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Abstract

Current evaluation metrics for image de-
scription may be too coarse. We therefore
propose a series of binary forced-choice
tasks that each focus on a different aspect
of the captions. We evaluate a number
of different off-the-shelf image description
systems. Our results indicate strengths and
shortcomings of both generation and rank-
ing based approaches.

1 Introduction

Image description, i.e. the task of automatically
associating photographs with sentences that de-
scribe what is depicted in them, has been framed
in two different ways: as a natural language gener-
ation problem (where each system produces novel
captions, see e.g. Kulkarni et al. (2011)), and as
a ranking task (where each system is required to
rank the same pool of unseen test captions for each
test image, see e.g. Hodosh et al. (2013)).

But although the numbers reported in the litera-
ture make it seem as though this task is quickly ap-
proaching being solved (on the recent MSCOCO
challenge,1 the best models outperformed humans
according to some metrics), evaluation remains
problematic for both approaches (Hodosh, 2015).

Caption generation requires either automated
metrics (Papineni et al., 2002; Lin, 2004;
Denkowski and Lavie, 2014; Vedantam et al.,
2015), most of which have been shown to corre-
late poorly with human judgments (Hodosh et al.,
2013; Elliott and Keller, 2014; Hodosh, 2015) and
fail to capture the variety in human captions, while
human evaluation is subjective (especially when
reduced to simple questions such as “Which is a
better caption?”), expensive, and difficult to repli-
cate. Ranking-based evaluation suffers from the

1
http://mscoco.org/dataset/#captions-challenge2015

problem that the pool of candidate captions may,
on the one hand, be too small to contain many
meaningful and interesting distractors, and may,
on the other hand, contain other sentences that are
equally valid descriptions of the image.

To illustrate just how much is still to be done
in this field, this paper examines a series of bi-
nary forced-choice tasks that are each designed
to evaluate a particular aspect of image descrip-
tion. Items in each task consist of one image,
paired with one correct and one incorrect caption;
the system has to choose the correct caption over
the distractor. These tasks are inspired both by
ranking-based evaluations of image description as
well as by more recent work on visual question
answering (e.g. Antol et al. (2015)), but differ
from these in that the negatives are far more re-
stricted and focused than in the generic ranking
task. Since most of our tasks are simple enough
that they could be solved by a very simple deci-
sion rule, our aim is not to examine whether mod-
els could be trained specifically for these tasks.
Instead, we wish to use these tasks to shed light
on which aspects of image captions these mod-
els actually “understand”, and how models trained
for generation differ from models trained for rank-
ing. The models we compare consist of a num-
ber of simple baselines, as well as some publicly
available models that each had close to state-of-
the-art performance on standard tasks when they
were published. More details and discussion can
be found in Hodosh (2015).

2 A framework for focused evaluation

In this paper, we evaluate image description sys-
tems with a series of binary (two-alternative)
forced choice tasks. The items in each task consist
of one image from the test or development part of
the Flickr30K dataset (Young et al., 2014), paired
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“Switch People” Task

Image Gold Caption Distractor

a man holding and 
kissing a crying 
little boy on the 
cheek

a crying little boy 
holding and 
kissing a man on 
the cheek

a woman is hula 
hooping  
in front of  
an audience

an audience is 
hula hooping  
in front of  
a woman

�

�

Figure 1: The “switch people” task

with one correct and one incorrect caption, and the
system has to choose (i.e. assign a higher score to)
the correct caption over the distractor.

The correct caption is either an original caption
or a part of an original caption for the image. Dis-
tractors are shorter phrases that occur in the orig-
inal caption, complete captions for different im-
ages that share some aspect of the correct caption,
or are artificially constructed sentences based on
the original caption. While all distractors are con-
structed around the people or scene mentions in
the original caption, each task is designed to focus
on a particular aspect of image description. We
focus on scene and people mentions because both
occur frequently in Flickr30K. Unlike MSCOCO,
all images in Flickr30K focus on events and ac-
tivities involving people or animals. Scene terms
(“beach”, “city”, “office”, “street”, “park”) tend
to describe very visual, unlocalized components
that can often be identified by the overall layout
or other global properties of the image. At the
same time, they restrict what kind of entities and
events are likely to occur in the image. For in-
stance, people do not “run” , “jump”, or “swim” in
an “office”. Hence, models trained and tested on
standard caption datasets do not necessarily need
to model what “jumping in an office” might look
like. We therefore suspect that much of the generic
ranking task can be solved by identifying the vi-
sual appearance of scene terms.

