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Introduction

The BioNLP Shared Task series pursues establishing a community-wide effort for fine-grained
information extraction (IE) in biology domains. As in the third edition (2013), the fourth edition
focuses on knowledge base construction through IE. Nowadays some BioNLP tools, e.g., protein
name recognizers or protein-protein interaction extractors, are reaching a level of applicability which
allows them to be integrated into bioinformatics systems and thus to significantly contribute to the
bioinformatics and biology research. The BioNLP community then faces the challenge of the integration
of information extracted from the text to external resources like -omics databases, biological ontologies,
or systems biology operational models. BioNLP-ST 2016 offers tasks by which new or existing data,
and evaluation methods are expected to be adapted to this trend.

BioNLP-ST 2016 comprises three tasks that address different aspects of knowledge acquisition from text
and also encompasses a wide range of biological diversity:

• SeeDev, which aims at extracting the regulation of the seed development in plants using a rich
model;

• Bacteria Biotopes 3 (BB3) for the construction of a bacteria habitat database using external
ontologies;

• Genia 4 (GE4), which aims at delivering new shared task framework to construct knowledge base
of NFκB synthesis and regulation through IE.

The previous editions had attracted many participants and it has then supported active research on
information extraction and database/knowledge base integration. In this edition, 26 final results were
submitted by 15 distinct teams from 10 different countries of four continents. This year, BioNLP-ST is
organized as a joint event with the BioASQ challenge that has converging goals on biological question
answering and semantic indexing. The BioNLP-ST/BioASQ workshop is collocated with the BioNLP
workshop hosted by the ACL/HLT 2016 conference in Berlin, Germany. In addition to the participating
systems, an overview of each task is also presented at the workshop.

Thanks to the many excellent manuscripts received from participants and the efforts of the programme
committee, it is our pleasure to present these proceedings that describe the BioNLP Shared Task and the
participating systems.

Claire Nédellec, Robert Bossy and Jin-Dong Kim
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Abstract

This paper presents the SeeDev Task of the
BioNLP Shared Task 2016. The purpose
of the SeeDev Task is the extraction from
scientific articles of the descriptions of ge-
netic and molecular mechanisms involved
in seed development of the model plant,
Arabidopsis thaliana. The SeeDev task
consists in the extraction of many different
event types that involve a wide range
of entity types so that they accurately
reflect the complexity of the biological
mechanisms. The corpus is composed
of paragraphs selected from the full-texts
of relevant scientific articles. In this
paper, we describe the organization of the
SeeDev task, the corpus characteristics,
and the metrics used for the evaluation
of participant systems. We analyze and
discuss the final results of the seven partic-
ipant systems to the test. The best F-score
is 0.432, which is similar to the scores
achieved in similar tasks on molecular
biology.

1 Introduction

Since its first edition in 2009, BioNLP Shared
Task (BioNLP-ST) organizes information extrac-
tion (IE) tasks from scientific literature with a
focus on molecular mechanisms with the aim to
promote advances in IE research in the biomedical
domain. The SeeDev task is the first task on event
extraction about molecular biology of plants. It
gives an opportunity for the BioNLP community
to evaluate the reusability of methods, to charac-
terize the peculiarities of IE for the plant biology
domain and to develop dedicated approaches. For
this purpose, we manually annotated a new corpus
of scientific papers selected for their relevance

to the topic. We propose to the participants to
extract text-bound events that involve biological
entities provided as input. The performances of
the systems are evaluated by standard measures
through the comparison of their predictions to the
reference annotations.

2 Context

Seeds are the main vectors for breeding and pro-
duction of annual field crops. The accumulation
of seed storage compounds (e.g. sugars, lipids,
proteins) is of primary importance for food, feed
and industrial uses. Seed development requires
the coordinated growth of different tissues that
involves complex genetics and environmental reg-
ulations (Alberts et al., 2002). A comprehensive
understanding of the molecular networks that un-
derlie the regulation of seed development remains
a major scientific challenge with important poten-
tial impact on fundamental research, agriculture
and industry.

The SeeDev task of BioNLP Shared Task 2016
focuses on the accumulation of reserves in the seed
of the model plant, Arabidopsis thaliana (Ath),
for which research on regulatory networks is the
subject of a large and active international commu-
nity (Santos-Mendoza et al., 2008). Most of this
knowledge is spread in thousands of articles. As
such, this topic constitutes an excellent primer for
the development of event extraction methods. The
SeeDev corpus should then be largely reusable for
the study of other plants and other development
phases.

Information Extraction research applied to biol-
ogy mainly consists in automatic entity extraction,
their normalization and event extraction (Anani-
adou et al., 2014). The extraction of regulatory
network has become one of the most popular tasks
in shared tasks in recent years. The increasing
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complexity of the event scheme over the years
is driven by the significant scientific advances
in IE and the increasing need for computational
models in bioinformatics and systems biology. In
2005, the objective of the Learning Language
in Logic challenge (LLL’05) was the extraction
of gene interactions between proteins and genes
with the goal of reconstructing bacterial regulatory
networks (Nédellec, 2005). The diversity of the
biological events (molecular, physiological) and
entities (genes, proteins, families, sites, environ-
mental factors and phenotypes) has continuously
increased over the time together with the variety
of the biological mechanisms studied. These
mechanisms range from detailed networks as in
Bacteria Interaction (Bossy et al., 2012) and
Gene Regulation Network (Bossy et al., 2015)
tasks, signaling pathways as in GENIA task (Kim
et al., 2013a) and metabolism to diseases as
in Pathway Curation (PC) and Cancer Genetics
(CG) tasks (Pyysalo et al., 2015). Their extraction
from text makes an increasing use of existing
standards, nomenclatures and ontologies such as
Gene Ontology that facilitates the integration of
the text mining results into larger knowledge bases
and bioinformatics applications (e.g. GRO task
(Kim et al., 2013b)) or OntoBiotope (e.g. Bacteria
Biotope task (Bossy et al., 2015)).

The SeeDev task brings a new application
domain, plant development biology, with similar
goals and representation as previous IE shared
tasks on biological event extraction. This new
application domain has required the design of a
new knowledge model for the representation of
the events, a manually annotated corpus and new
metric that accounts for the varying importance of
the event arguments.

We refer to the SeeDev task knowledge model
as Gene Regulatory Network for Arabidopsis
(GRNA). GRNA meets the usual constraints of
manual annotation of texts (e.g. biological rel-
evance and computational tractability), and of
automatic annotation by IE methods ( e.g. learn-
ability from training examples). We have also
taken into account the expected use of GRNA
for the indexing and retrieval of textual events
and experimental data in a unified representation,
the modeling of other plant systems, and also
the integration of text knowledge with knowledge
derived from experimental data.

SeeDev corpus is composed of paragraphs from

a selection of recent full-text scientific papers
about molecular biology of seed development.

3 Task Description

The SeeDev Task consists in two subtasks (1)
SeeDev-binary on binary relation extraction and
(2) SeeDev-full on full event extraction. The
SeeDev-binary subtask has been conceived as a
first step towards the extraction of full n-ary
events, which is of interest for plant biology.
Both subtasks share the same GRNA model and
the same document set with different annotation
sets. The two annotations sets contain binary
relations and events respectively. The annotation
set of SeeDev-binary has been computed from
the annotation set of SeeDev-full through the
application of formal transformation rules.

3.1 Knowledge Representation
The GRNA model defines 16 entity types
(Figure 1) and 21 event types (Table 1). They are
classified into categories and subcategories for
readability purpose.

Molecule:
DNA: Gene, Gene Family, Box, Promoter
DNA product : RNA, Protein, Protein Family,

Protein Complex, Protein Domain
Hormone: Hormone
Dynamic Process: Regulatory Network,

Pathway
Context: Tissue, Development Phase,

Genotype, Environmental Factor

Figure 1. SeeDev entity types.

The Molecule category includes molecules that
are directly involved in regulation, such as Hor-
mone that plays a critical role in plant growth,
and Protein Domain and DNA regions (Box, Pro-
moter) for the representation of physical binding
events. Protein and gene families are also impor-
tant entities because they are mentioned as actors
of the regulations in some papers without more
precision on the exact molecule. The Dynamic
Process category is defined by two broad entity
types, Regulatory Network and Metabolic path-
way, with the purpose of keeping the complexity
of the extraction task tractable. Moreover, the
distinction in the SeeDev corpus between specific
kinds of networks or pathways would have been
difficult, if not impossible because the authors
themselves remain vague.
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Relation Name Definition # Train Dev Test Total
Regulation 1731 46% 22% 31% 48%

Regulates Accumulation (Reg-
ulation Of Accumulation)

A Molecule, Dynamic Process or Context regu-
lates the accumulation of a Functional Molecule
(in particular, [Protein], [RNA ], [Hormone]).

81 44% 36% 20% 2%

Regulates Development Phase
(Regulation Of Development
Phase)

A Molecule, Dynamic Process or Context regu-
lates the activity of a Development phase. 242 44% 24% 32% 7%

Regulates Expression (Regu-
lation Of Expression)

A Molecule, Dynamic Process or Context
regulates the expression of a DNA entity. DNA
entity includes [Promoter] and [ Box].

450 45% 25% 31% 13%

Regulates Molecule Activity
(Regulation Of Molecule Activ-
ity)

An Agent (Molecule, Dynamic Process or Con-
text) regulates the activity of a Molecule, such as
[Protein].

25 64% 0% 36% 1%

Regulates Process (Regula-
tion Of Process)

A Molecule, Dynamic Process or Context
regulates the activity of a Dynamic Process. 904 48% 20% 32% 25%

Regulates Tissue Development
(Regulation Of Tissue Develop-
ment)

A Molecule, Dynamic Process or Context regu-
lates the activity of a Tissue Development. 29 31% 31% 38% 1%

Function 257 42% 28% 30% 7%
Is Involved In Process (Involve-
ment In Process) A Molecule is involved in a Dynamic Process. 55 42% 36% 22% 2%

Transcribes Or Translates To
(Transcription Or Translation)

A DNA entity encodes for a RNA (Transcription)
or a RNA entity encodes a Protein (Translation).
Often, reference is made to the gene encoding the
protein, without mention of the RNA.

54 46% 24% 30% 2%

Is Functionally Equivalent To∗

(Functional Equivalence)
A Molecule, Dynamic Process or Context is
compared to a similar entity. 148 41% 26% 33% 4%

Interaction 264 46% 21% 33% 7%
Interacts With (Interaction) A molecule interacts with another molecule. 148 42% 22% 36% 4%

Binds To (Binding) A functional molecule physically binds to a
molecule. 116 52% 21% 28% 3%

Where and When 704 45% 23% 32% 20%
Exists At Stage (Presence At
Stage)

A Molecule is present during a Developmental
phase. 33 45% 24% 30% 1%

Exists In Genotype (Presence
In Genotype)

A Molecule or Element is present in a Geno-
type 377 45% 21% 34% 11%

Occurs During (Occurrence
During) A Process occurs during a Developmental Phase. 30 27% 33% 40% 1%

Occurs In Genotype (Occur-
rence In Genotype) A Process occurs in a Genotype 48 38% 33% 29% 1%

Is Localized In (Localization) A Molecule is found in a Tissue 216 50% 22% 29% 6%
Composition and Membership 532 44% 22% 34% 15%
Composes Primary Structure
(Primary Structure Composi-
tion)

A specific sequence of nucleotide is found in a
DNA entity. 51 39% 29% 31% 1%

Composes Protein Complex
(Protein Complex Description)

A specific DNA product is found in a Protein
complex. 19 84% 0% 16% 1%

Has Sequence Identical To∗

(Sequence Identity)

A Molecule, Dynamic Process or Context is com-
pared to a similar Molecule, Dynamic Process or
Context.

126 49% 16% 35% 4%

Is Member Of Family (Family
Membership)

A DNA, RNA or Protein belongs to another
DNA, Product or Factor. Used between entities
of the same nature to denote members of a set.

230 39% 24% 37% 6%

Is Protein Domain Of (Protein
Domain Composition)

A specific Protein Domain is found in an amino
acid sequence. 106 43% 27% 29% 3%

Specific to Binary scheme 87 51% 26% 23% 2%

Is Linked To∗
Used to derive binary relations from n-ary events:
it relates optional and main arguments of n-ary
events.

87 51% 26% 23% 2%

Total 3575 46% 23% 32% 100%

Table 1: Definition of relations and example distribution in SeeDev Binary subtask. Event names are
into brackets. (Event arguments are ordered, except events marked with *.)
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N-ary representation : Binding
Mandatory arguments Optional arguments

Role Functional
Molecule

Molecule Tissue Developmental
Stage

Organism
Genotype

Environmental
Factor

Hormone

Signature RNA, Protein,
Protein
Family,
Protein
Complex,
Protein
Domain,
Hormone

Gene, Gene
Family, Box,
Promoter,
RNA, Protein,
Protein
Family,
Protein
Complex,
Protein
Domain,

Tissue Development
Phase

Genotype Environmental
Factor

Hormone

Binary representation : Binds to

Figure 2: Representation of Binds to and Binding relation, with mandatory and optional arguments.
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Gene 5 6 3 3 3 5 5 5 3 3 3 3 1 1 1 1
Gene Family 5 6 3 3 3 5 5 5 3 3 3 3 1 1 1 1
Box 3 3 6 4 2 4 4 4 2 3 3 3 1 1 1 1
Promoter 3 3 4 6 2 4 4 4 2 3 3 3 1 1 1 1
RNA 3 3 3 3 6 6 6 6 4 4 3 3 1 2 2 1
Protein 4 4 4 4 4 7 8 6 3 4 3 3 1 2 2 1
Protein Family 4 4 4 4 4 7 8 6 3 4 3 3 1 2 2 1
Protein Complex 4 4 4 4 4 5 5 8 3 4 3 3 1 2 2 1
Protein Domain 4 4 4 4 4 6 6 7 6 4 3 3 1 2 2 1
Hormone 3 3 3 3 3 4 4 4 2 6 3 3 1 2 2 1
Regulatory Network 2 2 2 2 2 3 3 3 1 3 4 2 1 2 2 1
Metabolic pathway 2 2 2 2 2 3 3 3 1 3 2 4 1 2 2 1
Genotype 1 1 1 1 1 2 2 2 0 2 1 1 3 1 1 0
Tissue 1 1 1 1 1 2 2 2 0 2 1 1 1 3 1 0
Development Phase 1 1 1 1 1 2 2 2 0 2 1 1 1 1 3 0
Environmental Factor 2 2 2 2 2 3 3 3 1 3 2 2 1 2 2 3

Figure 3: Number of relation type by pairs of argument types.

The conditions in which the regulations occur
represent critical information about the event
context. The entity types represent spatial condi-
tions (Tissue), temporal conditions (Development
phase), the organism, which is genetically mod-
ified or not (Genotype), and the environmental
factors (biotic and abiotic external conditions).
The entities in the corpus are denoted by indi-
vidual words or by sets of words that may be
discontinuous.

The 21 GRNA event types are grouped in
6 sets, according to their biological role (Ta-
ble 1). The Regulation, Function and Interaction
categories are central for the description of the

biological mechanisms. Where and When event
types represent the context of the mechanisms,
whilst Composition and Membership events allow
to finely represent relations among the biological
entities. Some of the event types, e.g. Regulates
Expression / Process / Molecule Activity are very
similar to those of other molecular biology IE
event schemes such as the ones of GENIA (Kim et
al., 2013a), Cancer Genetics (Pyysalo et al., 2015)
and Arabidopsis Leaf Growth (LG) (Szakonyi
et al., 2015). Other GRNA event types are
specific to biological development, e.g. Regulates
Development Phase / Tissue Development or to the
storage process, e.g. Regulates Accumulation. The
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LG model of Szakonyi et al. (2015) dedicated to
Ath does not include plant or development specific
events to be reused in GRNA. Protein modification
and metabolism in GENIA and PC tasks and
regulation of phenotype in LG, were not relevant
for the SeeDev corpus but will be addressed in
priority in further extensions of GRNA.

The first column of Table 1 displays the binary
relation names of SeeDev-binary subtask and the
n-ary event names of SeeDev-full subtask in
brackets, with their definition in column two. N-
ary events have two mandatory arguments and up
to five optional arguments: Tissue, Developmental
Stage, Organism, Genotype, Environmental Fac-
tor, and Hormone.

Furthermore, n-ary events may have a negation
modality. Participants are provided with text doc-
uments, gold entity annotations, and the detailed
signatures of each event, i.e. the list of allowed
types per slot. Figure 2 gives, for example, the
Binding event signature.

The use of a strongly typed model facilitates the
event prediction because it drastically reduces the
number of event candidates given the types of the
arguments. Figure 3 shows the number of relation
types per pair of argument types. For example the
argument pair (Arg1: Development Phase / Arg2:
Protein Domain) does not accept any relation
type; whereas the pair (Arg1: Protein / Arg2:
Protein Family) may be involved into 8 different
relations. The formal specification of event signa-
tures drastically reduces the exploration space of
possible events.

3.2 Sub-Task 1: SeeDev Binary Relation
Extraction

The goal of SeeDev-binary is the extraction of
binary relations of 22 different types without
modality (no negation) as described in Table 1.
The Is Linked To relation is computed from the
n-ary events, it links mandatory arguments to
optional arguments. Figure 4.a gives an example
of SeeDev-binary annotation with 3 different rela-
tions.

3.3 Sub-Task 2: SeeDev Full Relation
Extraction

SeeDev-full aims at extracting n-ary events where
the number of arguments ranges from two to
eight, plus a negation modality. There are three
arguments in average. There is no trigger word
in SeeDev event representation. Events relate

Figure 4: Examples of an annotated sentence in
(a) SeeDev-binary task and (b) SeeDev-full task

either entities or other events. Figure 4.b gives
an example of a Binding event with a Genotype
argument. In the binary version (Figure 4.a), the
Genotype becomes a mandatory argument of one
of the Exists In Genotype relations.

4 Corpus Description

The SeeDev corpus is a set of 86 paragraphs
from 20 full-text articles, selected by plant biology
experts, about seed development in Arabidopsis
thaliana. Table 2 summarizes the SeeDev corpus
statistics and data distribution in the Training,
Development and Test sets.

# Train Dev Test
Documents 20 90% 75% 80%
Paragraphs 87 45% 22% 33%
Words 44,857 45% 23% 33%
Entities 7,082 46% 23% 31%
Events 2,583 45% 23% 32%
Relations 3,575 46% 23% 32%

Table 2. SeeDev corpus statistics.

Paragraphs of the same document may be dis-
tributed into different sets. The “Documents” row
indicates the proportion of documents represented
in the set. The SeeDev corpus is smaller than
other BioNLP-ST corpora, e.g. a fifth of Cancer
Genetics corpus and a third of GENIA corpus. The
manual annotation of the SeeDev corpus required
a high level of expertise that do not allow for a
large corpus, as in many specific domains of Life
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Science. We identify small dataset processing as
a challenge to overcome by information extraction
tools.

Table 1 details the distribution of instances per
relation type in the training, development and test
sets of the SeeDev-binary task. The distribution
was balanced between the three data sets so that
the test set would represent approximately a third
of the annotations for each group of relations.
The most frequent relations are Regulation with
48% of annotations, which corresponds to what
is expected given the corpus domain. The three
relations Regulate Expression, Regulates Process
and Exist in Genotype, highlighted in Table 1,
account for half of the total, whilst seven of the
relations are relatively infrequent with 1% of the
total.

5 Annotation Methodology

We have successively refined the annotation
scheme of GRNA during the annotation process.
We have defined an initial annotation scheme
according to our expertise in A. thaliana seed de-
velopment and in BioNLP task definition, starting
from the GRN model (Bossy et al., 2015).

The scheme was improved through several
iterations of manual annotations and collective
discussions until it met the requirements, i.e. it
allowed unambiguous, consistent, readable and
detailed formal annotations. Together with the
scheme, a very precise guideline document (Chaix
et al., 2016) was produced that details the annota-
tion principles for each entity and event type, and
provides many examples and counter-examples.

The relevant paragraphs of the corpus were
chosen by the biologists, mostly from the abstract,
introduction, result and discussion sections. A
team of three experts in seed development and
two bioinformaticians has manually annotated the
corpus following the guidelines by using the
AlvisAE Annotation Editor (Papazian et al., 2012)
in accordance with the final version of the scheme.

5.1 Automatic Annotation

Rigid designators of named entities, such as Gene,
Protein, Tissues, and Developmental Phases were
automatically pre-annotated with the AlvisNLP
pipeline using relevant Ath databases (e.g. TAIR1)
and customized lexicons. The goal of automatic

1The Arabidopsis Information Resource http://
arabidopsis.org/

pre-annotation was to speed-up the manual anno-
tation process. The evaluation of the automatic
annotation compared to the gold standard annota-
tion shows a F-score equal to 0.41, with a high
precision (0.89) and low recall (0.26) due to a lack
of relevant lexicon for most entity types.

5.2 Manual Annotation

The manual annotation has been achieved in four
successive phases in order to both save expert time
and achieve a high quality annotation. First, a
bioinformatician who is not a specialist of Ath
annotated all the entities of the corpus. The
evaluation of the manual annotation of the entities
compared to the gold standard annotation yielded
a high 0.93 F-score with balanced Recall and
Precision, 0.93 and 0.95 respectively.

Then Ath experts revised the entity annotations
and annotated the events of the corpus in a
double-blind manner. Thanks to the manual
pre-annotation of entities, they could focus on
events which require more expertise. Next, the
annotators together with the bioinformatician used
the AlvisAE conflict resolution functionality to
build a consensus. Finally, the bioinformati-
cian carefully checked the compliance of each
annotation to the guidelines to produce the gold
annotation set.

To evaluate the inter-annotator agreement, we
measured the F-score between the annotation set
of each annotator (referred to as A and B) and the
consensus annotation set (i.e. gold annotations)
(Table 3). The differences between the individual
annotators vary according to the event types. The
recall measure of the annotations of events with
arguments of Process type without regulation (Is
Involved In Process) and events with Genotype
arguments (Exists In Genotype, Occurs In Geno-
type) is lower.

Mistyping Regulates Accumulation was fre-
quent because this event is easily confused with
Regulates Molecule Activity. Annotations from
annotator B are closer to the reference annotation,
but the examination of the union of both annota-
tion sets shows that annotator B missed events that
were well annotated by A. The 0.724 F-score of
the union of A and B annotation sets is quite high.
The last step of the SeeDev corpus construction is
the adjudication between the two annotators with a
third person as external referee. It was an essential
step to avoid event oversight.
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Annotator F1 Recall Precision
A 0.548 0.417 0.798
A (T) +0.048 +0.031 +0.058
B 0.653 0.575 0.754
B (T) +0.069 +0.071 +0.080
A U B 0.724 0.720 0.728
A U B (T) +0.045 +0.045 +0.045
Table 3: Evaluation of the inter-annotator

agreement by comparing each annotator output to
the reference annotation. (T) indicates the gain if

relation types are ignored. A U B denotes the
union of annotations from annotators A and B.

6 Evaluation Procedure

6.1 Shared Task Organization
As for previous challenges, BioNLP-ST 2016 pro-
vides resources and information to the participants
through the BioNLP-ST website2and mailing lists.
The schedule of the SeeDev task follows the usual
principles of BioNLP-ST tasks, it can be found on
dedicated pages.

We provided state-of-art automatic NLP anal-
ysis as supporting resources with the purpose
to speed-up the participant system development.
Nine tools were selected and applied to the
training, development and test sets: POS tagger
(GENIA Tagger (Tsuruoka et al., 2005)), parsers
(Stanford Parser (Manning, 2003) Enju (Miyao
and Tsujii, 2008) C&C CCG Parser (Clark and
Curran, 2007)), term extractor (BioYaTeA (Golik
et al., 2013)) named entity recognizers (Stanford
NER (Finkel et al., 2005) LINNAEUS (Gerner et
al., 2010) SR4GN (Wei et al., 2012)) and tokenizer
and sentence splitter (AlvisNLP suite (Ba and
Bossy, 2016)).

Community web tools (forum, FAQ and mailing
list) have been made available on the website with
the purpose to federate the community that partic-
ipates to the challenge. In this way participants
could interact with the task organizers and with
other participants.

Furthermore, participants could evaluate their
predictions through an online evaluation service.
During the training phase it was restricted to the
evaluation on training and development sets. The
service allows now to evaluate predictions on the
test set and will remain open. For the first time
in BioNLP-ST, participants could also keep track

2BioNLP-ST website http://2016.bionlp-st.
org/tasks/seedev

of the performance of various experiments through
the same online service. Thus, participants could
follow and compare their results and competing
team results. The recorded submissions were kept
anonymous to other participants. The aim of this
tool was to ease the interpretation of the scores
and to assist participants in the development-test
cycles.

6.2 Evaluation Metrics

The evaluation measures of the participant system
results are computed through the comparison of
predicted events against reference corpus events.
In SeeDev-binary the participants had to predict
relations between entities given as input. This
task can be viewed as a classification task of all
pairs of entities. Thus, we evaluate submissions
with Recall, Precision and F-score. Submissions
were ranked by F-score, however we also pro-
vided alternate evaluations in order to assess the
strengths of each submission for each relation type
separately, for each broad category of relations
separately and without taking into account the
relation types.

We also designed a measure for SeeDev-full
task evaluation that is permissive for optional
arguments. The evaluation is detailed on the
task web site and is available through the online
evaluation service to the benefit of teams that will
bravely tackle this task.

7 Results

7.1 Participating Systems

Seven teams from 4 continents submitted their
results to the test of the SeeDev binary task that
are: DUTIR (Dalian University of Technology,
China), LIMSI (CNRS, France), LitWay (Xidian
University, China), ULisboa (LaSIGE, Universi-
dade de Lisboa, Portugal), UniMelb (University
of Melbourne, Australia), VERSE (University of
British Columbia, Canada) and UTS (University
of Turku, Finland).

Their main background domains are Bioinfor-
matics, Machine Learning, Natural Language Pro-
cessing and Biology according to their responses
to a survey.

Table 4 summarizes the scores obtained by the
participant systems ranked by F1-score (detailed
results are available on the SeeDev site). The
results of the DUTIR system are not displayed
because they experienced a last minute hitch
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and ranked last. LitWay from Xidian University
achieves the best F1-score (0.432), 0.068 points
higher than the second team and 0.177 points
higher than the lowest score at 0.255. The two
systems that ranked first achieved a balanced recall
and precision, while the four others favored recall
over precision (VERSE, LIMSI), or the reverse
(UTS, ULISBOA). VERSE obtained the best recall
and UTS the best precision.

Participant F1 Recall Precision
LitWay 0.432 0.448 0.417
UniMelb 0.364 0.386 0.345
VERSE 0.342 0.458 0.273
UTS 0.335 0.245 0.533
ULISBOA 0.306 0.256 0.379
LIMSI 0.255 0.318 0.212

Table 4: Evaluation scores of the SeeDev binary
task ranked by F- score.

The best F1-scores are very similar to the ones
achieved by participants of previous shared tasks
on regulation event extraction around 50% ( e.g.
GRN, CG, PC), which is over what could be
expected given the complexity and the novelty
of the task and the variability of the example
distribution among the events.

As shown by Table 5, the detailed scores per
relation exhibit a high variability. Some relations
were difficult to predict (e.g. Regulates Tissue De-
velopment, Regulates Molecule Activity, Occurs
During) while others were well-predicted (e.g.
Composes Primary Structure with a maximum F1-
score of 0.67).

As usual in such corpus, the analysis of the
results shows that the causes are multifactorial, we
hypothesize that the number of training examples
combined with the regularity of the descriptions
and the constraints imposed by the event signature
are critical. For instance, the Composes Primary
Structure relation has only 51 examples, but it
links entities from a restricted range of types,
which makes it easier to predict (0.67 best F1-
score). However, other relations such as Regulates
Expression with a high number of examples (450
examples), inter sentence occurrences (23) and a
wide range of argument types (4 types for the
first argument and 16 for the second) were poorly
predicted (0.39 best F1-score).

The scores of most of the systems remain
unchanged when the dataset is restricted to the

Relation Best F1
score System

All Relations 0.432 LitWay
Where and When 0.142 LitWay
Exists At Stage 0.167 ULISBOA
Exists In Genotype 0.492 LitWay
Occurs During 0 -
Occurs In Genotype 0.167 VERSE
Is Localized In 0.450 LitWay
Function 0.255 ULISBOA
Is Involved In Process 0 -
Transcribes Or Translates To 0.343 VERSE
Is Functionally Equivalent To 0.708 LitWay
Regulation 0.416 LitWay
Regulates Accumulation 0.316 UniMelb
Regulates Development Phase 0.376 UniMelb
Regulates Expression 0.386 UniMelb
Regulates Molecule Activity 0
Regulates Process 0.504 LitWay
Regulates Tissue Development 0 -
Composition MemberShip 0.490 LitWay
Composes Primary Structure 0.667 LIMSI
Composes Protein Complex 0.500 UTS
Has Sequence Identical To 0.867 LitWay
Is Member Of Family 0.534 LitWay
Is Protein Domain Of 0.438 LitWay
Interaction 0.303 UniMelb
Interacts With 0.286 UniMelb
Binds To 0.310 VERSE
Is Linked To 0.154 VERSE

Table 5: Best F1-score per relation and per
category of relation.

relations that occur in a single sentence. The dif-
ference of the results obtained for intra-sentence
dataset are less than 1 point, except for Limsi that
gains 0.056 points; indeed, Limsi is the only team
that attempts to predict inter-sentence relations
whereas all other participant systems predicted
only intra-sentence relations. Given the proportion
of inter-sentence relations in the test set (4%),
the penalty of ignoring them could have been
considered as bearable.

In order to assess the difficulty to predict the
correct relation type, we computed the F-scores
when considering the category of the relations
instead of the actual type (first line per category
in bold and italic in Table 5). This did not yield
a significant improvement although some partici-
pants were able to successfully predict events in
categories with high biological relevance, such as
the Regulation category ( Litway F1: 0.416) and
the Interaction category ( UniMel F1: 0.303).
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7.2 Systems Description and Result
Discussion

All teams used supervised machine-learning ap-
proaches (Table 6). Five systems used support
vector machines (SVM) and two systems were
based on different algorithms, namely maximum
entropy (MaxEnt) (LIMSI) and convolutional neu-
ral network (DUTIR).

Participant General method
LitWay Hand crafted patterns + SVM
UniMelb SVM + Bayes classifiers
VERSE Linear SVM
ULISBOA SVM kernel based
UTS SVM multi-classification
LIMSI Bag of words
DUTIR Convolutional neural network

Table 6: General methods of the participants

SVM are widely used for information extrac-
tion tasks, because they are powerful versatile
classifiers. SVM are kernel-based and there are
several existing kernels available (Zelenko et al.,
2003) adapted to different object representations.
For instance, dependency-path kernels (Bunescu
and Mooney, 2005; Airola et al., 2008) handle
candidates represented as syntactic dependency
paths. Moreover, the usual feature selection
methods can be handled by kernels that work on
vectorial representations. MaxEnt and neural net-
works are also popular algorithms in information
extraction tasks (McCallum et al., 2000). The
most notable characteristic of the best performing
system, LitWay, is that it combines supervised
machine learning for the prediction of a selection
of event types with hand-crafted rules for the
prediction of other types.

All teams used token segmentation, sentence
splitting and token normalization (stemming,
lemmatization, POS-tagging). Four teams, among
which the three top ranking also used deep syn-
tactic parsing, which confirms that parsing is a
powerful pre-processing step for information ex-
traction. Finally, the LitWay system also designed
features based on word embedding which is a
novelty in the BioNLP-ST.

8 Conclusion

We have described the SeeDev task that we
have designed with the goal to promote progress
in information extraction in the field of plant

development and more precisely plant regulatory
networks. Two sub-tasks were proposed with
increasing levels of complexity, SeeDev-binary on
binary relations and SeeDev-full on events.

The lack of participation to SeeDev-full shows
that the extraction of n-ary events with optional
arguments remains challenging.

Seven teams from different countries partici-
pated in the SeeDev-binary task with different
approaches. The results are very promising, given
the novelty of the task and the complexity of the
model. The best F-score, 0.432, is close to what
has been previously obtained in similar IE tasks
on molecular biology.

The good results achieved by hybrid methods
using machine learning and handcraft patterns
show that efficient adaptation of generic methods
to the task could rely not only on machine
learning, but also on alternative approaches. This
observation may also be true for the extraction of
n-ary events from binary relations where rewriting
rules may complement machine learning methods.
This may be particularly appropriate for relatively
small corpora as SeeDev, which belongs to a
domain where a trade-off has to be found between
the time needed for the training corpus annotation
and the time needed for the manual development
of dedicated rules for the IE method.
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Abstract

This paper presents the Bacteria Biotope
task of the BioNLP Shared Task 2016,
which follows the previous 2013 and 2011
editions. The task focuses on the extrac-
tion of the locations (biotopes and geo-
graphical places) of bacteria from PubMed
abstracts and the characterization of bac-
teria and their associated habitats with
respect to reference knowledge sources
(NCBI taxonomy, OntoBiotope ontology).
The task is motivated by the importance
of the knowledge on bacteria habitats for
fundamental research and applications in
microbiology. The paper describes the dif-
ferent proposed subtasks, the corpus char-
acteristics, the challenge organization, and
the evaluation metrics. We also provide an
analysis of the results obtained by partici-
pants.

1 Introduction

Since 2009, BioNLP Shared Task is a community-
wide effort on the development of fine-grained
information extraction methods in biomedicine
(Kim et al., 2009; Kim et al., 2011; Nédellec et al.,
2013). The tasks provide a sound framework for
the comparison and evaluation of the technologies
on a manually curated benchmark with the aim to
contribute to progress by drawing general lessons
from the individual contributions and assessment
of the participants. In this paper, we present the
third edition of the Bacteria Biotope task that has
been first introduced in 2011 with the ambition
to use information extraction from scientific docu-
ments at a large scale in order to automatically fill
knowledge bases (Bossy et al., 2012).

Information about bacteria biotopes (e.g., habi-
tats of bacteria) is critical for studying the interac-
tion and association mechanisms between organ-

isms and their environments from genetic, phylo-
genetic and ecological points of view. This infor-
mation is not only highly useful in all fields of ap-
plied microbiology such as food processing and
safety, health sciences and waste processing, but
also in fundamental research (e.g., metagenomics,
phylogeography, phyloecology).

Currently, there is no centralized resource gath-
ering the state of knowledge on habitats of bacteria
in a comprehensive and normalized way. A large
part of this knowledge is scattered in numerous
scientific papers and databases, such as genomics
databases (e.g., GenBank1, GOLD2), international
microorganism culture collections ( e.g., ATCC3,
DSMZ4), and biodiversity surveys (e.g. , GBIF5).
The information on bacteria biotopes is mostly ex-
pressed in free text (e.g., articles or free-text fields
of databases) describing very diverse locations
(any physical location may be a bacteria habitat)
in many different ways. The need for information
processing is not only the extraction of habitats
and microorganisms relationships from text, but
also their normalization with respect to a common
referential so that they can be integrated and com-
pared. This need has been acknowledged by pre-
vious work on habitat classifications for metage-
nomic samples (Ivanova et al., 2010), microorgan-
isms (Floyd et al., 2005) and other living organ-
isms (Buttigieg et al., 2013) and text-mining tools
for mapping textual descriptions to habitat classi-
fication (Pignatelli et al., 2009).

