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Abstract

Commonsense knowledge is essential for fully understanding language in many situations. We
acquire large-scale commonsense knowledge from humans using a game with a purpose (GWAP)
developed on a smartphone spoken dialogue system. We transform the manual knowledge ac-
quisition process into an enjoyable quiz game and have collected over 150,000 unique common-
sense facts by gathering the data of more than 70,000 players over eight months. In this paper,
we present a simple method for maintaining the quality of acquired knowledge and an empirical
analysis of the knowledge acquisition process. To the best of our knowledge, this is the first work
to collect large-scale knowledge via a GWAP on a widely-used spoken dialogue system.

1 Introduction

Large-scale knowledge is an essential resource in many natural language processing (NLP) applications.
There have long been efforts devoted to collecting commonsense knowledge, i.e., general knowledge that
every person knows (Zang et al., 2013). We rely on such prior knowledge to understand languages. For
example, consider the sentence “She went to get strawberries.” A human might think she went to the
refrigerator in the kitchen or a supermarket in the neighborhood. Computers, however, do not know that
strawberries would be stored in refrigerators. This paper presents a methodology for acquiring large-
scale commonsense knowledge from humans.

Early work on commonsense knowledge acquisition includes the Cyc project (Lenat, 1995), where a
small group of human annotators organized resources. Manually curated resources are of high quality but
require significant cost and time to build. Thus, several studies have automatically constructed knowledge
bases on existing resources such as semi-structured or unstructured texts (for example, (Tandon et al.,
2014)). However, commonsense knowledge is so clear for every person that it is often omitted in a
text (Gordon and Van Durme, 2013). For instance, we rarely state in a text that strawberries are stored in
refrigerators. Rather, we often talk about a major production region for strawberries. Therefore, manual
effort is still required to build commonsense knowledge bases.

To reduce the cost of manual knowledge acquisition, some studies explored the use of crowdsourcing,
a process that requests various tasks of non-expert workers on the Internet. The Open Mind Common
Sense (OMCS) project (Liu and Singh, 2004; Speer and Havasi, 2012) recruited volunteers on the In-
ternet and constructed ConceptNet, a large collection of commonsense knowledge such as (cake, AtLo-
cation, supermarket). Whereas participants in the OMCS projects entered the commonsense knowledge
in Web forms, some studies have transformed the knowledge acquisition process into a type of enjoy-
able game, called games with a purpose (GWAP) (von Ahn et al., 2006; Lieberman et al., 2007; Kuo et
al., 2009; Nakahara, 2011; Herdağdelen and Barobni, 2012; Kuo and Hsu, 2011). The advantage of a
GWAP is that it is more attractive to humans than the standard annotation processes and is able to collect
accurate resources as a side effect of their enjoyment of the games.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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([cake], AtLocation, supermarket)
([cake], MadeOf, milk)

...

ConceptNet
(vegetable, AtLocation, supermarket)

(cheese, AtLocation, supermarket)
(cheese, MadeOf, milk)

Player

Sure, please guess a word.
This is at supermarkets.

Umm, this is not a vegetable.
This is made of milk.

Close! But this is not cheese.
This is ...

Let's play a game.

Vegetable?

Cheese?

Existing knowledge Obtained Knowledge

Yahoo! Voice Assist

Figure 1: Illustration of the quiz game. A player is given clues about a certain word to be guessed. The clues are generated
from existing knowledge in ConceptNet. We learn new knowledge from the player’s guesses given the clues.

We developed a quiz game shown in Figure 1 as a module in the widely-used Japanese smartphone
app, Yahoo! Voice Assist1 (hereafter Voice Assist), which is a Siri-like spoken dialogue system that has
been downloaded to more than 2.5 million devices. Although it is usually hard to get GWAP participants
over the long term, our game is able to reach greater numbers of users than previous studies.

The quiz game follows the same framework as the previous work by Nakahara (2011), in which play-
ers are given clues about a certain word. From the players’ incorrect guesses, we can obtain knowledge
about the clues. For example, a hint “this is made of milk” is given to a player. The expected answer is
a cake, but we can learn that “cheese is made of milk” when the player answers “cheese” in response to
the hint.

Spoken dialogue systems on smartphones such as Siri and Cortana have attracted many industrial
and research interests in recent years. They are promising as platforms of knowledge acquisition from
humans because they have a large number of users. Furthermore, acquired knowledge is useful for de-
veloping sophisticated dialogue systems and attracting more users. Consequently, we can collect more
knowledge from more users. Additionally, enjoyable user interaction without any goals is important.
Even in a task-oriented dialogue system, Jiang et al. (2015) report that about 20% of user logs are
chat, and some studies report that games on a dialogue system improve user engagement with the sys-
tem (Kobayashi et al., 2015; Sano et al., 2016).

