant type does not affect the performance, but adding candidates for Disorder type harms the 
performance. 

When evaluating on CGED 2016 test set, our final system achieved a precision of 30.28% and a re-
call of 62.85% in the identification level, which is better than our system in 2015.  The final system 
proposed in this paper used candidates for Redundant, Missing, and Selection types. 

The performance looks not good enough, which means that the task is very hard.  We need to find 
out the reason why Redundant and Disorder candidates cannot improve the performance.  More rules 
or features should be discovered in the future. 
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Abstract 

Mandarin is not simple language for foreigner. Even using Mandarin as the mother tongue, 

they have to spend more time to learn when they were child. The following issues are the rea-

son why causes learning problem. First, the word is envolved by Hieroglyphic. So a character 

can express meanings independently, but become a word has another semantic. Second, the 

Mandarin's grammars have flexible rule and special usage. Therefore, the common grammati-

cal errors can classify to missing, redundant, selection and disorder. In this paper, we proposed 

the structure of the Recurrent Neural Networks using Long Short-term memory (RNN-LSTM). 

It can detect the error type from the foreign learner writing. The features based on the word 

vector and part-of-speech vector. In the test data found that our method in the detection level 

of recall better than the others, even as high as 0.9755. That is because we give the possibility 

of greater choice in detecting errors. 

1 Introduction 

In recent years, the rapid development of communication between countries. Especially the Chinese 

region, more and more foreign people came to traveling or working. So the Mandarin become the op-

tion as second language learner. But it is not easy to learn because its grammars are very complexity. 

To research Mandarin as second language, we can distinguish two parts: word level and sentence 

level. In word level, there have two main aspects are Word Segmentation and Part-of-Speech (POS) 

Tagging. We want to segment the sentence to the basic semantic units and give the correct tagging. 

About the research of word segmentation and POS tagging, (Ye, J. et al., 2011) the authors proposed 

using the prefix and suffix query of Chinese word segmentation algorithm for maximum matching. 

This structure can choose the best structure of words as the dictionary. (Li, Zhenghua et al., 2014) the 

authors proposed joint algorithm to optimize the POS tagging and dependency parsing. They use the 

parsing tree to find the relationship between words and sentence. (Ma, Wei-Yun and Chen, Keh-Jiann, 

2005) the authors proposed the system to word segmentation and POS tagging about Chinese. They 

define the 47 class of POS in Chinese and this system is now using in Taiwan Academia Sinica. And 

we employ this POS classification in our research.  

In the word level, the Chinese common grammar error can classify the four parts: Missing, Redun-

dant, Selection, Disorder (see example in Table 1). In the grammar and word order, (Xiao Sun and 

Xiaoli Nan, 2010) proposed using latent semi-CRF model on the Chinese phrase classifications. 

(Jinjin Zhu and Yangsen Zhang, 2010) the authors proposed auto-detect the Chinese errors by 

using hybrid algorithm. They are looking for word, syntax and semantic. (B. Zhang et al., 2010) 

the authors proposed extracting opinion sentence by SVM and syntax template. Then in the grammar 

error detection, (H. H. Feng et al., 2016) the authors proposed Automated Error Detection of 

ESL (English as a Second Language) Learners. And (Chung-Hsien Wu et al., 2010) the au-

thors proposed sentence correction incorporating relative position and parse template language 

models. They are looking for the English errors. Then in Chinese error detection, (Lung-Hao 

Lee et al., 2013) proposed the linguistic rules of Chinese error detection for CFL (Chinese as a For-
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eign Language). And (Chi-Hsin Yu et al., 2012) the authors proposed detect the errors of word 

order by training the HSK corpus. The HSK corpus is simplified Chinese data. Then (Shuk-

Man Cheng et al., 2014) they also using HSK corpus to proposed word ordering errors detec-

tion and correction by SVM to ranking the optimal sentences.  

 

Table 1: Common grammatical error type 

 

In our research, we proposed the architecture for grammatical error detection by recurrent 

neural network using long-short term memory (RNN-LSTM) as a second language learner. 
We use this architecture to generate the language model and error rule patterns are made 

based on parsing tree. 

 

2 Method 

In this section, The processing flow is illustrated here. There are distinguish two phases: training 

phase and testing phase. In training phase, we were doing word segmentation and part-of-speech (POS) 

by CKIP (Chinese Knowledge and Information Processing) Autotag. Then classify words to several 

class and transform the sentence to the word vector. We will explain how to classify words in section 

2.1. And we will describe how to generate the language model by RNN-LSTM in the section 2.2. Fi-

nal, we show some parsing tree examples to explain the error pattern model in the section 2.3. In sec-

tion 2.4, we explain the testing phase in our system how to detect the grammatical error. 

 

2.1 Word Clustering 

How to express the meaning of a word in the computer? In traditional methods, we could research 

the semantic dictionary. Such as WordNet for English or E-HowNet for Chinese. They have to spend a 

lot of time to tagging by people.  

In our method to clustering word is based on probability from (Franz J. O., 1999) proposed model. 

)P(w N

1 represent a sentence sequence. Nw......ww 1

N

1   represent the set of the words. The probabil-

ity of the context of words in sentence is 

  
N

t tt wwp
1 1

N

1 )|()P(w       (1) 

We made the close probability of the words to C classes. So we can represent the relationship of 

sentence correspond to classes: 





N

1t

1

N

1 ))(|)(())(|(C)|P(w tttt wCwCpwCwp    (2) 

Grammatical error types 
Examples of  

erroneous sentences 

Examples of  

correct sentences 

漏字錯誤(Missing) 
我送你家 

(I take you home.) 
我送你回家 

冗詞錯誤(Redundant) 
他是我的最重要的朋友 

(He is my important friend.) 
他是我最重要的朋友 

詞彙誤用(Selection) 我是騎腳踏車的拿手 我是騎腳踏車的好手 

語序運用 不當(Disorder) 
我去學校早上 

(I go to school in the morning.) 
我早上去學校 
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Where ))C(w|P(w tt  represent the relationship of words correspond to classes. ))C(w|)P(C(w 1-tt  

represent the relationship of context of classes. 

Then choose the best classification from all class. It can represent by 

     )|(argmaxĈ 1 Cwp N

c

     (3) 

If the word’s probability is use formula (2) and combine the maximum likelihood algorithm from 

(Kneser, 1999) proposed to get optimal likelihood. It can represent by 

 
'CC,

'' )ln()(2),(ln),(-n)ML(C,
C

CCnCCnCCn   (4) 

n)ML(C,argmaxĈ
c

      (5) 

Where n(.) represent the probability in the training corpus. In this paper, we use the classification 

model to classify the words in the training corpus and build the codebook for query. 

