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Abstract

Automated extraction of concepts from patient clinical records is an essential facilitator of clin-
ical research. For this reason, the 2010 i2b2/VA Natural Language Processing Challenges for
Clinical Records introduced a concept extraction task aimed at identifying and classifying con-
cepts into predefined categories (i.e., treatments, tests and problems). State-of-the-art concept
extraction approaches heavily rely on handcrafted features and domain-specific resources which
are hard to collect and define. For this reason, this paper proposes an alternative, streamlined
approach: a recurrent neural network (the bidirectional LSTM with CRF decoding) initialized
with general-purpose, off-the-shelf word embeddings. The experimental results achieved on the
2010 i2b2/VA reference corpora using the proposed framework outperform all recent methods
and ranks closely to the best submission from the original 2010 i2b2/VA challenge.

1 Introduction

Patient clinical records typically contain longitudinal data about patients’ health status, diseases, con-
ducted tests and response to treatments. Analysing such information can prove of immense value not
only for clinical practice, but also for the organisation and management of healthcare services. Concept
extraction (CE) aims to identify mentions to medical concepts such as problems, test and treatments in
clinical records (e.g., discharge summaries and progress reports) and classify them into predefined cate-
gories. The concepts in clinical records are often expressed with unstructured, “free” text, making their
automatic extraction a challenging task for clinical Natural Language Processing (NLP) systems. Tradi-
tional approaches have extensively relied on rule-based systems and lexicons to recognise the concepts
of interest. Typically, the concepts represent drug names, anatomical nomenclature and other special-
ized names and phrases which are not part of everyday vocabularies. For instance, “resp status” should
be interpreted as “response status”. Such use of abbreviated phrases and acronyms is very common
within the medical community, with many abbreviations having a specific meaning that differ from that
of other lexicons. Dictionary-based systems perform concept extraction by looking up terms on med-
ical ontologies such as the Unified Medical Language System (UMLS) (Kipper-Schuler et al., 2008).
Intrinsically, dictionary- and rule-based systems are laborious to implement and inflexible to new cases
and misspellings (Liu et al., 2015). Although these systems can achieve high precision, they tend to
suffer from low recall (i.e., they may miss a significant number of concepts). To overcome these limita-
tions, various machine learning approaches have been proposed (e.g., conditional random fields (CRFs),
maximum-entropy classifiers and support vector machines) to simultaneously exploit the textual and
contextual information while reducing the reliance on lexicon lookup (Lafferty et al., 2001; Berger et al.,
1996; Joachims, 1998). State-of-the-art machine learning approaches usually follow a two-step process
of feature engineering and classification. The feature engineering task is, in its own right, very laborious
and demanding on expert knowledge, and it can become the bottleneck of the overall approach. For this
reason, this paper proposes a highly streamlined alternative: to employ a contemporary neural network
- the bidirectional LSTM-CRF - initialized with general-purpose, off-the-shelf word embeddings such
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Sentence His HCT had dropped from 36.7 despite 2U PRBC and
Concept class O B-test O O O O O B-treatment I-treatment O

Table 1: Example sentence in a concept extraction task. The concept classes are represented in the
standard in/out/begin (IOB) format.

as GloVe (Pennington et al., 2014a) and Word2Vec (Mikolov et al., 2013b). The experimental results
over the authoritative 2010 i2b2/VA benchmark show that the proposed approach outperforms all recent
approaches and ranks closely to the best from the literature.

2 Related Work

Most of the research to date has framed CE as a specialized case of named-entity recognition (NER)
and employed a number of supervised and semi-supervised machine learning algorithms with domain-
dependent attributes and text features (Uzuner et al., 2011). Hybrid models obtained by cascading
CRF and SVM classifiers along with several pattern-matching rules have shown to produce effective
results (Boag et al., 2015). Moreover, (Fu and Ananiadou, 2014) have given evidence to the importance
of including preprocessing steps such as truecasing and annotation combination. The system that has re-
ported the highest accuracy on the 2010 i2b2/VA concept extraction benchmark is based on unsupervised
feature representations obtained by Brown clustering and a hidden semi-Markov model as classifier (de-
Bruijn et al., 2011). However, the use of a “hard” clustering technique such as Brown clustering is not
suitable for capturing multiple relations between the words and the concepts. For this reason, Jonnala-
gadda et al. (Jonnalagadda et al., 2012) demonstrated that a random indexing model with distributed
word representations can improve clinical concept extraction. Moreover, Wu et al. (Wu et al., 2015)
have jointly used word embeddings derived from the entire English Wikipedia (Collobert et al., 2011)
and binarized word embeddings derived from domain-specific corpora (e.g. the MIMIC-II corpus (Saeed
et al., 2011)). In the broader field of machine learning, the recent years have witnessed a proliferation
of deep neural networks, with outstanding results in tasks as diverse as visual, speech and named-entity
recognition (Hinton et al., 2012; Krizhevsky et al., 2012; Lample et al., 2016). One of the main ad-
vantages of neural networks over traditional approaches is that they can learn the feature representations
automatically from the data, thus avoiding the expensive feature-engineering stage. Given the promising
performance of deep neural networks and the recent success of unsupervised word embeddings in gen-
eral NLP tasks (Pennington et al., 2014a; Mikolov et al., 2013b; Lebret and Collobert, 2014), this paper
sets to explore the use of a state-of-the-art deep sequential model initialized with general-purpose word
embeddings for a task of clinical concept extraction.