Some tasks require the system to choose be-
tween two captions that provide similar descrip-
tions of the main actor or the scene. In others, the
distractor is not a full sentence, but consists only

“Replace Scene” Task

Image Gold Caption Distractor

two dogs playing  
on a beach

two dogs playing  
on frozen tundra

a brown dog is 
bending down 
trying to drink from  
a jet of water

a brown dog is 
bending down 
trying to drink from  
your local 
brewery

a man in a 
restaurant  
having lunch

a man in an office 
boardroom 
having lunch

Figure 2: The “replace scene” task

of the main actor or scene description. We also
evaluate a converse task in which the distractor de-
scribes the scene correctly (but everything else in
the sentence is wrong), while the correct answer
consists only of the NP that describes the scene.
Finally, we consider a task in which the distractor
swaps two people mentions, reversing their corre-
sponding semantic roles while keeping the same
vocabulary.

3 Our tasks

Our first task (switch people, Fig. 1) identifies
the extent to which models are able to distinguish
sentences that share the same vocabulary but con-
vey different semantic information. In this task,
the correct sentences contain one person men-
tion as the main actor and another person men-
tion that occupies a different semantic role (e.g.
“A man holding a child”). The distractors (“A
child holding a man”) are artificially constructed
sentences in which those two people mentions are
swapped. This allows us to evaluate whether mod-
els can capture semantically important differences
in word order, even when the bag-of-words repre-
sentation of two captions is identical (and bag-of-
words-based evaluation metrics such as BLEU1,
ROUGE1 or CIDER would not be able to capture
the difference either).

In the replace person and replace scene task
(Fig. 2), distractors are artificially constructed sen-
tences in which the main actor (the first person
mention) or the scene chunk (which typically oc-
curs at the end of the sentence) were replaced by
different people or scene mentions. These tasks
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“Share Scene” Task

Image GoldCaption Distractor

a man in a suit and 
tie in a fancy 
building is 
speaking at the 
podium

a lady is giving a 
speech at the 
podium

there is a woman 
riding a bike down 
the road and she 
popped a wheelie

two men in jeans 
and jackets are 
walking down a 
small road

Figure 3: The “share scene” task

aim to elicit how much systems are able to iden-
tify correct person or scene descriptions. Mod-
els should be able to understand when a person
is being described incorrectly, even when the rest
of the sentence remains correct. Similarly, since
the scene is important to the overall understanding
of the a caption, we wanted to make sure models
grasp that changing the scene terms of a caption
can drastically change its meaning.

The share person and share scene distractors
(Fig. 3) are complete sentences from the training
portion of Flickr30K whose actor or scene men-
tions share the same headword as the correct de-
scription for the test image. These tasks aim to
elicit the extent to which systems focus only on
the person or scene descriptions, while ignoring
the rest of the sentence.

We also evaluate whether models are able to
identify when a complete sentence is a better
description of an image than a single NP. The
just person and just scene distractors (Figs. 4
and 5) are NPs that consist only of the person or
scene mentions of the correct description, and aim
to identify whether systems prefer more detailed
(correct) descriptions over shorter (but equally
correct) ones. Finally, since systems can perform
well on these tasks by simply preferring longer
captions, we also developed a converse just scene
(+) task, which pairs the (short, but correct) scene
description with a (longer, but incorrect) sentence
that shares the same scene.