As the obtained knowledge contains incorrect facts, we aggregate facts collected from multiple players
to determine the correct facts. Such incorrect facts come from players’ guesses that are not relevant to
the hints and automatic speech recognition (ASR) errors, which is a characteristic of spoken dialogue
systems. To address these problems, it is not sufficient to only consider the number of players who give
the same facts, as previous studies have done (von Ahn et al., 2006; Kuo et al., 2009; Nakahara, 2011).
We present a method to reduce the ASR errors and estimate the confidence scores of facts.

We released the game in December 2015 and have collected more than 150,000 unique facts over eight
months. The number of unique players was 70,000 in total, which is much larger than those of previous
studies, for example, 6,899 players over six months for the game by Kuo et al. (2009). We evaluated the
quality of the collected knowledge in two ways. We first evaluated the scoring method of the facts using
crowdsourced annotations, and then manually evaluated samples of the collected knowledge. The results
show that our quiz game is an effective way to acquire large-scale commonsense knowledge.

Our contributions are summarized as follows.

1. We collected large-scale, high quality knowledge from a quiz game on a dialogue system that has
many users. We will make the collected resources publicly available.

2. We present a method to reduce ASR errors and maintain the quality of acquired knowledge.

2 Related Work

Research in knowledge base construction has contributed to the success of many applications includ-
ing question answering and information extraction. Some knowledge bases are manually constructed,

1http://v-assist.yahoo.co.jp (in Japanese)
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and others are automatically constructed from texts and existing resources. Automatically constructed
large-scale knowledge bases include Freebase (Bollacker et al., 2008), which was constructed from
Wikipedia’s texts and existing resources such as WordNet. Freebase has been successfully used in many
NLP tasks.

Whereas most large-scale knowledge bases focus on relations between named entities, we focus on
commonsense knowledge, which has a wider range. The Cyc Project (Lenat, 1995), an early work on
commonsense knowledge acquisition, recruited a small group of annotators to construct a knowledge
base.

Manually curated resources are accurate but expensive to build. Several studies have attempted to
construct knowledge bases automatically. For example, Tandon et al. (2014) extracted knowledge from
WordNet and Web texts. However, commonsense knowledge is likely to be omitted from texts because
it is assumed that every person knows such knowledge (Gordon and Van Durme, 2013). Li et al. (2016)
addressed this problem using knowledge base completion, in which existing knowledge is used to acquire
more knowledge. However, their method needs some amount of existing knowledge as a seed. Thus,
manual effort is still required.

Crowdsourcing, which is a process that requests various tasks of non-expert workers on the Internet,
can be used to reduce the cost of the manual process. The OMCS project (Liu and Singh, 2004; Speer
and Havasi, 2012) collected commonsense knowledge by recruiting many volunteers on the Internet. The
resulting knowledge base is called ConceptNet,2 which we use and extend in our study.

Some studies transform the manual acquisition process into an enjoyable game, called a GWAP, to
motivate players to participate in knowledge acquisition. GWAPs are a form of crowdsourcing3 and have
been used for validating (Herdağdelen and Barobni, 2012; Vannella et al., 2014; Machida et al., 2016)
and collecting (von Ahn et al., 2006; Lieberman et al., 2007; Kuo et al., 2009; Nakahara, 2011; Kuo and
Hsu, 2011; Nakahara and Yamada, 2013) language resources.

A word-guessing game was designed by von Ahn et al. (2006) to collect a large amount of knowledge
within a short time and at a low cost. GWAPs have also been exploited to acquire knowledge in Chinese
(Kuo et al., 2009; Kuo and Hsu, 2011) and Japanese (Nakahara, 2011; Nakahara and Yamada, 2013).
The collected knowledge was registered in ConceptNet. Although it is generally hard to gather many
players, our GWAP can reach many more users than previous studies because it is built on a running
spoken dialogue system.

Spoken dialogue systems on smartphones have been attracting much industrial and research interest
in recent years. Several studies report that enjoyable user interactions are beneficial for dialogue sys-
tems (Jiang et al., 2015; Kobayashi et al., 2015; Sano et al., 2016).