The aim of Bacteria Biotope (BB) task is to pro-
vide a framework for the evaluation and compari-

1http://www.ncbi.nlm.nih.gov/genbank
2https://gold.jgi.doe.gov/ (Genomes Online

Database)
3http://www.atcc.org/ (American Type Culture

Collection)
4https://www.dsmz.de/ (Deutsche Sammlung von

Mikroorganismen und Zellkulturen)
5http://www.gbif.org/ (Global Biodiversity In-

formation Facility)
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son of such methods for Bacteria organism habi-
tats. More specifically, the BB task consists in
the extraction of bacteria and their locations (habi-
tats or geographical places) from the text, their
categorization according to dedicated knowledge
sources, and the linking of bacteria to their loca-
tions through so-called localization events named
” Lives in”. The widely used NCBI taxonomy6

(Federhen, 2012) is the resource used for Bac-
teria entity categorization. The OntoBiotope on-
tology7, which is dedicated to the description of
microorganism habitats, is used for biotope cat-
egorization. Previous work has shown the rele-
vance of OntoBiotope for bacteria habitat detec-
tion (Ratkovic et al., 2012). The first two edi-
tions of the task (Bossy et al., 2012; Bossy et al.,
2015) used general-purpose documents, mostly
web pages of genomics projects that can be un-
derstood by non-specialists. However, scientific
literature is the major source of detailed and ac-
curate information on bacteria for biologists. This
edition focuses then on scientific paper abstracts
from the PubMed database, which offers a twofold
advantage, open access and easier readability than
full-text. We also introduce this year a new sub-
task of knowledge base extraction, in which sys-
tems are evaluated by measuring how much infor-
mation content can be extracted from the corpus.

2 Task Description

The BB task involves three types of entities, Bac-
teria, Habitats and Geographical places. It also in-
volves a single type of event, the Lives in event,
which is a relation between two mandatory argu-
ments, the bacterium and the location where it
lives, either a Habitat or a Geographical entity.
Figure 1 displays an example of entities and events
in the BB task.

Figure 1: Example of entities and Lives in events
in the BB task

6http://www.ncbi.nlm.nih.gov/taxonomy
7http://2016.bionlp-st.org/tasks/bb2/

OntoBiotope_BioNLP-ST-2016.obo

We proposed three subtasks with two modalities
each. Each subtask had a plain modality where
named entities were given as input, thus partici-
pants were not required to perform entity recogni-
tion. In the second modality, entities were not pro-
vided, thus methods had to perform named entity
recognition and submissions are partly evaluated
on the accuracy of entity boundaries. Our purpose
is to assess independently the quality of the meth-
ods when dealing with different sub-goals and to
assess the impact of predictions made at a given
step on the predictions made at the next steps.

2.1 Bacteria and Habitat Categorization
The first subtask focused on the categorization
of Bacteria and Habitat entity occurrences in the
text with categories from the NCBI Taxonomy for
Bacteria and from the OntoBiotope ontology for
Habitat entities. In the first modality of the sub-
task (referred to as BB-cat), entity mentions were
given and participants had only to perform cate-
gorization. In the second modality (BB-cat+ner),
systems had to perform bacteria and habitat entity
detection as well as categorization.

2.2 Entity and Event Extraction
The second subtask consists in the extraction of
Lives in events among Bacteria, Habitat and Ge-
ographical entities. In the BB-event modality, en-
tity mentions were given and participant systems
only had to perform event extraction. In the BB-
event+ner modality, systems had to perform Bac-
teria, Habitat and Geographical entity recognition
as well as event extraction.

2.3 Knowledge Base Extraction
The third subtask aims at building a knowledge
base using information extracted from the corpus.
The knowledge base is composed of the set of dis-
tinct Lives in events between categorized Bacte-
ria and Habitats. This subtask can be seen as a
combination of the entity categorization and event
extraction subtasks. In contrast with the two previ-
ously described subtasks, this task does not eval-
uate text-bound annotations. All pieces of infor-
mation extracted from the text are gathered and
merged into a single knowledge base, without du-
plicate events. The focus of this task is the knowl-
edge itself (which types of bacteria and habitat
are linked through a Lives In event) and not the
individual text-bound annotations (where Lives In
events are marked precisely in each text segment).
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In the first modality, BB-kb, entity mentions were
given and participating systems perform catego-
rization and event extraction. In the second modal-
ity, BB-kb+ner, systems had to perform Bacteria
and Habitat entity detection and categorization as
well as event extraction.

3 Corpus Construction

3.1 Corpus Selection

The BB corpus consists of titles and abstracts of
PubMed entries. We followed a four step pro-
cedure to build a representative reference corpus
for the task from the whole PubMed database. It
started from the set of all PubMed references and
successively selected a subset of references while
preserving the distribution of bacteria and habitat
categories.

In the first step, we selected PubMed entries
relevant to bacteria, relying on the MeSH in-
dex provided by the NLM. We selected all en-
tries that were indexed by any term of the Organ-
isms/Bacteria subtree (B03). PubMed contained
27,872,481 entries, of which 1,156,824 indexed by
a term in the Bacteria subtree (4%).

In the second step, we automatically annotated
Bacteria, Geographical and Habitat entities in the
title and abstract of these selected entries (see the
corpus annotation subsection for details about this
automatic approach). We found 6.8 million habi-
tat occurrences, 3.7 million occurrences of bacte-
ria taxon names, and 374 thousand geographical
names. This gave us a broad idea of the quantity
and diversity of the entries in terms of bacterial
taxa and bacterial habitats.

However this collection is too large to be man-
ageable by human annotators. Therefore in the
third step, we built a sub-collection of 1,000 en-
tries. We selected the most representative in 2,000
random samples of 1,000 entries. The representa-
tiveness was evaluated by the mean squared error
(MSE) between the sample and the original col-
lection. We selected the sample with the lowest
MSE. The observations from which we computed
the MSE included the number of words, the num-
ber of occurrences of taxon names for each bacte-
rial family and the number of occurrences of habi-
tat mentions for each top-level concept of Onto-
Biotope. As expected from a PubMed sample, the
majority of entries were biomedical studies. Even
though habitats related to human health and wel-
fare are important, the sample does not convey the

full diversity of bacteria habitats.
In the fourth step we manually annotated the

title and abstract of references from the sample
(see section 3.2). As it would require too much
human resources the manual annotation of 1,000
PubMed entries is not an option. We randomly
picked entries as we finished annotating the pre-
vious ones in order to preserve the distribution.
The random selection used the same method as the
sampling, however we deliberately biased against
clinical habitats in order to leave room for more
diverse and less frequent habitats.

3.2 Corpus Annotation

Manual annotation was performed by seven anno-
tators with diverse backgrounds: biology, com-
puter science, linguistics, and bioinformatics.
Three annotators had annotated documents in the
previous editions of the BB task. Each document
was annotated by two annotators in a double-blind
manner and an adjudication phase resolved dis-
agreements. Annotators relied on detailed guide-
lines which were revised and clarified when ques-
tions arose during the annotation process. The
guideline document is available on the BB task
website8.

Annotators used the AlvisAE annotation edi-
tor (Papazian et al., 2012). In order to speed up
the annotation process, we used Alvis Suite (Ba
and Bossy, 2016) to automatically pre-annotate the
corpus. It included the Stanford NER tool (Finkel
et al., 2005) to annotate Geographical locations
and the ToMap method (Golik et al., 2011) to de-
tect and categorize Habitat entities. Bacteria en-
tity automatic recognition and categorization were
performed with a rule-based approach relying on a
customized dictionary of taxon names, i.e. NCBI
taxonomy names augmented with typographical
variations. Events were extracted using manu-
ally defined trigger words and rules in a similar
way as Ratkovic et al. (2012). Table 1 gives pre-
annotation performance for habitat and bacteria
recognition and categorization (cat+ner) and for
entity and Lives In event extraction (event+ner).
Performance is low, especially for event extrac-
tion, which calls into question the benefit of us-
ing automatic pre-annotation for these tasks. The
low performance of pre-annotation compared to
the final gold standard is also an indication that
text pre-annotation did not much bias manual an-

8http://2016.bionlp-st.org/tasks/bb2
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notation, since the annotators did not hesitate to
make extensive changes in the pre-annotation. We
computed the inter-annotator agreement by com-
paring the individual manual annotations with the
consensus, using the same evaluation framework
as for the evaluation of participant systems (Sec-
tion 5). We did not compute any Kappa statis-
tics, since this type of metric is not well-suited
for the annotation of textual entities (Hripcsak and
Rothschild, 2005). Moreover, even in the case of
event annotation, computing Kappa would have
been difficult, because event annotation is based
on entity annotation. Table 2 shows the agree-
ment of entity boundaries and categorization com-
puted with BB-cat+ner scores and the agreement
of entity boundaries and Lives In events computed
with BB-event+ner scores. The high precision
demonstrates that there was not much disagree-
ment among annotators on the entity boundaries
and categorization, or in the Lives In events. The
consensus consisted mostly in annotation merg-
ing. The lower recall stresses the necessity of mul-
tiple annotators in order to ensure that the refer-
ence is complete.

SER Recall Precision F1
cat+ner 1.167 0.287 0.341 0.312
event+ner 1.749 0.187 0.158 0.171

Table 1: Pre-annotation performance (SER = Stan-
dard Error Rate)

Recall Precision F1
Entity recog. 0.621 0.955 0.753
Lives In event 0.311 0.952 0.468

Table 2: Inter-annotator agreement

3.3 Corpus Statistics
Tables 3, 4 and 5 provide descriptive statistics of
the corpus for the three subtasks respectively.

They show the distributions of entities, cate-
gories, and events among the different datasets
(training, development and test) of each subtask.
We analyzed these statistics in order to study the
characteristics of the BB corpora with respect
to the tasks. Each distinct entity surface form
has only two occurrences on average in the cor-
pus, which makes the recognition task more dif-
ficult than with highly repeated mentions: there
are 1,489 and 1,466 distinct entity mentions (i.e.,
strings or surface forms) out of a total 2,887 and
2,842 annotated entity mentions in the BB-cat and

BB-cat+ner datasets, respectively (see Table 3).
In comparison, there is less variety in entity cat-
egories, since the number of distinct categories
is only 519 out of a total of 3,189 occurrences.
The combination of these two observations indi-
cates that there is quite a lot of variation in the
surface forms of entities, i.e., the same category
can be expressed in several different ways in the
text. This is particularly true for Habitat entities
for which there is a higher proportion of distinct
surface forms than for Bacteria names (59% vs.
38% in the combined BB-cat datasets).

Additionally, we computed the proportion of di-
rect mappings ( i.e., exact string matches) between
Habitat surface forms from the training and de-
velopment datasets of BB-cat and BB-cat+ner and
the ontology labels. We found that respectively
24% and 27% Habitat entity occurrences exactly
matched with an ontology label. As expected,
proportions were similar in the test sets of these
two tasks, with respectively 25% and 27% exact
matches. This finding emphasizes the fact that
there is much variation in the expression of Habi-
tat entities, and thus simple methods based on ex-
act string matching are not sufficient to automati-
cally categorize entities with high quality.

Multiple categories may be assigned to a given
entity mention, as can be seen in Table 3, which
is more challenging than single categories. This is
the case mainly for Habitat entities, since there is
a total of 1,921 distinct Habitat entities for a total
of 2,221 assigned Habitat categories in the BB-cat
datasets.

The number of Geographical entities in the BB-
event+ner sets is much lower than the other en-
tity types with 101 Geographical entities only
in total, which may make machine-learning ap-
proaches less efficient for this type of entity.

Not surprisingly, the majority of Lives in events
links Bacteria entities to Habitat entities and only
a small number of events involves Geographical
entities in the BB-event datasets (e.g., 98 out of a
total of 890 events (11%)).

Table 4 also shows the number of intra-sentence
vs. inter-sentence events, i.e. events that in-
volve entity arguments occurring in the same sen-
tence vs. events that involve entities occurring
in different sentences. The proportion of inter-
sentence events is still significant (27%). Meth-
ods restricted to the extraction of sentence-level
events would suffer from a serious disadvantage.
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However the extraction of inter-sentence events is
a major challenge, since they are notably more dif-
ficult to predict and may require co-reference res-
olution.

Table 5 details statistics for the knowledge base
extraction subtask (BB-kb and BB-kb+ner). Its
goal is to build a knowledge base composed of
all distinct pairs of Bacteria and Habitat categories
linked through the Lives in relation that can be ex-
tracted from the corpus. The number of linked
pairs of distinct categories is high with respect to
the total number of pairs. There are 185 distinct
events out of a total of 312 events in the test set
of the BB-kb task (last row of Table 5). This re-
flects the richness of the information content of the
corpus.

4 Shared Task Organization

The BB task schedule was divided in a training
period of two months and a test period of twelve
days. After the test, detailed evaluation of the sys-
tem performances was provided to the participat-
ing teams and published on the BioNLP-ST 2016
website.

Supporting resources were made available to
the participants. These resources are the output
of state-of-the-art automated corpus analysis tools
applied to the BB datasets. They were generated in
the same way as for the SeeDev task of BioNLP-
ST (see Chaix et al. (2016) for further details). In
addition to the information available on the web-
site, we maintained a set of community web tools.
They included a dedicated forum that allowed par-
ticipants to interact directly with each other and
with the organizers, and an online evaluation ser-
vice the participants could use to evaluate their
predictions during the training phase. This service
also keeps track of multiple runs allowing partici-
pants to monitor their experiments and to compare
their predictions to other participant predictions in
an anonymous way.

5 Evaluation

The metrics used to evaluate systems depend on
the subtasks. When possible we reused metrics
from the previous editions so that the results re-
main comparable.

5.1 BB-cat and BB-cat+ner

BB-cat. For each entity the metrics measures the
similarity between the reference category and the

predicted category. The overall score is equal to
the mean of the similarities for all entities. For
Bacteria entities the similarity is defined as fol-
lows, if the predicted taxon identifier is identical
to the reference taxon identifier, then it is set to
1, otherwise 0. For Habitat entities we used the
same similarity measure as for the 2013 edition of
the BB task (Bossy et al., 2013): it is the semantic
similarity defined by Wang et al. (2007) with the
weight parameter set to 0.65.

BB-cat+ner. The BB subtask was evaluated us-
ing the Slot Error Rate (SER), the same method as
BioNLP-ST 2013 BB task 1 (Bossy et al., 2013)
since the two tasks are the same.

5.2 BB-event and BB-event+ner
The metrics for the evaluation of the BB-event and
BB-event+ner subtasks are recall, precision and F-
score as for BioNLP-ST 2013 BB task 2 and 3 for
the same reasons (Bossy et al., 2013).

5.3 BB-kb and BB-kb+ner
The evaluation of BB-kb submissions is based on
the comparison of the reference knowledge base
to the one that each participant system has built.
The knowledge base associates bacterial taxa with
habitat categories. The taxon-habitat category as-
sociations are obtained from text-bound Lives In
event arguments assigned to taxa and habitat cate-
gories. Duplicate associations are removed to gen-
erate the knowledge base so that a single associa-
tion remains between a given taxon and a given
habitat category. We applied this procedure to the
set of reference events and categories to generate
the reference knowledge base and to the events and
categories predicted by the participant systems in
the same way.

The goal of the BB-kb is to assess how much
knowledge a system can extract from a collection
of documents. The measure of the exact match be-
tween the predicted knowledge base and the ref-
erence knowledge base would be too strict and
would not satisfy this goal. Thus we designed a
measure that evaluate the similarity between the
two knowledge bases

Each predicted association is paired to the clos-
est reference association using the similarity func-
tions of BB-cat. This process results in each ref-
erence association paired to zero (false negative),
one, or several predicted associations. Then we
can measure the accuracy by which each reference
association was found. If the association is not
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paired to any prediction, then its accuracy is zero,
otherwise the accuracy is the mean of the similar-
ity to each prediction. The submissions are evalu-
ated by the mean accuracy for each reference asso-
ciation (mean references). The ” mean references”
score computes how much the predicted knowl-
edge base maps into the reference knowledge base.

Since the evaluation does not rely on text-bound
annotations, the BB-kb+ner was evaluated with
the same metrics as BB-kb.

6 Results

A total of 14 teams participated in Bacteria
Biotope 2016. They were from several coun-
tries: Turkey (BOUN), France (LIMSI), Denmark
(TagIt), Canada (VERSE), Finland (TurkuNLP,
UTS, UMS) and China (DUTIR, WhuNlpRE, HK,
whunlp, WXU). Two participants retracted their
submissions (they correspond to blank lines in re-
sult tables). We present the results obtained by the
participating teams. Detailed results are available
on the task page9.

6.1 Performance on BB-cat / BB-cat+ner
The results of systems that participated to BB-cat
(2 teams) and BB-cat+ner subtasks (3 teams) are
given in Table 6 and 7, respectively.

Team Prec.
all

Prec.
Bacteria

Prec.
Habitat

Prec.
Multi cat.

BOUN 0.679 0.801 0.620 0.486
LIMSI 0.503 0.637 0.438 0.516

Table 6: Team results for the BB-cat task (” Prec.”
= ” Precision”; ” Multi cat.” = ” Multiple catego-
rizations”)

BOUN achieved the best performance for the
categorization task (BB-cat) with 0.679 precision.
As expected, performance was much higher for
the categorization of Bacteria entities (0.801 for
the best precision) than for that of Habitat enti-
ties (0.62). Bacteria are usually referred to us-
ing names from the NCBI taxonomy with a few
variations, while Habitats are mainly noun and ad-
jectival phrases that are expressed in many ways
and may be very different from their concept la-
bel form. Moreover, Habitats may be catego-
rized using several ontology concepts, which cre-
ates an additional difficulty. The last column of
Table 6 shows results for multiple categorization

9http://2016.bionlp-st.org/tasks/bb2/
bb3-evaluation

cases. The LIMSI team obtained stable perfor-
mance while the BOUN team performed signifi-
cantly lower than for all entities (0.486 vs. 0.679).

When taking into account entity recognition in
addition to categorization (BB-cat+ner, Table 7),
TagIt achieved the best SER (0.628), and the dif-
ference between the top and last teams is signif-
icant (0.27 points). As for the BB-cat task, sys-
tems performed better on Bacteria entities than
on Habitat entities. We also assessed the perfor-
mance of entity recognition (without taking into
account categorization), i.e., systems are evaluated
for their ability to predict entity boundaries in the
text (see the bottom part of Table 7). The results
of boundary detection also reflect the difference in
difficulty between Habitat and Bacteria entities.

Compared to the Bacteria Biotope 2013 edition,
the performance seems to have dropped. The best
SER for Habitat entity recognition and categoriza-
tion was 0.661 (Bossy et al., 2015), while it is
0.775 this year. This may be due to the change of
document source, i.e., scientific dense documents
instead of general purpose web pages. It may also
be due to the higher proportion of cases of multiple
category assignments, while these cases remained
marginal in the 2013 edition. Another reason
may be the high number of clinical studies where
the distinction between categories (e.g., treated
and non-treated patients, pediatric and adult pa-
tients) may require a more thorough analysis of
the event context. Therefore the task also entails
co-reference resolution.

TagIt LIMSI whunlp

Overall
SER 0.628 0.827 0.901
Recall 0.456 0.361 0.273
Precision 0.612 0.486 0.407

Bacteria
SER 0.399 0.771 0.823
Recall 0.692 0.539 0.397
Precision 0.857 0.623 0.637

Habitat
SER 0.775 0.862 0.950
Recall 0.303 0.246 0.193
Precision 0.430 0.371 0.275

Bacteria
boundaries

SER 0.236 0.277 0.436
Recall 0.772 0.751 0.565
Precision 0.954 0.903 0.893

Habitat
boundaries

SER 0.599 0.597 0.627
Recall 0.476 0.504 0.493
Precision 0.675 0.728 0.690

Table 7: Team results for the BB-cat+ner task

6.2 Performance on BB-event / BB-event+ner
Among subtasks, the event extraction subtask
(more specifically the BB-event task) attracted the
most participants, with a total of eleven differ-
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ent teams, three of which participated in the BB-
event+ner subtask and eleven in the BB-event sub-
task. Tables 8 and 9 show team performances on
BB-event and BB-event+ner tasks respectively.

VERSE obtained the highest F1 score for the
BB-event task (0.558). The difference between
the top and last teams is only 0.10 points and par-
ticipants ranked 4th to 11th obtained very simi-
lar results (ranging from 0.474 to 0.455 F1 score).
All participants achieved better performance when
predicting Lives in events with Geographical ar-
guments than events with Habitat arguments (5th
and 6th columns of Table 8), although events with
Geographical arguments are less frequent. The
reason could be that most of Geographical enti-
ties are linked to a Bacteria entity, which makes
the decision easier than for Habitat entities, for
which there are many occurrences that are not in-
volved in any Lives in event.

Not surprisingly systems had less trouble pre-
dicting intra-sentence events than inter-sentence
events, as all yielded significantly higher F1 score
on intra-sentence events (see last column of Ta-
ble 8). Detailed analysis of the predictions made
by the systems shows that LIMSI was the only
team to consistently predict inter-sentence events.
Other systems predicted roughly the same num-
ber of events when considering only intra-sentence
events or all events together in the evaluation.

There is a drastic drop in performance when
adding entity recognition to the event extraction
task (BB-event+ner task, see Table 9). All three
participating teams obtained very similar results
in terms of F1 score, although the balance be-
tween precision and recall differs. The LIMSI
team (ranked 1st) achieved a perfect balance be-
tween precision and recall, while UTS and the
WhuNlpRE team obtained much higher precision
but lower recall. As for the BB-event task, per-
formances are significantly higher for Lives in
events involving Geographical entities, and intra-
sentence events.

For both tasks, systems performed better in av-
erage than in the 2013 edition. Indeed, the best F1
scores (Bossy et al., 2015) were 0.49 for the detec-
tion of localization events (vs. 0.558 for Lives in
events in this edition) and 0.14 for the combi-
nation of entity recognition and event extraction
(vs. 0.19). This suggests that participant methods
have improved and become more accurate. How-
ever, the F1-score for BB-event+ner remains rel-

atively low, which directly results from the com-
bined complexity of the two sub-problems in the
same task.

6.3 Performance on BB-kb / BB-kb+ner

Only the LIMSI team participated in the knowl-
edge base extraction subtask. Results are given
in Table 10 for both the BB-kb and BB-kb+ner
tasks. The LIMSI system for BB-cat (Table 6) and
BB-event (Table 8) provides a good reconstruc-
tion of the knowledge base (BB-kb) which high-
lights the fact that automatic categorization and
event extraction methods are already efficient for
the task of knowledge base construction. How-
ever, the performance is significantly lower when
reference entities are not provided. This large gap
in performance may be explained by the difficulty
of recognizing entities (as also shown in the BB-
cat+ner task), and the fact that a fair amount of en-
tities is not repeated in the corpus. Consequently
the false negatives in entity detection have a strong
impact on the end-to-end task of knowledge base
construction.

LIMSI UTS WhuNlpRE
F1 0.192 0.190 0.182
Recall 0.191 0.133 0.111
Precision 0.193 0.331 0.498
F1 (Habitat) 0.186 0.174 0.196
F1 (Geographical) 0.283 0.350 NA
F1 (Intra-sentence) 0.286 0.234 0.232

Table 9: Team results for the BB-event+ner task

BB-kb BB-kb+ner
LIMSI 0.771 0.202

Table 10: Results for BB-kb and BB-kb+ner
(mean-references measure)

6.4 Systems

Systems used different resources and methods de-
pending on the sub-tasks.

Entity Detection and Categorization. Sys-
tems used dictionary-based (TagIt) and machine-
learning based (LIMSI, WhuNlpRE, UTS) meth-
ods to detect entity mentions in text in the BB-
cat+ner and BB-event+ner subtasks. All relied on
existing terminology and ontology resources, in-
cluding the NCBI Taxonomy, the List of Prokary-
otic Names with Standing in Nomenclature (Parte,
2013), the Brenda Tissue Ontology (Gremse et al.,
2011), the Environment Ontology (Buttigieg et al.,
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2013), the OntoBiotope ontology, and WordNet
(Fellbaum, 1998). The TagIt system performed
dictionary matching coupled with acronym detec-
tion and heuristic rules to adjust entity bound-
aries. The LIMSI team used conditional random
fields (CRFs) and the WhuNlpRE team used neu-
ral networks. Both these teams generated rich fea-
tures for their machine-learning algorithms: lex-
ical, morpho-syntactic, dictionary projection, ex-
isting named entity recognition tools, Brown clus-
tering, and word embeddings. The UTS team
relied on Support Vector Machines (SVM) with
features based on the output of existing NER
tools provided by the organizers as supporting re-
sources. The rule-based approach of the TagIt sys-
tem achieved the highest performance in entity de-
tection and categorization (BB-cat+ner), although
the CRF approach of the LIMSI system was the
most accurate in Habitat boundary detection.

Teams relied on rule-based (TagIt, LIMSI) and
similarity-based (BOUN) approaches to catego-
rize entities in the BB-cat and BB-cat+ner sub-
tasks. The TagIt system performed entity cate-
gorization jointly with entity detection using dic-
tionaries and rules. The BOUN team combined
approximate string matching (edit distance) with
an Information Retrieval based bag-of-word ap-
proach (cosine similarity of word vectors weighted
with the tf-idf). This approach was the most suc-
cessful in the BB-cat.

Prediction of Events. All systems used
machine-learning to predict Lives in events. The
most popular algorithms are SVM (VERSE, HK,
UTS, LIMSI) and neural networks (TurkuNLP,
WhuNlpRE, DUTIR). UMS combined predictions
from a SVM and a neural network. Most sys-
tems rely on syntactic parsing to generate features
(VERSE, TurkuNLP, UMS, HK, DUTIR, UTS).
Other common features included part-of-speech
tags, word embeddings (trained on large corpora,
e.g., large sets of PubMed abstracts), and entity
recognition. Rankings do not show any correlation
to the machine learning algorithm, for instance the
top ranking is based on SVM and the second is
based on neural networks. Therefore, no conclu-
sion can be drawn on the most appropriate class of
methods. The quality of the predictions seems to
rely mainly on the feature design, i.e., what types
of feature were used by the systems. To this re-
spect the two top ranking systems have syntac-
tic parsing-based features. More specifically, they

both generate features based on the dependency
path between entities.

7 Conclusion

The interest for the Bacteria Biotope Task keeps
growing with a total of 14 teams participating in
this third edition, and showing very promising re-
sults. 11 teams participated in the event extrac-
tion task (BB-event), demonstrating the interest of
the NLP community for this challenging subject.
For this event detection task, the most commonly
used methods were SVMs and neural networks,
and they yielded higher performance than during
the 2013 edition of the task. However, a detailed
analysis of the results showed that inter-sentence
events still remain a challenge and are ignored by
most systems. The other BB tasks, i.e. entity de-
tection and categorization and knowledge base ex-
traction, attracted fewer participants in compari-
son to event extraction. Knowledge base popu-
lation was the most challenging task, since it re-
quired a large range of skills.

To help participants, supporting resources were
provided but they were not much used. A more
thorough investigation is needed to better under-
stand the needs of participants in terms of external
resources. The introduction of the online evalua-
tion service with detailed metrics appears to have
facilitated the development cycle of predictive sys-
tems. This service will be maintained online al-
lowing for future experiments and comparisons
with BB’16 data.
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BB-cat BB-cat+ner
Train Dev Test Total Train Dev Test Total

Documents 71 36 54 161 71 36 54 161
Words 16,295 8,890 13,797 38,982 16,295 8,890 13,933 39,118
Bacteria 375 244 347 966 375 244 401 1,020
Habitat 747 454 720 1,921 747 454 621 1,822
Total entities 1,122 698 1,067 2,887 1,122 698 1,022 2,842
Distinct Bacteria 167 111 146 364 167 111 181 393
Distinct Habitat 476 267 478 1,125 476 267 416 1,073
Total distinct entities 643 378 624 1,489 643 378 597 1,466
Bacteria categories 376 245 347 968 376 245 401 1,022
Habitat categories 825 535 861 2,221 825 535 681 2,041
Total categories 1,201 780 1,208 3,189 1,201 780 1,082 3,063
Distinct Bacteria categories 85 70 80 190 85 70 87 193
Distinct Habitat categories 210 122 177 329 210 122 168 341
Total distinct categories 295 192 257 519 295 192 255 534

Table 3: Descriptive statistics of the corpus for BB-cat and BB-cat+ner

BB-event BB-event+ner
Train Dev Test Total Train Dev Test Total

Documents 61 34 51 146 71 36 54 161
Words 13,850 8,491 13,039 35,380 16,295 8,890 13,933 39,118
Bacteria 358 238 336 932 375 244 401 1,020
Habitat 687 454 720 1,861 747 454 621 1,822
Geographical 35 38 37 110 36 38 27 101
Total entities 1,080 730 1,093 2,903 1,158 736 1,049 2,943
Lives in events (Habitat) 294 186 312 792 294 186 288 768
Lives in events (Geog.) 33 37 28 98 33 37 26 96
Intra-sentence events 240 165 248 653 240 165 231 636
Inter-sentence events 87 58 92 237 87 58 83 228
Total Lives in events 327 223 340 890 327 223 314 864

Table 4: Descriptive statistics of the corpus for BB-event and BB-event+ner

BB-kb BB-kb+ner
Train Dev Test Total Train Dev Test Total

Documents 61 34 50 145 71 36 54 161
Words 13,850 8,491 12,758 35,099 16,295 8,890 13,933 39,118
Bacteria 358 238 330 926 375 244 401 1,020
Habitat 687 454 720 1,861 747 454 621 1,822
Total entities 1,045 692 1,050 2,787 1,122 698 1,022 2,842
Bacteria categories 359 239 330 928 376 245 401 1,022
Habitat categories 765 535 861 2,161 825 535 681 2,041
Total categories 1,124 774 1,191 3,089 1,201 780 1,082 3,063
Distinct Bacteria categories 81 69 77 183 85 70 87 193
Distinct Habitat categories 197 122 177 317 210 122 168 341
Total distinct categories 278 191 254 500 295 192 255 534
Lives in events 294 186 312 792 294 186 288 768
Distinct Lives in events 204 156 185 522 204 156 183 524

Table 5: Descriptive statistics of the corpus for BB-kb and BB-kb+ner

Team F1 Recall Precision F1 (Habitat) F1 ( Geo.) F1 (Intra-sentence)
VERSE 0.558 0.615 0.510 0.545 0.714 0.634
TurkuNLP 0.521 0.448 0.623 0.499 0.755 0.620
LIMSI 0.485 0.646 0.388 0.482 0.525 0.636
HK 0.474 0.392 0.599 0.452 0.708 0.567
WhuNlpRE 0.471 0.407 0.559 0.471 0.465 0.561
UMS 0.463 0.399 0.551 0.439 0.704 0.550
DUTIR 0.456 0.382 0.566 0.451 0.512 0.544
WXU 0.455 0.383 0.560 0.445 0.578 0.540

UTS 0.451 0.382 0.551 0.425 0.704 0.537

Table 8: Team results for the BB-event task
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Abstract

For its fourth organization, the Genia event
extraction (GE) shared task is refactored
toward a general platform for shared infor-
mation extraction (IE) tasks, and for an IE-
driven knowledge base (KB) system. On
the newly implemented shared task plat-
form, the GE task is run as an experimental
task. The task and the platform has been
tested by two teams who cooperated with
the organizers. The paper presents the new
shared task system and discusses on the
experimental submissions.

1 Introduction

Since its first introduction in 2009 as the task of
the first BioNLP Shared Task (BioNLP-ST) orga-
nization, the Genia event extraction (GE) task has
been one of the most investigated IE tasks (Kim et
al., 2009; Kim et al., 2011; Kim et al., 2013). The
biggest contribution of BioNLP-ST might be that
it introduced fine-grained and highly structured
information extraction (IE) tasks to the commu-
nity of biomedical information extraction (BioIE),
when the research in the community was weighted
toward extracting binary relations (Krallinger et
al., 2007; Lu et al., 2004; Chun et al., 2006). Since
then the tasks of BioNLP-ST have motivated and
nourished the community to develop a number of
biomedical event extraction systems (Björne and
Salakoski, 2013; Miwa et al., 2010),

Originally designed as tasks based on intrin-
sic evaluation, however, the tasks of BioNLP-ST
could not be free from criticism on unclarity about
their impact on real world application (Caporaso
et al., 2008). Also, there was a growing need
for generalized resources for shared task organiza-
tion with which the cost of organizing shared tasks

∗Corresponding author, jdkim@dbcls.rois.ac.jp

could be substantially reduced. With this motiva-
tion, for its 4th organization in 2016, the GE task
is completely re-designed and re-implemented as
an experimental task with two goals.

Firstly, we aim at establishing a seamless con-
nection from the IE task to knowledge base (KB)
construction. It means we assume KB construc-
tion as the target application of the GE task. Par-
ticularly, we aim at developing a KB about NFκB
proteins, which is the subject domain the GE task
has focused on. In the end, we hope to be able to
deliver an end-user service of the KB, so that peo-
ple who are interested in NFκB proteins can easily
access knowledge about them. Toward this end,
we automate the process of populating a KB from
the output of the task, and solicit working systems
to perform the task.

Secondly, we aim at generalizing the resources
of shared task organization. Previous iterations of
organization showed that shared task is an effec-
tive format to promote development of IE solu-
tions. Shared task organization however requires
a lot of effort and expertise. If the resources for
shared task organization become generalized and
readily available, more shared tasks can be eas-
ily organized. To this end, we re-designed and re-
implemented the shared task resources which have
been developed so far for the GE task.

Due to the complexity of refactoring the whole
task, instead of being run as a competition among
participants, the GE4 task is organized as an exper-
imental task, experimenting newly implemented
features, with involvement of voluntary feedback
from participants. Finally, two systems could go
through up to their final submissions, thanks to
which the newly implemented shared task system
could be thoroughly tested. Manual analysis on
the submissions shows both achievments and re-
maining issues, which are discussed in the end of
this paper.
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2 Design

2.1 Platform
To achieve the first goal of generalizing the shared
task system, PubAnnotation (Kim and Wang,
2012) was chosen as the platform. There were
several reasons for the choice. Firstly, as a pub-
lic repository of literature annotation, PubAnnota-
tion provides various ways of submitting and ac-
cessing annotation data sets, which are fundamen-
tal for shared task organization. Secondly, it fea-
tures an automatic text alignment function, which
provides a reliable solution for aligning annota-
tions collected from different groups. Thirdly, it
is a near mature system, which has a growing user
base with more than hundred of data sets.

While PubAnnotation provides many useful
functions, a shared task organization still requires
more functions. Most importantly, automatic eval-
uation needs to be enabled for efficient develop-
ment of IE systems. Also, to prevent over-fitting
the benchmark data set, often the annotations in
the benchmark data set are required to be hid-
den. Accordingly, the two key features are imple-
mented into PubAnnotation, which are described
in following sections.

2.1.1 Comparison of annotations
A shared task organization often features an au-
tomatic evaluation of predicted annotations. For
generalization, we cast it as general comparison of
two different annotation sets. On PubAnnotation,
an annotation data set is maintained as a project,
and each project is maintained by its maintainer.

A new feature annotation comparison is imple-
mented into PubAnnotation. Using the feature, the
maintainer of a project can compare the project
against any other project. We call the former a
subject project, and the latter a reference project.
A comparison is performed by looking at how
many annotations in the reference project can be
recovered in the subject project. The comparison
is calculated in terms of recall, precision, and f-
score, in their standard meaning.