3.1 Task construction

All our tasks are constructed around people and
scene mentions, based on the chunking and the
dictionaries provided in Plummer et al. (2015).
Person mentions are NP chunks whose head noun

“Just Person” Task

Image Gold Caption Distractor

a tattooed 
man wearing
overalls on a 
stage holding a 
microphone

a tattooed 
man wearing 
overalls

a team of 
soccer 
players is 
huddled and 
having a 
serious 
discussion

a team of 
soccer 
players

Figure 4: The “just person” task

refer to people (“a tall man”) or groups of people
(“a football team”), or “NP1-of-NP2” construc-
tions where the head of the first NP is a collec-
tive noun and the head of the second NP refers to
people (“a group of protesters”). Subsequent NP
chunks that refer to clothing are also included (“a
girl in jeans”, “a team in blue”. Scene mentions
are NP chunks whose head noun refers to locations
(e.g. “beach”, “city”, “office”, “street”, “park”).

Switch people task We start with all captions
of the 1000 development images that contain two
distinct people mentions (excluding near-identical
phrase pairs such as “one man”/“another man”).
We filtered out examples in which the grammatical
role reversal is semantically equivalent to the orig-
inal (“A man talking with a woman”). Since we
wished to maintain identical bag-of-words repre-
sentations (to avoid differences between the cap-
tions that are simply due to different token fre-
quencies) while focusing on examples that still re-
main grammatically correct (to minimize the ef-
fect of evaluating just how well a model gener-
ates or scores grammatically correct English text),
we also excluded captions where one mention (e.g.
the subject) is singular and the other (e.g. an ob-
ject) is plural. When swapping two mentions, we
also include the subsequent clothing chunks (e.g.
“man in red sweater”) in addition to other pre-
modifiers (“a tall man”). We automatically gen-
erate and hand prune a list of the possible permu-
tations of the person chunks, resulting in 296 sen-
tence pairs to use for evaluation.
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“Just Scene” Task

Image Gold Caption Distractor

a man sleeping 
in a green room 
on a couch

a green room

a lady is sitting 
down tending to 
her stand

her stand

a child poses 
wearing glasses 
near water 
outside

water

Figure 5: The “just scene” task

Replace person/scene tasks For the “replace
person” task, we isolate person chunks, in both the
training and development data. For each develop-
ment sentence, we create a distractor by replacing
each person chunk with a random chunk from the
training data, resulting in 5816 example pairs to
evaluate. For the “replace scene” task we created
negative examples by replacing the scene chunk of
a caption with another scene chunk from the data.
Because multiple surface strings can describe the
same overall scene, we use the training corpus to
calculate which scene chunk’s headwords can co-
occur in the training corpus. We avoid all such
replacements in order to ensure that the negative
sentence does not actually still describe the im-
age. In theory, this should be a baseline that all
state-of-the-art image description models excel at.

Share person/scene tasks Here, the distractors
consist of sentences from the Flickr30K training
data which describe a similar main actor or scene
as the correct caption. For each sentence in the de-
velopment data, we chose a random training sen-
tence that shares the same headword for its “actor”
chunk, resulting in 4595 items to evaluate. We did
the same for development sentences that mention
a scene term, resulting in 2620 items.

Just person/scene tasks Finally, the “just per-
son” and “just scene” tasks require the models to
pick a complete sentence (again taken from the de-
velopment set) over a shorter noun phrase that is a
substring of the correct answer, consisting of ei-
ther the main actor or the scene description. Al-
though the distractors are not wrong, they typi-

cally only convey a very limited amount of infor-
mation about the image, and models should pre-
fer the more detailed descriptions provided by the
complete sentences, as long as they are also cor-
rect. But since these tasks can be solved perfectly
by any model that consistently prefers longer cap-
tions over shorter ones, we also investigate a con-
verse “just scene (+)” task; here the correct an-
swer is a noun phrase describing the scene, while
the distractor is another full sentence that contains
the same scene word (as in the “share scene” task).
Taken together, these tasks allow us to evaluate the
extent to which models rely solely on the person
or scene description and ignore the rest of the sen-
tence.

4 The Models

We evaluate generation and ranking models that
were publicly available and relatively close in per-
formance to state of the art, as well as two simple
baselines.