3 Rapid Knowledge Acquisition from Quiz Game

We use a quiz game on a spoken dialogue system to obtain large-scale, high-quality commonsense knowl-
edge from many human players.

3.1 Japanese ConceptNet

Our knowledge acquisition method follows the scheme of ConceptNet (Speer and Havasi, 2012). In
ConceptNet, knowledge is expressed as a triple of two concepts and a relation linking them, where a
concept is a word or a short phrase, and a relation consists of about 30 relations such as IsA, Causes, or
Antonym. We call a triple a fact, and the two concepts are called a head and tail, respectively.

Japanese ConceptNet has 95,468 facts in total.4 We ignore facts obtained using the game by Nakahara
(2011) with a weight of one (i.e., only one player provided this fact) because these facts are likely to
be inaccurate . The filtered ConceptNet has only 46,427 unique facts, and most of them are lexical
knowledge (e.g., Antonym and DerivedFrom). In contrast, Japanese WordNet,5 for example, has 93,834

2http://conceptnet5.media.mit.edu
3For more information about crowdsourcing, readers can refer to (Law and von Ahn, 2011).
4From a snapshot taken on Sept. 10th, 2015 at http://conceptnet5.media.mit.edu/downloads/20150910/.
5http://compling.hss.ntu.edu.sg/wnja/index.en.html
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words and many relations linking them. Thus, collecting more commonsense facts is essential to making
them at least as useful in NLP tasks as WordNet is.

We only consider the filtered ConceptNet in the rest of this paper. Note that words in heads and tails are
normalized into their representative forms (e.g., {みかん mikan, ミカン mikan, 蜜柑 mikan} (orange)
→みかん mikan (orange)) given by the morphological analyzer JUMAN++ (Morita et al., 2015).

3.2 Building a Quiz from using ConceptNet

We collect commonsense knowledge from many people. To motivate them, we transform the knowledge
acquisition process into an enjoyable quiz game, where human players are given several hints about a
certain word to be guessed, and we acquire knowledge from players’ guesses. The hints are easily gen-
erated from existing knowledge in ConceptNet. Figure 1 shows examples. “This is at supermarkets” and
“this is made of milk” are generated from the facts (cake, AtLocation, supermarket) and (cake MadeOf,
milk), respectively. The word to be guessed (hereafter keyword) is “cake.”

From the player’s guesses, we can obtain knowledge about each relation and tail pair. For instance, we
can learn that “cheese is made of milk” when the player answered “cheese” to the hint “this is made of
milk.” Note that we only hide the head of a fact and let players guess the word that fits with its relation
and tail because this allows players to give diverse answers. For example, we use “X is made of milk”
rather than “cake is made of X” to obtain many different responses.

If the player fails to guess the keyword, another hint is selected at random and given to the player. Our
game gives up to five hints,6 and 15 facts can be acquired from a player’s guesses. We call the distance
between a player’s guess and a given hint the hint distance. The hint distances of (cheese, MadeOf, milk)
and (cheese, AtLocation, supermarket) in Figure 1 are one and two, respectively.

The game is implemented as a part of the chat function of Voice Assist, which is the Japanese spoken
dialogue system on smartphones, and is executed as follows:

1. A player utters a sentence such as “ゲームしよう” (“Let’s play a game”), and the game session
starts.

2. A keyword is selected randomly.
3. A hint about the keyword is drawn. The hint sentence is generated using predefined templates.
4. Given the hint, the player utters his/her guess.
5. If the guess matches the keyword, the game session ends and the system returns to the normal

dialogue processing mode; otherwise the system returns to step 3 to add more hints to the quiz until
the number of hints reaches its limit. If the number of hints reaches its limit, the system ends the
game and returns to the normal dialogue processing mode.

To build a list of keywords and hints to be used in the game, we extracted the heads of facts in ConceptNet
that have more than five facts with two or more different relations. Finally, the authors and developers
of Voice Assist selected appropriate keywords and hints from the candidates. Note that we did not use
lexical knowledge.

3.3 Reducing ASR Errors

Player’s utterances are likely to suffer from ASR errors because they are not accompanied by any con-
text that is helpful for recognizing words. Table 1(a) provides examples. In Japanese, for example,
“cheese” (チーズ chı̂zu) is sometimes recognized as “a map” (地図 chizu). To alleviate this problem, we
automatically identify ASR errors and rewrite them into their correct forms.