 

2.2 RNN-LSTM 

In this section, the depth of learning architecture and why the use of recurrent neural network (RNN) 

to training model. And analyse the sentence structure with the concept of the parsing tree. Then re-

place hidden units to long-short term memory (LSTM) units in RNN hidden layer. RNN’s horizontal 

nodes of the hidden layer are connected. So this structure suitable for train the length of different sen-

tences with represent the contextual relationship. 

The Figure 1 is the structure of RNN and it has three parts: input layer, hidden layer, and output 

layer. The hidden layer can have many layer in this structure so we assume the 30 layer in hidden layer 

to train the optimum parameters. And it shows that the training process is carried out by 0x  to tx . So 

the cost function in the time t is  

)1log()1()log(-J tttt nyny      (6) 

 
Figure 1: The sentence input in RNN-LSTM  

The figure 2 shows the RNN traditional unit and LSTM unit in the hidden layer. In figure 2(a), we 

could find the unit input then using the sigmoid function to normalize. The sigmoid is shown 

)exp(1/1(x) x . So the hidden unit tn  is  

)( 1 tptct nxn      (7) 

Where c  and p  is the weights of the current input and previous output. And the output ty  is  
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)( ttt xy        (8) 

In figure 2(b), we could see the three gates in the LSTM unit: input gate, forget gate, and output 

gate. First, the input gate IG controlled whether cells in the input layer can enter. Second, the forget 

gate FG controlled whether cells in the hidden layer can enter and output to next node. Final, the out-

put gate OG controlled the current cell output. Then the formula (9) ~ (11) represent IG, FG, OG: 

)(IG 1-ti xx pt       (9) 

)n(FG 1-tc ptx       (10) 

)(OG 1-to xx pt       (11) 

   
(a)                                                                   (b) 

Figure 2: (a) RNN traditional unit (b) LSTM unit 

Where we can using (9)~(11) to get the cell result in hidden layer and the output ty  are 

)tanh( 1 tptc nxIGFGcell      (12) 

)tanh(cellOGyt        (13) 

 

2.3 Error Pattern Model 

In this paper, we focus on the English-speaking learners who are influenced by their native lan-

guage and build the error pattern model. First, we need to analysis the error pattern in the sentence 

which using the parsing tree. We integrated the concept of RNN-LSTM to detect the error patterns. 

The bottom node of parsing tree is the input node in RNN-LSTM. The parent node is the LSTM node. 

 

2.4 Testing Phase 

First, read the test data and then word segmentation and part-of-speech tagging. Then the sentence 

according to the codebook to vector expression, and input the training model. We could get the prob-

abilities from every types’ model. After get the probabilities, we compare four errors with the correct 

probability to find all possible errors. And the output format is <sentence id, start position, end posi-

tion, error type>. There is not only one error type in a sentence; it maybe has two or more errors. In 

addition to the system detected, we also adopted the error pattern model as the final output. 

3 Experiment 

In this section, we analyse the performance of the proposed architecture. First, we introduced the 

corpus in our training model and the evaluation of testing. Final, we showed the experiment result in 

training model and the result of NLP-TEA 3 competition. 
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3.1 Data and Evaluation Criterion 

We used the three datasets from NLP-TEA 1(Yu, Liang-Chih et al, 2014) to NLP-TEA 3. There 

are two datasets: TOCFL corpus (Traditional Chinese) and HSK corpus (Simplified Chinese), the de-

tails are showed in the table 2. 

 

Table 2: The Training Corpus 

SOURCE / 

 SENTENCES 
Missing Redundant Selection Disorder Correct 

TOCFL 6328 4122 5439 1621 18483 

HSK 2810 2322 3834 896 10071 

 

In this paper, we have two evaluation criterion: perplexity (Oparin et al, 2012) and confusion matrix. 

Perplexity is used to evaluate the performance of language model training from RNN-LSTM. Its for-

mat can represent: 

))|(log
1

exp(PPL 1
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    (14) 

In addition, we used three parameters based on the confusion matrix to evaluate our system. They are 

precision, recall, and F1-score and can represented: 

fptp

tp
precision


       (15) 

fntp

tp
recall


       (16) 

recallprecision

recallprecision
ScoreF




*
*21      (17) 

 

3.2 Experiment Result 

First, we wanted to find the optimal class to our language model in the training phase. Therefore, 

we used the perplexity to evaluate and showed the result in table 3. In the table, we could see the 30-

class is in average better than other classes. And we use internal validation and proved the 30-class is 

better. 

 

Table 3: The Perplexity of language model to each type 

 
30 class 35 class 40 class 45 class 

Missing 167.5952 183.9607 226.9839 179.2754 

Redundant 178.8971 217.7797 209.461 179.3632 

Selection 188.2969 206.3802 242.5115 156.4807 

Disorder 250.8187 282.3815 262.3684 248.5769 

Correct 130.5262 121.8946 85.0405 101.9611 

 

Therefore, we chose the 30-class to training and used to the test phase. Second, we showed the result 

from NLP-TEA 2016. 
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In detection level (see the Table 4), our recall is better than other teams. It means we can find more 

error rate in dataset. In addition, our F1-Score is the best in this level. It means our overall is superior 

to the others, although our precision is less than other teams. 

In identification level (see the Table 5), it show who can find most error and error type is correct. In 

our method, we found that our recall is better than other teams. It means we find more correct error 

type than other teams, although our precision is less than other teams. Nevertheless, our F1-Score is 

better than NCTU+NTUT. 

In Position level (Table 5), our method that looking for accurate location is not illustrious in this 

level. We consider the reasons are our correction is not enough standard. 

 

Table 4, Table 5, and Table 6 are the performance with the NLP-TEA 2016 TOCFL dataset and 

compare the others team 

 

Table 4: Detection level 

 
Accuracy Precision Recall F1 

NCYU 0.5218 0.5202 0.9726 0.6779 

NCTU+NTUT 0.5442 0.6593 0.246 0.3583 

CYUT 0.5955 0.6259 0.5419 0.5809 

 

Table 5: Identification-level 

 
Accuracy Precision Recall F1 

NCYU 0.2328 0.2265 0.4744 0.3066 

NCTU+NTUT 0.511 0.4892 0.1224 0.1958 

CYUT 0.5154 0.46 0.3021 0.3647 

 

 

 

 

Table 6: Position-level 

 
Accuracy Precision Recall F1 

NCYU 0.0231 0.0129 0.0195 0.0155 

NCTU+NTUT 0.4603 0.2542 0.0483 0.0811 

CYUT 0.3113 0.1461 0.1089 0.1248 

 

In detection level (see the Table 7), our recall is better than other teams. It means we can find more 

error rate in dataset. Although our precision is less than other teams, our F1-Score is better than SKY’s 

method. 