Generation models Our baseline model for
generation (Bigram LM) ignores the image en-
tirely. It returns the caption that has a higher prob-
ability according to an unsmoothed bigram lan-
guage model estimated over the sentences in the
training portion of the Flickr30K corpus.

As an example of an actual generation model
for image description, we evaluate a publicly
available implementation2 of the generation model
originally presented by Vinyals et al. (2015)
(Generation). This model uses an LSTM
(Hochreiter and Schmidhuber, 1997) conditioned
on the image to generate new captions. The par-
ticular instance we evaluate was trained on the
MSCOCO dataset (Lin et al., 2014), not Flickr30K
(leading to a possible decrease in performance on
our tasks) and uses VGGNet (Simonyan and Zis-
serman, 2014) image features (which should ac-
count for a significant jump in performance over
the previously published results of Vinyals et al.
(2015)). Works such as Vinyals et al. (2015) and
Mao et al. (2014) present models that are de-
veloped for the generation task, but renormalize
the probability that their models assign to sen-
tences when they apply them to ranking tasks
(even though their models include stop probabil-
ities that should enable them to directly compare
sentences of different lengths). To examine the ef-

2
http://cs.stanford.edu/people/karpathy/neuraltalk/
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fect of such normalization schemes, we also con-
sider normalized variants of our two generation
models in which we replace the original sentence
probabilities by their harmonic mean. We will
see that the unnormalized versions of these mod-
els tend to perform poorly when the gold caption
is measurably longer than the distractor term, and
well in the reverse case, while normalization at-
tempts to counteract this trend.

Ranking models Ranking models learn embed-
dings of images and captions in the same space,
and score the affinity of images and captions in
terms of their Euclidian distance in this space.
We compare the performance of these generation
models with two (updated) versions of the ranking
model originally presented by Kiros et al. (2014)3

(LSTM Ranking), one trained on MSCOCO, and
the other on Flickr30K. This model uses an LSTM
to learn the embedding of the captions. While the
Flickr30K trained model should be more appropri-
ate for our test data, the MSCOCO trained model
might be more directly comparable to the genera-
tion model of Vinyals et al. A comparison between
the two variants can offer insight into the degree of
domain shift between the two datasets.

Our ranking baseline model (BOW Ranking)
replaces the LSTM of Kiros et al. (2014) with
a simple bag-of-words text representation, allow-
ing us to examine whether the expressiveness of
LSTMs is required for this task. We use the aver-
age of the tokens’ GloVe embeddings (Pennington
et al., 2014) as input to a fully connected neural
network layer that produces the final learned text
embedding4. More formally, for a sentence con-
sisting of tokens w1...wn, GloVe embeddings φ(),
and a non-linear activation function σw, we define
the learned sentence embedding as F (w1...wn) =
σw(Ww · ( 1

n)
∑

i φ(wi) + bw). Similarly, the em-
bedding of an image represented as a vector p is
defined as G(p) = σi(Wi · p+ bi). We use a rank-
ing loss similar to Kiros et al. (2014) to train the
parameters of our model, θ = (Ww,Wi, bw, bi).
We define the distance of the embeddings of image
i and sentence s as ∆(i, s) = cos(F (i), G(s)).
Using S to refer to the set of sentences in the train-
ing data, Si for the training sentences associated
with image i, S−i for the set of sentences not as-
sociated with i, I for the set of training images, Is

3
https://github.com/ryankiros/visual-semantic-embedding

4Deeper and more complex representations showed no
conclusive benefit

for the image associated with sentence s, and I−s

for the set of all other training images, and em-
ploying a free parameter m for the margin of the
ranking, our loss function is:

L(θ) =
∑

i∈I,s∈Si,s′∈S−i

max(0,m−∆(i, s)+∆(i, s′))

+
∑

s∈S,i∈Is,i′∈I−s

max(0,m−∆(i, s))+∆(i′, s)))