We first identify ASR error pairs and the correct form based on pronunciations. We transcribe the
collected words into rōmaji,7 which represents their pronunciations, and calculate the string similarities
between the transcribed words that were given in response to the same hint. We define the string similar-
ity of transcribed strings X and Y as 1− L(X,Y )

max{|X|,|Y |} , where L denotes the Levenshtein distance and | · |
denotes the length of the string. The pair of words is considered to be identical if the similarity is higher

6We followed Nakahara (2011) and determined the maximum number of hints.
7We used KAKASI (http://kakasi.namazu.org/index.html.en) to convert a word into rōmaji.
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Keyword Recognized facts Intended head

cake (地図 chizu (map), MadeOf, milk) チーズ chı̂zu (cheese)
orange (佐藤 satô (Japanese family name), HasProperty, sweet) 砂糖 satô (sugar)
kitchen knife (校長 kôchô (school principal), UsedFor, cut) 包丁 hôchô (kitchen knife)

(a) ASR errors: Intended heads were given by the authors.

Turn Hint / Guess Obtained facts

Hint (H) 1 This is herbivore.
Guess (G) 1 Sheep. (sheep, HasProperty, herbivore)

H2 This is yellow.
G2 Tiger. (tiger, HasProperty, herbivore), (tiger, HasProperty, yellow)

(b) Hint distances: The hint distance of (tiger, HasProperty, herbivore) is two, and the others are one.

Table 1: Illustration of inaccurate facts obtained from the quiz game. For simplicity, only English translations are reported
for some words.

than 0.7.8 For example,チーズ (cheese) and地図 (map) are identical because the their pronunciations,
chı̂zu and chizu, are sufficiently similar.

Next, we rewrite the identical words to the correct words.We do not yet know which of the words is
the correct form. The key to determining the correct form is that a player’s guess will be semantically
similar to the keyword because the player is attempting to answer the keyword in the game. We take
cheese (チーズ chı̂zu) and a map (地図 chizu) given in response to the hint “this is made of milk,”
for example. Assume the keyword is “cake.” We calculate the cosine similarities between the word
vectors (Mikolov et al., 2013) of the guesses and the keyword, obtaining sim(cheese, cake) = 0.65, and
sim(map, cake) = 0.13. Indeed, (cheese, MadeOf, milk) is correct, and (map, MadeOf, milk) is incorrect.

We assume that the word whose word vector is more similar to that of the keyword is correct. Thus,
地図 (map) is rewritten toチーズ (cheese), whose semantic similarity to the keyword, i.e., sim(cheese,
cake), is higher than sim(map, cake).

3.4 Aggregation of Acquired Knowledge
The quality of the acquired knowledge is not always good, and we must aggregate multiple facts obtained
from the players to learn correct knowledge. To this end, we consider the following three aspects of the
knowledge acquisition process from the quiz game.

1. Similarly to previous studies (von Ahn et al., 2006; Kuo and Hsu, 2011; Herdağdelen and Barobni,
2012; Nakahara, 2011), we assume that facts given by many players are likely to be correct. We use
Pf to denote the set of players that answered the head of fact f . If Pf consists of many players, f
obtains a high score.

2. A fact whose hint distance is large is less reliable than a fact whose hint distance is small because
players focus on the last hint and tend to ignore earlier hints (see Table 1(b) for example). Thus, we
weight frequency by hint distance (Section 3.2). The distance of fact f given by player p is denoted
by d(f, p). We weight fact f given by player p by wd(f, p) = g−d(f,p), where g is a hyperparameter.

3. As explained in the previous section, a correct word is likely to be semantically similar to the
keyword. Thus, we can also use the semantic similarity between a player’s guess and keyword as
prior knowledge during scoring. We define the weight of fact f as ws(f) = (sim(fhead, fkeyword) +
1)/2, where sim is the cosine similarity between word vectors, and fhead and fkeyword are the head
and keyword of fact f , respectively.

Our goal is to give a high score to correct facts (e.g., (cheese, MadeOf, milk)) and a low score to incorrect
facts (e.g., (noodle, MadeOf, cheese)). Combining the ideas above, we define the score of fact f as∑

p∈Pf

wd(f, p)× ws(f).

8We empirically determined the threshold using a small set of word pairs.
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Unique players Games Utterances Unique facts

74,375 206,305 588,189 155,683

Table 2: Data collected by the quiz game from December 2015 to August 2016.
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Figure 2: Amount of newly acquired knowledge. 98% of the facts did not exist in ConceptNet.