In Identification level (see the Table 8), our recall is better than SKY’s method that we can find 

more correct error type. However, our precision is less than other teams.  

In Position level (see the Table 9), our method that looking for accurate location is not illustrious in 

this level. We consider the reasons are our correction is not enough standard. 

 

Table 7, Table 8, and Table 9 are the performance with the NLP-TEA 2016 HSK dataset and com-

pare the others team 
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Table 7: Detection level 

 
Accuracy Precision Recall F1 

NCYU 0.5042 0.4964 0.9755 0.658 

HIT 0.637 0.6071 0.7296 0.6628 

SKY 0.6579 0.8746 0.3505 0.5005 

 

Table 8: Identification-level 

 
Accuracy Precision Recall F1 

NCYU 0.2687 0.2588 0.5263 0.347 

HIT 0.5565 0.5002 0.5447 0.5215 

SKY 0.6765 0.8821 0.2972 0.4446 

 

Table 9: Position-level 

 
Accuracy Precision Recall F1 

NCYU 0.0312 0.0158 0.0217 0.0183 

HIT 0.4475 0.3695 0.3697 0.3696 

SKY 0.6376 0.7054 0.2217 0.3373 

 

Conclusion 

In this paper, we present a method using conditional random field model for predicting the gram-

matical error diagnosis for learning Chinese. In the grammatical error diagnosis, not only do we find a 

single error, but we can also find a sentence with multiple errors. After observe the experiment results, 

our method is acceptable in NLP-TEA 2016. We believe this system is feasible. This system is useful 

for a foreign who learn Chinese as a second language. Even the people who use Chinese as a first lan-

guage might use the wrong grammars. There are some issues should be revise. First, finding the best 

way to solve the problem to find the precise location. Second, increase the ranking mechanism to find 

the optimal words to correct the sentence. In the future, we will pay attention to improve the precision 

and recall rates in this system.  Let it can automatic correct the error if the people input the sentences. 
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Abstract

Grammatical Error Diagnosis for Chinese has always been a challenge for both foreign learners
and NLP researchers, for the variousity of grammar and the flexibility of expression. In this
paper, we present a model based on Bidirectional Long Short-Term Memory(Bi-LSTM) neural
networks, which treats the task as a sequence labeling problem, so as to detect Chinese gram-
matical errors, to identify the error types and to locate the error positions. In the corpora of this
year’s shared task, there can be multiple errors in a single offset of a sentence, to address which,
we simutaneously train three Bi-LSTM models sharing word embeddings which label Missing,
Redundant and Selection errors respectively. We regard word ordering error as a special kind of
word selection error which is longer during training phase, and then separate them by length dur-
ing testing phase. In NLP-TEA 3 shared task for Chinese Grammatical Error Diagnosis(CGED),
Our system achieved relatively high F1 for all the three levels in the traditional Chinese track and
for the detection level in the Simpified Chinese track.

1 Introduction

As China plays a more and more important role of the world, learning Chinese as a foreign language is
becoming a growing trend, which brings opportunities as well as challenges. Due to the variousity of
grammar and the flexibility of expression, Chinese Grammatical Error Dignosis(CGED) poses a serious
challenge to both foreign learners and NLP researchers. Unlike inflectional languages such as English
which follows grammatical rules strictly(i.e. subject-verb agreement, strict tenses and voices), Chinese,
as an isolated language, has no morphological changes. Various characters are arranged in a sentence to
represent meanings as well as the tense and the voice. These features make it easy for beginners to make
mistakes in speaking or writing. Thus it is necessary to build an automatic grammatical error detection
system to help them learn Chinese better and faster.

In NLP-TEA 3 shared task for Chinese Grammatical Error Diagnosis(CGED), four types of errors are
defined: ’M’ for missing word error, ’R’ for redundant errors, ’S’ for word selection error and ’W’ for
word ordering error. Some typical examples of the errors are shown in Table 1. Different from the two
previous editions for the CGED shared task, each input sentence contains at least one of defined error
types. What’s more, there can be multiple errors in a single offset of a sentence, which means we can no
longer treat it a simple multi-class classification problem. As a result of that, we cannot simply rely on
some existing error detection systems but can only seek for a new solution.

∗Corresponding author
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:

//creativecommons.org/licenses/by/4.0/
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Error Type Error Sentence Correct Sentence
M(Missing word) 我一完了考試，就回家。 我一考考考完了考試，就回家。

R(Redundant word) 爸爸是軍人，也也也很想他的太太。 爸爸是軍人，很想他的太太。

S(Selection error) 一般人不可以隨意出出出國國國外外外。 一般人不可以隨意出出出國國國。

W(Word ordering error) 它是讓我哭其其其中中中之之之一一一的的的電電電影影影。 它是讓我哭的的的電電電影影影其其其中中中之之之一一一。

Table 1: Some typical examples for grammatical errors in Chinese

In order to address the problem, we regard it as a sequence multi-labeling problem and split it into
multiple sequence labeling problems which only label 0 or 1. To avoid feature engineering, for each
error type except ’W’, we trained a Bi-LSTM based neural network model, sharing word embeddings
and POS tag embeddings. We treat the word ordering error as a special kind of word selection error. They
are trained together and separated during the testing phase. Experiments show that together training is
better than separate training. More details are described in the rest of the paper.

This paper is organized as follows: Section 2 briefly introduces some previous work in this area. Sec-
tion 3 describes the Bi-LSTM neural network model we proposed for this task. Section 4 demonstrates
the data analysis and some interesting findings. Section 5 shows the data analysis and the evaluation
results. Section 6 concludes this paper and illustrates the future work.

2 Related Work

Grammatical error detection and correction has been studied with considerable efforts in the NLP com-
munity. Compared to Chinese, the language of English attracted more attention from the researchers,
especially during the CoNLL2013 and 2014 shared task (Ng et al., 2013; Ng et al., 2014). However,
different from English which has various language materials and annotated corpura, the grammatical
error correction related resource for Chinese is far from enough. We are glad to see the shared tasks on
CGED (Yu et al., 2014; Lee et al., 2015) in last two years.

There were some previous related work for Chinese grammatical error detection or correction. Wu et
al. (2010) proposed two types of language models to detect the error types of word order, omission and
redundant, corresponding to three of the types in the shared task. Experimental results showed syntactic
features, web corpus features and perturbation features are useful for word ordering error detection (Yu
and Chen, 2012). A set of handcrafted linguistic rules with syntactic information are used to detect
errors occurred in Chinese sentences (Lee et al., 2013), which are shown to achieve good results. Lee
et al. (2014) introduced a sentence level judgment system which integrated several predefined rules and
N-gram based statistical features.