3 The Proposed Approach

CE can be formulated as a joint segmentation and classification task over a predefined set of classes. As
an example, consider the input sentence provided in Table 1. The notation follows the widely adopted
in/out/begin (IOB) entity representation with, in this instance, HCT as the test and 2U PRBC as the
treatment. In this paper, we approach the CE task by the bidirectional LSTM-CRF framework where
each word in the input sentence is first mapped to either a random vector or a vector from a word
embedding. We therefore provide a brief description of both word embeddings and the model hereafter.

Word embeddings are vector representations of natural language words that aim to preserve the se-
mantic and syntactic similarities between them. The vector representations can be generated by either
count-based approaches such as Hellinger-PCA (Lebret and Collobert, 2014) or trained models such
as Word2Vec (including skip-grams and continuous-bag-of-words) and GloVe trained over large, unsu-
pervised corpora of general-nature documents. In its embedded representation, each word in a text is
represented by a real-valued vector, x, of arbitrary dimensionality, d.

Recurrent neural networks (RNNs) are a family of neural networks that operate on sequential data.
They take as input a sequence of vectors (x1, x2, ..., xn) and output a sequence of class posterior proba-
bilities, (y1, y2, ..., yn). An intermediate layer of hidden nodes, (h1, h2, ..., hn), is also part of the model.
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Training set Test set
notes 170 256

sentences 16315 27626
problem 7073 12592

test 4608 9225
treatment 4844 9344

Table 2: Statistics of the training and test data sets used for the 2010-i2b2/VA concept extraction.

In an RNN, the value of the hidden node at time t, ht, depends on both the current input, xt, and the
previous hidden node, ht−1. This recurrent connection from the past timeframe enables a form of short-
term memory and makes the RNNs suitable for the prediction of sequences. Formally, the value of a
hidden node is described as:

ht = f(U • xt + V • ht−1) (1)

where U and V are trained weight matrices between the input and the hidden layer, and between the past
and current hidden layers, respectively. Function f(·) is the sigmoid function, f(x) = 1/1 + e−x, that
adds non-linearity to the layer. Eventually, h(t) is input into the output layer and convolved with the
output weight matrix, W :

yt = g(W • ht), with g(zm) =
ezm

ΣK
k=1e

zk
(2)

Eventually, the output is normalized by a multi-class logistic function, g(·), to become a proper prob-
ability over the class set. Therefore, the output dimensionality is equal to the number of concept classes.
Although an RNN can, in theory, learn long-term dependencies, in practice it tends to be biased towards
its most recent inputs. For this reason, the Long Short-Term Memory (LSTM) network incorporates an
additional “gated” memory cell that can store long-range dependencies (Hochreiter and Schmidhuber,
1997). In its bidirectional version, the LSTM computes both a forward,

−→
ht , and a backward,

←−
ht , hid-

den representation at each timeframe t. The final representation is created by concatenating them as
ht = [

−→
ht ;
←−
ht ]. In all these networks, the hidden layer can be regarded as an implicit, learned feature

that enables concept prediction. A further improvement to this model is provided by performing joint
decoding of the entire input sequence in a Viterbi-style manner using a CRF (Lafferty et al., 2001) as
the final output layer. The resulting network is commonly referred to as the bidirectional LSTM-CRF
(Lample et al., 2016).