As input image features, we used the 19
layer VGGNet features (Simonyan and Zisserman,
2014), applied as by Plummer et al. (2015). We
first process the GloVe embeddings by performing
whitening through zero-phase component analysis
(ZCA) (Coates and Ng, 2012) based on every to-
ken appearance in our training corpus. We set σw

to be a ReLU and simply use the identity func-
tion for σi (i.e. no non-linearity) as that resulted
in the best validation performance. We train this
model on the Flickr30K training data via stochas-
tic gradient descent, randomly sampling either 50
images (or sentences), and randomly sampling one
of the other training sentences (images). We adjust
the learning rate of each parameter using Adagrad
(Duchi et al., 2010) with an initial learning rate of
0.01, a momentum value of 0.8, and a parameter
decay value of 0.0001 for regularization.

5 Results

Results for all tasks can be found in Table 1.

The “switch people” task The generation mod-
els are much better than the ranking models at
capturing the difference in word order that dis-
tinguishes the correct answer from the distrac-
tor in this task. At 52% accuracy, the ranking
models perform only marginally better than the
ranking baseline model, which ignores word or-
der, and therefore performs at chance. But the
69% accuracy obtained by the generation models
is about the same as the performance of the bi-
gram baseline that ignores the image. This indi-
cates that neither of the models actually “under-
stands” the sentences (e.g. the difference between
men carrying children and children carrying men),
although generation models perform significantly
better than chance because they are often able to
distinguish the more common phrases that occur
in the correct answers (“man carries child”) from
those that appear in the constructed sentences that
serve as distractors here (“child carries man”). It

23



Switch Replace Replace Share Share Just Just Just
People Person Scene Person Scene Person Scene Scene(+)

# of pairs 296 5816 2513 4595 2620 5811 2624 2620

Bigram LM 69.8 83.0 77.5 49.6 47.9 1.1 0.0 99.6
Normalized Bigram LM 69.8 69.9 76.5 50.2 50.9 31.3 28.2 71.0
Generation (COCO) 69.3 85.2 85.2 56.5 54.7 3.8 7.4 94.2
Normalized Generation (COCO) 68.9 74.0 85.5 61.6 59.2 79.5 97.3 5.5

BOW Ranking (Flickr30K) 50.0 84.9 89.3 93.6 89.9 81.2 84.6 71.3
LSTM Ranking (COCO) 52.0 79.4 86.6 89.9 88.0 79.8 86.5 58.2
LSTM Ranking (Flickr30K) 52.0 81.1 87.0 92.5 89.3 82.6 78.8 75.5

Table 1: Accuracies of the different models on our tasks

seems that localization of entities (Plummer et al.,
2015; Xu et al., 2015) may be required to address
this issue and go beyond baseline performance.

The “replace person/scene” tasks On the “re-
place person” task, the (unnormalized) bigram
baseline has a relatively high accuracy of 83%,
perhaps because the distractors are again artifi-
cally constructed sentences. The ranking baseline
model and the (unnormalized) generation model
outperform this baseline somewhat at around 85%,
while the ranking models perform below the bi-
gram baseline. The ranking model trained on
Flickr30K has a slight advantage over the same
model trained on MSCOCO, an (unsurprising) dif-
ference that also manifests itself in the remaining
tasks, but both models perform below the rank-
ing baseline. Normalization hurts both generation
models significantly. It is instructive to compare
performance on this task with the “replace scene”
task. We see again that normalization hurts for
generation, while the baseline ranking model out-
performs the more sophisticated version. But here,
all models that consider the image outperform the
bigram model by a very clear eight to almost
twelve percent. This indicates that all image de-
scription models that we consider here rely heav-
ily on scene or global image features. It would be
interesting to see whether models that use explicit
object detectors could overcome this bias.