As PubAnnotation represents annotations in
three types, denotations, relations, and modifica-
tions1, comparison is also performed for each of
the three types. In case the subject and reference
projects have different sets of documents, compar-
ison is performed only for the documents found in

1http://www.pubannotation.org/docs/
annotation-format/

both projects.
With this feature, any corpus with manual anno-

tation can potentially serve as a shared task: any
one can attempt to automatically reproduce the
manual annotation, and evaluate the accuracy.

2.1.2 Blind annotations

A new feature blind annotations is implemented
into PubAnnotation, to enable hiding annotations
in a certain project. By blinding annotations of
a project, individual annotations become inacces-
sible. However, the project can still be used for
comparison. In this way, the project can still func-
tion as a benchmark data set.

2.2 Data sets

Data sets prepared for the GE4 task is grouped into
benchmark data sets and supporting data sets.

2.2.1 Benchmark data sets

For the benchmark data set of the GE4 task, the
same set of documents used for the GE3 task are
cleaned and used again. However, the separation
of the data set into training, development and test
sets is slightly changed: the training and develop-
ment data sets are merged into one set which we
call a reference data set. Thus the GE4 benchmark
data set consists of two sets: the reference data set
with 20 full papers and the test data set with 14
full papers. The change in dataset separation and
naming is made in order to remove the impression
that it is a machine learning task and to encourage
development of various approaches.

The annotations in the test data set are “blinded”
using the newly implemented feature (see sec-
tion 2.1.2). Following the tradition of BioNLP-ST
to provide protein annotations for the test data set,
which will allow participants to spend more time
for developing their event extraction system, the
test data set is duplicated to make what we call
a test-start data set. The test-start data set is the
same as the test data set except for the fact that it
has only protein annotations and the annotations
are not blinded. Participant can begin their test
first by obtaining a copy of the test-start data set.
Then, event annotations produced by their systems
can be added to it, which will be compared against
the test data set for evaluation. The three bench-
mark data sets for the GE4 task are illustrated on
the top of Figure 1.
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Figure 1: Data sets for the GE4 task

2.2.2 Supporting data sets
Besides the benchmark data sets, other data sets
are prepared to support participants to use rich
information. Firstly, the coreference annotations
from the GE3 data set are separated into an in-
dividual annotation set, bionlp-st-ge-2016-coref.
Secondly, UniProt IDs are annotated to the bench-
mark data sets, to provide “normalization” or
“grounding” of protein annotations. Note that the
GE4 task organization aims at constructing an IE-
driven KB which requires information pieces to be
grounded to database entries. The UniProt ID an-
notation thus plays an important role in the GE4
task. For the UniProt ID annotation, a simple dic-
tionary matching approach is used, but the dictio-
nary is tailored to the benchmark data sets to raise
the accuracy of UniProt ID annotation particularly
for the benchmark data sets.

For other supporting data sets, we attempted to
collect automatic annotation tools, rather than just
collecting static annotation data sets2. PubAnno-
tation has a feature to communicate with web ser-
vices to obtain annotations, and the feature is used
to produce the supporting resources via the auto-
matic annotation tools. It ensures that the same an-
notations can be produced for new documents. Be-
sides the two sets of annotations described above,
two syntactic parsers, and several named entity
recognizers are prepared as RESTful web service:

• bionlp-st-ge-2016-uniprot: UniProt ID annotation

• bionlp-st-ge-2016-coref: coreference annotation

• pmc-enju-pas: deep dependency parsing by Enju
(Miyao and Tsujii, 2008)

• bionlp-spacy-parsed: dependency parsing spacy (Hon-
nibal et al., 2013)

• UBERON-AE: anatomical entities in UBERON
(Mungall et al., 2012)

• ICD10: disease names as defined in ICD10
2Except for the coreference annotation, which is origi-

nally produced manually.

• GO-BP: biological processes as defined in GO

• GO-CC: cellular components as defined in GO

Note that collection of supporting annotations usu-
ally requires a non-trivial effort of organizers, to
ensure all the annotations provided by different
groups to be precisely aligned to the texts in the
benchmark datasets. Otherwise, there is a high
chance that the texts may be changed during pre-
processing by different groups, which may cause
an issue of aligning different versions of texts
when they are collected. However, thanks to
the automatic alignment algorithm implemented in
PubAnnotation (See section 2.1), it is not an issue
any more as long as they are collected on PubAn-
notation. It is a clear benefit of using PubAnnota-
tion as a platform of shared task organization.

Figure 9 shows excerpts of data sets pre-
pared for the GE4 task. The annotation data
sets can be retrieved individually or altogether
through the RESTful API. For example, by
accessing the following URL, the annotations
shown in Figure 9 can be obtained in JSON
at once: http://pubannotation.org/docs/

sourcedb/PMC/sourceid/3245220/divs/

11/spans/4375-4513/annotations.json?

projects=bionlp-st-ge-2016-reference,

bionlp-st-ge-2016-uniprot,

bionlp-st-ge-2016-coref,pmc-enju-pas,

bionlp-spacy-parsed,GO-BP

2.3 KB

By the KB, we mean a SPARQL endpoint pop-
ulated with RDF statements which are results of
conversion from the GE task results. To achieve
the goal of establishing a seamless connection
from the IE to KB, an automatic process is de-
signed and implemented into PubAnnotation for:

• conversion of annotations to RDF statements, and

• feeding the statements into a SPARQL endpoint.

25



Also, a SPARQL-driven user interface to search
the KB is designed and implemented.

Figure 2: The core model of TAO

Figure 3: Annotation example using TAO

Considering its characteristics, the KB is de-
signed to provide an easy access to the textual
contexts of each knowledge piece. After survey-
ing existing vocabularies for RDF statements (Ci-
ccarese et al., 2011; Livingston et al., 2013), we
chose to use a minimal vocabulary optimized for
search, which we call text annotation ontology
(TAO) (Kim et al., 2015). Figure 2 shows the core
model of TAO, and Figure 3 shows an example of
annotation representation using TAO. The exam-
ple describes that

• the span p65 “denotes” T1.

• T1 is a uniprot:Q04206.

• the span phosphorylation “denotes” E1.

• E1 is a ge:Phosphorylation.

• T1 is a theme of E1.

Note that the role of TAO is to make connections
between the two text spans, p65 and phosphory-
lation, and the corresponding context entities, T1
and E1, respectively3. Other parts of the annota-
tions are described using other vocabularies: look
at the two namespaces, rdf and ge.

A converter to produce RDF statements from
annotations and a loader to feed the statements to
a SPARQL endpoint is implemented to create an
automatic flow from IE results to KB. TAO makes

3The prefixes, T and E, are used here just for readability.
They do not hold any special meaning in the system.

SPARQL queries to search the KB simple. For
example, following query instructs the system to
search for spans (?s) that denote an object (?o)
which is a uniprot:q04206.
PREFIX tao:<http://pubannotation.org/ontology/tao.owl#>
PREFIX prj:<http://pubannotation.org/projects/>
PREFIX uniprot:<http://www.uniprot.org/uniprot/>

SELECT ?s
FROM prj:bionlp-st-ge-2016-uniprot
WHERE {
?s tao:denotes ?o .
?o a uniprot:Q04206 .

}

The results are URIs of the spans:
doc:sourcedb/PMC/sourceid/2664230/divs/2/spans/818-821
doc:sourcedb/PMC/sourceid/2664230/divs/5/spans/1128-1131
doc:sourcedb/PMC/sourceid/2674207/divs/18/spans/2512-2515
...

Note, however, that the span URIs are deref-
erenceable URIs which PubAnnotation provides.
This means that the user can directly access the
span following the URI. Figure 4 shows the spans
of URIs from the above example rendered in Tex-
tAE4, the default visualizer of PubAnnotation.

Figure 4: Example of spans rendered in TextAE

2.4 Participation procedure

Participants to the GE4 task are supposed to go
through following procedure:

1. To create a new project in PubAnnotation.

2. To import documents from the project, bionlp-st-2016-
test-proteins to the new project. The 14 documents in
the test set will be copied into the new project.

3. To import also annotations from the project, bionlp-st-
2016-test-proteins to the project. All the protein anno-
tations in the test set will be copied into the project.

4http://textae.pubannotation.org
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4. At this point, the participant may want to compare the
project against the test project. It will show that pro-
tein annotations are 100% correct, but the other anno-
tations, e.g., events, are of 0%.

5. To produce event annotations, using a participating sys-
tem, upon the protein annotations.

6. To upload the annotations to the project.

7. To compare the project against to the test project.

Every step of the procedure can be performed
using the graphical interface of PubAnnotation.
Some steps also can be performed using a pro-
grammable RESTful API of PubAnnotation. We
believe the procedure is quite generic and can be
applied to other shared tasks with similar setting.

3 Results and analyses

The results of GE4 organization are as follows:

• The general shared task framework implemented in
PubAnnotation.

• The GE4 task re-engineered using the new framework

• The pipeline to populate a KB (SPARQL endpoint)
from IE results

• The user interface to the KB

• The user experience of participants

As the first three are explained in previous sec-
tions, this section discusses the last two: KB user
interface and user experience. Also, the bench-
mark data sets are analyzed to simulate the process
of knowledge access using the KB.

3.1 User interface to IE-driven KB
A prototype interface to the IE-driven KB is im-
plemented, of which a snapshot is shown in Fig-
ure 5. Since the KB is implemented as RDF data
sets stored in a SPARQL endpoint, the interface
is also SPARQL-oriented: see the input box for a
SPARQL query in the center of the interface.

For those who are not familiar with SPARQL,
a template system is implemented. A SPARQL
template is a SPARQL query with placeholders,
of which the value is easily changeable by user’s
input. For example, look at the template shown
in Figure 6. It has one placeholder, uniprot id .
A placeholder is indicated by double underscore
characters (‘ ’) at its both sides. The title of the
template is supposed to have the same placehold-
ers. When displayed, the placeholders in the ti-
tle become text input boxes to accept user’s input,

as shown at the top in the left pane of the screen-
shot. Upon change of the value in the input boxes,
the placeholders in the SPARQL template are also
updated, accordingly. Using the templates, users
who are not familiar with SPARQL can still ac-
cess the KB. Even for expert SPARQL users, it re-
duces time to author frequently necessary queries
from scratch. In the left pane of the snapshot, 7
predefined templates are shown.

The next section presents results of analyzing
benchmark data sets utilizing the templates.

3.2 Data analysis from KB perspective

In this section, the benchmark data sets are ana-
lyzed from a perspective of KB, and observations
are discussed.

Table 1 shows statistics of UniProt ID anno-
tations, which form the basis of the knowledge
pieces of the KB we develop. For accuracy, only
the UniProt ID annotations that are overlapping
with (manual) protein annotations are counted.
Note that, UniProt ID annotations that are not an-
notated as proteins in the benchmark data set are
not involved in any further annotations, e.g. rela-
tions, so, anyway, they cannot be involved in any
knowledge piece to be extracted from the data sets.

Reference Test Sum
No. of instances 8,292 3,148 11,440
No. of types 221 110 242

Table 1: Statistics of UniProt ID annotation

Template 1, Find all the proteins in the benchmark
data sets, with slight modifications, e.g. addition
of GROUP BY modifier to count types, is used to
obtain the statistics. Among the 110 UniProt IDs
that appear in the test data set, 21 do not appear in
the reference data set, simulating unseen protein
names. They may represent an extra challenge for
protein name recognition, and an extra chance for
novel knowledge piece, at the same time.

Table 2 shows statistics of NFκB proteins, for
which Template 3, Find all the contexts where the
protein uniprot id appears, is used with the
UniProt IDs of the 5 NFκB proteins set to the
placeholder. It shows that p65 is the most fre-
quently referenced protein in both reference and
test data sets.

One of typical search needs would be to find
the proteins that regulate a certain protein, for
which Template 5, Find proteins which regulate
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Figure 5: SPARQL interface to the IE-induced KB

PREFIX tao:<http://pubannotation.org/ontology/tao.owl#>
PREFIX prj:<http://pubannotation.org/projects/>
PREFIX ge:<http://bionlp.dbcls.jp/ontology/ge.owl#>
PREFIX uniprot:<http://www.uniprot.org/uniprot/>

SELECT DISTINCT ?p
FROM prj:bionlp-st-ge-2016-events
FROM prj:bionlp-st-ge-2016-uniprot
WHERE {
graph prj:bionlp-st-ge-2016-uniprot {
?o1 tao:denoted_by ?s1 .
?o1 a uniprot:__uniprot_id__ .
?o2 tao:denoted_by ?s2 .
?o2 a ?p .

}

?o1_1 tao:denoted_by ?s1 .
?o2_1 tao:denoted_by ?s2 .
?o1_1 ˆge:partOf? / ge:themeOf+ ?e .
?o2_1 ˆge:partOf? / ge:causeOf+ ?e .

FILTER (?p != tao:Context_entity)
}

Figure 6: A SPARQL template of title Find proteins which regulate uniprot id

uniprot id , can be used. With Q04206 (p65)
set to the placeholder, we find the following:

• In the ref. data, 21 proteins are found to regulate p65

• In the test data, 2 are found to regulate p65

• Among the 2 proteins found in the test data, one
(P01375; TNFα) also in the reference data, whereas
the other (P01584; IL1β) only in the test data.

Assuming that the reference data represents a KB
at a point, and that the test data represents new
feed to the KB, the piece of information that IL1B
regulates p65 may represent a new piece of knowl-
edge. On the other hand, the piece of information
that TNFα regulates p65 itself may not represent
a new knowledge. However, it may supply addi-
tional contexts to the known piece of knowledge,
from which more detailed information, e.g. exper-
imental condition, may be accessed.

Using Template 7, Find the evidence for
uniprot id1 to regulate uniprot id2 , with

P01375 set to the first placeholder, and Q04206 to
the second, we can access individual contexts of
TNFα to regulate p65. Figure 7 shows one exam-
ple, which suggests that more detailed knowledge
about the regulation may be extracted by further

digging the context, e.g., TNFα regulates phos-
phorylation of p65, and the specific sites of the
phosphorylation are Ser529 and Ser536,

The series of analyses demonstrates that how
IE results may contribute to populate the KB, and
how the IE-driven KB can be explored using the
template system.

3.3 Analyses on submissions

Due to the heavy burden of re-implementing the
whole task, the GE4 task began as an experimen-
tal task. Many problems were encountered during
the release of benchmark data sets and the eval-
uation system, which caused serious delay of the
schedule. Thanks to voluntary comments and bug
reports from some participants, most of the prob-
lems could be addressed, and, in the end, two sys-
tems were able to get through to the submission of
results. However, as almost no time was given for
the participants to adapt their systems to the task,
submissions were made using the raw output from
the systems, which caused the evaluation scores to
be meaninglessly low. Thus, instead of reporting
automatic evaluation results, we take the opportu-
nity to discuss observations at the results.
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Class Uniprot ID Name (Gene) Reference Test
I P19838 Nuclear factor NF-kappa-B p105 subunit (NFKB1) 24 37

Q00653 Nuclear factor NF-kappa-B p100 subunit (NFKB2) 8 12
II Q04206 Transcription factor p65 (RELA) 295 98

Q04864 Proto-oncogene c-Rel (REL) 16 6
Q01201 Transcription factor RelB (RELB) 6 3

Table 2: Statistics of NFκb proteins in benchmark data sets

Figure 7: An annotation excerpt from PMC:3312845

One submission was made using the PKDE4J
system (Song et al., 2015). An observation on
the output revealed that a major discrepancy be-
tween the representation of GE4 and the sys-
tem comes from the fact that while GE4 is an
event extraction task PKDE4J is a relation ex-
traction system. In other words, while GE4 re-
quires events to be materialized in the representa-
tion, PKDE4J represents them as relations. An ex-
ample shown in Figure 8 explains the difference.
Note that the GE task materializes the events Neg-
ative regulation and Gene expression captured by
the trigger words inhibition and production, re-
spectively. While PKDE4J does not material-
ize them, however, it correctly extracts the rela-
tion that IL-10 down-regulates interferon gamma.
It also correctly extracts the relation that IL-10
down-regulates suppressor of cytokine signaling
I. Although PKDE4J does not recognize the Neg-
ative regulation captured by Resistance, it seems
right considering that PKDE4J is a relation extrac-
tion system which requires two arguments for each
relation. The observation suggests that character-
istics of individual systems need to be carefully
considered to better understand and utilize them.

Furthermore, an attempt was made to use TEES,
an open source event extraction system, which
won previous iterations of the GE task (Björne and
Salakoski, 2013). The goal was to observe TEES’
out-of-the-box performance in the GE4 task. With
TEES, a different way of entering the task, namely
submission of the URL of a RESTful web service,
was tested. PubAnnotation offers a function to
communicate with a web service to obtain anno-
tations from it. Thus, by submitting the URL of
an annotation system which implements a REST-

ful API, annotations can be pulled into PubAn-
notation. In order to make use of this feature,
a small script was written that runs TEES as a
RESTful web service, and annotations obtained
directly through PubAnnotation. Conversion from
the Interaction XML, TEES’ native format, to the
PubAnnotation JSON format was only minimally
implemented, to test the submission. To make use
of the performance of TEES, the conversion needs
to be implemented more thoroughly, which is left
as a future work.

4 Conclusions

The GE4 task is organized as an experimental task,
toward generalization of the shared task resources
and seamless connection of IE task results to KB
population. As the result, a new shared task sys-
tem is implemented using PubAnnotation as the
platform. Note that PubAnnotation itself is an
open source project. By being embraced by the
open platform, the shared task system is expected
to become more sustainable, and accessible. As
the newly implemented system is fairly generic,
organizing a new shared task is easy, which we
hope to promote organization of more shared tasks
by interested parties, particularly by domain ex-
perts. The GE4 shared task will be running contin-
uously inviting open participation from the com-
munity.
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Figure 8: Example of the output of PKDE4J system
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Abstract

Even a simple biological phenomenon
may introduce a complex network of
molecular interactions. Scientific litera-
ture is one of the trustful resources deliv-
ering knowledge of these networks. We
propose LitWay, a system for extract-
ing semantic relations from texts. Lit-
Way utilizes a hybrid method that com-
bines both a rule-based method and a ma-
chine learning-based method. It is tested
on the SeeDev task of BioNLP-ST 2016,
achieves the state-of-the-art performance
with the F-score of 43.2%, ranking first of
all participating teams. To further reveal
the linguistic characteristics of each eve-
nt, we test the system solely with syntac-
tic rules or machine learning, and differ-
ent combinations of two methods. We find
that it is difficult for one method to achieve
good performance for all semantic relation
types due to the complication of bio-events
in the literatures.

1 Introduction

Bio-events are founding blocks of bio-networks
depicting profound biological phenomena. Au-
tomatically extracting bio-events may assist re-
searchers while facing the challenge of growing
amount of biomedical information in textual form.
A bio-event carries more semantic information
biochemical reactions between entities, therefore,
is more informative for studying associations be-
tween bio-concepts, e.g. gene and phenotype (Li
et al., 2013).

A number of methods have been proposed to
process the automated extraction of biomedical
events including rule-based (Cohen et al., 2009;
Kilicoglu and Bergler, 2011; Bui and Sloot, 2011)

and machine learning-based (Miwa et al., 2012;
Hakala et al., 2013; Munkhdalai et al., 2015)
methods. Bui et al. (2013) presented a rule-based
method for bio-event extraction by using a dic-
tionary and patterns generated automatically from
annotated events. TEES (Björne and Salakoski,
2013) is a SVM based text mining system for the
extraction of events and relations from natural lan-
guage texts, it obtains good performance on a few
tasks in BioNLP-ST 2013 (Nédellec et al., 2013).
As a major type of biomedical events, a series
of methods concentrate on protein-protein interac-
tions (PPI) (Miyao et al., 2009; Papanikolaou et
al., 2015). Kernel-based methods are widely used
for relation extraction task and obtain good resu-
lts by leveraging lexical and syntactic information
(Airola et al., 2008; Miwa et al., 2009; Li et al.,
2015b). Peng et al. (2015) proposed Extended De-
pendency Graph (EDG) and evaluated it with two
kernels on some PPI datasets, obtained good im-
provements on F-value.

We previously use a set of basic features includ-
ing word embedding on a classifier for the BioNLP
2013 Genia (Kim et al., 2013) dataset, the result
is comparable to the state-of-the-art solution (Li
et al., 2015a). The system is built with flexibil-
ity in mind. It is designed to tackle more types
of bio-events. In this paper, we introduce LitWay,
which is based on the previous infrastructure and
uses a machine learning based method in combina-
tion with syntactic rules. The system is tested on a
completely different task, the SeeDev of BioNLP-
ST 2016. It achieves the best result among all par-
ticipants with an F-score of 43.2% (recall and pre-
cision are 44.8% and 41.7% respectively).

2 SeeDev Task

As a popular task in unstructured data mining
of biomedical interests, BioNLP has successfully
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Figure 1: Event relation examples. This sentence includes 4 events and 6 entities. For example, a
Environmental Factor Yeast one-hybrid and a Protein ABI5 form a event Interacts With. An entity could
participate in several events at the same time or none, such as AtEm6 promoter and lacZ. Noticeably
entity span overlap, like Gene AtEm6 and Promoter AtEm6 promoter.

held a series of biomedical event extraction tasks.
GE (Genia Event Extraction) is a classic task ini-
tiated since the beginning of BioNLP (Kim et al.,
2009), it attracts attention and leads to abundant
works (Kim et al., 2011; Kim et al., 2013). Be sim-
ilar to GE and others of BioNLP, SeeDev (Chaix
et al., 2016) is a new task proposed in BioNLP-
ST 2016, it dedicates to event extraction of genetic
and molecular mechanisms involved in plant seed
development. It is based on the knowledge model
Gene Regulation Network for Arabidopsis (GR-
NA)1. GRNA model defines 16 different types of
entities, and 22 event types that may be combined
in complex events. Table 1 shows these entities.
Event types are presented in following. Figure 1
gives some examples of event relations2.

Entity type
Gene Protein Domain
Gene Family Hormone
Box Regulatory Network
Promoter Pathway
RNA Genotype
Protein Tissue
Protein Family Development Phase
Protein Complex Environmental Factor

Table 1: 16 different entity types.

3 Proposed Method

LitWays pipeline adopts a hybrid method that uses
a classifier or rule-based method for different eve-
nt types. Figure 2 shows the infrastructure of it.
The pipeline consists of 5 steps: pre-processing,
entity pair selection, feature extraction, classifier
prediction and rule-based filters.

In BioNLP-ST 2013, the top three event ex-
traction systems F-scores differ less than 0.3%

1See details at http://2016.bionlp-st.org/
tasks/seedev.

2From training dataset: SeeDev-binary-11489176-1.

Figure 2: Infrastructure of LitWay.

in number (Nédellec et al., 2013; Björne and
Salakoski, 2013). Differences of quantitative
and syntactic morphology of proteins and chem-
ical entities in the scientific literature might de-
mand different strategies of network extraction
to achieve a better performance. In this pa-
per, we utilize a flexible hybrid system to in-
vestigate a way to discriminatively treat event
types. We first pre-experiment on the develop-
ment data and divide all event types into two
sets: Event-Set-A and Event-Set-B. The events
showing better performance on SVM are classi-
fied into Event-Set-A, the others showing better
results on a rule-based method are classified into
Event-Set-B. Event-Set-A composes of minority
events, Event-Set-B composes of majority events
except two types: Composes Primary Structure
and Composes Protein Complex3. Two sets are
showed in Table 2. It is easier to create precise
and useful rules for majority events since there are
enough instances for analyzing. Compared with
using SVM for all events, better results are ob-
tained from the experiment by using the rules.

3After the analysis with experiment results, while
moving Composes Primary Structure and Compos-
es Protein Complex into Event-Set-A, a slightly better
F-score on all events could be obtained.
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Event-Set-A Number
Is Linked To 44
Regulates Accumulation 36
Transcribes Or Translates To 25
Is Involved In Process 23
Occurs In Genotype 18
Regulates Molecule Activity 16
Exists At Stage 15
Regulates Tissue Development 9
Occurs During 8

Event-Set-B Number
Regulates Process 436
Regulates Expression 201
Exists In Genotype 169
Is Localized In 107
Regulates Development Phase 106
Is Member Of Family 89
Has Sequence Identical To 62
Interacts With 62
Is Functionally Equivalent To 60
Binds To 60
Is Protein Domain Of 46
Composes Primary Structure 20
Composes Protein Complex 16

Table 2: Event-Set-A and Event-Set-B. This par-
tition was used during competition.

After pre-processing the raw text data, candi-
date entity pairs are constructed within each sen-
tence, and tested by a multiclass classifier. If the
classifier predicts that a candidate pair is a event
belonging to Event-Set-A, the predication stays.
Otherwise, a series of rules are used for deciding a
type in Event-Set-B.

3.1 Pre-processing

The pre-processing include tokenization, sentence
splitter, part-of-speech (POS) tagging, lemmatiza-
tion and syntactic parsing. Stanford CoreNLP tool
(Manning et al., 2014) is adopted for the opera-
tions.

3.2 Entity Pair Selection

The system aims to resolve semantic relation ex-
traction as expected by the SeeDev task. In the
task, each event has two arguments. We construct
two entities as a candidate pair each time and pre-
dict their relation type. Table 3 presents sentence
distance statistics of events on the training set,
nearly 96.5% of events span within one sentence.

Since most events occur within a sentence, we on-
ly choose entity pairs in the same sentence.

Except three event types Is Linked To,
Has Sequence Identical To, and
Is Functionally Equivalent To, in which two
arguments could be reversed, for the others they
are ordered. Therefore an entity pair (Entity1,
Entity2) is different from the reversed pair
(Entity2, Entity1). They should be treated as two
instances.

Sentence distance Number
0 1571
1 52
2 5

Table 3: Sentence distance statistics of events on
the training set.

3.3 Feature Extraction
The features are extracted and summarized in Ta-
ble 4, which shows two types of features, entity
features and entity pair features.

Entity feature Entity pair feature
Entity type Tree path
Words Tree path length
Lemmas Token distance
POSs Entity distance
Unigram word Middle lemmas
Unigram lemma
Unigram POS
Tree node depth
Average word embedding

Table 4: Features used in classifier. Entity features
are extracted from two entities, separately. Entity
pair features are extracted from a pair of entities.

Word, lemma, Part-Of-Speech (POS) are fea-
tures directly represent an entity’s lexical and
grammatical characteristics. Adjacent words’ fea-
tures are used to represent the entity’s contextual
characteristics. Therefore, basic features include
word, lemma, POS of entities, as well as the same
information of the unigram words.

Generally speaking, if two entities are closer,
they are more likely to be relative (Tikk et al.,
2013). Token distance and entity distance are used
here. Token distance is the number of tokens be-
tween two entities. Entity distance is the number
of entities in the middle of two entities.

34



Syntactic parsing tree features are important
for semantic relation (Punyakanok et al., 2008;
D’Souza and Ng, 2012). Tree node depth, tree
path, tree path length are used in our experiment.
They are obtained from the syntactic parsing tree,
generated during the pre-processing. Tree node
depth is the distance between the corresponding
tree node of an entity and the root node of the sen-
tence. Tree path is the path between two entities.
Tree path length is the number of middle nodes
between two entities in their tree path.

Word embedding has demonstrated the ability
of well representing linguistic and semantic infor-
mation of a text unit (Mikolov et al., 2013; Tang
et al., 2014), e.g. POS and N-gram. We contin-
ue using it as a feature in our system. Specif-
ically, training, development and test datasets of
SeeDev are used to obtain word embedding by us-
ing word2vec tool (Mikolov et al., 2013) after sen-
tencization, tokenization and lemmatization on the
original text. Since the word number of an entity is
uncertain, we use the average value of all the word
embeddings of an entity (Chen et al., 2015; Wang
et al., 2015), i.e. average word embedding. Mid-
dle lemmas include all of the lemmas between two
entities, they are treated as a bag-of-word (BOW)
feature, some keyword information may be ob-
tained from it.

3.4 SVM Classifier Prediction
Support Vector Machine (SVM) (Cortes and Vap-
nik, 1995) and the C++ embodiment, LibSVM
(Chang and Lin, 2011), is employed for the classi-
fication in LitWay. Positive event instances are re-
trieved from gold annotations. Negative instances
are created by all of no-relation entity pairs within
each sentence.

Among predication, if the predicted result of an
entity pair belongs to Event-Set-A, it is taken as
the label. Otherwise, rule-based filters are applied.

3.5 Rule-based Filters
In Event-Set-B, different event types have differ-
ent rules. We summarize all rules in Table 5. We
consider the event types of Event-Set-B one by
one, according to their quantities on the training
set, as showed in Table 2. Once all rules of an
event type are satisfied, the entity pair label could
be determined, and the matching of the rest event
types could be stopped.

There are 6 types of rules: Event arguments
match, Entity structure rules, Sentence structure

rules, Token distance restriction, Keywords match
and Training set match. The details about these
rules are shown as following:
(1) Event arguments match: According to the
task description, the arguments of the event are
strongly typed, which means that all types of enti-
ties are not possible as event arguments. What is
more, according to the statistics of arguments of
different events on the training set, we only retain
those arguments that occur most times for each
special event type. This could efficiently reduce
false instances.
(2) Entity structure rules: Many entities have
complicated structure, an entity could span over
another entity. This results in that some entity
structures are less likely to be event arguments.
Such as, an entity with smaller span is not an argu-
ment, as it is often the modifier of the larger one.
Meanwhile, some event types have several fixed
special entity argument structures. We summarize
3 particular rules from the training set:

• (2a) Entity is not covered: An entity is not
covered by a larger one.

• (2b) Entity does not cover: An entity does
not contain smaller entities or overlap with
others.

• (2c) Special entity structure: Some spe-
cial entity structure rules are summarized
from the dataset. Presumably an entity pair
(Entity1, Entity2) is within a sentence, Enti-
ty is another entity in the same sentence, the
special entity structures could be:

– (2c1) Entity1 (Entity2): Entity pair
should have such fixed special structure,
Entity2 follows Entity1 and is in brack-
ets.

– (2c2) Entity1 (Entity): If Entity1 is fol-
lowed by Entity and Entity is in brack-
ets, Entity1 is ignored.

– (2c3) Entity (Entity1): If Entity1 fol-
lows Entity and Entity1 is in brackets,
Entity1 is ignored.

– (2c4) Entity2 Entity1 (Entity): If Entity
follows Entity1 and Entity is in brack-
ets, while Entity1 also follows Entity2,
then Entity1 is kept.

– (2c5) Entity (Entity2): If Entity2 fol-
lows Entity and Entity2 is in brackets,
Entity2 is ignored.
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(3) Sentence structure rules: If two entities form
an event relation, the sentence structure presents
some syntactic characteristics. We summarize 3
sentence structure rules:

• (3a) No subordinate clause: Subordinate
clause is a complex sentence structure. If
there is event relation between a pair of enti-
ties, the syntactic tree path structure between
them is often simple and direct.

• (3b) Active or passive structure match: For
an event argument pair (Entity1, Entity2), it
should have such relation structure: Entity1-
influences-Entity2. While an entity pair has
two orders in a sentence: Entity1 is on the
left of Entity2, or right of Entity2. Different
orders should match different sentence struc-
ture rules. If Entity1 is on the left of Entity2,
their tree path is an active structure. Other-
wise it is a passive structure.

• (3c) Special entity pair order: Some events
usually have fixed order between their two
arguments, Entity1 is always on the left (or
right) of Entity2.

(4) Token distance restriction: Closer entities are
more likely to be relative. The rule restricts the
number of middle tokens between entities. It ig-
nores distant entity pairs.
(5) Keywords match: Some events are accompa-
nied by keywords, we record these keywords of
several different events, showed in following de-
tailed rules. They are useful for event identifica-
tion.
(6) Training set match: For some event types, we
compile the entity pairs from the training set into a
dictionary, since they are biologically more likely
to interact.

For an entity pair (Entity1, Entity2), we apply
the rules on Event-Set-B. Following labels (1) to
(6) correspond to 6 type rules introduced above,
None means nonuse of this rule:
Regulates Process
(1) Entity1∈{Genotype, Tissue, Gene, Protein,
Development Phase},
Entity2∈{Regulatory Network, Pathway}
(2) Entity1 is not covered
(3) No subordinate clause, Active or passive
structure match
(4) None
(5) None

(1) Event arguments match
(2) Entity structure rules
• (2a) Entity is uncovered
• (2b) Entity does not cover
• (2c) Special entity structure
(3) Sentence structure rules
• (3a) No subordinate clause
• (3b) Active or passive structure match
• (3c) Special entity pair order
(4) Token distance restriction
(5) Keywords match
(6) Training set match

Table 5: Summary of all rules.

(6) None
Regulates Expression
(1) Entity1∈{Tissue, Genotype, Protein, Devel-
opment Phase}, Entity2∈{Gene}
(2) Entity1 is not covered, Entity2 is not covered
(3) No subordinate clause
(4) None
(5) Keywords∈{function, target, repress, bind,
regulat-, exclude, activate, require, expression,
induce, detect, express, define, act, during, pli-
cate, observe, affect, defect, transcription, cease,
associate, restrict, modulate}
(6) None
Exists In Genotype
(1) Entity1∈{Gene, Gene Family, RNA, Protein,
Protein Family, Protein Domain}
Entity2∈{Genotype}
(2) Entity1 is not covered, Entity2 does not cover
(2c2) Entity1 (Entity): ignore Entity1
(2c4) Entity2 Entity1 (Entity): keep Entity1
(2c5) Entity (Entity2): ignore Entity2
(3) No subordinate clause
(4) None
(5) None
(6) None
Is Localized In
(1) Entity1∈{RNA, Protein, Protein Family,
Protein Complex, Protein Domain, Hormone}
Entity2∈{Tissue}
(2) Entity1 is not covered, Entity2 is not covered
(3) No subordinate clause
(4) None
(5) None
(6) None
Regulates Development Phase
(1) Entity1∈{Gene, Protein, Genotype,
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Gene Family}, Entity2∈{Development Phase}
(2) Entity1 is not covered, Entity2 is not covered
(2c2) Entity1 (Entity): ignore Entity1
(3) Entity1 is on the left of Entity2
(4) None
(5) None
(6) None
Is Member Of Family
(1) (Entity1, Entity2)∈{(Protein, Pro-
tein Family), (Gene, Gene Family)}
(2) Entity1 is not covered, Entity2 is not covered
(2c2) Entity1 (Entity): ignore Entity1
(3) No subordinate clause
(4) Token distance ≤ 10
(5) None
(6) None
Has Sequence Identical To
(1) Entity1 and Entity2 have same entity type
(2) (2c1) Entity1 (Entity2): Entity pair has this
structure
(3) None
(4) Token distance = 2
(5) None
(6) Training set match
Interacts With
(1) Entity1∈{Protein, Environmental Factor},
Entity2∈{Box, Promoter, Protein, Pro-
tein Family, Protein Complex, Protein Domain}
(2) Entity1 is not covered, Entity2 is not covered
(3) No subordinate clause
(4) None
(5) Keywords∈{interacts, interacted, interacting,
associate, associated, associates, associating}
(6) None
Is Functionally Equivalent To
(1) Entity1 and Entity2 have same entity type
(2) (2c1) Entity1 (Entity2): Entity pair has this
structure
(3) None
(4) Token distance = 2
(5) None
(6) Training set match
Binds To
(1) Entity1∈{Protein, Protein Family, Pro-
tein Domain}, Entity2∈{Box, Promoter, Protein,
Protein Family, Protein Complex}
(2) Entity1 is not covered, Entity2 is not covered
(3) No subordinate clause
(4) None
(5) Keywords∈{bind, binds, interact, physical,
direct}

(6) None
Is Protein Domain Of
(1) Entity1∈{Protein Domain},
Entity2∈{Protein, Protein Family}
(2) Entity1 is not covered, Entity2 is not covered
(2c2) Entity1 (Entity): ignore Entity1
(3) None
(4) None
(5) None
(6) None
Composes Primary Structure
(1) Entity1∈{Box}, Entity2∈{Gene, Box, Pro-
moter}
(2) None
(3) No subordinate clause
(4) None
(5) None
(6) None
Composes Protein Complex
(1) Entity1∈{Protein},
Entity2∈{Protein Complex}
(2) Entity1 is not covered, Entity2 is not covered
(3) No subordinate clause, Entity1 is on the left
of Entity2
(4) None
(5) None
(6) None

4 Results

To investigate the impact of different strategies
and their comparison with the hybrid method, we
test the system solely with machine learning, syn-
tactic rules, or different combinations of them.