Our submission was an exploration to a neural network model in CGED which didn’t need any feature
selection efforts. As a model well known for its good maintainance of both preceding and succeeding
information, Bi-LSTM came to be the first choice.

3 Bi-LSTM Neural Network based Model

We regard CGED task as a word-based sequence multi-labeling problem, by labeling each word zero or
more tags from {M, R, S, W}. For some reason described in Section 4, we treat word ordering error as
a special kind of word selection error, as a result of which, we need to deal with only three kinds of error
types during the training phase.

As different error types are relatively independent from each other from a single word’s perspective,
we can train three sequence labeling models to judge whether this kind of error ocurrs in a certain position
for each error type respectively. As shown in Figure 1, the architecture of a Bi-LSTM neural network
model for CGED for a single error type can be characterized by the following three specialized layers:
(1) Embedding layer (2) Encoding layer (3) Decoding layer.

As the errors are judged on words instead of characters, we first segment the input sentence into indi-
vidual words using the CKIP Chinese Segmentation System1 provided by Taiwan Academia Sinica and

1http://ckipsvr.iis.sinica.edu.tw/
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Figure 1: Architecture of Bi-LSTM neural network model for CGED for a single error type

get the simplified Part-of-Speech tag for each corresponding segmented word, which is our preprocess
for the system. The words and POS tags are then embeded in the embedding layer.

The most common tagging approach is the window approach. The window approach assumes that the
tag of a word largely depends on its neighboring words. For each word wi in a given input sentence
w[1:n], the context words w[i−l/2:i+l/2] and the context POS tags p[i−l/2:i+l/2] are chosen to be fed into
the networks, where l is the context window size and usually l = 5 or l = 7. Here we set l = 7 in
our experiments. The words and POS tags exceeding the sentence boundaries are mapped to two special
symbols, “<BOS>” and “<EOS>”, representing Beginning of a Sentence and End of a Sentence respec-
tively. And the out-of-character-set words will be replaced with a symbol “<UNK>” which represents
Unknown.

Given a word set V of size |V |, the embedding layer will map each wordw ∈ V into a dw-dimensional
embedding space as Embedw(w) ∈ Rdw by a lookup table Mw ∈ Rdw×|V |. In the same way, we can
map each POS tag p ∈ P into a dp-dimensional embedding space as Embedp(p) ∈ Rdp by a lookup
table Mp ∈ Rdp×|P |, where P is the POS tag set whose size if |P |. The embeddings of the context
words w[i−l/2:i+l/2] and The embeddings of the context POS tags p[i−l/2:i+l/2] are then concatenated
into a single vector xi ∈ RH1 , where H1 = l × (dw + dp). Then this vector xi is fed into the encoding
layer.

The encoding layer is a Bi-LSTM layer followed by a full-connection layer, which can be simply
expressed by the following:

hi = BiLSTMθ(xi) (1)

ui = σ(Whhi + bh) (2)

where θ is the inner parameters of the Bi-LSTM layer and σ is the logistc sigmoid function.
The Long Short-Term Memory cell(Hochreiter and Schmidhuber, 1997) is a special kind of the RNN

cell which replaces the hidden layer updates by purpose-built memory cells. As a result, they can utilize
long range dependencies and realize the function just like memory. A single LSTM cell is illustrates in
Figure 2.
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Figure 2: A LSTM cell

Figure 3: The structure of a Bi-LSTM layer

The LSTM cell is implemented as the following:

it = σ(Wxixt +Whiht−1 +WciCt−1 + bi)
ft = σ(Wxfxt +Whfht−1 +WcfCt−1 + bf )
ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc)
ot = σ(Wxoxt +Whoht−1 +WcoCt + bo)
ht = ottanh(ct)

(3)

where σ is the logistic sigmoid function, and i, f , o and c are the input gate, forget gate, output gate
and the cell, all of which are the same size as the hidden output h. The subscripts of the weight matrix
describe the meaning as the name suggests. For instance, Wxi is the input gate weight matrix for input
x.

A single LSTM forward layer can only utilize the previous information, which is not enough for
grammatical error detection, where sometimes the error can only be inferred from the following words.
Therefore, a bidirectional LSTM layer is proposed (Graves, 2013), which can be regarded as a simple
stack of a forward LSTM layer and a backward LSTM layer. The structure of a Bi-LSTM layer is shown
in Figure 3.

The output of the encoding layer is then fed into a decoding layer, which is another full-connection
layer with 1 output size. The output layer is implemented as the following:

oi = σ(Wuui + bu) (4)

f(wi) = oi > 0.5 (5)

where σ is still the logistic sigmoid function and f(wi) indicates whether there is an error of this type
on the word wi or not.

As there are many more non-errors than errors in a sentence from a word perspective, the model always
tends to label 0, which means correct for the word, if without any balance. Thus we assigned weights
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for the loss function, in order to rebalance the correct and incorrect labels. The loss function without
regularization is calculated as follows:

loss = yi ∗ −log(f(wi)) ∗Wpos + (1− yi) ∗ −log(1− f(wi)) (6)

where Wpos is the coefficient on the positive examples.
We can decide if there are errors from {M, R, S&W} through the model described above. Then we

separate the ’S’ and ’W’ tags according to the successive word length of the error during the testing
phase. If the length is 1 the error is a word selection error, otherwise it is a word ordering error if the
length is greater than 1.

4 Data Preparation and Analysis

4.1 Datasets

In the TOCFL track, the data we used for training includes training and testing data from NLP-TEA
1 (Yu et al., 2014), training data from NLP-TEA 2 (Lee et al., 2015), and training data from NLP-TEA
3. We used the testing data from NLP-TEA 2 for validation.

In the HSK track, despite of the training set provided by the organizers, we simplified the training data
from TOCFL track as supplements. However, the simplified data from TOCFL track seem to be no use
to the evaluation results.

Table 2 shows the statistics of our training sets.

NLP-TEA 1 NLP-TEA 2 NLP-TEA 3 TOCFL NLP-TEA 3 HSK
number of sentences 7389 2205 10693 10072

total errors 7389 2205 24831 24784
Missing words 2932 620 9078 6619

Redundant words 2399 430 4472 5532
Word selection errors 1087 849 9897 10942
Word ordering errors 971 306 1384 1691

Table 2: Statistics of training sets

Due to the limitation of time and resource, the word embeddings and POS tag embeddings we used
are all random initialized.

4.2 Word selection error and word ordering error

Take NLP-TEA 3 TOCFL dataset as an example, as there are 1384 word ordering errors in the training
set, which takes only 5.5% in all 24831 errors. It is difficult to train this kind of errors without rebalance
or resampling. Thus we came up with a new method, by treating word ordering error as a special kind of
word selection error. Suprisingly, in the training set, after word segmentation, most word selection errors
are within one word and all word ordering errors are longer than one word, we can easily separate them
by the successive error length.