The “share person/scene” tasks The distrac-
tors in these tasks are captions for other images
that share the same actor or scene head noun.
Since the bigram language models ignore the im-
age, they cannot distinguish the two cases (it is
unclear why the unnormalized bigram model’s ac-
curacy on the “share scene” task is not closer to
fifty percent). And while normalization helps the
generation model a little, its accuracies of 61.6%
and 59.2% are far below those of the ranking mod-

els, indicating that the latter are much better at
distinguishing between the correct caption and an
equally fluent, but incorrect one. This is perhaps
not surprising, since this task is closest to the rank-
ing loss that these models are trained to optimize.
By focusing on an adversarial ranking loss be-
tween training captions, the ranking model may
be able to more correctly pick up important subtle
differences between in-domain images, while the
generation model is not directly optimized for this
task (and instead has to also capture other proper-
ties of the captions, e.g. fluency). With an accu-
racy of 93.6% and 89.9%, the bag-of-word ranking
baseline model again outperforms the more com-
plex LSTM. But examining its errors is informa-
tive. In general, it appears that it makes errors
when examples require more subtle understanding
or are atypical images for the words in the caption,
as shown in Figure 6.

The “just person/scene” tasks The “just per-
son” and “just scene” tasks differ from all other
tasks we consider in that the distractors are also
correct descriptions of the image, although they
are consistently shorter. To actually solve these
tasks, models should be able to identify that the
additional information provided in the longer cap-
tion is correct. By contrast, the “just scene (+)”
task requires them to identify that the additional
information provided in the longer caption is not
correct. But a simple preference for longer or
shorter captions can also go a long way towards
“solving” these tasks. In this case, we would ex-
pect to see a model’s performance on the “just
scene” task to be close to the complement of its
performance on the converse“just scene (+)” task.
This is indeed the case for the bigram and the
generation models (but not for the ranking mod-
els). This preference is particularly obvious in the
case of the unnormalized bigram model (which
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Image Gold Caption Distractor: Shares a Scene

a group of children in the ocean
(0.194)

a person in a kayak rides waves in the 
ocean (0.344)

two women are sitting in ditches of dirt 
with two buckets and a purse close by 
(0.378)

the young toddlers is dressed in yellow 
and purple while sitting on the ground with 
three bucks filling them with dirt (0.393)

a group of people hold hands on the 
beach (0.609)

a group of people are lounging at a beach 
(0.613)

a dog drags a white rag through an almost 
dried up creek (0.330)

a dog jumps over a creek (0.433)

Figure 6: Examples from the “share scene” task that the BOW ranking model gets wrong, together with
its scores for each of the captions.

does not take the image into account), and, to a
slightly lesser extent, by the unnormalized gen-
eration model (which does). Both models have
near perfect accuracy on the “just scene (+)” task,
and near complete failure on the other two tasks.
Length normalization reduces this preference for
shorter captions somewhat in the case of the bi-
gram model, and seems to simply reverse it for
the generation model. None of the ranking models
show such a marked preference for either long or
short captions. But although each model has simi-
lar accuracies on the “just scene” and on the “just
scene (+)” task, accuracies on the “just scene” task
are higher than on the “just scene (+)” task. This
indicates that they are not always able to iden-
tify when the additional information is incorrect
(as in the “just scene (+)” task). Accuracies on
the “just person” task tend to be lower, but are
otherwise generally comparable to those on the
“just scene” task. We see the biggest drops for the
length-normalized generation model, whose accu-
racy goes down from 97.3% on the scene task
to 79.5% (indicating that something else besides
a preference for longer captions is at play), and
the MSCOCO-trained ranking model which goes
down from 86.5% to 79.8%.

It is unclear why the performance on the “just
person” task tends to be lower than on the “just
scene” task. Since scenes correspond to global im-
age properties, we stipulate that models are better
at identifying them than most people terms. Al-
though some people descriptions (e.g. “baseball
player”, “audience”) are highly indicative of the
scene, this is not the case for very generic terms

(“man”, “woman”). We also note that identifying
when the additional information is correct can be
quite difficult. For example, in the second example
in Figure 4, the phrase “huddled and having a se-
rious discussion” has to be understood in the con-
text of soccer. While the dataset contains other im-
ages of discussions, there are no other instances of
discussions taking place on soccer fields, and the
people in those cases tend to occupy a much larger
portion of the image. Further analyzing and isolat-
ing these examples (and similar ones) is key for fu-
ture progress. Figure 7 shows items from the “just
scene” task that the BOW model gets right, paired
with items for the same image where it makes a
mistake. For the first item, it seems that the model
associates the terms “crowd” or “crowded” with
this image (while not understanding that “busy” is
synonymous with “crowded” in this context). The
error on the second item may be due to the word
“rock” in the correct answer (Flickr30K contains a
lot of images of rock climbing), while the error on
the fourth item may be due to the use of words like
“parents” rather than the more generic “people.”