We compared the proposed hybrid method with
the classifier-only based method on the develop-
ment dataset. Table 6 shows the experiment resu-
lts. All of the features are beneficial for the clas-
sifier, by using all of them we get the best SVM
based result with 31.5% F1. Tree features make
most improvement with 5.7% increase on F1, both
recall and precision are increased. Dist features
make only 0.2% F1 improvement and WM fea-
tures make 1.2% F1 improvement. They increase
precision with the loss of recall, while Tree fea-
tures mainly contribute to recall.

Comparing hybrid method with the best SVM
result in Table 6, we could see an obvious ad-
vantage. The F1 of the hybrid method is over
10% higher than the best SVM result, it greatly
improves recall with around 16%, and has 3.4%
precision increase. It’s interesting because adding
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Method F1 R P
(1) Word+POS+Lemma 0.244 0.206 0.300
(2) WPL+Dist 0.246 0.192 0.344
(3) WPL+Dist+Tree 0.303 0.267 0.348
(4) WPL+Dist+Tree+WM 0.315 0.264 0.390
(5) Hybrid 0.423 0.423 0.424

Table 6: Comparison between different features
for SVM on development dataset. Methods (1) to
(4) only use multiclass SVM with different fea-
ture selections, (5) is the hybrid method. WPL
are word, POS and lemma features. Dist are to-
ken distance and entity distance features. Tree are
tree node depth, tree path and tree path length fea-
tures. WM are average word embedding and mid-
dle lemmas features.

rules usually increase precision instead of recall.
To verify the effect of rule-based method for

different event types, we take the best SVM re-
sult as a basis, and then replace each event type
with rule-based method in turns. Event-Set-B us-
es specific rules introduced before. Event-Set-A
uses some frequent rules from Event-Set-B since
it is difficult to create precise rules for minority
class, they include:
(1) Event arguments match;
(2) Entity1 is not covered, Entity2 is not covered;
(3) No subordinate clause, active or passive struc-
ture match.

Table 7 presents the results. Except for
Composes Primary Structure and Compos-
es Protein Complex, F1 of Event-Set-B events
are increased by using rules instead of SVM.
While rules are not helpful for Event-Set-A, it
verifies the partition of two sets.

Since Composes Primary Structure and Com-
poses Protein Complex have better results in
SVM, we move them into Event-Set-A and in-
deed get a little better result in overall events after
the competition, it is showed in following.

Table 8 presents the details of SVM method and
hybrid method. Almost all the events of Event-
Set-B have better results in the hybrid method.
This demonstrates the effectiveness of it.

To investigate the rules used in the proposed
method, we take several experiments on the devel-
opment data by different rule combinations. Table
9 presents their results. All of these rules are bene-
ficial to the system more or less. Event arguments
match and entity structure rules have important in-

Method F1
WPL+Dist+Tree+WM 0.315
Regulates Process 0.334
Regulates Expression 0.315
Exists In Genotype 0.355
Is Localized In 0.323
Regulates Development Phase 0.325
Is Member Of Family 0.320
Has Sequence Identical To 0.328
Interacts With 0.323
Is Functionally Equivalent To 0.330
Binds To 0.316
Is Protein Domain Of 0.327
Composes Primary Structure 0.313
Composes Protein Complex 0.313
Is Linked To 0.248
Regulates Accumulation 0.289
Transcribes Or Translates To 0.315
Is Involved In Process 0.306
Occurs In Genotype 0.314
Regulates Molecule Activity 0.277
Exists At Stage 0.313
Regulates Tissue Development 0.302
Occurs During 0.310

Table 7: Replace each event type with rule-based
method in turns on the basis of SVM. Event-Set-
B is in italic.

fluences to the performance, result in around 10%
and 8% F1 decrease respectively. It is understand-
able because almost all kinds of event types in
Event-Set-B use these two rules, which makes
them important to the system, especially on the
precision. Sentence structure rules and keywords
match are also useful, around 3% to 3.5% F1 im-
provement could be obtained by using them. They
improve the performance by increasing the preci-
sion of the system with the loss of recall. Token
distance restriction and training set match have on-
ly 0.1% to 0.3% influences on F1 as they are mere-
ly used in one or two event types. Token distance
restriction could improve the precision while train-
ing set match improves the recall.

Table 10 is the official result of the SeeDev task
(Chaix et al., 2016). LitWay achieves the best re-
sult among all participating teams with 43.2% F1
showing significant advantage. The recall of Lit-
Way is 44.8%, which is comparable to the highest
recall 45.8%. Its precision 41.7% is the second
highest value, only lower than 53.3%.
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Event type WPL+Dist+Tree+WM Hybrid
F1 Recall Precision F1 Recall Precision

All 0.315 0.264 0.390 0.423 0.423 0.424
Regulates Process 0.437 0.447 0.428 0.511 0.520 0.503
Regulates Expression 0.416 0.387 0.448 0.432 0.360 0.541
Exists In Genotype 0.224 0.210 0.239 0.540 0.630 0.472
Is Localized In 0.433 0.447 0.420 0.518 0.617 0.446
Regulates Development Phase 0.182 0.136 0.276 0.333 0.424 0.275
Is Member Of Family 0.342 0.255 0.519 0.479 0.418 0.561
Has Sequence Identical To 0.514 0.429 0.643 0.807 0.735 0.893
Interacts With 0.080 0.063 0.111 0.301 0.344 0.268
Is Functionally Equivalent To 0.467 0.318 0.875 0.667 0.590 0.767
Binds To 0.177 0.125 0.300 0.256 0.208 0.333
Is Protein Domain Of 0.061 0.035 0.250 0.455 0.517 0.405
Composes Primary Structure NA 0 NA 0.238 0.667 0.145
Composes Protein Complex NA NA NA NA NA 0
Is Linked To 0.118 0.087 0.182 0.118 0.087 0.182
Regulates Accumulation 0.271 0.207 0.429 0.271 0.207 0.429
Transcribes Or Translates To 0.174 0.154 0.200 0.174 0.154 0.200
Is Involved In Process NA 0 0 NA 0 0
Occurs In Genotype NA 0 NA NA 0 NA
Regulates Molecule Activity NA NA NA NA NA NA
Exists At Stage NA 0 0 NA 0 0
Regulates Tissue Development NA 0 NA NA 0 NA
Occurs During NA 0 NA NA 0 NA

Table 8: Detailed results of SVM classifier and hybrid method on development dataset. NA in Recall
represents none of this class instance on the development data. NA in Precision represents none of this
class instance in the predicted results. 0 in Recall or Precision means none of True Positive (TP) instance
of this type is obtained in the predicted results. Event-Set-B is in italic.

We present two more additional exper-
iments after the competition by moving
Composes Primary Structure and Compos-
es Protein Complex into Event-Set-A. Table 11
shows the results. The result on development data
has 0.8% improvement on F1, while does not
show benefit on test data.

We analyse the results on development dataset
before and after the movement operation. Before
the movement, for Composes Primary Structure
there are 10 True Positive (TP) instances among 69
predicted instances (gold number is 15), for com-
poses Protein Complex there are 0 TP instance
among 8 predicted result (gold number is 0). After
the operation both of the two predicted numbers
are 0, i.e. we do not make any predictions of the
two event types. In this case, 10 right events are
lost, on the other hand 67 false events are success-
fully deleted. It brings more benefits than harm.

5 Conclusion

The paper presents a hybrid method system Lit-
Way, to resolve the biomedical semantic relations.
It achieves the best result in BioNLP-ST 2016
SeeDev task. It is built as a flexible way with
the awareness of that different bio-events have
different linguistic characteristics and are difficult
to be tackled by a single method.

Without much feature engineering nor complex
algorithm, LitWay obtains the state-of-the-art per-
formance on the official test data, with the highest
F-score 43.2%. A series of experiments of using
the methods and their combinations are carried out
to investigate the different linguistic characteris-
tics of different event types.

Here we extract relations within one sentence.
While a number of events still span across sen-
tences. By incorporating coreference technics in
the future, we expect to be able to interconnect
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Method F1 R P
(1) Hybrid 0.423 0.423 0.424
(2) No arguments match 0.325 0.484 0.244
(3) No entity rules 0.342 0.447 0.277
(4) No sentence rules 0.394 0.501 0.325
(5) No token distance 0.420 0.423 0.417
(6) No keywords 0.388 0.441 0.347
(7) No training match 0.422 0.420 0.424

Table 9: Hybrid experiment results with
different rules on development dataset. Meth-
ods (2) to (7) have been removed one type
rule separately on the basis of (1). Method
(2) only follows the event argument match
rules given by the SeeDev task (http://
2016.bionlp-st.org/tasks/seedev/
seedev-data-representation.), does
not filter event arguments that never or rarely
occur.

Method F1 Recall Precision
LitWay 0.432 0.448 0.417

UniMelb 0.364 0.386 0.345
VERSE 0.342 0.458 0.273

– 0.335 0.245 0.533
ULISBOA 0.306 0.256 0.379

LIMSI 0.255 0.318 0.212
DUTIR* – – –

Table 10: Official evaluation results on test data.

events at the same time improve the event extrac-
tion performance.
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Ba, Louise Deléger, Pierre Zweigenbaum, Philippe
Bessières, Loı̈c Lepiniec, and Claire Nédellec.
2016. Overview of the regulatory network of plant
seed development (seedev) task at the bionlp shared
task 2016. In Proceedings of the 4th BioNLP Shared
Task workshop, Berlin, Germany, August. Associa-
tion for Computational Linguistics.

Chih-Chung Chang and Chih-Jen Lin. 2011. Lib-
svm: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology
(TIST), 2(3):27.

Xinxiong Chen, Lei Xu, Zhiyuan Liu, Maosong Sun,
and Huanbo Luan. 2015. Joint learning of charac-
ter and word embeddings. In Proceedings of IJCAI,
pages 1236–1242.

K Bretonnel Cohen, Karin Verspoor, Helen L Johnson,
Chris Roeder, Philip V Ogren, William A Baum-
gartner Jr, Elizabeth White, Hannah Tipney, and
Lawrence Hunter. 2009. High-precision biologi-
cal event extraction with a concept recognizer. In
Proceedings of the Workshop on Current Trends in
Biomedical Natural Language Processing: Shared
Task, pages 50–58. Association for Computational
Linguistics.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine Learning, 20(3):273—
297.

Jennifer D’Souza and Vincent Ng. 2012. Anapho-
ra resolution in biomedical literature: A hybrid
approach. In Proceedings of the ACM Confer-
ence on Bioinformatics, Computational Biology and
Biomedicine, pages 113–122. ACM.

Kai Hakala, Sofie Van Landeghem, Tapio Salakoski,
Yves Van de Peer, and Filip Ginter. 2013. Evex
in st13: Application of a large-scale text mining re-
source to event extraction and network construction.
In Proceedings of the BioNLP Shared Task 2013
Workshop, pages 26–34. Association for Computa-
tional Linguistics.

Halil Kilicoglu and Sabine Bergler. 2011. Adapting a
general semantic interpretation approach to biologi-
cal event extraction. In Proceedings of the BioNLP
Shared Task 2011 Workshop, pages 173–182. Asso-
ciation for Computational Linguistics.

40



Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Jun’ichi Tsujii. 2009. Overview
of bionlp’09 shared task on event extraction. In
Proceedings of the Workshop on Current Trends in
Biomedical Natural Language Processing: Shared
Task, pages 1–9. Association for Computational Lin-
guistics.

Jin-Dong Kim, Yue Wang, Toshihisa Takagi, and Aki-
nori Yonezawa. 2011. Overview of genia event task
in bionlp shared task 2011. In Proceedings of the
BioNLP Shared Task 2011 Workshop, pages 7–15.
Association for Computational Linguistics.

Jin-Dong Kim, Yue Wang, and Yamamoto Yasunori.
2013. The genia event extraction shared task, 2013
edition-overview. In Proceedings of the BioNLP
Shared Task 2013 Workshop, pages 8–15. Associa-
tion for Computational Linguistics.

Chen Li, Maria Liakata, and Dietrich Rebholzschuh-
mann. 2013. Biological network extraction from
scientific literature: State of the art and challenges.
Briefings in Bioinformatics, 15(5):856–877.

Chen Li, Runqing Song, Maria Liakata, Andreas
Vlachos, Stephanie Seneff, and Xiangrong Zhang.
2015a. Using word embedding for bio-event extrac-
tion. ACL-IJCNLP 2015, page 121.

Lishuang Li, Rui Guo, Zhenchao Jiang, and De-
gen Huang. 2015b. An approach to improve
kernel-based protein–protein interaction extraction
by learning from large-scale network data. Methods,
83:44–50.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David
McClosky. 2014. The stanford corenlp natural lan-
guage processing toolkit. In ACL (System Demon-
strations), pages 55–60.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Makoto Miwa, Rune Sætre, Yusuke Miyao, and Junichi
Tsujii. 2009. Protein–protein interaction extraction
by leveraging multiple kernels and parsers. Interna-
tional journal of medical informatics, 78(12):e39–
e46.

Makoto Miwa, Paul Thompson, and Sophia Ana-
niadou. 2012. Boosting automatic event ex-
traction from the literature using domain adapta-
tion and coreference resolution. Bioinformatics,
28(13):1759–1765.

Yusuke Miyao, Kenji Sagae, Rune Sætre, Takuya
Matsuzaki, and Jun’ichi Tsujii. 2009. Evalu-
ating contributions of natural language parsers to
protein–protein interaction extraction. Bioinformat-
ics, 25(3):394–400.

Tsendsuren Munkhdalai, Oyun-Erdene Namsrai, and
Keun H Ryu. 2015. Self-training in significance
space of support vectors for imbalanced biomedical
event data. BMC bioinformatics, 16(Suppl 7):S6.

Claire Nédellec, Robert Bossy, Jin Dong Kim, Jung Jae
Kim, Tomoko Ohta, Sampo Pyysalo, and Pierre
Zweigenbaum. 2013. Overview of bionlp shared
task 2013. In Bionlp Shared Task 2013 Workshop,
pages 1–7.

Nikolas Papanikolaou, Georgios A Pavlopoulos, Theo-
dosios Theodosiou, and Ioannis Iliopoulos. 2015.
Protein–protein interaction predictions using text
mining methods. Methods, 74:47–53.

Yifan Peng, Samir Gupta, Cathy H Wu, and K Vijay-
Shanker. 2015. An extended dependency graph
for relation extraction in biomedical texts. ACL-
IJCNLP 2015, page 21.

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. 2008.
The importance of syntactic parsing and inference in
semantic role labeling. Computational Linguistics,
34(2):257–287.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. In ACL (1), pages 1555–1565.

Domonkos Tikk, Illés Solt, Philippe Thomas, and Ulf
Leser. 2013. A detailed error analysis of 13 kernel
methods for protein–protein interaction extraction.
BMC bioinformatics, 14(1):1.

Huazheng Wang, Bin Gao, Jiang Bian, Fei Tian, and
Tie-Yan Liu. 2015. Solving verbal comprehension
questions in iq test by knowledge-powered word em-
bedding. arXiv preprint arXiv:1505.07909.

41



Proceedings of the 4th BioNLP Shared Task Workshop, pages 42–49,
Berlin, Germany, August 13, 2016. c©2016 Association for Computational Linguistics

VERSE: Event and Relation Extraction in the BioNLP 2016 Shared Task

Jake Lever and Steven JM Jones
Canada’s Michael Smith Genome Sciences Centre

570 W 7th Ave, Vancouver
BC, V5Z 4S6, Canada

{jlever,sjones}@bcgsc.ca

Abstract

We present the Vancouver Event and Re-
lation System for Extraction (VERSE)1 as
a competing system for three subtasks of
the BioNLP Shared Task 2016. VERSE
performs full event extraction including
entity, relation and modification extrac-
tion using a feature-based approach. It
achieved the highest F1-score in the Bac-
teria Biotope (BB3) event subtask and the
third highest F1-score in the Seed Devel-
opment (SeeDev) binary subtask.

1 Introduction

Extracting knowledge from biomedical literature
is a huge challenge in the natural language parsing
field and has many applications including knowl-
edge base construction and question-answering
systems. Event extraction systems focus on this
problem by identifying specific events and rela-
tions discussed in raw text.

Events are described using three key concepts,
entities, relations and modifications. Entities are
spans of text that describe a specific concept (e.g.
a gene). Relations describe a specific association
between two (or potentially more) entities. To-
gether entities and relations describe an event or
set of events (such as complex gene regulation).
Modifications are changes made to events such as
speculation.

The BioNLP Shared Tasks have encouraged re-
search into new techniques for a variety of impor-
tant NLP challenges. Occurring in 2009, 2011 and
2013, the competitions were split into several sub-
tasks (Kim et al., 2009; Kim et al., 2011; Nédellec
et al., 2013). These subtasks provided annotated
texts (commonly abstracts from PubMed) of enti-
ties, relations and events in a particular biomedical

1http://www.github.com/jakelever/VERSE

domain. Research groups were then challenged to
generate new tools to better predict new relations
and events in test data.

The BioNLP 2016 Shared Task contains three
separate parts, the Bacteria Biotope subtask
(BB3), the Seed Development subtask (SeeDev)
and the Genia Event subtask (GE4). The BB3
and SeeDev subtasks have separate parts that spe-
cialise in entity recognition and relation extrac-
tion. The GE4 subtask focuses on full event ex-
traction of NFkB related gene events.

Previous systems for relation and event extrac-
tion have taken two main approaches: rule-based
and feature-based. Rule-based methods learn spe-
cific patterns that fit different events, for instance,
the word ”expression” following a gene name gen-
erally implies an expression event for that gene.
The pattern-based tool BioSem (Bui et al., 2013)
in particular performed well in the Genia Event
subtask of the BioNLP’13 Shared Task. Feature-
based approaches translate the textual content into
feature vectors that can be analysed with a tra-
ditional classification algorithm. Support vector
machines (SVMs) have been very popular with
successful relation extraction tools such as TEES
(Björne and Salakoski, 2013).

We present the Vancouver Event and Relation
System for Extraction (VERSE) for the BB3 event
subtask, the SeeDev binary subtask and the Genia
Event subtask. Utilising a feature-based approach,
VERSE builds on the ideas of the TEES system.
It offers control over the exact semantic features
to use for classification, allows feature selection
to reduce the size of feature vectors and uses a
stochastic optimisation strategy with k-fold cross-
validation to identify the best parameters. We ex-
amine the competitive results for the various sub-
tasks and also analyse VERSE’s capability to pre-
dict relations across sentence boundaries.
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Figure 1: Overview of VERSE pipeline

2 Pipeline

VERSE breaks event extraction into five steps out-
lined in the pipeline shown in Figure 1. Firstly the
input data is passed through a text processing tool
that splits and tags text and associates the parsed
results with the provided annotations. This parsed
data is then passed through three separate classi-
fications steps for entities, relations and modifica-
tions. Finally, the results are filtered to make sure
that all relations and modifications fit the expected
types for the given task.

2.1 Text processing

VERSE can accept input in the standard BioNLP-
ST format or the PubAnnotation JSON format
(Kim and Wang, 2012). Both formats are stand-
off, as they contain the text and annotations sepa-
rately. The annotations describe entities in the text
as spans of text and relations and modifications of
these entities.

The input files for the shared subtasks are
initially processed using the Stanford CoreNLP
toolset. The texts are split into sentences and tok-
enized. Parts-of-speech and lemmas are identified
and a dependency parse is generated for each sen-
tence. CoreNLP also returns the exact positions
of each token. Using this data, an interval tree is
created to identify intersections of text with enti-
ties described in the associated annotation. The
specific sentence and locations of each associated
word are then stored for each entity. Relations
and modifications described in the associated an-
notations are also loaded, retaining information on
which entities are involved.

The entities in the BB3 and SeeDev subtasks
are generally sets of full words but can be non-
contiguous. Entities are stored as a set of associ-
ated words rather than a span of words. The GE4

task also contains entities that contain only partial
words, for example, ”PTEN” is tagged as an en-
tity within ”PTEN-deficient”. A list of common
prefixes and suffixes from the GE4 task is used to
separate these words into two words so that the ex-
ample would become ”PTEN deficient”. Further-
more, any annotation that divides a word that con-
tains a hyphen or forward slash causes the word to
be separate into two separate words.

For easier interoperability, the text parsing code
was developed in Jython (Developers, 2008) (a
version of Python that can load Java libraries,
specifically the Stanford CoreNLP toolset). This
Jython implementation is then able to export eas-
ily processed Python data structures. Due to in-
compatibility between Jython and various numer-
ical libraries, a separate Python-only implementa-
tion loads the generated data structures for further
processing and classification.

2.2 Candidate generation

For all three classifications steps (entities, rela-
tions and modifications), the same machine learn-
ing framework is used. All possibles candidates
are generated for entities, relations or modifica-
tions. For relations, this means all pairs of enti-
ties are found (within a certain sentence range).
For the training step, the candidates are associated
with a known class (i.e. the type of relation), or
the negative class if the candidate is not annotated
in the training set. For testing, the classes are un-
known. Candidates can contain one argument (for
entity extraction and modification) or two argu-
ments (for relation extraction). These arguments
are stored as references to sentences and the in-
dices of the associated words.
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Lives_In Argument 1 Argument 2 

No vibrio vulnificus  waterways 
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has been described in recent publications on waterways.” 
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Figure 2: Relation candidate generation for the example text which contains a single Lives In relation
(between bacteria and habitat). The bacteria entity is shown in bold and the habitat entities are underlined.
Relation example generation creates pairs of entities that will be vectorised for classification. (a) shows
all pairs matching without filtering for specific entity types (b) shows filtering for entity types of bacteria
and habitat for a potential Lives In relation

2.2.1 Entity extraction

Entity extraction aims to classify individual or
sets of words as a certain type of entity, given a
set of training cases. Entities may contain non-
contiguous words. The set of all possible com-
binations of words that could compose an entity
is too large for the classification system. Hence
VERSE filters for only combinations of words that
are identified as entities in the training set.

2.2.2 Relation extraction

VERSE can predict relations between two entities,
also known as binary relations. Candidates for
each possible relation are generated for every pair
of entities that are within a fixed sentence range.
Hence when using the default sentence range of 0,
only pairs of entities within the same sentence are
analysed. VERSE can optionally filter pairs of en-
tities using the expected types for a set of relations
as shown in Figure 2.

Each candidate is linked with the locations of
the two entities. If the two entities are already an-
notated to be in a relation, then they are labelled
with the corresponding class. Otherwise, the bi-
nary relation candidate is annotated with the neg-
ative class.

2.2.3 Modification extraction

VERSE supports modification of entities in the
form of event modification but currently does not
support modification of individual relations. A
modification candidate is created for all entities
that form the base of an event. These entities are
often known as the triggers of the event. In the
JSON format, these entities traditionally have IDs
that start with “E”. If a modification exists in the
training set for that entity, the appropriate class is
associated with it. Individual binary classifiers are
generated for each modification type. This allows
an event to be classified with more than one mod-
ification.

2.3 Classification

All candidates are vectorized using the same
framework, whether for candidates with one or
two arguments with minor changes. The full set of
features is outlined in Section 3. These vectorized
candidates are then used for training a traditional
classifier. The vectors may be reduced using fea-
ture selection. Most importantly, the parameters
used for the feature generation and classifier can
easily be varied to find the optimal results. Classi-
fication uses the scikit-learn Python package (Pe-
dregosa et al., 2011).
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2.3.1 Feature selection

VERSE implements optional feature selection us-
ing a chi-squared test on individual parameters
against the class variable. The highest ranking fea-
tures are then filtered based on the percentage of
features desired.

2.3.2 Classifier parameters

Classification uses either a support vector machine
(SVM) or logistic regression. When using the
SVM, the linear kernel is used due to lower time
complexity. The multi-class classification uses a
one-vs-one approach. The additional parameters
of the SVM that are optimised are the penalty pa-
rameter C, class weighting approach and whether
to use the shrinking heuristic. The class weighting
is important as the negative samples greatly out-
number the positive samples for most problems.

2.3.3 Stochastic parameter optimisation

VERSE allows adjustment of the various param-
eters including the set of features to generate, the
classifier to use and the associated classification
parameters. The optimisation strategy involves
initially seeding 100 random parameter sets. After
this initial set, the top 100 previous parameter sets
are identified each iteration and one is randomly
selected. This parameter set is then tweaked as
follows. With a probability of 0.05, an individ-
ual parameter is changed. In order to avoid local
maxima, an entirely new parameter set is gener-
ated with a probability of 0.1. For the subtasks, a
500 node cluster using Intel X5650s was used for
optimisation runs.

The optimal parameters are determined for the
entity extraction, relation extraction and each pos-
sible modification individually. In order to balance
precision and recall equally at each stage, the F1-
score is used.

2.4 Filtering

Final filtering is used to remove any predictions
that do not fit into the task specification. Firstly
all relations are checked to see that the types of
the arguments are appropriate. Any entities that
are not included in relations are removed. Finally,
any modifications that do not have appropriate ar-
guments or were associated with removed entities
are also trimmed.

Feature Name Target
unigrams Entire Sentence

unigrams & parts-of-speech Entire Sentence
bigrams Entire Sentence

skipgrams Entire Sentence
path edges type Dependency Path

unigrams Dependency Path
bigrams Dependency Path

unigrams Each Entity
unigrams & parts-of-speech Each Entity

nearby path edge types Each Entity
lemmas Each Entity

entity types Each Entity
unigrams of windows Each Entity

is relation across sentences N/A

Table 1: Overview of the various features that
VERSE can use for classification

2.5 Evaluation

An evaluation system was created that generates
recall, precision, and associated F1-scores for en-
tities, relations and modifications. The system
works conservatively and requires exact matches.
It should be noted that our internal evaluation sys-
tem gave similar but not exactly matching results
to the online evaluation system for the BB3 and
SeeDev subtasks.

K-fold cross-validation is used in association
with this evaluation system to assess the success
of the system. The entity, relation and modifica-
tion extractors are trained separately. For the BB3
and SeeDev subtasks, two-fold cross-validation is
used, using the provided split of training and de-
velopment sets as the training sets for the first
and second fold respectively. For the GE4 task,
five-fold cross-validation is used. The average F1-
score of the multiple folds is used as the metric of
success.

3 Features

For each generated candidate, a variety of features
(controllable through a parameter) is calculated.
The features focus on characteristics of the full
sentence, dependency path or individual entities.
The full-set is shown in Table 1. It should also be
noted that a term frequency-inverse document fre-
quency (TFIDF) transform is also an option for all
bag-of-words based features.
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Figure 3: Dependency parsing of the shown sen-
tence provides (a) the dependency graph of the
full sentence which is then reduced to (b) the de-
pendency path between the two multi-word terms.
This is achieved by finding the subgraph which
contains all entity nodes and the minimum num-
ber of additional nodes.

3.1 Full sentence features

N-grams features (unigrams and bigrams) use a
bag-of-words approach to count the word occur-
rences across the whole sentence. The words are
transformed to lowercase but notably are not fil-
tered for stop words. A version combining the in-
dividual words with part-of-speech information is
also used. A bag-of-words vector is also gener-
ated for lemmas of all words in the sentence. Skip-
gram-like features are generated using two words
separated by a fixed window of words are also
used to generate features. Hence the terms ”reg-
ulation of EGFR” and ”regulation with EGFR”
would match the same features of ”regulation *
EGFR”.

3.2 Dependency path features

The dependency path is the shortest path between
the two entities in a dependency parse graph and
has been shown to be important for relation ex-
traction (Bunescu and Mooney, 2005). Features
generated from the set of edges and nodes of the
dependency graph include a unigrams and bigrams
representation. The specific edge types in the de-
pendency path are also captured with a bag-of-
words vector. In order to give specific informa-
tion about the location of the entity in the depen-

dency path, the types of the edges leaving the en-
tity nodes are recorded separately for each entity.

Interestingly an entity may span multiple nodes
in the dependency graph. An example of a de-
pendency path with the multi-word entities ”cox-
iella burnetii” and ”freshwater lakes” is shown in
Figure 3. In this case, the minimal subgraph that
connects all entity nodes in the graph is calcu-
lated. This problem was transformed into a mini-
mal spanning tree problem as follows and solved
using the NetworkX Python package (Hagberg et
al., 2008). The shortest paths through the graph
were found for all pairs of entity nodes (nodes as-
sociated with the multi-word entities). The path
distance between each pair was totalled and used
to generate a new graph containing only the entity
nodes. The minimal spanning tree was calculated
and the associated edges recovered to generate the
minimal subgraph. This approach would allow for
a dependency path-like approach for relations be-
tween more than two entities.

3.3 Entity features

The individual entities are also used to generate
specific features. Three different vectorised ver-
sions use a unigrams approach, a unigrams ap-
proach with parts-of-speech information and lem-
mas respectively. A one-hot vector approach is
used to represent the type of each entity. Unigrams
of words around each entity within a certain win-
dow size are also generated.

3.4 Multi-sentence and single entity features

VERSE is also capable of generating features for
relations between two entities that are in differ-
ent sentences. In this case, all sentence features
are generated for both sentences together and no
changes are made to the entity features.

The dependency path features are treated dif-
ferently. The dependency path for each entity is
created as the path from the entity to the root of
the dependency graph, generally the main verb of
the sentence. This then creates two separate paths,
one per sentence and the features are generated in
similar ways using these paths. Finally, a simple
binary feature is generated for relation candidates
that span multiple sentences.

For relation and modifications, candidates con-
tain only a single argument. The dependency path
is created in a similar manner to candidates of re-
lations that span across sentences.
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Parameter BB3 event SeeDev binary

Features

unigrams
unigrams POS

bigrams of dependency path
unigrams of dependency path

path edges types
entity types

entity lemmas
entity unigrams POS

path edges types near entities

unigrams
unigrams POS

path edges types
path edges types near entities

entity types

Feature Selection No Top 5%
Use TFIDF Yes Yes

Sentence Range 0 0
SVM Kernel linear linear

SVM C Parameter 0.3575 1.0 (default)
SVM Class Weights Auto 5 for positive and 1 for negative

SVM Shrinking No No

Table 2: Parameters used for BB3 and SeeDev subtasks

4 Results and discussion

The VERSE tool as described was applied to three
subtasks: the BB3 event subtask, the SeeDev bi-
nary subtask and the GE4 subtask.

4.1 Datasets

The BB3 event dataset provided by the BioNLP-
ST 16 organizers contains a total of 146 docu-
ments (with 61, 34 and 51 documents in the train-
ing, development and test sets respectively). These
documents are annotated with entities of the fol-
lowing types and associated total counts: bacte-
ria (932), habitat (1,861) and geographical (110).
Only a single relation type (Lives In) is annotated
which must be between a bacteria and habitat or a
bacteria and a geographical entity.

The dataset for the SeeDev binary subtask con-
tains 20 documents with a total of 7,082 annotated
entities and 3,575 relations. There are 16 entity
types and 22 relation types.

The GE4 dataset focuses on NFkB gene regu-
lation and contains 20 documents. After filtering
for duplicates and cleanup, it contains 13,012 an-
notated entities of 15 types. These entities are in
7,232 relations of 5 different types. It also contains
81 negation and 121 speculation modifications for
events. Coreference data is also provided but was
not used.

4.2 Cross-validated results

Both BB3 event and SeeDev binary subtasks re-
quired only relation extraction. VERSE was
trained through cross-validation using the param-
eter optimising strategy and the optimal parame-
ters are outlined in Table 2. Both tasks were split
into training and development sets by the competi-
tion organisers. The training set contained roughly
twice as many annotations as the development set.
We used this existing split for the two-fold cross-
validation. A linear kernel SVM was found to per-
form the best in both tasks. For both subtasks, re-
lation candidates were generated ignoring the ar-
gument types as shown in Figure 2.

The classifiers for the two tasks use two very
different sizes of feature vectors. The BB3 pa-
rameter set has a significant amount of repeated
unigrams data, with unigrams for the dependency
path and whole sentence with and without parts
of speech. This parameter set also does not use
feature selection, meaning that the feature vec-
tors are very large (14,862 features). Meanwhile,
the SeeDev parameters use feature selection to se-
lect the top 5% of features which reduces the fea-
ture vector from 7,140 features down to only 357.
This size difference is very interesting and war-
rants further exploration of feature selection for
other tasks.

Unfortunately, both classifiers performed best
with a sentence range of zero, meaning that only
relations within sentences could be detected. Ta-
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Fold 1 Fold 2 Average
Recall 0.552 0.610 0.581

Precision 0.469 0.582 0.526
F1-score 0.507 0.596 0.552

Table 3: Cross-validated results of BB3 event sub-
task using optimal parameters in Table 2

Fold 1 Fold 2 Average
Recall 0.363 0.386 0.375

Precision 0.261 0.246 0.254
F1-score 0.303 0.301 0.302

Table 4: Cross-validated results of SeeDev binary
subtask using optimal parameters in Table 2

bles 3 and 4 show the optimal cross-validated
results that were found with these parameters.
Notably, the F1-scores for the two folds of the
SeeDev dataset are very similar, which is surpris-
ing given that the datasets are different sizes.

For the GE4 subtask, the cross-validation based
optimisation strategy was used to find parameters
for the entity, relation and modification extractions
independently. Due to the larger dataset, filtering
was applied to the argument types of relation can-
didates as shown in Figure 2. Table 5 outlines
the resulting F1-scores from the five-fold cross-
validations. As these extractors are trained sepa-
rately, their performance in the full pipeline would
be expected to be worse. This is explained as any
errors during entity extraction are passed onto re-
lation and modification extraction.

4.3 Competition results

The official results for the BB3 and SeeDev tasks
are shown in Table 6. VERSE performed well
in both tasks and was ranked first for the BB3
event subtask and third for the SeeDev binary
subtask. The worse performance for the SeeDev
dataset may be explained by the added complexity
of many additional relation and entity types.