4 Empirical Evaluation

4.1 Knowledge Acquisition Speed

We created quizzes by following the procedure in Section 3.2 and released the game to a subset of the
Voice Assist users in December 2015 and all users in March 2016. Table 2 shows the statistics of the
collected data. At its peak, 1,300 unique players participated per day. These numbers are much larger
than those of previous studies (for instance, 6,899 players over six months for the pet game (Kuo et al.,
2009)).

Figure 2 shows the amount of newly acquired knowledge (i.e., a cumulative sum of the number of
unique facts). By March 2016, we had collected over 30,000 unique facts using only 92 hints. Because
we increased the number of hints to 181 and published the game to all users in March 2016, the acqui-
sition speed was accelerated. We obtained over 60,000 unique facts in March and 20,000 unique facts
per month after that. There are 805 facts in the Japanese ConceptNet that have the same (relation, tail)
as the hints added in March 2016. Surprisingly, 70% of them were obtained within the first nine days of
our quiz game.

We cleaned the collected logs before this analysis because they contained meaningless utterances. (1)
Time out: We discarded the rest of the utterances if the utterance interval exceeded one minute. (2)
Activation of Voice Assist functions: If players uttered a command for one of the other functions such
as calling, weather information or navigation, we considered it to be the last utterance of the session and
discarded the rest of the utterances. (3) Trivial utterances: Utterances matching trivial patterns defined
by the authors were discarded. (4) Part-of-speech (POS): Heads that do not meet a constraint on the
POS of the relation type were filtered out from the extracted facts, where we used JUMAN++ (Morita et
al., 2015) for morphological analysis. The constraints can be found in Speer and Havasi (2012).

4.2 Evaluation Using Crowdsourcing

We use crowdsourced judgments as the gold standard for evaluating the collected knowledge. We re-
cruited crowd workers on Yahoo! Crowdsourcing9 and evaluated 6,669 facts that were collected from
multiple players. The facts were sampled from the data collected up to the end of February 2016. The
workers answered whether a given fact was correct or not. We requested the judgments of five workers
for each fact and aggregated them using the multi-class minimax entropy algorithm (Zhou et al., 2014).

The facts that were labeled as true consisted of 54% of all the facts. This is lower than those of
previous studies because our game suffered from ASR errors. To obtain correct knowledge from such
noisy collected facts, we needed to aggregate them and estimate confidence scores for each fact.

In this analysis, we validate the performance of the scoring method explained in Section 3.4 in terms
of ROC-AUC, performing 3-fold cross validation on the evaluation set. To calculate a weight based on
hint distances, we determined g by doing a grid search over {2, 4, 8, 16}, searching for the values that

9http://crowdsourcing.yahoo.co.jp/
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baseline + hint distance + semantic similarity + both
Reducing ASR errors ✓ ✓ ✓ ✓

0.695 0.707 0.752 0.769 0.709 0.718 0.764 0.777

Table 3: ROC-AUC of estimated confidence scores. Note that the number of evaluated facts is different before and after ASR
error reduction using the method explained in Section 3.3 (6,669 and 5,669 facts, respectively).

10-510-410-310-210-1100101
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Figure 3: Relationship between precision/recall/F-score and score threshold.

maximized the ROC-AUC on the development set. We used word vectors of 500 dimensions that were
trained on 9.8 billion Japanese sentences crawled from the Web.

Table 3 shows the ROC-AUC for the evaluation data. It indicates that when facts are ranked by
hint distances and semantic similarity to keywords, the performance is better than only considering the
number of players that answered the fact, as previous studies did.

4.3 Case Study of Knowledge Acquisition
Although the analysis using crowdsourcing in the previous section is efficient for validating the perfor-
mance of the scoring methods, it is not sufficient for evaluating the quality of acquired knowledge. Thus,
we need a detailed analysis of the acquired knowledge. We first divided the facts into four groups based
on their scores and evaluated 100 facts for each group manually.

Figure 3 shows the precision and recall corresponding to thresholds on the scores. The F-score value
reaches the highest at around 0.1. Hence, we consider the following four groups: (A) 100 highest-scoring
facts, (B) 100 highest-scoring facts whose scores are below 1, (C) 100 lowest-scoring facts whose scores
are above 0.1, and (D) 100 highest-scoring facts whose scores are below 0.1.

As the validity of a fact depends on the context in which it is used, we classified a fact into ASR errors
and five classes: (5) always true, (4) true in many contexts, (3) true in several contexts, (2) true in only a
few contexts, and (1) false.