5.1 Discussion

We compared generation models for image de-
scription, which are trained to produce fluent de-
scriptions of the image, with ranking-based mod-
els, which learn to embed images and captions in a
common space in such a way that captions appear
near the images they describe. Among the mod-
els we were able to evaluate, ranking-based ap-
proaches outperformed generation-based ones on
most tasks, and a simple bag-of-words models per-
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Image Gold Caption Distractor: A Scene Chunk 

a single man in a black tshirt 
standing above the crowd at a busy 
bar (0.329)

a busy bar 
(0.203)

a man is making a rock gesture while 
standing on a stool in a crowded bar 
(0.216)

a crowded bar
(0.327)

some people in formal attire stand 
in front of the altar in a church 
sanctuary (0.434)

a church sanctuary
(0.325)

a son and his parents are taking a 
group picture in a church (0.274)

a church
(0.399)

Figure 7: Items from the “Just Scene” task with the scores from the BOW ranking model in parentheses
(bold = the caption preferred by the model).

formed similarly to a comparable LSTM model.
The “switch people” results indicate that rank-

ing models may not capture subtle semantic differ-
ences created by changing the word order of the
original caption (i.e. swapping subjects and ob-
jects). But although generation models seem to
perform much better on this task, their accuracy is
only as good as, or even slightly lower than, that
of a simple bigram language model that ignores
the image. This indicates that generation models
may have simply learned to distinguish between
plausible and implausible sentences.

The “share person/scene” and “just per-
son/scene” results indicate that ranking models
may be better at capturing subtle details of the im-
age than generation models. But our results also
indicate that both kinds of models still have a long
way to before they are able to describe images ac-
curately with a “human level of detail.”

Our comparison of the LSTM-based model of
Kiros et al. (2014) against our bag-of-words base-
line model indicates that the former may not be
taking advantage of the added representational
power of LSTMs (in fact, most of the recent im-
provements on this task may be largely due to
the use of better vision features and dense word
embeddings trained on large corpora). However,
RNNs (Elman, 1990) and LSTMs offer convenient
ways to define a probability distribution across the
space of all possible image captions that cannot be
modeled as easily with a bag-of-words style ap-
proach. The question remains if that convenience
comes at a cost of no longer being able to easily
train a model that understands the language to an

acceptable amount of detail. It is also important to
note that we were unable to evaluate a model that
combines a generation model with a reranker such
Fang et al. (2014) and the follow up work in De-
vlin et al. (2015). In theory, if the generation mod-
els are able produce a significantly enough diverse
set of captions, the reranking can make up the gap
in performance while still being able to generate
novel captions easily.

6 Conclusion

It is clear that evaluation still remains a difficult is-
sue for image description. The community needs
to develop metrics that are more sensitive than the
ranking task while being more directly correlated
to human judgement than current automated met-
rics used for generation. In this paper, we de-
veloped a sequence of binary forced-choice tasks
to evaluate and compare different models for im-
age description. Our results indicate that gener-
ation and ranking-based approaches are both far
from having “solved” this task, and that each ap-
proach has different advantages and deficiencies.
But the aim of this study was less to analyze the
behavior of specific models (we simply used mod-
els whose performance was close to state of the
art, and whose implementations were available to
us) than to highlight issues that are not apparent
under current evaluation metrics, and to stimulate
a discussion about what kind of evaluation meth-
ods are appropriate for this burgeoning area. Our
data is available,5 and will allow others to evaluate
their models directly.

5
http://nlp.cs.illinois.edu/HockenmaierGroup/data.html
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