Table 7 shows the final results for the test set

Entities Relations Mods
Recall 0.703 0.695 0.374

Precision 0.897 0.736 0.212
F1-score 0.786 0.715 0.266

Table 5: Averaged cross-validated F1-score results
of GE4 event subtask with entities, relations and
modifications trained separately

BB3 event SeeDev binary
Recall 0.615 0.458

Precision 0.510 0.273
F1-score 0.558 0.342

Table 6: Final reported results for the BB3 event
and SeeDev binary subtasks

Entities Relations Mods
Recall 0.71 0.23 0.11

Precision 0.94 0.60 0.38
F1-score 0.81 0.33 0.17

Table 7: Final reported results for GE4 subtask
split into entity, relations and modifications results

for the Genia Event subtask using the online eval-
uation tool. As expected, the F1-scores of the rela-
tion and modification extraction are lower for the
full pipeline compared to the cross-validated re-
sults. Nevertheless, the performance is very rea-
sonable given the more challenging dataset.

4.4 Multi-sentence analysis

29% of relations span sentence boundaries in the
BB3 event dataset and 4% in the SeeDev dataset.
Most relation extraction systems do not attempt
to predict these multi-sentence relations. Given
the higher proportion in the BB3 set, we use this
dataset for further analysis of VERSE’s ability to
predict relations that span sentence boundaries. It
should be noted that some of these relations may
be artifacts due to false identification of sentence
boundaries by the CoreNLP pipeline.

Using the optimal parameters for the BB3 prob-
lem, we analysed prediction results using differ-
ent values for the sentence range parameter. The
performance, shown in Figure 4, is similar for re-
lations within the same sentence using different
sentence range parameters. However, as the dis-
tance of the relation increases, the classifier pre-
dicts larger ratios of false positives to true posi-
tives. With sentence range = 3, the overall F1-
score for the development set has dropped to 0.326
from 0.438 when sentence range = 1.

The classifier is limited by the small numbers
of multi-sentence relations to use as a training set.
With a suitable amount of data, it would be worth-
while exploring the use of separate classifiers for
relations that are within sentences and those that
span sentences as they likely depend on different
features.
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Figure 4: Analysis of performance on binary rela-
tions that cross sentence boundaries. The classifier
was trained on the BB3 event training set and eval-
uated using the corresponding development set.

5 Conclusion

We have presented VERSE, a full event extraction
system that performed very well in the BioNLP
2016 Shared Task. The VERSE system builds
upon the success of previous systems, particu-
larly TEES, in several important ways. It gives
full control of the specific semantic features used
to build the classifier. In combination with the
stochastic optimisation strategy, this control has
been shown to be important given the differing
parameter sets found to be optimal for the differ-
ent subtasks. Secondly, VERSE allows for feature
selection which is important in reducing the size
of the large sparse feature vectors and avoid over-
fitting. Lastly, VERSE can predict relations that
span sentence boundaries, which is certain to be
an important avenue of research for future rela-
tion extraction tasks. We hope that this tool will
become a valuable asset in the biomedical text-
mining community.
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Abstract

The number of scientific papers published
each year is growing exponentially and
given the rate of this growth, automated
information extraction is needed to effi-
ciently extract information from this cor-
pus. A critical first step in this process
is to accurately recognize the names of
entities in text. Previous efforts, such as
SPECIES, have identified bacteria strain
names, among other taxonomic groups,
but have been limited to those names
present in NCBI taxonomy. We have im-
plemented a dictionary-based named en-
tity tagger, TagIt, that is followed by a rule
based expansion system to identify bacte-
ria strain names and habitats and resolve
them to the closest match possible in the
NCBI taxonomy and the OntoBiotope on-
tology respectively. The rule based post
processing steps expand acronyms, and
extend strain names according to a set
of rules, which captures additional aliases
and strains that are not present in the dic-
tionary. TagIt has the best performance
out of three entries to BioNLP-ST BB3
cat+ner, with an overall SER of 0.628 on
the independent test set.

1 Introduction

The biomedical literature is growing at an esti-
mated 4% per year and as of 2016 there are at
least 26 Million documents in PubMed (Lu, 2011).
12% of this work is never cited after 5 years and
much of it might not reach its intended audience,
effectively limiting the value of these scientific
contributions (Lariviere et al., 2008). Molecular
biology databases such as UniProt address this is-
sue by manually curating domain-specific knowl-

edge and providing it in a structured form (The
UniProt Consortium, 2014). Despite efforts by
the metagenomics community (Lombardot et al.,
2006; Reddy et al., 2015; Hoopen et al., 2016),
the same attention has not been given to man-
ual curation in microbial and molecular ecology,
where a lack of samples annotated with compre-
hensive metadata hinders comparative and integra-
tive studies (Yilmaz et al., 2011). Both the initial
creation and subsequent ongoing maintenance of
such databases require a significant investment of
labour and money (Attwood et al., 2015). In order
to scale up this process, we need to automate the
extraction of information from text.

The BioCreative and BioNLP communities are
responding to this need by organising scientific lit-
erature mining challenges that aim to advance the
state of the art (Arighi et al., 2014; Bossy et al.,
2015). These competitions have resulted in the
development of text-mining tools focusing on spe-
cific curation tasks (Bossy et al., 2015; Wang et al.,
2015), one of which is the interactive EXTRACT
tool that assists curators through automated named
entity recognition (NER) of organisms, tissues,
diseases and environments (Pafilis et al., 2015).

The BioNLP BB3 focuses on the identification
of bacteria and their habitats in text. Bacteria are
ubiquitous in natural and artificial environments,
and play major diverse roles in shaping ecosys-
tems. They thrive in the most extreme habitats
– under the west Antarctic ice sheet (Christner
et al., 2014), in alkaline hot springs (De León
et al., 2013) – and they also proliferate in the
most mundane habitats – such as the human body,
which contains roughly an equal number of bac-
terial and human cells (Sender et al., 2016). Bac-
teria are responsible for the majority of nitrogen
fixation on the planet (Galloway et al., 2004), af-
fect the absorption of nutrients in the human gut
(Semova et al., 2012), and are responsible for the
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deaths of approximately 1.5 million people each
year from Mycobacterium tuberculosis infection
(WHO, 2016). Given both their beneficial and
pestilential impacts, it is important to understand
the habitats in which bacteria grow so that they can
be managed and controlled, especially in medical
environments that provide care for immunocom-
promised patients (Sydnor and Perl, 2011), and in
food processing environments which have the po-
tential for wide distribution of contaminated prod-
ucts (Brackett, 1999).

The first steps towards automatically turning
unstructured text into structured information about
bacteria and their habitats are i) to recognize
names of bacteria and habitats in a text, and ii)
to resolve these to a predefined ontology or tax-
onomic resource. Whereas the first step can be
addressed in a variety of different ways, such as
using machine learning, manually crafted rules or
dictionaries, the second step clearly requires the
use of a dictionary.

The SPECIES and ORGANISMS resources
are purely dictionary based methods that demon-
strate above 85% precision and recall on identify-
ing cellular organisms in abstracts (Pafilis et al.,
2013). Further, these tools have extremely fast
run times, a necessary requirement for processing
large datasets. Dictionary based methods have the
advantage of always correctly normalizing a term
that has been tagged, but conversely they have the
disadvantage of requiring an up-to-date, compre-
hensive dictionary. Building such a dictionary can
be a difficult manual task, but it can be aided by the
use of orthographic expansion rules and stopword
lists. When parsing documents from a limited do-
main, such as biomedical literature, the dictionary
required is much smaller in scope, and building
one becomes feasible, as has been demonstrated
by SPECIES and ORGANISMS which have been
built from NCBI Taxonomy (Sayers et al., 2009).

NCBI taxonomy is a curated classification and
nomenclature resource that covers all of the or-
ganisms in the Entrez sequence database (Sayers
et al., 2009). Although these resources are the
most comprehensive of their kind, very new and
very old strains that are lacking sequences can-
not be found in the NCBI taxonomy, and neither
can known strains that have been spelled with un-
common misspellings. Further, acronyms that are
not defined as synonyms will also not be present,
meaning that a dictionary method that naively

used only the entries in the taxonomy would miss
tagging such terms.

Here we present TagIt, a tool for named en-
tity recognition and categorization of bacteria and
their habitats. It primarily uses a dictionary-based
approach, the results of which are extended with
pattern-matching rules that handle acronyms that
are not found in the dictionary and refine match
boundaries to include bacterial strain names.

2 Methods

2.1 Dictionary creation

A dictionary for bacteria terms was generated
from all NCBI taxonomy entities under the bacte-
ria superkingdom (taxid: 2) (Sayers et al., 2009).
The dictionary generation process is based on that
used in (Pafilis et al., 2013). Briefly, NCBI tax-
onomy provides alternate names for each taxon-
omy level, which include common names, obso-
lete names and other synonyms, all of which were
included in our dictionary. These terms were ex-
panded to plural forms following the English and
Latin rules for pluralizing nouns, and the abbrevi-
ations of Linnaean names, such as E. coli for Es-
cherichia coli, were generated and included in the
dictionary.

A dictionary for habitat terms was generated
from the OntoBiotope ontology (OBT), and the
names present in the ontology were expanded to
their plural forms giving 8,345 terms. The habi-
tat dictionary was expanded via synonym transfer
based on manual mappings between OBT terms
and their Brenda Tissue Ontology (BTO) counter-
parts (Chang et al., 2015). The BTO name dictio-
nary available in the TISSUES database facilitated
this process (Santos et al., 2015). This gave an ad-
ditional 121,321 habitat synonyms. For example,
the term “central nervous system” (OBT:000831)
was expanded to include “hippocampus” and 2748
other terms, 76 of which are particular cell lines
derived from nervous system tissue.

The same synonym transfer process was ap-
plied to map OBT terms to their NCBI taxonomy
counterparts under the eukaryote branch (taxid:
2759). The term duck (OBT:002200), for ex-
ample, was expanded with 46 synonyms includ-
ing “mallard ducks”, “northern mallard”, “Anas
platyrhynchos”, and so forth. Terms that existed
in NCBI taxonomy but not in OBT were mapped
to the most specific relevant term. For example,
all 145,546 names and synonyms under the NCBI
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taxonomy node Metazoa (taxid: 33208) that could
not be mapped to anything more specific in Onto-
Biotope were mapped to “animal” (OBT:000218).
This gave a total of 5,106,213 additional syn-
onyms.

Synonym transfer was also applied to OBT
and the corresponding Environments Ontology
(ENVO) terms (with name information from the
ENVIRONMENTS tool) for an additional 54,673
synonyms (Buttigieg et al., 2013; Pafilis et al.,
2015). However, as shown later, this did not im-
prove the systems accuracy and so was not used in
the final version.

Since dictionary-based NER is prone to poor
precision, especially after automatic dictionary
expansion, stopword lists are used to remove
matches that contribute the most to the drop in
precision. Here, stopword lists were generated
for both bacteria and habitat entity types by man-
ually inspecting the most frequently identified
terms when tagging the Medline corpus, and re-
moving those terms that were likely to not re-
fer to true positive matches. This resulted in
2381 stopwords for bacteria including words such
as “unclassified”, and 2592 stopwords for habi-
tat, including words such as “scales” and “root”,
which can have many different meanings. The
full dictionaries, including the stopwords, are
provided in the associated repository located at
http://github.com/bitmask/BioNLP-BB3.

2.2 Tagging and post processing

Both entity types were tagged using the left-most
longest matching and hashing function present
in the SPECIES tool, which is case insensitive,
and disregards hyphens and white space charac-
ters within names and quotes and parentheses at
the beginning or end of names (Pafilis et al., 2013).

A series of post processing steps followed the
tagging step. First, the input document was ex-
amined for parentheses, and these and their con-
tents were replaced by whitespace. The tagger
was run again on the modified text to identify any
additional matches that spanned the parentheses.
These new results were merged into the original
results.

Second, the normalizations were filtered to re-
turn only the highest confidence normalization for
each entry (by default SPECIES may return multi-
ple normalizations). The normalizations for bacte-
ria were updated so that a mention of a genus that

ability of Lactobacillus (Lb.) gasseri K 7 to inhibit adhesion

ability of Lactobacillus         gasseri K 7 to inhibit adhesion

taxid: 1578

taxid: 1334627

soil cyanobacterium Anabaena sp. strain L-31 exhibited signi�cantly

soil cyanobacterium Anabaena sp. strain L-31 exhibited signi�cantly

taxid: 1163

taxid: 1163

methicillin-resistant Staphylococcus aureus (MRSA) colonization ... MRSA isolates

methicillin-resistant Staphylococcus aureus (MRSA) colonization ... MRSA isolates

taxid: 1280

taxid: 1280taxid: 1280taxid: 1280

Chlamydia trachomatis is a common ... during Chlamydia infection

Chlamydia ... Chlamydia trachomatis is a common ... during Chlamydia infection

taxid: 813

taxid: 813taxid: 810 taxid: 810

taxid: 813
Chlamydia trachomatis is a common ... during Chlamydia infection

taxid: 813 taxid: 810

Figure 1: Illustration of the four post processing
steps: Parentheses avoidance, normalization cor-
rection, strain expansion, and acronym expansion,
where the first line in each block indicates the
matches and normalizations prior to post process-
ing, and the subsequent lines show how they are
updated after post processing.

followed a more specific species mention (within
that genus) would be normalized to the species.
Although not in the annotation guidelines, we
added the exception that if the genus was men-
tioned alone before any species within that genus,
then later mentions of the genus would not be
changed to refer to the specific species because
such mentions were much more likely to refer to
the genus in general than to have been an instance
of synecdoche. These cases are illustrated in Fig-
ure 1.

Third, for bacteria, strain names were expanded
by matching the text immediately following a
match returned from the tagger against a regex that
would identify it as a strain. Strains names were
identified as sequences of letters and punctuation
that may have included an indicator such as “sp.”
or “strain”.

Lastly, acronyms were identified for both bacte-
ria and habitats by searching the text following a
match for a potential short form. Text was consid-
ered to be a short form if it was within parentheses,
contained capital letters, and contained the first
letter of the long form within its first three letters.
Then, the remainder of the document was searched
for further instances of the short form, which were
normalized to the definition of the long form.
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Full details and code are available at
http://github.com/bitmask/BioNLP-BB3

3 Results and Discussion

Our entry, TagIt, performed best out of three en-
tries submitted to the BioNLP-ST BB3-cat+ner
task with an overall slot error rate (SER) of 0.628
on the test set. For bacteria only the SER was
0.399, and for habitats only the SER was 0.775.

TagIt uses a dictionary for both named entity
recognition and for categorization, which is gen-
erated a priori from existing ontologies and rules
regarding name expansion. Generating the dic-
tionary does not require the input of any training
documents, nor does this approach require that the
values of any variables be learned during a training
step. Therefore, we have evaluated our method on
both the provided training and development sets,
and see consistent performance between them.

In order to quantify the improvements from ex-
panding the dictionaries, we generated six itera-
tions of the dictionary that we evaluated indepen-
dently on the training and development sets. The
first, included only the dictionary for bacteria. The
second naively added in habitats from the Onto-
Biotope ontology with no synonym transfer for the
habitats dictionary. The next three variants trans-
ferred synonyms to the habitats dictionary from
BTO, eukaryotic entries from NCBI and ENVO,
respectively. The final dictionary featured syn-
onym transfer from both BTO and NCBI, giving
better performance than either alone. This dictio-
nary was selected as our final submission to the
contest.

For both training and development sets, perfor-
mance increased (i.e. SER decreased) with the ad-
dition of BTO and NCBI synonyms to the dictio-
nary. The improvement in habitat only SER from
using an unexpanded habitats dictionary, and in-
cluding the mappings from BTO and NCBI – from
0.568 to 0.511 (dev) or 0.635 to 0.587 (train) –
shows the performance increase possible by using
synonyms in other ontologies to expand the range
and number of synonyms present in the dictionary.

Adding ENVO synonyms surprisingly did not
increase performance. The performance of this
dictionary was evaluated in (Pafilis et al., 2015)
at 87.8% precision over 600 documents, so it is
unlikely that the lack of performance increase we
see is due to some underlying defect in the dic-
tionary. Further, the mapping between OBT and

ENVO orthologies was performed manually by
subject matter experts, so this is also unlikely to
be a major source of error. The addition of ENVO
synonyms cannot increase the false negative rate,
as adding names to the dictionary will not result
in less being found. The addition of ENVO syn-
onyms did increase the false positive rate. The
false positives included three terms that were used
as homonyms such as “reservoir”, intended in the
dictionary to refer to a body of water, but used in
the text to mean a source of bacteria. The instances
of these false positives could be reduced by adding
these terms to the stopword list. One further case
registers as a false positive (“farms” at position
502, 507 in BB-cat+ner-2696427.txt), but
upon manual inspection appears to be consistent
with the annotation guidelines. Overall, the addi-
tion of the ENVO dictionary resulted in the iden-
tification of only a few additional terms, and if the
identified errors were fixed, we would see only a
minor improvement in performance compared to a
dictionary without ENVO included.

In terms of the results for bacteria, the false
negatives identified by TagIt included the names
of strain mutants (such as Ara+), multiposition
matches, and acronyms that are defined in a non-
standard manner. Bacterial false positives in-
cluded a small number of cases in which terms
such as “cyanobacterium” were used as adjectives
or descriptions and should not have been anno-
tated. Further, TagIt identified an additional 3 in-
stances in which the boundaries disagreed with the
gold standard, and 27 cases in which the normal-
izations disagreed with the gold standard, but in
both cases our annotations more closely reflected
the annotation guidelines.

4 Conclusions

Accurate identification of entities in text is a first
necessary step towards automated extraction of in-
formation about those entities. Here, we have
presented a dictionary- and rule-based system,
called TagIt, to identify bacterial names and habi-
tats which gives good performance on both entity
types.

Dictionary methods for named entity recogni-
tion and categorization can give very good per-
formance on limited domains, and rule based post
processing can help overcome the intrinsic limi-
tations to the dictionary approach. To recognize
bacterial entities, applying simple rules to expand
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Overall SER Bacteria only SER Habitats only SER
Train Dev Test Train Dev Test Train Dev Test

Bacteria 0.778 0.757 0.341 0.303 n/a n/a
Bacteria + Habitats 0.537 0.477 0.341 0.303 0.635 0.568
Bacteria + Habitats + BTO 0.529 0.468 0.341 0.303 0.623 0.555
Bacteria + Habitats + NCBI 0.514 0.448 0.341 0.303 0.599 0.524
Bacteria + Habitats + ENVO 0.540 0.479 0.341 0.303 0.639 0.572
Bacteria + Habitats + BTO + NCBI 0.506 0.439 0.628 0.341 0.303 0.399 0.587 0.511 0.775

Table 1: Performance of TagIt in terms of overall, bacteria only and habitat only slot error rates for
training, development and test sets over six variations of the dictionary (see text for their definitions).

strains and acronyms helped identify names that
were not present in the dictionary. Dictionary syn-
onym expansion also increases the performance of
dictionary based methods, as was seen by the ad-
dition of BTO and NCBI synonyms to our habitats
dictionary, boosting the performance over what
was possible with no synonym expansion.
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Abstract

A database which provides information
about bacteria and their habitats in a com-
prehensive and normalized way is crucial
for applied microbiology studies. Having
this information spread through textual re-
sources such as scientific articles and web
pages leads to a need for automatically
detecting bacteria and habitat entities in
text, semantically tagging them using on-
tologies, and finally extracting the events
among them. These are the challenges
set forth by the Bacteria Biotopes Task
of the BioNLP Shared Task 2016. This
paper describes a system for habitat and
bacteria entity normalization through the
OntoBiotope ontology and the NCBI tax-
onomy, respectively. The system, which
obtained promising results on the shared
task data set, utilizes basic information re-
trieval techniques.

1 Introduction

Retrieving useful information from text became
increasingly important as numerous data are col-
lected on the Internet (Singhal, 2001). It became
even more crucial to be able to reach the desired
information from among lots of articles and re-
sources when it comes to studies of science, espe-
cially biomedicine (Cohen and Hersh, 2005). The
problem tackled in this paper is the semantic cate-
gorization of bacteria and habitat entities extracted
from scientific paper abstracts. This problem has
been addressed as a sub-task of the BioNLP Bac-

*These authors contributed equally to this work.

teria Biotope Shared Task 2016 (Deléger et al.,
2016).

The Bacteria Biotope Task of the BioNLP
Shared Task was previously conducted in
2011 (Bossy et al., 2011; Bossy et al., 2012) and
2013 (Bossy et al., 2013; Bossy et al., 2015). Both
machine learning based (Nguyen and Tsuruoka,
2011; Björne et al., 2012; Grouin, 2013; Claveau,
2013) and rule based approaches (Ratkovic et
al., 2012; Karadeniz and Ozgür, 2013; Bannour
et al., 2013) have been developed to identify
and normalize bacteria and habitat entities. The
normalization of habitat entities through the
OntoBiotope ontology has been first addressed in
the 2013 edition of the Entity Categorization sub-
task, where four teams participated (Bossy et al.,
2013; Bossy et al., 2015). The highest F1-score
(61%) and lowest Slot Error Rate (SER) (66%)
was achieved by the LIPN system (Bannour et al.,
2013), which used a combination of an ontology
projection method and a rule based machine
learning algorithm, namely WHISK (Soderland,
1999). The BOUN system (Karadeniz and Ozgür,
2013; Karadeniz and Özgür, 2015), which is based
on syntactic rules, and the LIMSI system (Grouin,
2013), which is based on Conditional Random
Fields (CRF), obtained similar SER scores (68%).
The IRISA system, which obtained a SER value of
93% (Claveau, 2013), used the k nearest neighbor
algorithm with the Okapi-BM25 (Robertson et al.,
1999) similarity measure.

In this paper we describe the system that we de-
veloped for our participation at the “Entity catego-
rization” sub-task of the Bacteria Biotope (BB3)
task of BioNLP Shared Task 2016. Motivated by
the promising results of rule-based entity catego-
rization approaches in the previous editions of the
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shared task, we designed a rule-based approach
that makes use of information retrieval and pattern
matching techniques for normalizing bacteria and
habitat entities through the provided ontologies.

2 System Description

2.1 Overview of the System

We developed an ontology based categorization
system for the Entity Categorization sub-task. The
system consists of two modules, one for the habi-
tat categorization task and the other for the bacte-
ria categorization task. The habitat categorization
module makes use of basic information retrieval
techniques including tf-idf scoring and cosine sim-
ilarity. The bacteria categorization module utilizes
string matching methods such as Levenshtein dis-
tance. These modules are described in detail in the
following sub-sections.

2.2 Categorization of Habitat Entities

The workflow of the habitat categorization mod-
ule is presented in Figure 1. Given a habitat entity
mention, the goal is to identify the corresponding
concepts in the OntoBiotope ontology. First, the
OntoBiotope ontology is expanded by using the
training and development data sets. Next, both ex-
act matching and partial matching approaches are
used to identify the ontology concepts relevant to
the habitat entity mention. Partial matching is for-
mulated as an information retrieval task, where tf-
idf scoring and cosine similarity are used to rank
the ontology concepts with respect to the given
habitat entity.

2.2.1 Ontology Expansion

The OntoBiotope ontology is an ontology of
biotopes organized as a hierarchical structure of
concepts. A sample concept in the ontology is
shown in Figure 2. An OntoBiotope concept con-
sists of an ID, name, as well as exact and re-
lated synonyms. The parent-child relations be-
tween concepts are represented with the is a field.

[Term]
id: OBT:000218
name: animal
synonym: “animal host” RELATED []
synonym: “animal-associated habitat” EXACT []
synonym: “animal species” RELATED []
is a: OBT:000036 ! eukaryote host

Figure 2: A sample OntoBiotope ontology concept

The documents in the training and develop-
ment data sets have habitat mentions labeled with
their corresponding OntoBiotope concepts. We
expanded the OntoBiotope ontology by including
these habitat mentions as related synonyms to the
associated concepts. Figure 3 shows the expanded
version of the “animal” concept in Figure 2, where
the concept has been expanded by adding the “an-
imals” and “animal models” as related synonyms.

[Term]
id: OBT:000218
name: animal
synonym:“animal host” RELATED []
synonym:“animal-associated habitat” EXACT []
synonym: “animal species” RELATED []
synonym: “animals” RELATED []
synonym: “animal models” RELATED []
is a: OBT:000036 ! eukaryote host

Figure 3: A sample expanded OntoBiotope ontol-
ogy concept

2.2.2 Normalization
A habitat entity mention is normalized by match-
ing it with one or more concepts in the Onto-
Biotope ontology. We used exact and partial
matching approaches for this task.

Given a habitat entity mention, first the system
searches for exact matches with the names or exact
synonyms of the ontology concepts. If an exact
match is found, the habitat entity is labeled with
the corresponding ontology concepts.

If an exact match is not found, partial match-
ing is performed using information retrieval tech-
niques. Each concept in the ontology is treated as a
document and an inverted index of concepts is cre-
ated. The unigrams and bigrams in the names, ex-
act synonyms, and related synonyms of concepts
are represented as tf-idf weighted terms in the in-
verted index. The habitat entity mention is treated
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Figure 1: Categorization of Habitat Entities

as a query. In order to capture more contextual
information, the query is expanded by including
the unigrams and bigrams of the document where
the habitat mention occurs. The cosine similar-
ities between the query and the concepts in the
inverted index are computed. The concepts are
ranked based on their cosine similarity scores to
the habitat query and the habitat mention is an-
notated with the concept that obtains the highest
cosine similarity score.

If the system does not find any relevant concepts
based on exact and partial matching, the habitat
mention is normalized with the root of the ontol-
ogy, i.e., with the concept OBT:000001 shown in
Figure 4.

[Term]
id: OBT:000001
name: experimental medium
is a: OBT:000000 ! bacteria habitat

Figure 4: Default normalization

2.3 Categorization of Bacteria Entities

The workflow of the bacteria categorization mod-
ule is presented in Figure 5. In this module, bac-
teria entity mentions are normalized with their
corresponding taxonomy IDs in the NCBI taxon-
omy. First, a preprocessing step is applied where
punctuation marks are removed and abbreviation
and acronyms are expanded. Next, a normal-
ization and matching step is applied where pre-
processed bacteria mentions are matched against
the NCBI taxonomy using exact and approximate
string matching methods.

2.3.1 Preprocessing
In order to increase the possibility of matching
bacteria mentions with their correct categories in
the NCBI taxonomy, a set of preprocessing tech-
niques described below are developed by examin-
ing the documents and the NCBI taxonomy.

2.3.1.1 Punctuation Mark Removal

Some punctuation marks provide no useful infor-
mation for our task and may hinder the perfor-
mance of the system for matching bacteria names
in the NCBI taxonomy. Therefore, we replaced
parenthesis, quotation marks, and multiple white
spaces with a single white space character. In ad-
dition, lower casing all characters is performed in
this step.

The preprocessing steps described below make
use of the context information, i.e., the document
where the bacteria entity occurs to transform the
bacteria entity mention to a more convenient for-
mat for matching with the NCBI taxonomy.

2.3.1.2 Abbreviation Expansion

One of the most common challenges for bacte-
ria categorization is that bacteria names frequently
occur in abbreviated forms. In general, the first
occurrence of a bacteria name in a document is
written as a full name (e.g., “Escherichia coli”)
and the successive mentions are written in abbre-
viated forms (e.g., “E. Coli”). A bacteria mention
in abbreviated form is compared with the previous
closest1 bacteria mentions in the document. If a
previously occurring bacteria mention starts with
the same capital letter as the abbreviated form and

1Distance between two bacteria mentions is computed
based on the positions of the mentions in the document.
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Figure 5: Categorization of Bacteria Entities

contains the remaining sub-string of the abbrevi-
ated form, the abbreviated form is converted to
the corresponding bacteria mention in full name
form before searching in the NCBI Taxonomy. For
example, “E. Coli” is expanded to “Escherichia
coli” if there is an occurrence of “Escherichia
coli” before the abbreviated form in the same doc-
ument. If there is not a match with previously oc-
curring bacteria mentions in the document, then a
search is performed starting from the abbreviated
form until the end of the document, to look for the
expanded version.

Another commonly occurring abbreviation pat-
tern in documents is that the first terms of two
bacteria mentions actually refer to the same word,
but one of them occurs as an abbreviation. For
example, in the “Chlamydia trachomatis and C.
psittaci” phrase, “C.” corresponds to “Chlamy-
dia”. The bacteria mentions occurring before and
after the abbreviated name in the document are ex-
amined. If there is not a bacteria mention in the
document matching the sub-string “psittaci”, then
bacteria mentions starting with the same letter are
considered as matches. Search is performed from
the abbreviated mention first to the beginning of

the document and next to the end of the document.
Preference is given to matches that are closer to the
abbreviated form in the document. In the provided
example, “C. psittaci” is expanded to “Chlamydia
psittaci” before searching the NCBI Taxonomy.

2.3.1.3 Single Word Abbreviation Expansion

Another common abbreviation pattern is when af-
ter the full name mention of a bacterium, it is re-
ferred to with the first word in its name (i.e., its
genus name) in the rest of the document. For ex-
ample, “Escherichia coli” is referred to as “Es-
cherichia”. To expand such abbreviations, the sin-
gle word bacteria mention is compared with the
preceding and following bacteria mentions in the
document. If the single word bacteria mention
is a sub-string of a multi-word bacteria mention,
the single word mention is expanded to that multi-
word mention. Preceding and closer matches are
given higher precedence.

2.3.1.4 Acronym Expansion

Although bacteria entities can be referred to
with acronyms like “MRSA” in documents, such
acronyms are not directly represented in the
NCBI taxonomy, but may appear within the
names of multiple bacteria categories with differ-
ent IDs such as “Staphylococcus aureus MRSA-
Lux-1” and “Staphylococcus aureus MRSA-Lux-
2”. Based on our observation in the training set,
in order to resolve ambiguity, we expanded such
acronyms consisting of less than five capital letters
to the closest bacteria mention in the same docu-
ment.

2.3.1.5 Handling Other Special Abbreviations

Several special abbreviations including “sp.”,
“spp.”, “strain”, “str.”, “aff.”, “cf.”, “subgen.”,
“gen.”, and “nov.” are used within species names
in biomedical documents. These special abbrevi-
ations should be ignored while matching species
names against the NCBI Taxonomy, since they are
not in general included in the “scientific name” or
the name tagged as “authority” in the NCBI Tax-
onomy. For instance, “Escherichia (sp.) coli” in
a biomedical document should match with “Es-
cherichia coli” in the NCBI Taxonomy. There-
fore, we removed such abbreviations from bacteria
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name mentions in text to improve matching perfor-
mance.

Another challenge in bacteria categorization is
that a bacteria species can have numerous sub-
types, each corresponding to a different category
in the taxonomy. This makes it hard to match
a bacteria mention in text with its correspond-
ing category in the taxonomy. Special rules are
designed by analyzing the provided training and
development data to enhance matching in such
cases. For example, the word “type” is removed
from a bacteria mention in text before match-
ing against the NCBI Taxonomy. This enables
matching “Escherichia coli type a” in text with
“Escherichia coli a” in the taxonomy. In cases
where sub-types are denoted with semi-colon, the
sub-string following the semi-colon in the bacte-
ria mention is removed before matching with the
terms in the taxonomy. This allows “Escherichia
Coli O8:K88” in text to match with the category
“Escherichia Coli O8” in the taxonomy. Other
transformations performed to enhance sub-type
matching are converting the “ssp” abbreviation to
“subsp.” and the “ara+” sub-string to “ara+ bio-
type” in the bacteria mentions in text. We did not
remove these sub-species denoting abbreviations,
since keeping them resulted in better performance.
We converted these abbreviations to their versions
occurring in the names tagged as “scientific name”
or “authority” in the taxonomy.

2.3.2 Normalization and Matching with
Taxonomy

After the preprocessing steps, a bacteria mention
in text is converted to a candidate phrase to be
matched against the categories in the NCBI Tax-
onomy. First, an exact match is performed and the
phrase is assigned to the matching category in the
taxonomy.

If there is no an exact match, then partial phrase
matching is performed. In a candidate phrase, it is
possible that an irrelevant word, for instance an ad-
jective, appears. That irrelevant word will cause an
unsuccessful search in the taxonomy. Therefore,
partial matching with the first two words, last two
words, and first and last words of the candidate
phrase are performed and the partially matching
category is assigned to the candidate phrase.

If exact and partial phrase matching do not
match with any categories in the taxonomy, then
partial string matching using Levenshtein edit dis-
tance is performed to detect the most similar cat-

egory to the candidate. We set the edit distance
threshold to 2. For taxonomy categories with edit
distance less than or equal to the threshold, “error
ratio” is computed as follows.

Error ratio =
edit distance

length of the candidate
(1)

The error ratio threshold is set to 0.2. So, the
candidate phrase is assigned to a taxonomy cate-
gory, if edit distance and error ratio are less than
or equal to 2 and 0.2, respectively. In this case, if
a candidate phrase is of length 4, and if a bacteria
name is found in the taxonomy with edit distance
1, this is not accepted as a successful match, since
error ratio is 0.25.

Finally, if an exactly or partially matching cate-
gory is not found, the context of the bacteria men-
tion in the document is used for category assign-
ment. In this case, the bacteria mention is mapped
to the same category of the closest bacteria men-
tion for which a category was assigned in the doc-
ument.

3 Evaluation and Results

Different evaluation metrics are used for habitat
and bacteria entities. Wang similarity (Wang et al.,
2007) with a weight of 0.65 is used for evaluation
of habitat entities by computing the similarity be-
tween the reference and the predicted normaliza-
tion. This metric determines a semantic similar-
ity score between two nodes of a directed acyclic
graph (DAG) whose nodes have is a relations with
their parents. This similarity metric takes into ac-
count the locations of the terms within the DAG,
their distances to the root and to common ances-
tors. Evaluation of bacteria entities is stricter. If
two terms (reference and predicted) are the same,
the similarity score is equal to 1, otherwise it is
0. Two systems, namely LIMSI and our system
BOUN participated in the BB3-CAT shared task.
The official evaluation results on the shared task
test data set are presented in Table 12 . Among the
two participating systems, our system ranked first
in the overall task of habitat and bacteria name cat-
egorization, as well as in the individual sub-tasks
of habitat name categorization and bacteria name
categorization.

2http://2016.bionlp-st.org/tasks/bb2/bb3-evaluation
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Precision BOUN LIMSI
Main Scoring 0.679 0.503
Habitats Only 0.620 0.438
Bacteria Only 0.801 0.637

Table 1: Official evaluation results

3.1 Results for Habitat Categorization

This sub-section provides the evaluation results of
the system at its major development phases over
the training and development data sets. Precision
and recall values calculated from true positives,
false positives, and false negatives are reported.
Habitats that are normalized correctly are consid-
ered to be true positive, the ones normalized with
wrong categories are considered to be false posi-
tives, and if there are no exact or partial matches
found for a habitat, it is considered to be a false
negative. BB3-CAT Precision corresponds to the
entity categorization precision computed using the
online evaluation tool provided at the BB3 shared
task3 . BB3-CAT precision is based on the Wang
similarity (Wang et al., 2007).

Development Training
True Positive 214 309
False Positive 186 349
False Negative 321 516
Precision 0.53 0.47
Recall 0.40 0.37
BB3-CAT Precision 0.58 0.55

Table 2: Results without bigram expansion or nor-
malization to OBT:000001

Table 2 presents the baseline results when only
unigrams are used for cosine similarity computa-
tion and no normalization to the root concept is
performed. Table 3 presents the results after in-
troducing the bigrams to the system and simulta-
neously increasing the term frequency weights of
the unigrams by a factor of two.