5 Experiments

In the formal run of NLP-TEA 3 CGED shared task, there are 5 teams submitting 15 runs in total
for the TOCFL dataset track and 8 teams submitting 21 runs in total for the HSK dataset track. Our
system achieved relatively high F1 for all the three levels in the traditional Chinese track and for the
detection level in the Simpified Chinese track. Since our evaluation results for HSK dataset are not good,
here we only display the evaluation results compared with the average values for TOCFL dataset. The
performance evaluations in detection level, identification level and position level are shown as follows:
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False Positive Rate Accuracy Precision Recall F1
PKU-Run1 0.2284 0.521 0.5739 0.2871 0.3828
PKU-Run2 0.7205 0.5258 0.5292 0.7556 0.6224
PKU-Run3 0.525 0.5349 0.5467 0.5907 0.5678

Average of all 15 runs 0.4812 0.5442 0.5701 0.5680 0.5456

Table 3: Performance evaluation in detection level

Accuracy Precision Recall F1
PKU-Run1 0.4575 0.3418 0.1173 0.1747
PKU-Run2 0.3242 0.2792 0.3712 0.3187
PKU-Run3 0.3705 0.2729 0.2192 0.2431

Average of all 15 runs 0.3912 0.3265 0.2732 0.2716

Table 4: Performance evaluation in identification level

6 Conclusion and Future work

In this paper, we present a Bi-LSTM neural network based model to predict the possible grammatical
errors for Chinese, which needs no feature engineering and provides reasonable evaluation results in the
NLP-TEA 3 CGED shared task. Different from most previous work, we didn’t use any external corpus
or rule-based inductions. Due to the limitation of time and resource, we didn’t test our system under
various experiment environments. More neural network architectures and more features can be tried.
There is still space for further development.
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Abstract 

Automatic grammatical error detection for Chinese has been a big challenge for NLP researchers. 

Due to the formal and strict grammar rules in Chinese, it is hard for foreign students to master 

Chinese. A computer-assisted learning tool which can automatically detect and correct Chinese 

grammatical errors is necessary for those foreign students. Some of the previous works have 

sought to identify Chinese grammatical errors using template- and learning-based methods. In 

contrast, this study introduced convolutional neural network (CNN) and long-short term 

memory (LSTM) for the shared task of Chinese Grammatical Error Diagnosis (CGED). 

Different from traditional word-based embedding, single word embedding was used as input of 

CNN and LSTM. The proposed single word embedding can capture both semantic and syntactic 

information to detect those four type grammatical error. In experimental evaluation, the recall 

and f1-score of our submitted results Run1 of the TOCFL testing data ranked the fourth place in 

all submissions in detection-level. 

1 Introduction 

The growing global influence of China has prompted a surge of interest in learning Chinese as a foreign 

language (CFL) (Yu et al., 2014). The number of commonly used Chinese characters are about 2000, 

but there are a large number of corresponding vocabulary. In this way, some same words may have 

different meanings because of different contexts and moods. This has caused difficulties for foreigners 

to learn Chinese. However, while many learning tools of computer-assisted have been developed for 

students of English as a Foreign Language (EFL), there is relatively little support for CFL learners. 

Especially, these tools cannot automatically detect and correct Chinese grammatical errors. For example, 

although Microsoft Word has been integrated with robust English spelling and grammar checking for 

many years, the tools for Chinese are still primitive (Yu et al. 2014). The aim of Chinese Grammatical 

Error Diagnosis (CGED) shared task is to develop computer-assisted tools to help detect four types of 

grammatical errors in the written Chinese, including missing word (M), redundant word (R), word 

ordering error (W) and word selection error (S). 

The shared task is divided into three levels, including detection-, identification- and position-level. 

Detection-level task can be considered as a binary classification of a given sentence, i.e., correct or 

incorrect should be exactly as same as the gold standard. All error types will be treated as incorrect. 

Identification-level task could be considered as a multi-label classification task. In addition to the correct 

instance, all error types should be clearly identified. This level identified the error types for the wrong 

sentence. Besides identifying the error types, the position-level also judges the positions of erroneous 

range. Some of the previous works have sought to identify Chinese grammatical errors using template- 

and learning-based methods. 

Wu et al. (2010) proposed a combination of relative position and analytic template language model 

to detect Chinese errors written by American learners. Yu and Chen et al. (2012) used simplified Chinese 

corpus to study word ordering errors (W) in Chinese and proposed syntactic features, external corpus 

features and perturbation features for W detection. Cheng et al. (2014) detected and corrected word 
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ordering errors by using conditional random field (CRF) (Lafferty, 2010) and support vector machine 

(SVM) together with frequency learning from a large n-gram corpus. Zampieri et al. (2014) used 

frequent n-grams and news corpus as a reference corpus to detect errors in the written by CFL learners. 

Chen et al. (2015) used conditional random fields based on word attributes and grammar rules to detect 

Chinese syntax errors. However, there are several limitations of the existing methods, these methods on 

the one hand only consider part of the grammar rules, and the other hand only consider the order of the 

word or relationship. They didn’t consider the semantic relationship between words and the flexible 

expression and irregular grammar in Chinese.  

In this paper, we introduced convolutional neural network (CNN) and long-short term memory 

(LSTM) for the task of Chinese Grammatical Error Diagnosis. In contrast of traditional word-based 

embedding (Mikolov et al., 2013), single word embedding was used as input of CNN and LSTM, which 

is similar to character-level embedding in English. The proposed single word embedding can capture 

both semantic and syntactic information to detect those four type grammatical error. Then, the single 

word vectors were used to establish the sentence representation for detection-level and identification-

level tasks. In position-level, this paper also used single word embedding as input feature to train a 

multi-class support vector machine (SVM) to identify the error type of each word. The recall and f1-

score of the submitted results Run1 of the TOCFL testing data ranked the fourth place in all submissions 

in detection-level. In identification-level, the recall score also ranked in the fourth place.  

The remainder of this paper is organized as follows. Section 2 describes the learning method that used 

for Chinese grammatical error diagnosis. Section 3 shows the experimental results. Conclusions are 

drawn in section 4. 

2 Feature Selection and Error Detection 

The procedure for using single word embedding for each level grammatical error detection is described 

as follow. Given a large Chinese corpus, single word embedding are first trained through word2vec and 

fastText tools. Then, the obtained single word representations were input to CNN, LSTM and SVM for 

the mentioned three level diagnosis tasks. The following sub-sections explain the details of single word 

embedding and the CNN, LSTM and SVM models implementation. 