Table 4 shows the evaluation results. We observe that the top-ranked facts contain knowledge that is
true in general contexts, whereas the facts in the low-scoring groups include many context-dependent or
incorrect facts. Table 5 provides examples for each group. In group (A), most of the 100 facts contain
keywords or their synonyms and already exist in ConceptNet. This is because players tried to answer the
keywords in the game. In contrast, 61, 90, and 92 out of 100 facts do not exist in ConceptNet in groups
(B), (C), and (D), respectively.

As we expected, our quiz game obtained knowledge that is not likely to appear in texts. For example,
(ladle, AtLocation, kitchen), (restaurant, RelatedTo, work), and (marriage proposal, RelatedTo, meal)
cannot be found in Wikipedia, a corpus often used for knowledge acquisition.

However, low-scoring groups (C) and (D) contain some incorrect facts. The false facts include (Wu
long tea, MadeOf, beans) in (C) and (tiger, HasProperty, herbivore) in (D). ASR errors appear most
in group (C) because their hint distances are close to zero even though their frequencies and semantic
similarities to keywords are low. Tackling these problems is left for future work.

4.4 Discussion
Our game gives a hint (relation, tail) to players and only obtains the head corresponding to the hint
(Section 3.2). If the number of collected facts increases, we can analyze this knowledge for further de-
tails. Suppose we obtained the head “strawberry” from two hints “this is at supermarkets” and “this is
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Group 5 4 3 2 1 ASR error

(A) 93 5 2 0 0 0
(B) 85 9 4 1 0 1
(C) 48 11 13 8 7 13
(D) 50 12 14 11 9 4

Table 4: Evaluation results.

Keyword Collected fact Score Judgment

(A) hair dryer (ドライヤー (hair dryer), UsedFor,髪を乾かす (dry hair)) 93.22 5
hair dryer (ハサミ (scissors), AtLocation床屋 (barbershop)) 15.27 5
TV (テレビ (TV), AtLocation,リビングルーム (living room)) 12.96 4

(B) money (バット (bat) MadeOf,金属 (metal)) 0.987 4
kitchen knife (おたま (ladle), AtLocation,キッチン (kitchen)) 0.911 5
cafe (レストラン (restaurant), RelatedTo,仕事 (work)) 0.803 3

(C) cafe (プロポーズ (marriage proposal), RelatedTo,食事 (meal)) 0.107 4
cellphone (テレビ (TV), IsA,電話 (telephone)) 0.105 2
coffee (ウーロン茶 (Wu long tea), MadeOf,豆 (beans)) 0.106 1

(D) cake (コーヒー牛乳 (coffee-flavored milk), Causes,虫歯 (tooth decay)) 0.099 4
farmer (おまわりさん (police officer), IsA,仕事 (job)) 0.098 5
giraffe (虎 (tiger) HasProperty,草食 (herbivore)) 0.098 1

Table 5: Examples of collected facts.

at farms.” We can undertake further analyses such as comparing the frequencies of (strawberry, AtLo-
cation, supermarket) and (strawberry, AtLocation, farm) to learn where people mostly think strawberries
are. This would be beneficial for computers to understand humans’ social communications.

We obtained more than 60,000 facts within a month using about 200 hints in March 2016. We expect
to collect millions of items of knowledge over a year by continuously updating the hints. The collected
resources will be freely available.

5 Conclusion

We developed a quiz game as a module in a widely used Japanese spoken dialogue system to obtain large-
scale and high quality commonsense knowledge from many humans. We released the game in December
2016 and so far have collected over 150,000 unique facts from more than 70,000 players. In this paper,
we reported the speed and quality of the knowledge acquisition process using the dialogue system quiz
game. We also addressed the problem of aggregating the collected facts to obtain correct knowledge.
We presented a simple scoring method that considers hint distances and semantic similarities between
a player’s guesses and the answer of the quiz. The experiments showed that when facts are ranked by
using the scoring method, the performance is better than when only the number of players that answered
the fact is considered, as previous studies did.

As future work, we will develop further acquisition and validation methodologies to obtain accurate
commonsense facts. ASR errors are hard to avoid in a spoken dialogue system, and we must develop a
more sophisticated approach to tackle this problem. Furthermore, although our current quiz game selects
a quiz and hint at random, it would be more effective to select them based on a strategy. For example,
Kuo and Hsu (2011) attempted to utilize the English ConceptNet to generate effective quiz games.

We will collect additional knowledge by updating the quizzes continuously, and expect that the number
of acquired facts will reach more than one million in the near future, which would be significantly
beneficial for various Japanese NLP applications.
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