3http://bibliome.jouy.inra.fr/demo/BioNLP-ST-2016-
Evaluation/index.html

Development Training
True Positive 224 332
False Positive 176 326
False Negative 311 493
Precision 0.56 0.50
Recall 0.42 0.40
BB3-CAT Precision 0.61 0.59

Table 3: Results with bigram expansion

Although bigram expansion increases the
scores, there are still some habitats with no
matched categories. In case of computing Wang
scores, leaving a habitat without a category is a
drawback, since any normalization gains a better
score than no normalization. Our results in Table
4 show that normalizing unmatched habitats to the
concept OBT:000001 increases the Wang scores.

Development Training
True Positive 226 343
False Positive 228 404
False Negative 309 482
Precision 0.50 0.46
Recall 0.42 0.42
BB3-CAT Precision 0.63 0.62

Table 4: Results with bigram expansion and nor-
malization to OBT:000001

3.2 Results for Bacteria Categorization

Our baseline system that only performs punctua-
tion removal and exact matching between candi-
date name and a bacteria name in the taxonomy
obtained precision-F-measure values of 0.39-0.40
over the development set and 0.57-0.58 over the
training set. This benchmark was a plain starting
point for this study.

We improved the baseline system by applying
the preprocessing steps. The most common errors
seen in the results were the unmatched abbrevia-
tions. Then, we applied the abbreviation expan-
sion step described in Sub-section 2.3.1.2. and our
precision-F-measure values increased to 0.59-0.71
over the development set and to 0.74-0.83 over the
training set. Thus, this enhancement was the most
effective one overall.

After that, we applied the single word ab-
breviation expansion step described in Sub-
section 2.3.1.3. This improvement increased the
precision-F-measure values to 0.64-0.75 on the de-
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velopment set and to 0.78-0.86 on the training
set. Finally, we applied the acronym expansion
step and it raised the precision-F-measure values
to 0.67-0.77 on the development set and to 0.81-
0.87 on the training set. This final result is the
last benchmark that we got after preprocessing the
bacteria names. The results of the preprocessing
steps are presented in Table 5.

Development Training
Punctuation rem. P 0.39 0.57

R 0.41 0.59
F 0.40 0.58

Abbreviation exp. P 0.59 0.74
R 0.89 0.94
F 0.71 0.83

Single word exp. P 0.64 0.78
R 0.90 0.95
F 0.75 0.86

Acronym exp. P 0.67 0.81
R 0.90 0.93
F 0.77 0.87

Table 5: Results after preprocessing (P: Precision,
R: Recall, F: F-measure)

Table 6 summarizes the results of the normal-
ization and matching steps that are performed af-
ter the preprocessing steps. Matching with the
original bacteria mention first and matching with
the preprocessed version if there is no a match
with the original version resulted in 0.77 preci-
sion and 0.78 F-measure over the development
set and 0.87 precision and 0.88 F-measure over
the training set. In addition, both partial phrase
matching using two-word combinations and par-
tial string matching using Levenshtein distance re-
sulted in improved performance. Finally, assign-
ing unmatched bacteria mentions to the taxonomy
of the closest categorized bacteria mention in the
same document resulted in considerable improve-
ment in precision and F-measure.

4 Conclusion

This study introduced a system that is developed in
the scope of the Entity Categorization sub-task of
the BioNLP Bacteria Biotope Shared Task 2016.
The system consists of two modules both of which
target normalizing entities that have been detected
in scientific paper abstracts. While the habitat cat-
egorization module operates on habitat mentions
expressed in natural language and uses the On-
toBiotope ontology for normalization, the bacte-
ria categorization module deals with bacteria men-
tions expressed as more structured scientific ex-

Development Training
Exact matching P 0.77 0.87

R 0.79 0.89
F 0.78 0.88

Sub-phrases P 0.81 0.90
R 0.85 0.92
F 0.83 0.91

Edit distance P 0.83 0.91
R 0.89 0.95
F 0.86 0.93

Unmatched handling P 0.89 0.95
R 0.99 0.99
F 0.94 0.97

Table 6: Results after the matching and normaliza-
tion steps (P: Precision, R: Recall, F: F-measure)

pressions and uses the NCBI Taxonomy for nor-
malization.

Promising results are obtained by both mod-
ules, which utilize pattern matching and informa-
tion retrieval techniques. According to the official
evaluations, the habitat categorization module ob-
tained 0.620 precision and the bacteria categoriza-
tion module obtained 0.801 precision, which led to
achieving the highest overall precision of 0.679 in
the BB3-CAT sub-task. As future work, integrat-
ing WordNet based similarity measures to improve
ontology-based matching will be investigated.
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Abstract

This paper presents our participation in
the Bacteria/Biotope track from the 2016
BioNLP Shared-Task. Our methods rely
on a combination of distinct machine-
learning and rule-based systems. We used
CRF and post-processing rules to identify
mentions of bacteria and biotopes, a rule-
based approach to normalize the concepts
in the ontology and the taxonomy, and
SVM to identify relations between bac-
teria and biotopes. On the test datasets,
we achieved similar results to those ob-
tained on the development datasets: on
the categorization task, precision of 0.503
(gold standard entities) and SER of 0.827
(both NER and categorization); on the
event relation task, F-measure of 0.485
(gold standard entities, ranking third out
of 11) and of 0.192 (both NER and event
relation, ranking first); on the knowledge-
based task, mean references of 0.771 (gold
standard entities) and of 0.202 (both NER,
categorization and event relation).

1 Introduction

In this paper, we present the methods we used
while participating in the Bacteria/Biotope track
from the 2016 BioNLP Shared-Task. We partially
reused the method we designed while participating
in the previous edition of the challenge (Grouin,
2013), and we updated afterwards while designing
new experiments (Lavergne et al., 2015).

2 Background

Four teams participated in the Bacteria/Biotope
track (Bossy et al., 2015) from the 2013 BioNLP
Shared-Task.

On the entity detection and categorization
task, the best results were obtained using either
machine-learning approaches, as done by Bannour
et al. (2013) who ranked first (Slot Error Rate
(SER) of 0.661), or using syntactic hand-coded
rules, as done by Karadeniz and Özgür (2013)
who ranked second (SER=0.676). We ranked third
(SER=0.678) using CRF and normalization rules.

On the localization relation extraction task,
the best results were obtained through machine-
learning approaches. Björne and Salakoski (2013)
ranked first (F=0.42), using a system based on
Support Vector Machine (SVM), while Claveau
(2013) ranked second (F=0.40) using a lazy ma-
chine learning (kNN) approach.

3 Task description

3.1 Presentation

The 2016 Bacteria/Biotope track1 (Deléger et
al., 2016) consists in three main objectives:
(i) named entity recognition (NER) to identify
mentions of bacteria and biotopes from scientific
abstracts, (ii) categorization to normalize men-
tions of bacteria in the NCBI taxonomy and men-
tions of biotopes in the OntoBiotope ontology, and
(iii) event extraction to identify relations of local-
ization between a bacteria and a biotope.

The track is organized into three main tasks,
based on gold standard annotations of entities: a
categorization task (cat), an event extraction task
(event), and a knowledge-base population task
(kb) which combines categorization and relation
identification. Additionally, each task is com-
posed of a named entity recognition sub-task: cat-
egorization and relation identification are based
on predictions of entities (cat+ner, event+ner, and
kb+ner tasks) instead of gold standard annotations.

1http://2016.bionlp-st.org/
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3.2 Material

3.2.1 Corpus
The corpus is composed of 215 scientific texts (ti-
tle and abstract) focusing on bacteria, extracted
from the Medline database. This corpus is split
into three datasets: training (71 texts), develop-
ment (36 texts), and test (108 texts).2 We used the
train dataset to develop our systems and to tune
our models while results produced by those sys-
tems were evaluated on the dev dataset. The test
datasets were used for the official evaluation.

3.2.2 Annotations
Bossy et al. (2016) defined three kinds of entities
(bacteria, habitat, geographical) and one type of
relation (lives in) between a bacteria and a biotope.

Entities Annotations of entities imply three
kinds of annotations: (i) single entities, (ii) em-
bedded entities, in case of different meanings, and
(iii) discontinuous entities, to deal with coordi-
nation. Figure 1 highlights discontinuous annota-
tions (throat cultures) and embedded annotations
(throat within throat cultures, and nasopharyngeal
within nasopharyngeal cultures).

18/03/2016 12:21brat

Page 1 sur 1http://127.0.0.1:8001/index.xhtml#/BioNLP2016/event-ner/BB-event+ner-8532424

Respiratory carriage of Kingella kingae among healthy children.

The role of Kingella kingae as an invasive pathogen of young children is being increasingly recognized, but the niche of the organism in the respiratory tract and its prevalence in the 

normal flora of children remain unknown. To investigate these two aspects throat and nasopharyngeal cultures were obtained every 2 weeks from two 

cohorts of children, ages 6 to 42 months on enrollment, attending a day-care center in southern Israel. To determine the age-related prevalence of K. kingae, throat cultures were 

obtained from children ages 6 months to 14 years hospitalized for elective surgery who had not received antibiotics during the previous 30 days and from 

healthy infants younger than 6 months attending a well-baby-care clinic for routine vaccinations. During an 11-month follow-up 109 of 624 (27.5%) throat cultures but none of the 

nasopharyngeal cultures obtained from 48 day-care center attendees grew K. kingae. The monthly prevalence of K. kingae ranged from 6.1 to 34.6% with December and April peaks. 

Overall 35 of 48 (72.9%) children had at least one positive culture for the organism. Among the 27 children who had > or = 2 positive cultures, continuous and intermittent patterns of 

carriage were observed. None of the colonized children experienced an invasive K. kingae infection. The prevalence of pharyngeal carriage among surgical patients was 8.0%, and the 

organism was not isolated from any of the infants younger than 6 months attending the well-baby-care clinic.
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Figure 1: Discontinuous and embedded annota-
tions of entities

Specific annotation rules apply for classifiers
(genus, species, strain) and generic classes (bac-
teria, cohort, in vivo, microbe, suspension) which
must not be annotated, except for specified strain
(mutants, serotypes, serovars).

Categorization The categorization focuses on
two types of entity (bacteria, habitat). Annotations
provide the ID for each mention to be normalized,
based on the NCBI taxonomy3 (Federhen, 2002)
for mentions of bacteria and the OntoBiotope on-
tology4 (Nédellec, 2016) for mentions of habitat.

2The test dataset is split into two datasets: one set of
54 files for all tasks implying a named entity recognition
(NER) process (cat+ner, event+ner, kb+ner) and a second set
of 54 files giving gold standard annotations of bacteria and
biotope for tasks without NER (cat, event, kb).

3http://www.ncbi.nlm.nih.gov/taxonomy
4http://2016.bionlp-st.org/tasks/bb2/

OntoBiotope_BioNLP-ST-2016.obo

Mentions of bacteria are normalized into only
one category while mentions of habitat can be
normalized into several categories. The catego-
rization into one or several categories for habi-
tat mentions is dependent on the structure of
the ontology, whether an “is a” relation between
category candidates exists in the ontology or
not (see figure 2). As an example, the men-
tion chicks is normalized into three categories
(“laboratory animal—000323”, “infant–002177”,
“chicken–002229”) while all mentions of mice are
normalized into one category (“laboratory mice—
002153”) since this category is related with the
category “laboratory animal—000323”.

[Term]
id: OBT:000323
name: laboratory animal
is_a: OBT:000218 ! animal

[Term]
id: OBT:002153
name: laboratory mice
is_a: OBT:001865 ! mouse
is_a: OBT:000323 ! laboratory animal

[Term]
id: OBT:002229
name: chicken
is_a: OBT:002165 ! poultry

Figure 2: Extract from the OntoBiotope ontology

Relations Annotations of relations always im-
ply one bacteria with one or several biotopes
(habitat, geographical). Figure 3 shows relations
between a bacteria and two biotopes, a geograph-
ical unit (UK) and a habitat (UK retail poultry).
According to the guidelines, even if arguments
from a relation must be as close as possible, one
can find a few cases of relations between two dis-
tant entities. The longest distance is of 1868 char-
acters, 276 words, implying 10 sentences.

18/03/2016 13:41brat
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Widespread acquisition of antimicrobial resistance among Campylobacter isolates from UK retail poultry and evidence for clonal expansion of resistant lineages.

Antimicrobial resistance is increasing among clinical Campylobacter cases and is common among isolates from other sources, specifically retail poultry - a major source of human 

infection. In this study the antimicrobial susceptibility of isolates from a UK-wide survey of Campylobacter in retail poultry in 2001 and 2004-5 was investigated. The occurrence of 
phenotypes resistant to tetracycline, quinolones (ciprofloxacin and naladixic acid), erythromycin, chloramphenicol and aminoglycosides was quantified. This was compared with a 
phylogeny for these isolates based upon Multi Locus Sequence Typing (MLST) to investigate the pattern of antimicrobial resistance acquisition.

Antimicrobial resistance was present in all lineage clusters, but statistical testing showed a non-random distribution. Erythromycin resistance was associated with Campylobacter coli. 
For all antimicrobials tested, resistant isolates were distributed among relatively distant lineages indicative of widespread acquisition. There was also evidence of clustering of 
resistance phenotypes within lineages; indicative of local expansion of resistant strains.

These results are consistent with the widespread acquisition of antimicrobial resistance among chicken associated Campylobacter isolates, either through mutation or horizontal gene 

transfer, and the expansion of these lineages as a proportion of the population. As Campylobacter are not known to multiply outside of the host and long-term carriage in humans is 

extremely infrequent in industrialized countries, the most likely location for the proliferation of resistant lineages is in farmed chickens.
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Figure 3: Example of relation annotations

3.2.3 Statistics
We present in table 1 the number of annotations
for each category of entities (bacteria, habitat, ge-
ographical) and relations (lives in), as well as the
number of categorizations performed in the asso-
ciated resource (OntoBiotope ontology or NCBI
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taxonomy) in each dataset (train, dev, and test5).
The figures presented in cells with a grey back-
ground refer to the number of predictions to be
made during the challenge. While annotations
of entities are found in almost all files (one file
from the train dataset does not propose any anno-
tation), relations are found in about 80% of files
(i.e., 84 files out of 107 files from the train+dev
datasets). The number of annotated entities per file
is quite unbalanced, from 1 to 69 entities.

Annotations Train Dev
Test

#1 #2
Number of files 71 36 54 54

Bacteria 375 244 341 401
Entities Habitat 747 454 720 621

Geographical 36 38 37 27

Category
NCBI Taxon 376 245 347 401
OntoBiotope 825 535 861 681

Relations Lives in 327 223 340 314

Table 1: Number of annotations per category in
each dataset (test #1=dataset with reference an-
notations of entities, #2=dataset without annota-
tions). Grey background refers to the number of
predictions to be made during the challenge

We observed that discontinuous entities:
(i) mainly concern habitat entities (87.0%),
(ii) generally involve two entities, more rarely
three entities, and that (iii) the pivot shared by
discontinuous and continuous entities is generally
at the end of the portion (e.g., “cultures” in throat
and nasopharyngeal cultures). In the training
and development datasets (107 files), out of
1894 annotations of entities, we only found 46
discontinuous entities (i.e., 2.4% of annotations
are discontinuous entities).

4 Methods

Based on the three main objectives of the track and
the previous observations, we considered distinct
systems (cf. figure 4): named entity recognition,
categorization, and relation identification. We did
not use any of the provided supporting resources.
Due to the low number of discontinuous entities,
we decided not to process this type of annotation.

5Test #1 refers to the test dataset with gold standard an-
notations of entities (cat+ner, event+ner, kb+ner tasks) while
test #2 refers to the test dataset without annotations of entities
(cat, event, kb tasks).

4.1 Additional data
Presentation In order to improve the robustness
of our systems, we annotated a new set of 22 files.6

To produce this new set, we queried PubMed
with names of bacteria we randomly selected from
the train and development datasets: Francisella,
Lactobacillus, LVS, Mycoplasma, Rickettsia, Tri-
chomonas vaginalis and Vibro parahaemolyticus.
Among all results returned by PubMed, we kept
abstracts published in 2016 we found interesting.

Annotations We used our systems (see sec-
tions 4.2 and 4.4) to automatically pre-annotate
this dataset. One human annotator corrected and
completed the automatic pre-annotations in one
hour using the BRAT annotation tool (Stenetorp et
al., 2012). Since we were not trained to annotate
such files, even if we tried to follow the guidelines
(Bossy et al., 2016), we hope our annotations are
not too much inconsistent with annotations pro-
vided by the organizers. Our dataset includes 252
annotations of bacteria, 176 habitat, 31 geograph-
ical and 130 relations. Except for habitat and rela-
tions, this distribution is consistent with statistics
presented in table 1.

4.2 Named Entity Recognition
4.2.1 Presentation
We considered the named entity recognition
(NER) issue as a classification task, where tokens
from a text should be classified into three cate-
gories (bacteria, habitat, geographical). Our NER
system relies both on machine-learning approach
and post-processing rules.

Machine-learning Conditional Random Fields
(CRF) (Lafferty et al., 2001) are widely used for
sequence labeling tasks. Our experiments rely on
the Wapiti system (Lavergne et al., 2010), based
on the linear-chain CRFs framework.

The feature sets are: (i) the token itself, (ii) to-
ken typographic case, presence of punctuation
marks in the token, presence of digits in the to-
ken, token length, (iii) identification of the token
in the OntoBiotope ontology or in the NCBI tax-
onomy, (iv) semantic class of the token among 37

6Our additional dataset, annotated before the release of
the test datasets, is composed of files (title and abstract) cor-
responding to the following PMIDs: 1262454, 21624472,
26358917, 26510639, 26678135, 26709916, 26773254,
26901499, 26902724, 26919818, 26941131, 26941728,
26942354, 26950451, 26951983, 26961264, 26962869,
26964722, 26965788, 26965874, 26968160, 26968657.
None of our additional data are also part of the test datasets.
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Corpus (title and abstract)
• train+dev provided datasets
• additional dataset

Additional information
• part-of-speech tag (Wapiti)
• semantic classes (Cocoa)
• unsupervised clustering (Brown)

Identification of entities
(bacteria, habitat, geographical)

• CRF model (Wapiti)
• post-processing rules
• embedded entities

Gold standard
annotations of entities

Normalization
of entities

Identification of
relations (bacteria
lives_in location)

SVM Light

Terminological resources
• OntoBiotope ontology
• NCBI taxonomy

Rules (exact match
and partial match)

Figure 4: Systems used to identify entities, normalize entities, and identify relations

pre-defined classes (Body part, Chemical, Food,
Habitat, Organism, Physiology, etc.), provided by
the Cocoa web API,7 (v) part-of-speech tag8 of the
token, and (vi) cluster ID of each token through
an automatic unsupervised clustering of all to-
kens from the train and dev datasets into 120 clus-
ters, using the algorithm designed by Brown et al.
(1992) and implemented by Liang (2005).

Since a lot of tokens from texts are not men-
tions of bacteria, habitat and geographical,9 those
unannotated tokens lead to an unbalanced distri-
bution of data. This may imply an over-training of
the CRF system of the unannotated tokens. In or-
der to reduce this over-training issue, we deleted
portions of unannotated tokens. Specifically, we
deleted parts of text composed of unannotated to-
kens, if those parts are distant of more than 16 to-
kens10 from the closest annotated token. As a con-
sequence, we kept the wholeness of the context
of annotated parts and we reduced the number of
unannotated tokens in our training set.

We tuned our system to predict widest enti-
ties since we considered that shorter entities can
easily be identified through post-processing rules.
Because embedded entities only concern habitats,
this strategy does not concern bacteria and geo-
graphical units. So that the CRF produces widest
entities, in case of embedded annotations, we only
kept the widest entities in the sample file given as
input to train the CRF model.

7Cocoa: compact cover annotator for biological noun
phrases, http://npjoint.com/annotate.php

8POS tagging was performed using an English POS CRF
model for Wapiti: https://wapiti.limsi.fr/

9Based on our tokenization, among 15 530 tokens from
the training dataset, only 2 110 of them (i.e., 13.59%) are part
of bacteria, habitat and geographical mentions.

10This distance of 16 tokens has been chosen empirically.
This threshold reduced by 23.1% the number of unannotated
tokens in the training dataset. From now on, the 2 110 anno-
tated tokens represent 20.45% of all tokens.

Post-processing In order to improve the predic-
tions we made in the previous step and to deal with
some of the specific annotation rules defined in the
guidelines (Bossy et al., 2016), we designed a few
post-processing rules:

• annotation of abbreviations (EHEC, EPEC,
LVS, MRSA, etc.), generic classes with an ini-
tial upper case (Bacteria, Bacterium), some
nomenclatural suffixes (sp., spp.), adjectives
for habitat (aquatic, nosocomial, saprophyte)
and geographical (northern, southern, etc.);

• deletion of annotations for generic classes
(bacteria, bacterial, bacterium), modifiers
(methicillin-resistant, pathogenic), some
nomenclatural suffixes (gen. nov., sp. nov.),
and 34 generic habitat terms (antibiotic,
ecosystem, world, etc.).

Embedded entities Since our CRF predicted
widest entities, we processed embedded habitat
entities through a post-processing system. For all
predictions of mentions of habitat, we searched for
shortened entities within widest entities. As an
example, based on the prediction gastric mucosa-
associated lymphoma, this simple rule allows us
to identify the single mention gastric. We thus in-
creased the coverage of the habitat mentions.

4.2.2 Design of experiments
We designed several experiments, depending on
the size of the training corpus and whether we used
or not post-processing rules and embedded entities
processing. Results are presented in section 5.1.1.
The configuration we used on the test dataset is
the following one: we trained the final CRF model
on all available annotated files (193 files),11 we

11Those annotated files came from the training dataset
(71 files), the development dataset (36 files), the additional
dataset we manually annotated (22 files), and the test #1
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applied post-processing rules to correct the CRF
outputs, and we processed the embedded entities
through a last script.

4.3 Categorization

Exact match We performed the categorization
task using a basic rule-based approach. We
searched the mention to normalize in the Onto-
Biotope ontology (habitat) or in the NCBI tax-
onomy (bacteria), through an exact match search,
and returned the corresponding numeric identifier.

Partial match Additionally, we searched for
partial matching of mentions of bacteria in the tax-
onomy: (i) shortened versions: H. pylori vs. He-
licobacter pylori, (ii) specified versions: bacil-
lus intermedius s3-19 vs. bacillus intermedius,
and (iii) linguistics variations: plural form (lac-
tobacilli vs. lactobacillus) or adjectival derivation
(mycobacterial vs. mycobacteria). Similarly, we
searched for partial matching of mentions of habi-
tat in the ontology: (i) linguistic variations: plural
forms (patients vs. patient), hand-coded nominal-
ization of adjectives (clinical vs. clinic), (ii) split
of multi-terms into single terms (human and blood
vs. human blood), and (iii) hand-coded transfor-
mation of specific cases (adult is replaced by hu-
man adult; children is replaced by child).

Default value At last, we defined default values
for all unmatched mentions of bacteria and habi-
tat, based on the most used values in the training
and development datasets (this choice is not rele-
vant for all unmatched mentions but it allows us
to slightly improve our results). We used the tax-
onomy entry #210 (i.e., Campilobacter pylori and
Helicobacter pilori) for bacteria, and the Onto-
Biotope entry #002216 patient with infectious dis-
ease (the second most used category) for habitat.

4.4 Relation Extraction

In order to identify relations between bacteria
and biotope, we designed experiments based on
the SVM framework (Vapnik, 1995), as done by
Björne and Salakoski (2013). Our experiments
rely on the SVM Light implementation proposed

dataset (54 files). For clarification, the named entity recog-
nition evaluation (cat+ner, event+ner, kb+ner tasks) is per-
formed on the test #2 dataset, composed of different files than
the test #1 dataset. As a consequence, since there is no com-
mon files between test datasets #1 and #2, the use of the an-
notated files from the test #1 dataset to train the final CRF
model does not hedge the official evaluation.

by Joachims (1999). Since a few long distance re-
lations exist, in order to ensure the robustness of
our system, we decided to remove all relations im-
plying a distance higher than 80 tokens between
both entities from our training set. This thresh-
old produced the best results. It allows us to keep
the shortest relations from the training dataset (i.e.,
60% of all positive relations). We strictly balanced
positive and negative examples to train our model.

The feature sets are: (i) a bag of words of all
tokens from both entities to be linked, and (ii) the
distance in characters between those entities.

5 Results

5.1 Development dataset
In this section, we present the results we achieved
on the development dataset. Since we produced
outputs compatible with the BRAT annotation
tool, results were computed using the BRATe-
val evaluation tool developed by Verspoor et al.
(2013) and updated by Deléger et al. (2014). This
evaluation tool allows us to evaluate all kinds of
entities (single, embedded and discontinuous enti-
ties) as well as relations between entities.

5.1.1 Named entity recognition
Table 2 presents the results we achieved on the de-
velopment dataset in the named entity recognition
sub-task. We give both the F-measure we achieved
on each category (bacteria, habitat, geographical)
and the detailed overall results (exact match). We
designed five experiments:

1. CRF model trained on the train dataset
(71 files);

2. CRF model trained on the train+additional
datasets (93 files);

3. CRF model trained on the train+additional
datasets (93 files) using an over-training re-
duction function (we reduced the number of
tokens which must not be annotated);

4. CRF model trained on the train+additional
datasets (93 files) using an over-training re-
duction function, and post-processing rules
were applied (all categories);

5. CRF model trained on the train+additional
datasets (93 files) using an over-training re-
duction function, post-processing rules were
applied (all categories), and embedded enti-
ties (habitat) were processed.
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Entity F-measures Overall results
# Bact Hab Geo P R F
1 0.668 0.470 0.727 0.721 0.452 0.556
2 0.769 0.462 0.739 0.753 0.488 0.592
3 0.772 0.469 0.739 0.740 0.500 0.597
4 0.785 0.469 0.739 0.747 0.504 0.602
5 0.785 0.523 0.739 0.737 0.548 0.628

Table 2: Results on the development dataset,
F-measure for each category (Bact=Bacteria,
Hab=Habitat, Geo=Geographical) and overall re-
sults (P=Precision, R=Recall, F=F-measure) de-
pending on the experiment

5.1.2 Categorization
Table 3 presents the results we achieved on the
development dataset for the categorization task.
Our evaluation only computes an exact match be-
tween the IDs from the taxonomy and the ontol-
ogy provided in the hypothesis and the reference.
This evaluation does not compute any similarity
distance within the hypothesis and reference cat-
egories. We give the overall and detailed results
for both the OntoBiotope ontology and the NCBI
taxonomy. Results are provided for two tasks:

1. categorization performed on the entities iden-
tified by our CRF system, configuration #5
(cat+ner task);

2. categorization performed on the gold stan-
dard annotations of entities (cat task).

# Evaluation P R F
1 Overall 0.404 0.286 0.335

OntoBiotope 0.509 0.360 0.422
NCBI taxonomy 0.621 0.457 0.527

2 Overall 0.456 0.412 0.433
OntoBiotope 0.570 0.515 0.541
NCBI taxonomy 0.886 0.885 0.886

Table 3: Results (exact match) on the development
dataset on the categorization tasks (P=Precision,
R=Recall, F=F-measure)

5.1.3 Relations
Table 4 presents the results we achieved (exact
match) on the development dataset in the relation
identification task. We designed four experiments:

1. SVM model trained on the train dataset
(71 files), prediction of entities from the CRF
system (event+ner task);

2. SVM model trained on the train+additional
dataset (93 files), prediction of entities from
the CRF system (event+ner task);

3. SVM model trained on the train dataset
(71 files), gold standard annotations of enti-
ties (event task);

4. SVM model trained on the train+additional
dataset (93 files), gold standard annotations
of entities (event task).

# Evaluation P R F
Entities from the CRF system (event+ner task)

1 Overall 0.171 0.213 0.189
Bacteria-Habitat 0.162 0.235 0.192
Bacteria-Geographical 0.364 0.111 0.170

2 Overall 0.190 0.213 0.201
Bacteria-Habitat 0.181 0.235 0.204
Bacteria-Geographical 0.400 0.111 0.174
Entities from the gold standard (event task)

3 Overall 0.381 0.652 0.480
Bacteria-Habitat 0.355 0.658 0.461
Bacteria-Geographical 0.622 0.622 0.622

4 Overall 0.385 0.652 0.484
Bacteria-Habitat 0.357 0.658 0.463
Bacteria-Geographical 0.657 0.627 0.639

Table 4: Results on the development dataset
on the relation identification tasks (P=Precision,
R=Recall, F=F-measure)

5.1.4 Online evaluation service
Since the online evaluation service provides a dis-
tinct evaluation (giving final scores and using dif-
ferent metrics), in order to compare the results
we achieved on both the development and the
test datasets, we present in table 5 the results we
achieved on all tasks on the development datasets
using our last configuration, as computed by the
evaluation service.

5.2 Test dataset (official results)
Table 6 presents the results we achieved on the
test dataset. Our results are similar to results ob-
tained on the development datasets. This observa-
tion highlights the robustness of our methods.

We ranked second (out of 2) on all categoriza-
tion tasks. We ranked third (out of 11) on the
event task, and first (out of 3) on the event+ner
task. At last, we were the only participant on all
knowledge-based tasks.
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task Official results (dev)

cat
Precision

1.000

cat+ner
SER Mism Ins Del
0.702 49.85 127 314

event
Precision Recall F-measure

0.389 0.644 0.485

event+ner
SER P R F
1.486 0.216 0.201 0.208

kb
Mean references

0.7861

kb+ner
Mean references

0.2074

Table 5: Official results computed on the
development datasets (SER=Slot Error Rate,
Mism=Mismatch, Ins=Insertion, Del=Deletion,
P=Precision, R=Recall, F=F-measure)

6 Discussion

6.1 Observations

Additional data A first observation concerns
the use of additional data. Increasing the num-
ber of annotated files proved to be useful for all
machine-learning approaches. In the named en-
tity recognition task—using a CRF system—we
gained +3.6 points of F-measure (see table 2).
In the relation identification task—using a SVM
system—we gained +1.2 points of F-measure for
relations based on entities predicted by the CRF,
and +0.4 point for relations based on gold standard
entities annotations (see table 4). The advantage of
using more annotated data is real for all tasks.

Post-processing rules Despite the use of both
additional data and over-training reduction func-
tion, the CRF model achieved moderate re-
sults (F=0.597, see table 2). The use of
post-processing rules to refine the CRF outputs
slightly increased the overall results (+0.5 points,
F=0.602) and mainly impacted the bacteria cate-
gory (+1.3 points). At last, processing embedded
habitat entities with rules improved the overall re-
sults (+2.6 points, F=0.628). Using a few post-
processing rules increased by +3.1 points the over-
all results achieved through the CRF model.

Named entity recognition Our strategy based
on four steps (additional annotated data, over-
training reduction function, post-processing rules,
and embedded entities processing) allows us to

task Official results (test)

cat
Precision

0.503

cat+ner
SER Mism Ins Del
0.827 198.16 192 455

event
Precision Recall F-measure

0.388 0.646 0.485

event+ner
SER P R F
1.558 0.193 0.192 0.192

kb
Mean references

0.7714

kb+ner
Mean references

0.2024

Table 6: Official results computed on the test
dataset (SER=Slot Error Rate, Mism=Mismatch,
Ins=Insertion, Del=Deletion, P=Precision,
R=Recall, F=F-measure)

achieve quite moderate results (F=0.628, see ta-
ble 2). We failed to identify correctly entities of
habitat (F=0.523) while results are higher for both
bacteria (F=0.785) and geographical (F=0.739).

Nevertheless, when annotating additional data,
we experienced harder work for habitat than for
bacteria or geographical. As a consequence, this
type of entities is complex for both human annota-
tors and automatic systems.

Categorization The rule-based approach we de-
signed to categorize entities in both the Onto-
Biotope ontology and the NCBI taxonomy is quite
simple. Since our named entity recognition sys-
tem obtained moderate results (overall F-measure
of 0.628, see table 2), on the categorization task,
we achieved better results on the gold standard an-
notations of entities (overall F-measure of 0.446)
than on predictions of entities made by our CRF
system (overall F-measure of 0.338, see table 3).

Since we failed to categorize more habitat than
bacteria, using default categorization values (see
section 4.3) led us to obtain lower precision val-
ues for habitat, on both cat+ner (Phab=0.482 vs.
Pbact=0.714) and cat (Phab=0.518 vs. Pbact=0.983)
tasks. Moreover, the lowest recall values are also
obtained on the categorization of habitat.

6.2 Error analysis

We give in figure 5 a sample of annotations per-
formed by our system on the development dataset
(event+ner task).
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Clonal strains of Pseudomonas aeruginosa in paediatric and adult cystic fibrosis units.

Despite recent reports of clonal strains of Pseudomonas aeruginosa in cystic fibrosis (CF) units, the need for routine microbiological surveillance remains 

contentious. Sputum was collected prospectively from productive patients attending the regional paediatric and adult CF units in Brisbane, Australia. 

All P. aeruginosa isolates were typed using pulsed-field gel electrophoresis. Spirometry, anthropometrics, hospitalisations and antibiotic sensitivity data 

were recorded. The first 100 sputum samples (first 50 patients at each clinic) harboured 163 isolates of P. aeruginosa. A total of 39 patients shared a 

common strain (pulsotype 2), 20 patients shared a strain with at least one other patient and 41 patients harboured unique strains. Eight patients shared a 

strain identical to a previously reported Australian transmissible strain (pulsotype 1). Compared with the unique strain group, patients harbouring 

pulsotype 2 were younger and had poorer lung function. Treatment requirements were similar in these two groups, as were the rates of multiresistance. 

In conclusion, 59% of patients harboured a clonal strain, supporting the need for routine microbiological surveillance. In contrast to previously described 
clonal strains, the dominant pulsotype was indistinguishable from nonclonal strains with respect to both colonial morphology and multiresistance. The 
clinical significance of clonal strains remains uncertain and requires longitudinal study.
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Figure 5: Sample of entities and relations predicted by our system on the development dataset (event+ner
task). The first line is the title of the scientific text while other lines are part of the first paragraph

On the NER tasks, our system failed to iden-
tify acronyms (HMDM, HMDMs, PMN, PMNs),
and all discontinuous entities since we chose to not
process this kind of entity. False negatives mainly
concern habitats: (i) single entities (paediatric),
(ii) discontinuous entities (paediatric ... cystic fi-
brosis units, regional ... adult CF units, and re-
gional paediatric ... CF units), and (iii) frontiers
errors for which annotations depend on the context
(adult cystic fibrosis units vs. only adult cystic in
our sample, cystic fibrosis (CF) units vs. cystic, or
productive patients vs. patients).

On the categorization tasks, the main errors
concern all entities we failed to categorize and
for which we gave a default value. Those enti-
ties refer to adjectives the system did not process
(pulmonary, duodenal, etc.) and complex entities
(vacuum- and modified-atmosphere-packed cold-
smoked salmon stored at 5 degrees C, categorized
as “vacuum-packed meat” in the reference). As a
consequence, each category used as a default value
obtained bad results on the development dataset:
the NCBI taxonomy entry #210 achieved 34 true
positives and 69 false positives while the Onto-
Biotope entry #002216 achieved 14 true positives,
207 false positives and 11 false negatives.

At last, on the event identification tasks, since
there is only one type of relation to identify, the er-
rors concern missing relations and too much rela-
tions. Missing relations concern geographical en-
tities (cf. missing relations between P. aeruginosa
and geographical entities Brisbane and Australia
on figure 5): due to a low number of entities in
this category (see table 1), our SVM model failed
to learn relations with geographical entities. False
positives concern cases where the context between
entities prohibits relations (Neutrophils are resis-
tant to Yersinia), and annotations done on several

lines, including between the content of the title and
the content of the other paragraphs (cf. relations
between Pseudomonas aeruginosa from the first
paragraph and habitats adult cystic and adult from
the title).