2.1 Single Word Embedding 

We use fastText (Bojanowski et al. 2016) and word2vec (Mikolov et al. 2013) toolkits to train single 

word embedding on Chinese Wikipedia corpus. 

Word2vec is a set of related models used to generate word embedding. These models are two-layer 

neural networks that are trained to reconstruct linguistic contexts of words. Word2vec toolkit takes large 

corpus text as its input and produces a high-dimensional null and each unique word in the corpus is 

assigned the corresponding vector in that space. In Chinese, a sentence may be generated to ambiguities 

segmentation, leading to different embedding results.  

 Example 1 “乒乓球拍卖完了” 

1. “乒乓球/拍卖/完了” (The auction of table tennis is over.) 

2. “乒乓球拍/卖/完了” (The paddles of table tennis are sold out.) 

 Example 2 “在这种环境下工作是太可怕了” 

1. “在/这种/环境/下工/是/太/可怕/了” 

2. “在/这种/环境/下/工作/是/太/可怕/了”(Working in such environment is horrible) 

  For Example 1, these two forms of segmentation are both syntactically and semantically. Even if the 

manual division of the sentences in Example 1 will be ambiguous. In this case, we can get correct 

sentence segmentation when taking the context into consideration. However, for example 2, only the 

second sentence segmentation is correct. Therefore, the segmented for Chinese word may produce 

ambiguities segmentation.  

  In addition, there are 696,326 words in the Chinese corpus of Chinese Wikipedia corpus. There are 

some uncertainties in the Chinese word segmentation, and it cannot completely cover the vocabulary of 

the training set. Such as “开一个” (open a), "上海"( Shanghai) did not appear directly in the corpus, but 
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these was split or integrated with other words, such as “开” (open), “一个”(one), "上海医院"( Shanghai 

Hospital). 

The grammatical rules of Chinese are different from English. The spaces between English words can 

be used to segment a sentence. In English, the method of word embedding acquires the characteristics 

of the sentence, but this method is not suitable for the Chinese sentences. Based on the characteristics 

of Chinese, a Chinese sentence without considering the context of the case can only use single word to 

segment the sentence. By using the single word embedding method, all Chinese sentences in corpus can 

be segmented into single words. Meanwhile, the single word embedding can be obtained by using either 

word2vec or fastText. Finally, we can get the text features of Chinese sentences. 

All words in the document are converted into vectors by lookup table, and the results are classified 

by linear classifier. As same as word2vec, fastText used n-grams to train embedding. The word vector 

will be derived from the n-grams. This improvement enhances the effect of the model on morphology, 

which means that the distance of similar words will be smaller. Thus, two different single word 

embedding are obtained by these two models.  

2.2 Grammatical Error Diagnosis Models 

Taking the single word embedding as input, the convolutional neural network (CNN) (LeCun, et al., 

1990), the recursive neural network (RNN) (Ronald, et al.,1989), and the long-short term memory 

(LSTM) (Hochreiter et al., 1997) were introduced to classify the sentences. The sequential LSTM model 

was shown in Fig. 1. 

The obtained single word vectors (word2vec and fastText) were fed to deep neural network models, 

such as CNN, RNN and LSTM. To tune the best performance, 5-folder cross-validation was applied. 
For unbalanced problem of positive and negative training samples in identification- and position-level, e.g. 

the number of train samples within R label is smaller L times than other classes, we divided the more 

abundant class into L distinct clusters. Then L classifiers were trained, where each classifier is trained on only 

one of the distinct clusters, but on all of the data from the rare class. That is, the data from rare class was used 

in the training of all L classifier. Finally, the averaging output of L models was considered as the final 

classification result. The cross-validation results of different models are shown in Table 1. Then, the 

support vector machine model is applied to find the error location in each error sentence.  

This paper completes the Shared Task requirement in the following three steps. 

 Determining the correctness of a sentence (detection-level). The method adopted in this paper 

is to segment each sentence in the training set by every single word, e.g. “你/开/一/个/庆/祝/会

/的/时/候/我/不/能/会/参/加/是/因/为/我/在/外/国/做/工/作”, so that each single word in a 

sentence corresponds to a single word vector. By using word2vec and fastText toolkit, we train 

single word embedding in the Chinese Wikipedia corpus. Then, we trained neural network 

models, such as CNN, RNN, and LSTM, to distinguish correct sentences from wrong sentences 

in training set. The trained models were then used to categorize each sentence in testing set into 

correct or wrong class. 

 Judge the four types of errors (identification-level). The method in this level can be considered 
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Fig. 1.  The sequential LSTM model 
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as a multi-label problem, which is something different with the detect-level. Each samples in this 

level contain only one or more error labels. Therefore, one-vs-all strategy were applied. It 

consists in fitting one classifier per class. For each classifier, the class (R, M, S and W) is fitted 

against all the other classes. One advantage of this approach is its interpretability. Since each 

class is represented by one classifier only, it is possible to categorize each sentence with more 

than one labels. For each error type, we trained a neural network model, such as CNN, RNN and 

LSTM to determine the error type in testing dataset. 

 Locate the wrong position (position-level). In this level, support vector machine (SVM) 

(Christopher, 1998) was used as classifier to locate the wrong position. As shown in Fig. 2, a 

single word with its context can be considered as a training sample, so that the word appeared in the 

middle can be judged whether the location is wrong or not. The size of slide window was set to 7 in 

our experiment. Then, single word embedding of 7 words were concatenated as a 1-D vector, and 

then fed into SVM. Since each position is assigned to one and only one label. That is, position can be 

either R, M, S, W or correct, but not both at the same time. Therefore, we trained a multi-class SVM 

to determine the error type of each word in testing sentence. 

3 Experimental Results 

3.1 Dataset 

Two Chinese corpus are given in this shared task: TOCFL and HSK. TOCFL is the traditional Chinese 

training set, and HSK is the simplified Chinese training set. Apart from the difference between 

traditional and simplified, there is almost no difference of grammar and expression. In the training set, 

each id corresponds to two sentences, including a wrong sentence, and a corrected formation of this 

sentence. The error type, as well as the location of the error range are also provided. Each wrong sentence 

may have one error type, or more. These data sets were preprocessed to extract the single words, the 

error types and the error positions. The TOCFL corpus consists of 10693 training texts and 3528 testing 

texts. Similarly, the HSK corpus consists of 10072 training texts and 3011 testing texts. 

3.2 Implement Details 

As previously mentioned, the proposed method includes neural network and single word embedding. 

The two parts may have their own parameters for optimization. We use fastText and word2vec toolkits 

to pre-train the word vector on Chinese Wikipedia corpus. 