4 Experiments

4.1 Dataset
The 2010 i2b2/VA Natural Language Processing Challenges for Clinical Records include a concept ex-
traction task focused on the extraction of medical concepts from patient reports. For the challenge, a
total of 394 concept-annotated reports for training, 477 for testing, and 877 unannotated reports were de-
identified and released to the participants alongside a data use agreement (Uzuner et al., 2011). However,
part of this data set is no longer being distributed due to restrictions later introduced by the Institutional
Review Board (IRB). Thus, Table 2 summarizes the basic statistics of the training and test data sets which
are currently publicly available and that we have used in our experiments.

4.2 Evaluation Methodology
Our models have been blindly evaluated on the 2010 i2b2/VA CE test data using a strict evaluation crite-
rion requiring the predicted concepts to exactly match the annotated concepts in terms of both boundary
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Methods Precision Recall F1 Score
Hidden semi-Markov Model (deBruijn et al., 2011) 86.88 83.64 85.23

Distributonal Semantics CRF (Jonnalagadda et al., 2012) 85.60 82.00 83.70
Binarized Neural Embedding CRF (Wu et al., 2015) 85.10 80.60 82.80

CliNER (Boag et al., 2015) 79.50 81.20 80.00
Truecasing CRFSuite (Fu and Ananiadou, 2014) 80.83 71.47 75.86

Random - Bidirectional LSTM-CRF 81.06 75.40 78.13
Word2Vec - Bidirectional LSTM-CRF 82.61 80.03 81.30

GloVe - Bidirectional LSTM-CRF 84.36 83.41 83.88

Table 3: Performance comparison between the bidirectional LSTM-CRF (bottom three lines) and state-
of-the-art systems (top five lines) over the 2010 i2b2/VA concept extraction task.

and class. To facilitate the replication of our experimental results, we have used a publicly-available
library for the implementation of the LSTM (i.e. the Theano neural network toolkit (Bergstra et al.,
2010)) and we publicly release our code1. We have split the training set into two parts (sized at ap-
proximately 70% and 30%, respectively), using the first for training and the second for selection of the
hyper-parameters (“validation”) (Bergstra and Bengio, 2012).The hyper-parameters include the embed-
ding dimension, d, chosen over {50, 100, 300, 500}, and two additional parameters, the learning and
drop-out rates, that were sampled from a uniform distribution in the range [0.05, 0.1]. All weight matri-
ces were randomly initialized from the uniform distribution within range [−1, 1]. The word embeddings
were either initialized randomly in the same way or fetched from Word2Vec and GloVe (Mikolov et al.,
2013a; Pennington et al., 2014b). Approximately 25% of the tokens were alphanumeric, abbreviated
or domain-specific strings that were not available as pre-trained embeddings and were always randomly
initialized. Early stopping of training was set to 50 epochs to mollify over-fitting, and the model that
gave the best performance on the validation set was retained. The accuracy is reported in terms of micro-
average F1 score computed using the CoNLL score function (Nadeau and Sekine, 2007).

4.3 Results and Analysis
Table 3 shows the performance comparison between state-of-the-art CE systems and the proposed bidi-
rectional LSTM-CRF with different initialization strategies. As a first note, the bidirectional LSTM-CRF
initialized with GloVe outperforms all recent approaches (2012-2015). On the other hand, the best sub-
mission from the 2010 i2b2/VA challenge (deBruijn et al., 2011) still outperforms our approach. How-
ever, based on the description provided in (Uzuner et al., 2011), these results are not directly comparable
since the experiments in (deBruijn et al., 2011; Jonnalagadda et al., 2012) had used the original dataset
which has a significantly larger number of training samples. Using general-purpose, pre-trained embed-
dings improves the F1 score by over 5 percentage points over a random initialization. In general, the
results achieved with the proposed approach are close and in many cases above the results achieved by
systems based on hand-engineered features.

Conclusion

This paper has explored the effectiveness of the contemporary bidirectional LSTM-CRF for clinical con-
cept extraction. The most appealing feature of this approach is its ability to provide end-to-end recog-
nition using general-purpose, off-the-shelf word embeddings, thus sparing effort from time-consuming
feature construction. The experimental results over the authoritative 2010 i2b2/VA reference corpora
look promising, with the bidirectional LSTM-CRF outperforming all recent approaches and ranking
closely to the best submission from the original 2010 i2b2/VA challenge. A potential way to further
improve its performance would be to explore the use of unsupervised word embeddings trained from
domain-specific resources such as the MIMIC-III corpora (Johnson et al., 2016).

1https://github.com/raghavchalapathy/Bidirectional-LSTM-CRF-for-Clinical-Concept-Extraction
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