7 Conclusion

In this paper, we presented the experiments we
made while participating in the Bacteria/Biotope
track from the 2016 BioNLP Shared-Task. We
combined CRF and post-processing rules to iden-
tify entities (bacteria, habitat, geographical), in-
cluding embedded entities, and we used rules
based on exact and partial match to normalize the
entities in the NCBI taxonomy (bacteria) and the
OntoBiotope ontology (habitat). For relation ex-
traction, we used a SVM system based on a basic
set of features.

As future work, we plan to deal with discontin-
uous entities. To process this issue, we consider
that a CRF model making the distinction between
the pivot and tokens specific to each entity would
be useful. As an example, in throat and nasopha-
ryngeal cultures, the pivot is cultures while spe-
cific tokens are throat and nasopharyngeal. Post-
processing rules would bring together tokens so as
to produce the final entities (throat cultures and
nasopharyngeal cultures). Our categorization ap-
proach to search for partial matches is relatively
simple. Future work is needed to provide a better
processing of the OntoBiotope ontology, namely,
in order to take into account the “is a” relations.

At last, we estimate that using unsupervised
learning of relations may provide interesting re-
sults, especially to improve the features set used
in the SVM model.
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Abstract

We present the TurkuNLP entry to
the BioNLP Shared Task 2016 Bacte-
ria Biotopes event extraction (BB3-event)
subtask. We propose a deep learning-
based approach to event extraction using
a combination of several Long Short-Term
Memory (LSTM) networks over syntac-
tic dependency graphs. Features for the
proposed neural network are generated
based on the shortest path connecting the
two candidate entities in the dependency
graph. We further detail how this network
can be efficiently trained to have good gen-
eralization performance even when only a
very limited number of training examples
are available and part-of-speech (POS)
and dependency type feature representa-
tions must be learned from scratch. Our
method ranked second among the entries
to the shared task, achieving an F-score of
52.1% with 62.3% precision and 44.8% re-
call.

1 Introduction

The BioNLP Shared Task 2016 was the fourth in
the series to focus on event extraction, an infor-
mation extraction task targeting structured asso-
ciations of biomedical entities (Kim et al., 2009;
Ananiadou et al., 2010). The 2016 task was also
the third to include a Bacteria Biotopes (BB) sub-
task focusing on microorganisms and their habi-
tats (Bossy et al., 2011). Here, we present the
TurkuNLP entry to the BioNLP Shared Task 2016
Bacteria Biotope event extraction (BB3-event)
subtask. Our approach builds on proven tools and
ideas from previous tasks and is novel in its ap-
plication of deep learning methods to biomedical
event extraction.

The BB task was first organized in 2011, then
consisting of named entity recognition (NER) tar-
geting mentions of bacteria and locations, fol-
lowed by the detection of two types of relations
involving these entities (Bossy et al., 2011). Three
teams participated in this task, with the best F-
score of 45% achieved by the INRA Bibliome
group with the Alvis system, which used dic-
tionary mapping, ontology inference and seman-
tic analysis for NER, and co-occurrence-based
rules for detecting relations between the entities
(Ratkovic et al., 2011). The 2013 BB task de-
fined three subtasks (Nédellec et al., 2013), the
first one concerning NER, targeting bacteria habi-
tat entities and their normalization, and the other
two subtasks involving relation extraction, the task
targeted also by the system presented here. Sim-
ilarly to the current BB3-event subtask, the 2013
subtask 2 concerned only relation extraction, and
subtask 3 extended this with NER. Four teams par-
ticipated in these tasks, with the UTurku TEES
system achieving the first places with F-scores of
42% and 14% (Björne and Salakoski, 2013).

We next present the 2016 BB3-event subtask
and its data and then proceed to detail our method,
its results and analysis. We conclude with a dis-
cussion of considered alternative approaches and
future work.

2 Task and Data

In this section, we briefly present the BB3-event
task and the statistics of the data that has been used
for method development and optimization, as well
as for test set prediction.

Although the BioNLP Shared Task has intro-
duced an event representation that can capture as-
sociations of arbitrary numbers of participants in
complex, recursive relationships, the BB3-event
task follows previous BB series subtasks in ex-
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Train Devel Test
Total sentences 527 319 508
Sentences w/examples 158 117 158
Sentences w/o examples 369 202 350
Total examples 524 506 534
Positive examples 251 177 -
Negative examples 273 329 -

Table 1: BB3-event data statistics. (The relation
annotations of the test set have not been released.)

clusively marking directed binary associations of
exactly two entities. For the purposes of machine
learning, we thus cast the BB3-event task as binary
classification taking either a (BACTERIA, HABI-
TAT) or a (BACTERIA, GEOGRAPHICAL) entity
pair as input and predicting whether or not a Lives-
in relation holds between the BACTERIA and the
location (HABITAT or GEOGRAPHICAL).

Our approach builds on the shortest dependency
path between each pair of entities. However, while
dependency parse graphs connect words to oth-
ers in the same sentence, a number of annotated
relations in the data involve entities appearing in
different sentences, where no connecting path ex-
ists. Such cross-sentence associations are known
to represent particular challenges for event extrac-
tion systems, which rarely attempt their extraction
(Kim et al., 2011). In this work, we simply ex-
clude cross-sentence examples from the data. This
elimination procedure resulted in the removal of
106 annotated relations from the training set and
62 annotated relations from the development set.

The examples that we use for the training,
optimization and development evaluation of our
method are thus a subset of those in the origi-
nal data.1 When discussing the training, develop-
ment and test data, we refer to these filtered sets
throughout this manuscript. The statistics of the
task data after this elimination procedure are sum-
marized in Table 1. Note that since there are var-
ious ways of converting the shared task annota-
tions into examples for classification, the numbers
we report here may differ from those reported by
other participating teams.

1Official evaluation results on the test data are of course
comparable to those of other systems: any cross-sentence re-
lations in the test data count against our submission as false
negatives.

3 Method

We next present our method in detail. Preprocess-
ing is first discussed in Section 3.1. Section 3.2
then explains how the shortest dependency path
is used, and the architecture of the proposed deep
neural network is presented in Section 3.3. Sec-
tion 3.4 defines the classification features and em-
beddings for this network. Finally, in Section 3.5
we discuss the training and regularization of the
network.

3.1 Preprocessing

We use the TEES system, previously developed
by members of the TurkuNLP group (Björne and
Salakoski, 2013), to run a basic preprocessing
pipeline of tokenization, POS tagging, and pars-
ing, as well as to remove cross-sentence relations.
Like our approach, TEES targets the extraction
of associations between entities that occur in the
same sentence. To support this functionality, it
can detect and eliminate relations that cross sen-
tence boundaries in its input. We use this feature
of TEES as an initial preprocessing step to remove
such relations from the data.

To obtain tokens, POS tags and parse graphs,
TEES uses the BLLIP parser (Charniak and John-
son, 2005) with the biomedical domain model cre-
ated by McClosky (2010). The phrase structure
trees produced by the parser are further processed
with the Stanford conversion tool (de Marneffe et
al., 2006) to create dependency graphs. The Stan-
ford system can produce several variants of the
Stanford Dependencies (SD) representation. Here,
we use the collapsed variant, which is designed to
be useful for information extraction and language
understanding tasks (de Marneffe and Manning,
2008).

3.2 Shortest Dependency Path

The syntactic structure connecting two entities e1
and e2 in various forms of syntactic analysis is
known to contain most of the words relevant to
characterizing the relationship R(e1, e2), while
excluding less relevant and uninformative words.

This observation has served as the basis
for many successful relation extraction ap-
proaches in both general and biomedical domain
NLP (Bunescu and Mooney, 2005; Airola et al.,
2008; Nguyen et al., 2009; Chowdhury et al.,
2011). The TEES system also heavily relies on
the shortest dependency path for defining and ex-
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tracting features (Björne et al., 2012; Björne and
Salakoski, 2013). Recently, this idea was applied
in an LSTM-based relation extraction system by
Xu et al. (2015). Since the dependency parse is di-
rected (i.e. the path from e1 to e2 differs from that
from e2 to e1), they separate the shortest depen-
dency path into two sub-paths, each from an entity
to the common ancestor of the two entities, gen-
erate features along the two sub-paths, and feed
them into different LSTM networks, to process the
information in a direction sensitive manner.

To avoid doubling the number of LSTM chains
(and hence the number of weights), we convert the
dependency parse to an undirected graph, find the
shortest path between the two entities (BACTERIA

and HABITAT/GEOGRAPHICAL), and always pro-
ceed from the BACTERIA entity to the HABI-
TAT/GEOGRAPHICAL entity when generating fea-
tures along the shortest path, regardless of the or-
der of the entity mentions in the sentence. With
this approach, there is a single LSTM chain (and
set of LSTM weights) for every feature set, which
is more effective when the number of training ex-
amples is limited.

There is a subtle and important point to be
addressed here: as individual entity mentions
can consist of several (potentially discontinu-
ous) tokens, the method must be able to select
which word (i.e. single token) serves as the start-
ing/ending point for paths through the dependency
graph. For example, in the following training
set sentence, “biotic surfaces” is annotated as a
HABITAT entity:

“We concluded that S. marcescens MG1
utilizes different regulatory systems and
adhesins in attachment to biotic and
abiotic surfaces [...]”

As this mention consists of two (discontinuous)
tokens, it is necessary to decide whether the
paths connecting this entity to BACTERIA men-
tions (e.g., “S. marcescens MG1”) should end at
“biotic” or “surfaces”. This problem has fortu-
nately been addressed in detail in previous work,
allowing us to adopt the proven solution proposed
by Björne et al. (2012) and implemented in the
TEES system, which selects the syntactic head,
i.e. the root token of the dependency parse sub-tree
covering the entity, for any given multi-token en-
tity. Hence, in the example above, the token “sur-
faces” is selected and used for finding the shortest
dependency paths.

3.3 Neural Network Architecture
While recurrent neural networks (RNNs) are in-
herently suitable for modeling sequential data,
standard RNNs suffer from the vanishing or ex-
ploding gradients problem: if the network is deep,
during the back-propagation phase the gradients
may either decay exponentially, causing learning
to become very slow or stop altogether (vanish-
ing gradients); or become excessively large, caus-
ing the learning to diverge (exploding gradients)
(Bengio et al., 1994). To avoid this issue, we
make use of Long Short-Term Memory (LSTM)
units, which were proposed to address this prob-
lem (Hochreiter and Schmidhuber, 1997).

We propose an architecture centered around
three RNNs (chains of LSTM units): one rep-
resenting words, the second POS tags, and the
third dependency types (Figure 1). For a given
example, the sequences of words, POS tags and
dependency types on the shortest dependency
path from the BACTERIA mention to the HABI-
TAT/GEOGRAPHICAL mention are first mapped
into vector sequences by three separate embedding
lookup layers. These word, POS tag and depen-
dency type vector sequences are then input into
the three RNNs. The outputs of the last LSTM
unit of each of the three chains are then concate-
nated and the resulting higher-dimensional vector
input to a fully connected hidden layer. The hid-
den layer finally connects to a single-node binary
classification layer.

Based on experiments on the development set,
we have set the dimensionality of all LSTM units
and the hidden layer to 128. The sigmoid activa-
tion function is applied on the output of all LSTM
units, the hidden layer and the output layer.

3.4 Features and Embeddings
We next present the different embeddings defining
the primary features of our model. In addition to
the embeddings, we use a binary feature which has
the value 0 if the corresponding location is a GEO-
GRAPHICAL entity and 1 if it is a HABITAT entity.
This input is directly concatenated with the LSTM
outputs and fed into the hidden layer. We noticed
this signal slightly improves classification perfor-
mance, resulting in a less than 1 percentage point
increase of the F-score.

3.4.1 Word embeddings
We initialize our word embeddings with vectors
induced using six billion words of biomedical
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Figure 1: Proposed network architecture.

scientific text, namely the combined texts of all
PubMed titles and abstracts and PubMed Central
Open Access (PMC OA) full text articles avail-
able as of the end of September 2013.2 These
200-dimensional vectors were created by Pyysalo
et al. (2013) using the word2vec implementation
of the skip-gram model (Mikolov et al., 2013).

To reduce the memory requirements of our
method, we only use the vectors of the 100,000
most frequent words to construct the embedding
matrix. Words not included in this vocabulary
are by default mapped to a shared, randomly ini-
tialized unknown word vector. As an exception,
out of vocabulary BACTERIA mentions are instead
mapped to the vector of the word “bacteria”.
Based on development set experiments we esti-
mate that this special-case processing improved
the F-score by approximately 1% point.

3.4.2 POS embeddings

Our POS embedding matrix consists of a 100-
dimensional vector for each of the POS tags in the
Penn Treebank scheme used by the applied tagger.
We do not use pre-trained POS vectors but instead
initialize the embeddings randomly at the begin-
ning of the training phase.

2Available from http://bio.nlplab.org/

3.4.3 Dependency type embeddings
Typed dependencies – the edges of the parse
graph – represent directed grammatical relations
between the words of a sentence. The sequence
of dependencies on the shortest path between two
entities thus conveys highly valuable information
about the nature of their relation.

We map each dependency type in the collapsed
SD representation into a randomly initialized 350-
dimensional vector (size set experimentally). Note
that in the applied SD variant, prepositions and
conjunctions become part of collapsed depen-
dency types (de Marneffe et al., 2006), as illus-
trated in Figure 2.

Figure 2: Basic (top) and collapsed (bottom) Stan-
ford Dependency representations

As the collapsed dependencies thus incorporate
preposition and conjunction words into the gram-
matical relations themselves, the set of depen-
dency types is somewhat open-ended. To account
for this, all preposition/conjunction dependency
types not observed in the training and develop-
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ment sets are mapped to the vectors for the gen-
eral preposition and conjunction types prep and
conj, respectively.

3.5 Training and Regularization

We use binary cross-entropy as the objective func-
tion and the Adam optimization algorithm with the
parameters suggested by Kingma and Ba (2014)
for training the network. We found that this al-
gorithm yields considerably better results than the
conventional stochastic gradient descent in terms
of classification performance.

During training, the randomly initialized POS
and dependency type embeddings are trained and
the pre-trained word embeddings fine-tuned by
back-propagation using the supervised signal from
the classification task at hand.

Determining how long to train a neural network
model for is critically important for its generaliza-
tion performance. If the network is under-trained,
model parameters will not have converged to good
values. Conversely, over-training leads to over-
fitting on the training set. A conventional solu-
tion is early stopping, where performance is eval-
uated on the development set after each set pe-
riod of training (e.g. one pass through the train-
ing set, or epoch) to decide whether to continue
or stop the training process. A simple rule is to
continue while the performance on the develop-
ment set is improving. By repeating this approach
for 15 different runs with different initial ran-
dom initializations of the model, we experimen-
tally concluded that the optimal length of training
is four epochs. Overfitting is a serious problem in
deep neural networks with a large number of pa-
rameters. To reduce overfitting, we experimented
with several regularization methods including the
l1 weight regularization penalty (LASSO) and the
l2 weight decay (ridge) penalty on the hidden layer
weights. We also tried the dropout method (Srivas-
tava et al., 2014) on the output of LSTM chains as
well as on the output of the hidden layer, with a
dropout rate of 0.5. Out of the different combi-
nations, we found the best results when applying
dropout after the hidden layer. This is the only
regularization method used in the final method.

4 Results

4.1 Overcoming Variance

At the beginning of training, the weights of the
neural network are initialized randomly. As we are

Run Recall Precision F-score
12 76.3 60.3 67.3
14 71.2 63.0 66.8
13 75.7 59.3 66.5
10 78.0 56.3 65.4
3 80.8 54.0 64.7
15 79.1 54.3 64.4
1 66.1 62.2 64.1
11 65.0 62.8 63.9
2 67.8 59.4 63.3
5 55.9 69.7 62.1
7 57.6 66.7 61.8
9 53.1 70.2 60.5
8 50.9 74.4 60.4
6 50.3 73.6 59.7
4 46.9 78.3 58.7
x̄ 65.0 64.3 63.3
σ 11.3 7.3 2.6

Table 2: Development set results for 15 repeti-
tions with different initial random initializations
with mean (x̄) and standard deviation (σ). Results
are sorted by F-score.

only using pre-trained embeddings for words, this
random initialization applies also to the POS and
dependency type embeddings. Since the number
of weights is high and the training set is very small
(only 524 examples), the initial random state of the
model can have a significant impact on the final
model and its generalization performance. Lim-
ited numbers of training examples are known to
represent significant challenges for leveraging the
full power of deep neural networks, and we found
this to be the case also in this task.

To study the influence of random effects on our
model, we evaluate it with 15 different random ini-
tializations, training each model for four epochs
on the training data and evaluating on the develop-
ment set using the standard precision, recall and
F-score metrics. Table 2 shows the obtained re-
sults. We find that the primary evaluation met-
ric, the F-score, varies considerably, ranging from
58.7% to 67.3%. This clearly illustrates the extent
to which the random initialization can impact the
performance of the model on unseen data. While
the method is shown to obtain on average an F-
score of 63.3% on the development set, it must be
kept in mind that given the standard deviation of
2.6, individual trained models may perform sub-
stantially better (or worse). It is also important to
note that due to the small size of the development
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Threshold (t) Recall Precision F-score
1 83.6 53.2 65.1
2 79.7 54.0 64.4
3 78.5 57.0 66.0
4 78.0 59.0 67.2
5 75.7 60.1 67.0
6 70.6 60.7 65.3
7 67.8 61.5 64.5
8 65.5 62.0 63.7
9 62.2 65.5 63.8
10 58.2 66.5 62.1
11 57.1 69.7 62.7
12 52.5 70.5 60.2
13 51.4 72.8 60.3
14 48.6 74.8 58.9
15 45.2 80.0 57.8

Table 3: Development set results for voting based
on the predictions of the 15 different classifiers.
Best results for each metric shown in bold.

set, individual models that achieved high perfor-
mance in this experiment will not necessarily gen-
eralize well to unseen data.

To deal with these issues, we introduce a
straightforward voting procedure that aggregates
the prediction outputs of the 15 classifiers based
on a given threshold value t ∈ {1, . . . , 15}:

1. For each example, predict outputs with the 15
models;

2. If at least t outputs are positive, label the ex-
ample positive, otherwise label it negative.

Clearly, the most conservative threshold is t = 15,
where a relation is voted to exist only if all the 15
classifiers have predicted it. Conversely, the least
conservative threshold is t = 1, where a relation is
voted to hold if any classifier has predicted it.

The development set results for the voting al-
gorithm with different threshold values are given
in Table 3. As expected, the threshold t = 1
produces the highest recall (83.6%) with the low-
est precision (53.2%). With increasing values of
t, precision increases while recall drops, and the
highest precision (80.0%) is achieved together the
lowest recall of (45.2%) with t = 15. The best
F-score is obtained with t = 4, where an example
is labeled positive if at least four classifiers have
predicted it to be positive and negative otherwise.
Figure 3 shows the precision-recall curve for these
15 threshold values.

Figure 3: Precision-recall curve for different val-
ues of the threshold t (shown as labels on the
curve).

As is evident from these results, the voting al-
gorithm can be used for different purposes. If the
aim is to obtain the best overall performance, we
can investigate which threshold produces the high-
est F-score (here t = 4) and select that value when
making predictions for unseen data (e.g., the test
set). Alternatively, for applications that specifi-
cally require high recall or high precision, a dif-
ferent threshold value can be selected to optimize
the desired metric.

To assess the performance of the method on the
full, unfiltered development set that includes also
cross-sentence relations, we selected the threshold
value t = 4 and submitted the aggregated predic-
tion results to the official Shared Task evaluation
server. The method achieved an F-score of 60.0%
(60.9% precision and 59.3% recall), 7.2% points
below the result for our internal evaluation with
filtered data (Table 3).

4.2 Test Set Evaluation

For evaluation of the test set, we applied the pro-
posed model with the voting approach presented
above): 15 neural network models with different
random initializations were trained for 4 epochs
on the combination of the training and the devel-
opment sets. Each trained model was then used to
produce one set of predictions for the test set. To
obtain the final test set predictions, the outputs of
the 15 classifiers were aggregated using the voting
algorithm with a threshold t = 4.
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Our method achieved an F-score of 52.1% with
a recall of 44.8% and precision of 62.3%, rank-
ing second among the entries to the shared task.
We again emphasize that our approach ignored all
potential relations between entities belonging to
different sentences, which may in part explain the
comparatively low recall.

4.3 Runtime Performance and Technical
Details

We implemented the model using the Python pro-
gramming language (v2.7) with Keras, a model-
level deep learning library (Chollet, 2015). All
network parameters not explicitly discussed above
were left to their defaults in Keras. The Theano
tensor manipulation library (Bastien et al., 2012)
was used as the backend engine for Keras. Com-
putations were run on a single server computer
equipped with a GPU.3 All basic python process-
ing, including e.g. file manipulation, the TEES
pipeline and our voting algorithm, was run on a
single CPU core, while all neural network related
calculations (training, optimization, predictions)
were run on the GPU, using the CUDA toolkit ver-
sion 5.0.

The training process takes about 10 minutes, in-
cluding model building and 4 epochs of training
the network on the training set, but excluding pre-
processing and the creation and loading of the in-
put network. Prediction of the development set
using a trained model with fully prepared inputs
is very fast, taking only about 10 seconds. Finally,
the voting algorithm executes in less than a minute
for all 15 thresholds.

We note that even though the proposed ap-
proach involving 15 rounds of training, predic-
tion and result aggregation might seem to be
impractical for large-scale real-word applications
(e.g., extracting bacteria-location relations from
all PubMed abstracts), it is quite feasible in prac-
tice, as the time-consuming training process only
needs to be done once, and prediction on unseen
data is quite fast.

4.4 Other Architectures

In this section, we discuss alternative approaches
that we considered and the reasons why they were
rejected in favor of that described above.

3In detail: two 6-core Intel R© Xeon R© E5-2620 processors,
32 gigabytes of main memory, and one NVIDIA R© TESLATM

C2075 companion processor with 448 CUDA cores and 6 gi-
gabytes of memory.

One popular and proven method for relation
extraction is to use three groups of features,
based on the observation that the words preceding
the first entity, the words between the entities,
and those after the second entity serve different
roles in deciding whether or not the entities are
related (Bunescu and Mooney, 2006). Given
a sentence S = w1, ..., e1, ..., wi, ..., e2, ..., wn

with entities e1 and e2, one can represent
the sentence with three groups of words:
{before}e1{middle}e2{after} (e1 and e2 can
also be included in the groups). The similarity
of two examples represented in this way can be
compared using e.g. sub-sequence kernels at word
level (Bach and Badaskar, 2007). Bunescu and
Mooney (2006) utilize three subkernels matching
combinations of the before, middle and after
sequences of words, with a combined kernel that
is simply the sum of the subkernels. This kernel is
then used with support vector machines for rela-
tion extraction. Besides the words, other features
such as the corresponding POS tags and entity
types can also be incorporated into such kernel
functions to further improve the representation.

We adapted this idea to deep neural networks.
We started with the simplest architecture, which
contains 3 LSTM networks. Instead of gener-
ating features based on the shortest path, each
LSTM receives inputs based on the sequence of
the words seen in each of the before, middle, and
after groups, where the word embeddings are the
only features used for classification. Similar to the
architecture discussed in Section 3.3, the outputs
of the last LSTM units in each chain are concate-
nated, and the resulting higher-dimensional vector
is then fed into a fully connected hidden layer and
then to the output layer. This approach has a ma-
jor advantage over the shortest dependency path,
in particular for large-scale applications: parsing,
the most time-consuming part in the relation ex-
traction pipeline, is no longer required.

Unfortunately, our internal evaluation on the de-
velopment set showed that this model failed to
achieve results comparable to those of the shortest
dependency path model, only reaching an F-score
of about 57%. Hence, we attempted to use more
features by adding 3 or 6 additional LSTM chains
to the model, for POS or/and dependency type
embeddings. Even in these cases, the F-scores
only varied in the range of 57% to about 63%
(for different random initializations). We conclude
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that even though not requiring parsing is a benefit
in these approaches, our experiments suggest that
they are not capable of reaching performance com-
parable to methods that use the syntactic structure
of sentences.

5 Conclusions and Future work

We have presented the entry of the TurkuNLP
team to the Bacteria Biotope event extraction
(BB3-event) sub-task of the BioNLP Shared Task
2016. Our method is based on a combination
of LSTM networks over syntactic dependency
graphs. The features for the network are derived
from the POS tags, dependency types, and word
forms occurring on the shortest dependency path
connecting the two candidate entities (BACTERIA

and HABITAT/GEOGRAPHICAL) in the collapsed
Stanford Dependency graph.

We initialize word representations using pre-
trained vectors created using six billion words of
biomedical text (PubMed and PMC documents).
During training, the pre-trained word embeddings
are fine-tuned while randomly initialized POS and
dependency type representations are trained from
scratch. We showed that as the number of train-
ing examples is very limited, the random initial-
ization of the network can considerably impact
the quality of the learned model. To address this
issue, we introduced a voting approach that ag-
gregates the outputs of differently initialized neu-
ral network models. Different aggregation thresh-
olds can be used to select different precision-recall
trade-offs. Using this method, we showed that
our proposed deep neural network can be effi-
ciently trained to have good generalization for un-
seen data even with minimal training data. Our
method ranked second among the entries to the
shared task, achieving an F-score of 52.1% with
62.3% precision and 44.8% recall.

There are a number of open questions regard-
ing our model that we hope to address in future
work. First, we observed how the initial random
state of the model can impact its final performance
on unseen data. It is interesting to investigate
whether (and to what extent) pre-training the POS
and dependency type embeddings can address this
issue. One possible approach would be to ap-
ply the method to similar biomedical relation ex-
traction tasks that include larger corpora than the
BB3-event task (Pyysalo et al., 2008) and use the
learned POS and dependency embeddings for ini-

tialization for this task. This could also establish to
what extent pre-training these representations can
boost the F-score.

Second, it will be interesting to study how the
method performs with different amounts of train-
ing data. On one hand, we can examine to what
extent the training corpus size can be reduced
without compromising the ability of the proposed
network to learn the classification task; on the
other, we can explore how this deep learning
method compares with previously proposed state-
of-the-art biomedical relation extraction methods
on larger relation extraction corpora.

Third, the method and task represent an oppor-
tunity to study how the word embeddings used
for initialization impact relation extraction perfor-
mance and in this way assess the benefits of dif-
ferent methods for creating word embeddings in
an extrinsic task with real-world applications.

Finally, it is interesting to investigate differ-
ent methods to deal with cross-sentence relations.
Here we ignored all potential relations where the
entities are mentioned in different sentences as
there is no path connecting tokens across sen-
tences in the dependency graph. One simple
method that could be considered is to create an
artificial “paragraph” node connected to all sen-
tence roots to create such paths (cf. e.g. Melli et
al. (2007)).

We aim to address these open questions and fur-
ther extensions of our model in future work.
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Abstract

This paper describes the system details
and results of the participation of the
team from the University of Melbourne
in the SeeDev binary event extraction of
BioNLP-Shared Task 2016. This task
addresses the extraction of genetic and
molecular mechanisms that regulate plant
seed development from the natural lan-
guage text of the published literature. In
our submission, we developed a system1

using a support vector machine classifier
with linear kernel powered by a rich set of
features. Our system achieved an F1-score
of 36.4%.

1 Introduction

One of the biggest research challenges faced
by the agricultural industry is to understand the
molecular network underlying the regulation of
seed development. Different tissues involving
complex genetics and various environmental fac-
tors are responsible for the healthy development
of a seed. A large body of research literature is
available containing this knowledge. The SeeDev
binary relation extraction subtask of the BioNLP
Shared Task 2016 (Chaix et al., 2016) focuses on
extracting relations or events that involve two bio-
logical entities as expressed in full-text publication
articles. The task represents an important contri-
bution to the broader problem of biomedical rela-
tion extraction.

Similar to previous BioNLP shared tasks in
2009 and 2011 (Kim et al., 2009; Kim et al.,
2011), this task focuses on molecular informa-
tion extraction. The task organisers provided para-
graphs from manually selected full text publica-
tions on seed development of Arabidopsis thaliana

1Source: https://github.com/unimelbbionlp/BioNLPST2016/

annotated with mentions of biological entities like
proteins and genes, and binary relations like Ex-
ists In Genotype and Occurs In Genotype. The
participants are asked to extract binary relations
between entities in a given paragraph.

Several approaches have been proposed to ex-
tract biological events from text (Ohta et al.,
2011; Liu et al., 2013). Broadly, these ap-
proaches can be categorized into two main groups,
namely rule-based and machine learning (ML)
based approaches. Rule-based approaches con-
sist of a set of rules that are manually defined
or semi-automatically inferred from the training
data (Abacha and Zweigenbaum, 2011). To ex-
tract events from text, first event triggers are de-
tected using a dictionary, then the defined rules are
applied over rich representations such as depen-
dency parse trees, to extract the event arguments.
On the other hand, ML-based approaches (Miwa
et al., 2010) are characterized by learning algo-
rithms such as classification to extract event argu-
ments. Further, they employ various features com-
puted from the textual or syntactic properties of
the input text.

This article explains our SeeDev binary relation
extraction system in detail. We describe the rich
feature set and classifier setup employed by our
system that helped achieve the second best F1-
score of 36.4% in the shared task.

2 Approach

The seedev task involves extraction of 22 different
binary events over 16 entity types. Entity mentions
within a sentence and the events between them are
provided in the gold standard annotations. In the
rest of the article, we refer to an event with two
entity arguments as simply a binary relation.

We treat relation identification as a supervised
classification problem and created 22 separate
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classifiers denoted as C1, C2, . . . , C22, specific to
relations r1, r2, . . . , r22, respectively. This de-
sign choice was motivated by two important as-
pects, namely vocabulary and relation type signa-
ture. We describe them below:

Vocabulary According to the annotation guide-
lines document, it is clear that different re-
lations are expressed using different vocabu-
lary. For example, “encode” is in the vo-
cabulary of “Transcribes Or Translates To” and
“phosphorylate” is in the vocabulary of “Regula-
tion Of Molecule Activity”. We hypothesize that
treating the vocabulary as a set of trigger words
for its corresponding relation would be beneficial.
Therefore, we built 22 separate classifiers for each
relation type, with vocabulary as a relation spe-
cific feature. Given an entity pair (ea, eb), we test
it with the classifier Ci to detect if the relation ri

holds between ea and eb.

Relation type signature Relations are associ-
ated with entity type argument signatures, which
specify the list of allowed entity types for each
argument position. For example, the event “Pro-
tein Complex Composition” requires the first en-
tity argument to be one of these four entity types
{“Protein”, “Protein Family”, “Protein Complex”,
“Protein Domain”} and the second argument to
be “Protein Complex”. Alternately, relation argu-
ment signatures can be used as a filter that spec-
ifies the list of invalid relations between an entity
pair. We can use this knowledge to prune the train-
ing sets of classifier Ci of invalid entity pairs. Re-
lation type signatures overlap but are not identi-
cal. Therefore, training set of Ci is different from
training set of Cj , j 6= i.

2.1 Training

The steps involved in training the aforementioned
classifiers are described below.

1. Extract all pairs of candidates (ea, eb) that co-
occur within a sentence from training doc-
uments to form a triple t = (ea, eb, label).
If ea and eb are known to be related by the
type rc, from the relation annotations, we set
label = rc. If they are not related, we set
label =NR. NR is a special label to denote no
relation.

2. Add the triple t = (ea, eb, label) to the train-
ing set of Ci, if (ea, eb) satisifies the type sig-
nature for relation ri, i ∈ [1, 22].

We now have classifier specific training sets,
which are sets of triples t = (ea, eb, label). To
train the classifier, we regard these triples as train-
ing examples of class type label and a feature vec-
tor constructed for the entity pair (ea, eb), as ex-
plained in section 2.4.

2.2 Testing

During the test phase, we generate candidate entity
pairs from sentences in the test documents. We
look up into the relation argument signatures to
identify the list of possible relation types for this
entity pair. For each such relation type ri, we test
the candidate with the classifier Ci. The entity pair
(ea, eb) is considered to have the relation type ri if
the predicted label from the classifier Ci is ri. A
consequence of the above approach is that we may
predict multiple relation types for a single entity
pair in a sentence. This is a limitation of our sys-
tem, as it is unlikely for a sentence to express mul-
tiple relationships between an entity pair.

2.3 Classifier details

The classifiers Ci, i ∈ [1, 22] are trained as multi-
class classifiers. Note that the training set of each
classifier Ci may include examples of the form
(ea, eb, label), label = rj and j 6= i, for the rea-
son that (ea, eb) satisfies the type signature for ri.
Therefore, at test time a classifier Ci may classify
an entity pair (ea, eb) as rj , j 6= i. But we note
that ri is the dominant class for the classifier Ci

and other relation types rj are often under repre-
sented during its training. Therefore, we discard
predictions rj from Ci when j 6= i. For the entity
pair (ea, eb) to be included in the final set of pre-
dicted relations with the type ri, we require that
the classifier Ci label it as ri.

We experimented with classifiers from
Scikit (Pedregosa et al., 2011). For each re-
lation type, we selected a classifier type between
linear kernel SVMs and Multinomial Naive
Bayes. This choice was based on performance
over development data. We combine the devel-
opment dataset with training dataset and use it all
for training. No parameter tuning was performed.

2.4 Feature Engineering

We developed a set of common lexical, syntac-
tic and dependency parse based features. Relation
specific features were also developed. For part of
speech tagging and dependency parsing of the text,
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we used the toolset from Stanford CoreNLP (Man-
ning et al., 2014). These features are described in
detail below.

1. Stop word removal: For some relations
(“Has Sequence Identical To”, “Is Function-
ally Equivalent To”,“Regulates Accumula-
tion” and “Regulates Expression” ) we found
that it is beneficial to remove stop words from
the sentence.

2. Bag of words: Include all words in the sen-
tence as features, prefixed with “pre”,“mid”
or “post” based on their location with refer-
ence to entity mentions in the sentence.

3. Part of Speech (POS): Concatenated se-
quence of POS tags were extracted separately
for words before, after and in the middle of
entity mentions in the sentence.

4. Entity features: Entity descriptions and entity
types were extracted as features.

5. Dependency path features: We compute the
shortest path between the entities in the de-
pendency graph of the sentence and then find
the neighboring nodes of the entity mentions
along the shortest path. The text (lemma) and
POS tags of these neighbors are included as
features.

6. Trigger words: For each relation, we desig-
nate a few special terms as trigger words and
flag their presence as a feature. Trigger words
were mainly arrived at by examining the an-
notation guidelines of the task and a few rep-
resentative examples.

7. Patterns: A common pattern in text docu-
ments is to specify equivalent representations
using parenthesis. We find if the two entities
are expressed in such a way and include it as a
special feature for the relations “Is Function-
ally Equivalent To” and “Regulates Develop-
ment Phase”.

3 Evaluation

The SeeDev-Binary task objective is to extract all
related entity pairs at the document level. The met-
rics are the standard Precision (P), Recall(R) and
F1-score ( 2PR

P+R ).