The Chinese Wikipedia corpus is segmented by single words, we set the embedding dimension of each 

single word to 300. In this way, we can get 300-dimensional feature vectors for all single words in the 

corpus. There are 2563 single words in TOCFL training set and 2583 single words in HSK training set. 

w1  w2  w3  w4  w5  w6  w7Sentence

Characteristics

{0, 0, 0, w1, w2, w3, w4}

{0, 0, w1, w2, w3, w4, w5}
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Fig. 2.  Single word embedding feature extraction for SVM 
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The two training sets have already contained the most commonly used 2000 Chinese characters. 

Therefore, this method can obtain the text feature for each sentence in the training set.  

We submitted three results for both TOCFL and HSK testing sets, the first submission (Run1) used 

the word representation trained by word2vec and classified by LSTM. The second submission (Run2) 

also used the LSTM to do the classification with word representation trained by fastText. Besides, the 

word representation of the third submission (Run3) was trained by word2vec and classified by CNN. 
The results can be obtained in three steps in Section 2.2. The sharing task has five evaluation indicators, 

they are false positive rate, accuracy (Acc), precision (Pr), recall (Re) and f1-score (F1).  

3.3 Experimental Results 

A total of 15 teams participated in the sharing of tasks, nine teams submitted the results of the operation 

in the final. For TOCFL training set, only 5 teams submitted the results of the operation. For the HSK 

test set, 9 teams have submitted the results of the operation. We have submitted three runs of results for 

both test sets. Table 2 shows the false positive rate. Table 3, Table 4 and Table 5 show the formal run 

results in detection-level, identification-level, and position-level respectively. 

  As shown in Table 2, the accuracy of the following two levels is reduced due to the high false positives. 

The results of Run1 and Run2 shows that the performance of word vectors trained by word2vec are 

better than that by fastText, since the fastText model makes the distance between similar words smaller. 

For example, the meaning of “trading” (贸易) is close to the “transaction” (交易) in Chinese, and 

word2vec can reflect this relationship. However, in the fastText, “trading” (贸易) is even more closer to 

“trade laws” (贸易法), which makes word vector by fastText cannot accurately reflect the sentence 

characteristics. Similarly, by comparing the results of Run1 and Run2, we can find that the classification 

performance of LSTM is better than CNN. Although CNN considers the local characteristics of the 

sentence, which makes it easy to high degree of similarity between the two sentences, LSTM can 

consider the relationship between the contexts of the sentence, which is particularly important in Chinese. 
Therefore, LSTM can capture the logical relationship between the sentences, e.g. cause and contrast 

relationship, etc. 
  Since the number of sentence in different label (correct and incorrect) is unbalanced, which will 

impact the result in all detection-, identification- and position-level. Hence, the wrong sentences are the 

majority in testing date. If all the sentences in the testing set are classified as wrong, the learning model 

will get high accuracy, precision, recall and f1-score, and even a higher false positive rate.  

4 Conclusion and Future work 

Since the grammar rules in Chinese are formal and strict, it is hard for foreign students to master Chinese. 

A computer-assisted learning tool which can automatically detect and correct Chinese grammatical 

errors is necessary for those foreign students. In this paper, neural network models, such as convolutional 

neural network (CNN) and long-short term memory (LSTM), were introduced for the task of Chinese 

Method 
Detection Level 

Accuracy Precision Recall F1 

LSTM 0.3769 0.3813 0.4088 0.3923 

RNN 0.4081 0.4053 0.4017 0.4013 

CNN 0.480 0.486 0.660 0.560 

Table 1: The cross-validation results of different methods using word2vec embedding 
 

Results 
False Positive Rate 

TOCFL HSK 

Run1 0.6289 0.5608 

Run2 0.5931 0.7122 

Run3 0.3382 0.271 

Average 0.5201 0.5147 

Table 2: The false positive rate results of different methods. 
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Grammatical Error Diagnosis. For capturing both semantic and syntactic information, we proposed the 

use of single word embedding as input of CNN and LSTM, which is similar to character-level 

embedding in English. In system evaluation, the recall and f1-score of our submitted results Run1 of the 

TOCFL testing data ranked the fourth place in all submissions in detection-level. 

By participating in this shared task for CGED, we have made a preliminary study in this area. The 

future work will focus on improving the accuracy of our models. 

Acknowledgements 

This work is supported by The Natural Science Foundation of Yunnan Province (Nos. 2013FB010). 

References 

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. Enriching Word Vectors with 

Subword Information. arXiv: 1607.04606v1 [cs.CL]. 

Christopher J. C. Burges. 1998. A tutorial on support vector machines for pattern recognition. Data Mining and 

Knowledge Discovery, 2(2):121-167 

Po-Lin Chen, Shih-Hung Wu, Liang-Pu Chen, and Ping-Che Yang. 2015. Chinese Grammatical Error Diagnosis 

by Conditional Random Fields. In Proceedings of The 2nd Workshop on Natural Language Processing Techniques 

for Educational Applications, pp: 7–14. 

Shuk-Man Cheng, Chi-Hsin Yu, and Hsin-Hsi Chen. 2014. Chinese Word Ordering Errors Detection and 

Correction for Non-Native Chinese Language Learners. In Proceedings of The 25th International Conference on 

Computational Linguistics: Technical Papers, pp: 279-289 

Sepp Hochreiter, and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computation, 9(8):1735–

1780. 

Results 

Detection-Level 

TOCFL HSK 

Acc Pr Re F1 Acc Pr Re F1 

Run1 0.5420 0.5444 0.7014 0.6130 0.5191 0.5069 0.6026 0.5506 

Run2 0.5026 0.5167 0.5918 0.5517 0.4949 0.4886 0.7113 0.5793 

Run3 0.4847 0.503 0.3195 0.3908 0.5058 0.4902 0.2724 0.3502 

Average 0.5098 0.5214 0.5376 0.5185 0.5066 0.4952 0.5288 0.4934 

Table 3: Performance evaluation in detection-level. 

 

Results 

Identification-Level 

TOCFL HSK 

Acc Pr Re F1 Acc Pr Re F1 

Run1 0.2211 0.1588 0.3196 0.2824 0.3485 0.2800 0.3879 0.3252 

Run2 0.2322 0.1675 0.3136 0.2122 0.3092 0.2681 0.4565 0.3378 

Run3 0.4023 0.2810 0.1359 0.2184 0.4306 0.2886 0.1448 0.1928 

Average 0.2852 0.2024 0.2564 0.2377 0.3628 0.2789 0.3297 0.2853 

Table 4: Performance evaluation in identification-level 

 

Results 

Position-Level 

TOCFL HSK 

Acc Pr Re F1 Acc Pr Re F1 

Run1 0.0886 0.0002 0.0002 0.0002 0.0654 0.0024 0.0062 0.0035 

Run2 0.0991 0 0 null 0.0373 0.0022 0.007 0.0034 

Run3 0.2797 0.0012 0.0005 0.0007 0.2701 0.001 0.0005 0.0007 

Average 0.1558 0.0005 0.0005 0.0005 0.1243 0.0019 0.0046 0.0025 

Table 5: Performance evaluation in position-level 

 

 

160



John Lafferty, Andrew McCallum, and Fernando Pereira. 2010. Conditional Random Fields: Probabilistic Models 

for Segmenting and Labeling Sequence Data. In Proceedings of the Eighteenth International Conference on 

Machine Learning, pp: 282-289 

Bernhard E. LeCun, John Stewart Denker, Donnie Henderson, Richard E. Howard, Wayne E. Hubbard, and 

Lawrence D. Jackel. 1990. Handwritten digit recognition with a backpropagation network. Advances in Neural 

Information Processing Systems, pp: 396-404 

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. 2013. Distributed representations of 

words and phrases and their compositionality. Advances in neural information processing systems, pp: 3111-3119. 

Chung Hsien Wu, Chao Hong Liu, Matthew Harris, and Liang Chih Yu. 2010. Sentence Correction Incorporating 

Relative Position and Parse Template Language Models. IEEE Transactions on Audio, Speech and Language 

Processing, 18(6):1170–1181. 

Ronald J. Williams, and David Zipser. A Learning Algorithm for Continually Running Fully Recurrent Neural 

Networks. 1989. Neural Computation,1(2):270-280 

Shih-Hung Wu, and Hsien-You Hsieh. 2012. Sentence Parsing with Double Sequential Labeling in Traditional 

Chinese Parsing Task. In Proceedings of the Second CIPS-SIGHAN Joint Conference on Chinese Language 

Processing, pp: 222–230. 

Liang-Chih Yu, Lung-Hao Lee, and Li-Ping Chang. 2014. Overview of Grammatical Error Diagnosis for Learning 

Chinese as a Foreign Language. In Proceedings of the 1st Workshop on Natural Language Processing Techniques 

for Educational Applications, pp:42–47. 

Chi-Hsin Yu, and Hsin-Hsi Chen. 2012. Detecting Word Usage Errors in Chinese Sentences f-or Learning Chinese 

as a Foreign Language. In Proceedings of The 24th International Conference on Computational Linguistics: 

Technical Papers, pp:3003–3018. 

Marcos Zampieri, and Liling Tan. 2014. Grammatical Error Detection with Limited Training Data: The Case of 

Chinese. In Proceedings of the 1st Workshop on Natural Language Processing Techniques for Educational 

Applications, pp: 69-74. 

161





Author Index

Adams, Oliver, 20

Bellynck, Valérie, 117
Bhowmick, Plaban, 11
Boitet, Christian, 117
Bond, Francis, 107

Cao, Shuyuan, 97
Chandrasekaran, Muthu Kumar, 30
Chang, Li-Ping, 40
Che, Wanxiang, 49
Chen, Liang-Pu, 63
Chen, Shao-Heng, 131
Chen, Tao, 30
Chou, Wei-Chieh, 73

da Cunha, Iria, 97
Dandapat, Sandipan, 82

Goyal, Pawan, 11
Guo, Jiang, 49

Habash, Nizar, 122
Hading, Muhaimin, 92
Han, Yingjie, 57
He, Xiaoling, 107
Hsu, Tsung-Wei, 140
Huang, Shen, 148

Iruskieta, Mikel, 97

Kalitvianski, Ruslan, 117
Kan, Min-Yen, 30
Kang, Hong Jin, 30
Kotani, Katsunori, 6
Krishnapuram, Raghuram, 20

Lee, Lung-Hao, 40
Liao, Yuan-Fu, 73
Lin, Chin-Kui, 73
Lin, Chuan-Jie, 131
Liu, Jun, 1
Liu, Ting, 49
Liu, Yajun, 57

Matsumoto, Yuji, 1, 92

Morgado da Costa, Luís, 107

Narahari, Y., 82

Pathak, Arkanath, 11
Peng, Bo, 155
PO-LIN, CHEN, 63

RAO, Gaoqi, 40
Roy, Shourya, 20, 82

Saddiki, Hind, 122
Sakamoto, Maki, 92

Tsai, Yu-Lin, 131

WANG, Houfeng, 148
Wang, Jin, 155
Wang, Lingxiao, 117
Wang, Yih-Ru, 73
Wu, Shih-Hung, 63

XUN, Endong, 40

Yang, Jinnan, 155
yang, ping-che, 63
Yeh, Chan-Kun, 140
Yeh, Jui-Feng, 140
Yoshimi, Takehiko, 6
Yu, Liang-Chih, 40

Zalmout, Nasser, 122
Zan, Hongying, 57
Zhang, Baolin, 40
Zhang, Jixian, 155
Zhang, Xuejie, 155
Zheng, Bo, 49
Zhuo, Liyan, 57

163


	Program
	Simplification of Example Sentences for Learners of Japanese Functional Expressions
	Effectiveness of Linguistic and Learner Features to Listenability Measurement Using a Decision Tree Classifier
	A Two-Phase Approach Towards Identifying Argument Structure in Natural Language
	Distributed Vector Representations for Unsupervised Automatic Short Answer Grading
	A Comparison of Word Embeddings for English and Cross-Lingual Chinese Word Sense Disambiguation
	Overview of NLP-TEA 2016 Shared Task for Chinese Grammatical Error Diagnosis
	Chinese Grammatical Error Diagnosis with Long Short-Term Memory Networks
	Automatic Grammatical Error Detection for Chinese based on Conditional Random Field
	CYUT-III System at Chinese Grammatical Error Diagnosis Task
	Word Order Sensitive Embedding Features/Conditional Random Field-based Chinese Grammatical Error Detection
	A Fluctuation Smoothing Approach for Unsupervised Automatic Short Answer Grading
	Japanese Lexical Simplification for Non-Native Speakers
	A Corpus-based Approach for Spanish-Chinese Language Learning
	Syntactic Well-Formedness Diagnosis and Error-Based Coaching in Computer Assisted Language Learning using Machine Translation
	An Aligned French-Chinese corpus of 10K segments from university educational material
	Analysis of Foreign Language Teaching Methods: An Automatic Readability Approach
	Generating and Scoring Correction Candidates in Chinese Grammatical Error Diagnosis
	Grammatical Error Detection Based on Machine Learning for Mandarin as Second Language Learning
	Bi-LSTM Neural Networks for Chinese Grammatical Error Diagnosis
	Chinese Grammatical Error Diagnosis Using Single Word Embedding