3.1 Dataset
The SeeDev-Binary (Chaix et al., 2016) task pro-
vides a corpus of 20 full articles on seed develop-
ment of Arabidopsis thaliana, that have been man-
ually selected by domain experts. This corpus con-

sists of a total of 7, 082 entities and 3, 575 binary
relations and is partitioned into training, develop-
ment and test datasets. Gold standard entity and
relation annotations are provided for training and
development data and for test data only entity an-
notations have been released. The given set of 16
entity types are categorized into 7 different entity
groups and 22 different relation types are defined.
Pre-defined event signatures constrain the types of
entity arguments for each relation.

3.2 Results

In the development mode, we used the training
dataset for training the relation specific classifiers
and predicted the relations over the development
dataset. Finally, we trained our classifiers with the
full training and development data together. With
this system, the predicted relations over the test
dataset was submitted to the task. Performance re-
sults over the test dataset was made available by
the task organizers at the conclusion of the event.
These results are detailed in Table 3.2.

4 Discussion

We note that the final relation extraction per-
formance is quite low (36.4%), suggesting that
SeeDev-Binary event extraction is a challenging
problem. Further, for many event types our sys-
tem was unable to identify any relation mentions.
It is not clear as to why our methods are not ef-
fective for these relation types, but it is likely that
scarcity of training data is the problem. We ob-
served that our system performed poorly on rela-
tion types that have < 100 training samples and
has generally succeeded on the rest. It is likely that
for these sparsely represented relation types, alter-
nate techniques such as rule based methods might
be more successful.

We attempted a few alternate techniques and de-
scribe the findings from these approaches below.

4.1 Alternate approaches

1. Two stage approach: We attempted building
a first stage general filter that identifies event
pairs as “related” or “not related”. For this,
we grouped all candidate pairs with any of
the 22 given relation types into the “positive”
class and the rest into the “negative” class in a
SVM classifier. In the second stage, we built
a multiclass classifier that was to further tune
the label of an entity pair from “related” to
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Event
type

Clasifier
used

Metrics on Development data Metrics on Test data
F1 Recall Prec. F1 Recall Prec.

Binds To SVM 0.269 0.291 0.250 0.262 0.250 0.276
Composes Primary Structure NB 0.482 0.466 0.500 NA 0 0
Composes Protein Complex NB NA 0 0 0.500 0.667 0.400
Exists At Stage NB NA 0 0 NA 0 0
Exists In Genotype SVM 0.248 0.222 0.281 0.354 0.315 0.404
Has Sequence Identical To SVM 0.336 0.800 0.213 NA 0 0
Interacts With SVM 0.245 0.218 0.280 0.286 0.241 0.351
Is Functionally Equivalent To SVM 0.238 0.256 0.222 NA 0 0
Is Involved In Process SVM NA 0 0 NA 0 0
Is Localized In SVM 0.431 0.468 0.400 0.388 0.435 0.351
Is Member Of Family SVM 0.389 0.545 0.303 0.417 0.523 0.346
Is Protein Domain Of SVM 0.111 0.068 0.285 0.295 0.419 0.228
Occurs During NB NA 0 0 NA 0 0
Occurs In Genotype SVM NA 0 0 NA 0 0
Regulates Accumulation SVM 0.444 0.344 0.625 0.316 0.188 1
Regulates Development Phase SVM 0.380 0.338 0.434 0.376 0.442 0.327
Regulates Expression SVM 0.486 0.477 0.495 0.386 0.471 0.327
Regulates Process NB 0.420 0.513 0.355 0.400 0.394 0.406
Regulates Tissue Development NB NA 0 0 NA 0 0
Regulates Molecule Activity NB NA 0 0 NA 0 0
Transcribes Or Translates To NB 0.100 0.076 0.142 NA 0 0
Is Linked To SVM NA 0 0 NA 0 0
All Relations - 0.354 0.360 0.348 0.364 0.386 0.34

Table 1: Results for relation extraction. NB is Multinomial Naive Bayes. Prec is Precision.

one of the 22 relation types. We observed
poor performance for the first stage filter and
a drop in overall performance.

2. Binary classifiers: We attempted training the
classifiers Ci, i ∈ [1, 22] as binary classi-
fiers, by modifying the triples (ea, eb, rj) to
(ea, eb, +) if j == i and (ea, eb,−) if j 6= i.
At test time, positive predictions from Ci

were inferred as relations ri. We observed
that this approach of combining many sub-
classes into one negative class reduced preci-
sion and hence overall performance.

3. Co-occurrence: A simple approach to rela-
tion extraction is to consider all event pairs
that occur within a sentence as related. We
tried using this cooccurrence strategy for re-
lation types for which SVM or Naive Bayes
classifiers did not work effectively. We aban-
doned this strategy as we observed that the
overall F1 score reduced over the develop-
ment dataset, even as the recall at the relation
level improved.

4. Kernel methods: We experimented with the
shortest dependency path kernel (Bunescu
and Mooney, 2005) and the subset tree ker-
nels (Moschitti, 2006) for classification with
SVMs. However their performance was quite
low (F1 score < 0.20). It is likely that small
training set sizes and multiple entity pairs
in most sentences affect the performance of
these kernel methods.

5. Dominant class types : In our system we
adopted the strategy of only accepting pre-
dictions of the dominant class type from each
classifier. That is, we filter out predictions of
type rj from classifier Ci when j 6= i. This
strategy proved very effective when tested
over the development dataset. Without this
filtering step, we found that our system gets
a high recall as expected (0.896) but also too
many false positives resulting in low preci-
sion (0.027) and F-score (0.053).
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True
relation type

Predicted relation type
NR BT CP EG HS IW IF IL IM IP RA RD RE RP TO

NR NA 21 5 46 43 15 32 33 67 5 6 26 54 157 6
BT 14 7 0 0 0 3 0 0 0 0 0 0 0 0 0
CP 7 0 7 0 1 0 0 0 0 0 0 0 0 0 0
EG 63 0 0 18 0 0 0 0 0 0 0 0 0 0 0
HS 1 0 1 0 16 0 3 0 0 0 0 0 0 0 0
IW 23 0 0 0 0 7 0 0 1 0 0 0 0 0 0
IF 14 0 1 0 14 0 10 0 1 0 0 0 0 0 0
IL 25 0 0 0 0 0 0 22 0 0 0 0 0 0 0
IM 25 0 0 0 1 0 0 0 30 0 0 0 0 0 0
IP 27 0 0 0 0 0 0 0 0 2 0 0 0 0 0
RA 19 0 0 0 0 0 0 0 0 0 10 0 0 0 0
RD 39 0 0 0 0 0 0 0 0 0 0 20 0 0 0
RE 57 0 0 0 0 0 0 0 0 0 0 0 53 0 0
RP 86 0 0 0 0 0 0 0 0 0 0 0 0 92 0
TO 12 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 2: Confusion matrix for evaluation over development data using our multiclass classifiers. Rows
and columns represent the relations Not Related(NR), Binds To(BT) , Composes Primary Structure(CP)
, Exists In Genotype(EG) , Has Sequence Identical To(HS) , Interacts With(IW) , Is Functionally Equiv-
alent To(IF) , Is Localized In(IL) , Is Member Of Family(IM) , Is Protein Domain Of(IP) , Regulates
Accumulation(RA) , Regulates Development Phase(RD) , Regulates Expression(RE) , Regulates Pro-
cess(RP) and Transcribes Or Translates To(TO).

4.2 Error analysis

In Table 4.2 we show the confusion matrix for 16
classifiers of our system, when evaluated over the
development dataset. The remaining 6 classifiers
were left out as they have 0 predictions and are dis-
cussed separately in Section 4.2.1. The entries of
the confusion matrix CM [i, j] are the number of
test examples whose true type is i and its predicted
label is j. From the confusion matrix we see that
the primary source of errors is in predicting a re-
lation where there is none or vice versa. Amongst
the related entity pairs, the classifier for “Has Se-
quence Identical To” makes the most errors when
the input examples are of type “Is Functionally
Equivalent To”. Adding more discriminatory fea-
tures or keywords to discriminate between these
two classes is likely to improve performance. Bet-
ter handling of unrelated entity pairs is likely to be
achieved with more syntactic or dependency parse
related features, that specifically target the entity
mentions in the sentence.

4.2.1 Unsuccessful classifiers
In Table 3.2, the F-score for some of the relation
types has been recorded as not available(“NA”)
as our classifiers failed to predict any relations.

Studying the confusion matrix at the classifier
level confirms that the classifier did not have
enough evidence to detect a relation in many cases.
Also, for most of these unsuccessful relation types
we observed that the primary class type is under-
represented in their training set. For example, the
training sets for the classifier for “Exists At Stage”
has 3X more examples of type “Regulates Devel-
opment Phase” than examples of type “Exists At
Stage”. Better ways of handling class imbalance
may improve performance.

5 Conclusion

SeeDev-Binary event extraction was shown to
be an important but challenging problem in the
BioNLP-Shared Task 2016. This task is also un-
usual as it calls for the extraction of multiple re-
lation types amongst multiple entity types, often
cooccurring in a single sentence. In this paper,
we describe our system, which was ranked second
with an F1 score of 0.364 in the official results
of the task. Our solution was based on a series
of supervised classifiers and a rich feature set that
contributes to effective relation extraction.
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Abstract

This paper describes our system to ex-
tract binary regulatory relations from text,
used to participate in the SeeDev task of
BioNLP-ST 2016. Our system was based
on machine learning, using support vector
machines with a shallow linguistic kernel
to identify each type of relation. Addition-
ally, we employed a distant supervised ap-
proach to increase the size of the training
data. Our submission obtained the third
best precision of the SeeDev-binary task.
Although the distant supervised approach
did not significantly improve the results,
we expect that by exploring other tech-
niques to use unlabeled data should lead
to better results.

1 Introduction

The SeeDev task of BioNLP-ST 2016 consisted
in extracting relations between biomedical named
entities on a set of texts about Arabidopsis
thaliana(Chaix et al., 2016). These texts were
manually annotated with entities and relations rel-
evant to seed storage and reserve accumulation.
Furthermore, the type of entities that could have
a specific role on each type of relation was speci-
fied by the organization. There were two subtasks:
the first task, binary relation extraction (SeeDev-
binary), considered only relations between two ar-
guments; the second, full event extraction, con-
sidered relations that could be composed by two
to eight arguments. For both tasks, the evaluation
criteria used consisted in comparing the type and
arguments of each predicted relation to the gold
standard. A total of 7 teams participated on this
task. The best F-measure achieved was of 0.432,

∗Corresponding author: alamurias@lasige.di.fc.ul.pt

which is slightly lower than the best scores ob-
tained for the comparable task on the 2013 edition
of BioNLP-ST (Cancer Genetics task (Pyysalo et
al., 2015): 0.554; Gene Regulation Network task
(Bossy et al., 2015): 0.45; GENIA task (Kim et
al., 2015): 0.489)

Our team has developed a system for the
identification of chemical entities and interac-
tions, based on Conditional Random Fields, ker-
nel methods and domain knowledge. We have also
adapted this system to other types of entities such
as temporal expressions and clinical events. The
SeeDev-binary subtask provided us with an oppor-
tunity to test our system on a new domain, which
contains more types of entities and relations than
the domains we had previously tested on.

We adapted the relation extraction module of
our system to the types of relations considered by
the SeeDev-binary subtask. For each type of rela-
tion, we trained a classifier with the shallow lin-
guistic kernel. We used every sentence containing
at least two entities of the types accepted by that
relation type. Since there was no ontology readily
available for this domain, we were not able to inte-
grate domain knowledge. Alternatively, we exper-
imented a distant supervision approach by using a
large number of documents to find sentences con-
taining pairs that were already present on the train-
ing corpus. Our system is available at https:
//github.com/AndreLamurias/IBEnt

The following sections describe the main meth-
ods used by our system (Section 2), the results
obtained with our submission and post-challenge
improvements (Section 3), and a discussion about
these results (Section 4).

2 Methods

This section describes the methods used by our
system. The pre-processing and relation extrac-
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tion steps were already part of our system, imple-
mented for other biomedical domains. For this
task, we tested a basic distant supervision ap-
proach.

2.1 Pre-processing
The first step of our system consisted in pre-
processing the input text using the Genia Sen-
tence Splitter (Sætre et al., 2007) and the Stan-
ford CoreNLP pipeline (Toutanova and Manning,
2000). The latter tokenizes the text into word
tokens and extracts the corresponding lemmas
and part-of-speech, and named entity tags (proper
noun, numerical and temporal entities). We im-
plemented additional tokenization rules to sepa-
rate words linked by dashes, dots and slashes be-
cause biomedical entities may be part of expres-
sions containing these characters.

2.2 Relation extraction
Each of the 22 types of relations has two ar-
guments, and each argument is restricted to a
set of entity types specific to each relation type.
These restrictions were established by the task
organizers. The sentences that satisfied the en-
tity type requirements were considered to train
and test a classifier of that relation type. The to-
kens that comprise the relation arguments were
replaced by a generic string in order to re-
duce the variability of the text. Furthermore,
for the types “Has Sequence Identical To” and
“Is Functionally Equivalent To”, we considered
only pairs with the same entity type.

The machine learning algorithm used to train
the classifiers was a variation of Support Vector
Machines, with the shallow linguistic kernel, as
implemented by jSRE (Giuliano et al., 2006). Ker-
nel methods rely on a kernel function which com-
putes the inner product between every instance
instead of a specific feature map. This kernel
function in particular considers an instance as the
sequence of tokens, lemmas, part-of-speech and
named entities. The tokens that refer to each ar-
gument are identified, while the label of each in-
stance was 0 if the pair was not a relation, or 1 if
it was a relation. Each pair of entities that satis-
fied the argument type restrictions was considered
a candidate pair. This kernel has been applied to
biomedical text, for the extraction of relations be-
tween proteins (Tikk et al., 2010) and chemical
compounds (Segura-Bedmar et al., 2011), obtain-
ing positive results. The shallow linguistic kernel

is a composite sequence kernel which uses both a
local and global context window, which we set at
3 and 4, respectively. These are the only variable
parameters of this kernel.

2.3 Distant supervision

The objective of this experiment was to find rela-
tions on PubMed abstracts which could increase
the size of the training data, and therefore, im-
prove the performance of the system. First, we
retrieved the 10,000 most recent abstracts with
the MeSH term “arabidopsis” from PubMed. Us-
ing the entity annotations from the gold standard,
we trained Condition Random Fields (Lafferty et
al., 2001) classifiers to recognize each type of en-
tity on the abstracts. We have previously applied
this approach to chemical entities, obtaining a F-
measure of 0.847 (Lamurias et al., 2015b). We
generated lists of the keywords most used in sen-
tences where a relation is described, for each type
of relations. To prevent common words from ap-
pearing on those lists, we also generated a list of
the most used words on the corpus, and removed
those words from each list. Our assumption was
that if at least two keywords in the list were men-
tioned in the sentence, then the relation would be
true. Since this approach produced mostly nega-
tive instances, we excluded some of those to main-
tain the same positive/negative ratio as the train-
ing data. This approach was based on the work of
Thomas et al. (2011), where they used various fil-
ters to reduce the number of false positives. In this
case, we used only instances of the 10 relations
types that were least represented in the gold stan-
dard. Table 2.3 provides a comparison between
the data set obtained with this technique (DS set)
and the training set.

3 Results

To classify the test set, we trained with the docu-
ments of the gold standard. We present the results
of our official submission, as well as the results ob-
tained with the addition of distant supervised sen-
tences (Table 3). More detailed results, as well as
the results obtained by the other teams, are avail-
able at the task website 1. After submitting the
results, we found that, by mistake, we had trained
the classifiers only with the training set. There-
fore, we also present the results obtained with the

1http://2016.bionlp-st.org/tasks/
seedev/seedev-evaluation
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Pairs Ratio
Pair type DS set Train DS set Train
Binds To 4624 66 0.0449 0.0134

Composes Primary Structure 56 32 0.0003 0.0769
Composes Protein Complex 16 15 0.0042 0.1172

Exists At Stage 400 17 0.0074 0.0499
Is Involved In Process 136 32 0.0127 0.0371
Occurs In Genotype 1312 34 0.0194 0.0804

Occurs During 112 18 0.0032 0.0625
Regulates Accumulation 5632 65 0.0112 0.0114

Regulates Molecule Activity 1664 16 0.0147 0.0015
Regulates Tissue Development 704 18 0.0788 0.0060

Table 1: Number of positive pair (Pairs) and positive/negative ratio (Ratio) for each of the relation types
considered for the distant supervision approach. DS set refers to the data set generated using distant
supervision while Train refers to the training set.

classifiers trained with both training and develop-
ment sets.

Training Recall Precision F1
Baseline 0.895 0.029 0.056
Train 0.256 0.379 0.306
Train + Dev 0.304 0.341 0.322
Train + Dev + DS 0.366 0.387 0.377

Table 2: SeeDev-binary test set results. Train
refers to the training the classifiers with the train-
ing set, Dev to the development set and DS to the
distant supervision set generated using distant su-
pervision.

Table 3 also contains a baseline that we used
during development of the system, to compare the
performance of our system to a simple approach.
In this case, the simple approach consisted in clas-
sifying every pair that satisfied the entity type re-
quirements as a true relation. As expected, this
baseline obtained high recall and low precision
and F-measure. The reason why the recall is not
1 is because we only considered pairs of entities
from the same sentence. This way, the recall of the
baseline (0.895) is the maximum recall we could
have obtained with our approach. We observed
that with our system, the results obtained were bet-
ter both in terms of precision and F-measure.

The main difference between training with just
the training set and using both training and devel-
opment was in the recall obtained. By increasing
the number of training instances, the classifier was
able to correctly identify more relations. Although

it also decreased the precision, the difference in
terms of F-measure was positive.

Using the distant supervision approach, we
were able to use 6947 sentences as an additional
data set (DS set). This approach improved the F-
measure by 0.055, due to an increase in recall and
precision.

4 Discussion

This task was a challenge for our system since
it required the identification of 22 types of rela-
tions, while previously the system was tested only
on one specific type of relation While we could
optimize the system for one type of relation with
domain knowledge, in this case we had to use a
generic approach to various types.

Comparing with the other participants, our F-
measure was the 5th best of the 7 participating
teams, 0.126 points below the best. In terms of
precision, our team was the 3rd best, 0.154 below
the best. Our submitted results had higher preci-
sion because we used only the gold standard anno-
tations to train the classifiers. This way, the output
of the classifiers tended to be closer to the training
corpora.

4.1 Error Analysis

In order to fairly compare our results with the
other teams, we discuss only the errors of our of-
ficial submission. There was a wide range of F-
measure values within the different types of re-
lations. The types “Has Sequence Identical To”
and “Is Functionally Equivalent To” had a F-
measure of 0.708 and 0.646, respectively. These
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types obtain much higher scores possibly be-
cause the entity types of the two arguments had
to be the same, reducing the number of candi-
date pairs. The most difficult relations were the
ones less represented in the training data, such as
“Is Involved In Process” and “Is Linked To”. In
the case of the first type, no team was able to iden-
tify one of the 12 relation instances present in the
test corpus, while with the second type, only one
team was able to identify some relations. These re-
sults show that the performance of the techniques
used for this task are dependent on the annotations
of the training data.

Regarding the contribution of the distant super-
vision approach, we observed that the system pre-
dicted fewer relations of the less frequent relation
types. Since we labeled each pair of entities auto-
matically, it is possible that some relations were
mislabeled. However, since we maintained the
same positive/negative ratio as the training set (Ta-
ble 2.3), this approach provided mostly negative
instances.

4.2 Future Work

We intend to explore other techniques to use un-
labeled data for distant supervision. A technique
that has improved results on other domains con-
sists of using a knowledge base to restrict which
entities could constitute a relation (Bunescu and
Mooney, 2007). By combining the knowledge
base with the keyword based filter, we should ob-
tain a set of instances with a high probability of be-
ing correctly labeled. These instances should then
improve the quality of the classifiers by providing
other ways to express a relation, and reduce the
number of incorrect annotations.

Another technique to explore consists in ap-
plying semantic similarity measures (Couto and
Pinto, 2013) to check if two entities are seman-
tically related and therefore could constitute a re-
lation (Lamurias et al., 2015a). Additionally, we
intend to apply our distant supervision approach
to improve the results of our biomedical ques-
tion&answering system (WS4A) that participated
in the BioASQ 2016 challenge(Rodrigues et al.,
2016).
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Abstract 

We participate in the two event extraction 

tasks of BioNLP 2016 Shared Task: bina-

ry relation extraction of SeeDev task and 

localization relations extraction of Bacte-

ria Biotope task. Convolutional neural 

network (CNN) is employed to model the 

sentences by convolution and max-

pooling operation from raw input with 

word embedding. Then, full connected 

neural network is used to learn senior and 

significant features automatically. The 

proposed model mainly contains two 

modules: distributive semantic representa-

tion building, such as word embedding, 

POS embedding, distance embedding and 

entity type embedding, and CNN model 

training. The results with F-score of 0.370 

and 0.478 in our participant tasks, which 

were evaluated on the test data set, show 

that our proposed method  contributes to 

binary relation extraction effectively and  

can reduce the impact of artificial feature 

engineering through automatically feature 

learning. 

1 Introduction 

Information extraction devotes to finding useful 

data and hidden knowledge for researchers from 

amounts of texts.  With the demands of rapidly 

and accurately locating key issues about life and 

biology increasing, bio-IE appears timely and 

has attracted more and more researchers to ad-

dress this question (Krallinger et al., 2005; 

Zweigenbaum et al., 2007). Much progress has 

been made in named entity identification, pro-

tein-protein relations classification (Blaschke et 

al., 1999) and drug-drug interaction extraction 

(Rodrigues et al., 2008). Furthermore, fine-

grained information extraction in biology, in par-

ticular event extraction has entered the spotlight 

of people and, appeared many meaningful and 

challenge tasks for event extraction, which can 

gather the community-wide efforts and contrib-

ute to the development of biology information 

extraction (Kim et al., 2009; Kim et al., 2011; 

Nédellec et al., 2013). 

The BioNLP Shared Task series (Kim et al., 

2009; Kim et al., 2011; Nédellec et al., 2013) is a 

representative for biomolecular event extraction, 

which has been held four times including this 

year. The topics of the series range from fine-

grained extraction, generalization to knowledge 

base construction. In addition, the scope that this 

task involved has become much broader at each 

edition. For example, BioNLP-ST 2013 

(Nédellec et al., 2013) covers many new hot top-

ics compared to the previous editions, such as 

Cancer Genetics, Pathway Curation and Gene 

Regulation Network in Bacteria.  

BioNLP-ST 2016 further broadens the 

scope of the text-mining application domains in 

biology by introducing a new issue on seed de-

velopment, named the issue as the SeeDev task. 

The development of the seed is a critical issue in 

agriculture and presents an opportunity for the 

community to contribute the common efforts in 

bio-IE. The other task, Bacteria Biotope of the 

BioNLP-St’13 expands on the previous editions 

by replacing the Web Pages with scientist papers 

abstracts to organize the corpus, which is much 

closer to the actual needs of detailed and scien-

tific information for biologists. The third task 

focuses on the Genia corpus as previous edition, 

but gives more emphasis in the contribution from 

any aspect of knowledge extraction, which is an 

open question to participants. 

We focus on the two events extraction sub-

tasks of BioNLP 2016 Shared Task: binary rela-
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tion extraction of SeeDev task and localization 

relations extraction of Bacteria Biotope task. 

Both tasks broaden the scope of fine-grained in-

formation extraction in biology, and contribute to 

the development of the actual application in text 

mining. 

The SeeDev task has not been introduced in 

the previous BioNLP-ST and aims at exploring 

the knowledge of the molecular network underly-

ing the regulation of seed development. The 

SeeDev task is similar to the GRN (Gene Regu-

lation Network in Bacteria) task in BioNLP’13, 

aiming at extracting a regulation network that 

links and integrates a variety of molecular 

(Bossy et al., 2013) or processes interactions be-

tween entities. Therefore, the superior systems 

from the GRN can give us some useful heuristics. 

Five systems participated in GRN and all sys-

tems applied machine learning algorithms with 

many different resources of information and pre-

processing in BioNLP’13. Lots of features, such 

as linguistic features, semantic and syntactic in-

formation between two entities, were added into 

these systems. However, they implemented dif-

ferent ML algorithms, including SVM, CRF and 

KNN (Bossy et al., 2013). For example, Provoost 

(2013) employed a basic Support Vector Ma-

chine framework and focused more on the do-

main of feature definition and exploration. They 

achieved an F-score of 0.313, standing on second 

place in GRN task of BioNLP’13. IRISA system 

(Claveau, 2013) emphasized the similarity be-

tween the known instances and the closest 

known examples based on K-Nearest Neighbor 

algorithm. 

Bacteria Biotope task in the BioNLP-ST 

2016, our second participation, was the third edi-

tion that focuses on extracting localization rela-

tions between bacteria and their habitats from 

scientific papers abstracts. Many systems had 

contributed their efforts to the task in the pre-

cious editions. Boun system (Karadeniz et al., 

2013) used the shallow linguistic knowledge of 

the corpus to implement the prediction based on 

previously defined syntactic rules and discourse-

based rules, coming the F-score of 0.27. The Al-

vis system (Ratkovic et al., 2011) also employed 

hand-designed patterns to detect the relations 

between bacteria and habitat with the linguistic 

and lexical knowledge. UTurku and JAIST (Ka-

radeniz et al., 2013) systems in BioNLP’11 ex-

plored different approaches from the above men-

tioned and regarded the binary event extraction 

as a classification problem, thus applying ma-

chine learning methods. In BioNLP’13, TEES-

2.1 and IRISA (Bossy et al., 2013) also em-

ployed the same idea to this question, and 

achieved the state-of-the-art results with F-score 

of 0.42 and 0.40, respectively, which were much 

higher than the two hand-designed rules methods: 

LIMSI and Boun. 

Most of systems delivered their good ideas 

and achieved the better results for these tasks in 

BioNLP-ST, which have positively promoted the 

development of biology information extraction. 

So, it is an opportunity for researchers to apply 

various approaches and new ideas to these tasks. 

Over recent years, the landscape of Convolution-

al Neural Network (CNN) has been obviously 

prosperous and pushed forward through the ex-

pansion of actual application of various fields. 

The introduction of convolution layers and pool-

ing layers in CNN has helped to improve the per-

formance of features automatically learnt in net-

works. Therefore, in our work, we explore the 

CNN to learn features automatically for the two 

binary relations extraction tasks, significantly 

differenced from previous systems in BioNLP-

ST.  

2 Method 

The tasks of SeeDev-binary and BB-event both 

can be treated as binary relation extraction which 

specifics whether there is interaction between 

two entities. In relation extraction, the semantic 

and syntactic information for sentence act as a 

significant role. Traditional method usually need 

to design and extract complex features from sen-

tence  based on domain-specific knowledge, such 

as tree kernel and graph kernel, to model the sen-

tences. As a result, this will lead to much lower 

ability of generation for corpus dependent. Con-

sequently, instead of complicate hand-designed 

feature engineering, we employ convolutional 

neural network, also called CNN, to model the 

sentences by convolution and max-pooling oper-

ation from raw input with word embedding and 

full connected neural network to learn senior fea-

tures automatically. Furthermore, we employ 

POS embedding to enrich the semantic infor-

mation of words, distance embedding to capture 

the information of relative distance between the 

entities and entity type embedding as the sup-

plement features of the sentence. All the feature 

embedding is combined to build final distributive 

semantic representation which is fed to convolu-

tional neural network. 

As described in Fig.1, the proposed model 

mainly contains two modules: distributive se-
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mantic representation building, such as word 

embedding, POS embedding, distance embed-

ding and entity type embedding, and CNN model 

training. In the next parts, we will introduce 

more details.  

2.1 Build Distributive Semantic Representa-

tion 

Traditional one-hot representation, which is em-

ployed by mostly machine learning methods, can 

vectorize the text and plays an important role. 

However, it can result in the problems of seman-

tic gap and dimension disaster which restrict its 

application. Consequently, in our proposed 

method, we employ distributive semantic repre-

sentation, proposed by Hinton (1986) at first, as 

the feature representation of the model. And then, 

we exploit the advantage of convolutional neural 

network at modeling the sentences to learn sen-

tence-level representation from raw input. The 

distributive semantic representation is built as 

follows. For simply definition, we assume S =
𝐸1𝑊1𝑊2𝑊3 …𝑊𝑛𝐸2  as the word sequence be-

tween two entities in one sentence, where 𝐸1,𝐸2 

stand for the entities and 𝑊1…𝑊𝑛 stand for the 

words between two entities. 
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Figure 1: The model of convolutional neural network with distributive vector 

 

2.1.1  Word Embedding 

Instead of traditional one-hot representation, we 

utilize the distributive semantic representation of 

words for solving the problem of dimension dis-

aster and semantic gap. Firstly, we employ 

word2vec tool, which can effectively learn dis-

tributive representation of words from massive 

and unlabeled data, to train word embedding 

from massive available Pubmed abstracts. The 

embedding with low dimension and realistic val-

ue contains rich semantic information and can be 

treated as feature representation of words instead 

of one-hot.  

Inspired by language model, we employ the 

contexts of two entities to predict the relation 

type. In our experiments, the contexts are ex-

pressed by the words between two entities in one 

sentence. Then, the word sequence is trans-

formed into word embedding matrix by looking 

up the word embedding table. The word embed-

ding matrix can be treated as local feature of the 

sentence and fed to CNN model to learn global 

feature which can contribute to the relation iden-

tification. The word embedding matrix is repre-

sented as follows: 

𝐿𝑇𝑊(𝑆) = [〈𝑊〉𝐸1
, 〈𝑊〉𝑊1

, 〈𝑊〉𝑊2
, … , 〈𝑊〉𝑊𝑛

, 〈𝑊〉𝐸2
]               

Where 𝑊ϵℝ|𝒟|×𝑑𝑖𝑚 (|𝒟| is the size of dictionary 

and 𝑑𝑖𝑚 is the dimension of word embedding) is 

the word embedding table trained by word2vec 

with Pubmed abstracts and fine-tuned while 

training.  

2.1.2  Entity Type Embedding  

Through analyzing the dataset, we observe that 

different entities with different types have differ-

ent probability to interact with each other if the 

entity type satisfies the relation constraints. Con-

sequently, entity type of two entities is an import 

factor for predicting the relation type. In our 

model, entity types are treated as the extra fea-

tures of the relation and the supplement of word 
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sequence. 〈𝑊𝑇〉𝑡𝑦𝑝𝑒(𝐸1), 〈𝑊
𝑇〉𝑡𝑦𝑝𝑒(𝐸2)  are added 

as the extra features of the relation: 

𝐿𝑇𝑊,𝑊𝑇(𝑆) = 

[〈𝑊〉𝐸1
, 〈𝑊〉𝑊1

, … , , 〈𝑊〉𝐸2
, 〈𝑊𝑇〉𝑡𝑦𝑝𝑒(𝐸1), 〈𝑊

𝑇〉𝑡𝑦𝑝𝑒(𝐸2)] 

Where 𝑊𝑇ϵℝ|𝒟𝑇|×𝑑𝑖𝑚 is type embedding which 

is randomly initialized by random sampling from 

the uniform distribution ([-0.25, 0.25]). 𝑡𝑦𝑝𝑒(∙) 

stands for the entity type. 𝒟𝑇 is the dictionary of 

entity types. 

2.1.3  POS Embedding 

Word semantics usually have several aspects 

containing similarity, POS (part-of-speech) and 

so on. For enriching the semantic representation 

of each word, POS embedding is introduced as 

the supplement of word embedding:  

𝐿𝑇𝑊𝑝(𝑆) = 

[〈𝑊𝑝〉p(𝐸1), 〈𝑊
𝑝〉p(𝑊1), … , 〈𝑊𝑝〉p(𝑊𝑛), 〈𝑊

𝑝〉p(𝐸2), 𝕆, 𝕆] 

We denote 𝑊𝑝ϵℝ|𝒟𝑝|×𝑑𝑖𝑚𝑝  as the POS embed-

ding which is randomly initialized as well as type 

embedding, where 𝒟𝑝 is the size of POS diction-

ary and, 𝑑𝑖𝑚𝑝, a hyper-parameter, is the dimen-

sion of POS embedding. We set 𝑑𝑖𝑚𝑝 = 5 

through trying different configuration. Zero vec-

tor (𝕆) is used to pad the sentence.  

2.1.4  Distance Embedding 

In relation classification tasks, distance infor-

mation usually plays an important role. Distance 

can capture the relative position between two 

entities. As shown in followed formulas, 

𝐿𝑇𝑊𝑑(𝑆)1  stands for the relative distance be-

tween words and the first entity, and 𝐿𝑇𝑊𝑑(𝑆)2 

stands for the relative distance between words 

and the second entity. 

𝐿𝑇𝑊𝑑(𝑆)1 = 

[〈𝑊𝑑〉𝑑(𝐸1,𝐸1), … , 〈𝑊𝑑〉d(𝑊𝑛,𝐸1), 〈𝑊
𝑑〉d(𝐸2,𝐸1), 𝕆, 𝕆] 

𝐿𝑇𝑊𝑑(𝑆)2 = 

[〈𝑊𝑑〉𝑑(𝐸1,𝐸2), … , 〈𝑊𝑑〉d(𝑊𝑛,𝐸2), 〈𝑊
𝑑〉d(𝐸2,𝐸2), 𝕆, 𝕆] 

Where 𝑊𝑑ϵℝ|𝒟𝑑|×𝑑𝑖𝑚𝑑  stands for the distance 

embedding and |𝒟𝑑| is the number of different 

distances.  The embedding is randomly initial-

ized and fine-tuned while training. We set 

𝑑𝑖𝑚𝑑 = 5 through trying different confiuration. 

Zero vector (𝕆) is also used to pad the sentence. 

As shown in followed formula, the final dis-

tributive semantic representation is acquired by 

joining the word embedding, type embedding, 

POS embedding and distance embedding. 

φ(𝑆) =

[
 
 
 
 
𝐿𝑇𝑊,𝑊𝑇(𝑆)

𝐿𝑇𝑊𝑝(𝑆)

𝐿𝑇𝑊𝑑(𝑆)1
𝐿𝑇𝑊𝑑(𝑆)2 ]

 
 
 
 

 

2.2 Model Training and Parameters Tuning 

After building the distributive semantic represen-

tation of relation, we employ convolution and 

max-pooling to learn the global feature represen-

tation from raw input. The detailed computation 

procedure is described as follows. 

〈𝑓〉𝑡 = 𝑓(𝑊 ∙ φ(𝑆) + 𝑏) 

〈ℎ〉 = max
𝑡

〈𝑓〉𝑡 

Where W is the convolution filter, it extracts lo-

cal features from given window of word se-

quence. 〈ℎ〉 can be treated as the global feature 

representation learned from raw distributive rep-

resentation φ(𝑆) and be fed to the full connec-

tion layer to learn hidden and senior features.  

As we all know, convolutional neural net-

work is a model with vast computation cost. 

Consequently, we implement the CNN model 

with theano (Bergstra et al., 2010; Bastien et al., 

2012) and run in GPU kernels for accelerating 

the training procedure. As a result, it takes about 

half hour to train a CNN model. Meanwhile, we 

make some modifications in our model for 

achieving more significant experiment results. In 

the convolutional layer, we make use of multiple 

convolution kernels with different window size 

for capturing sentence features from different 

views. In the full connection layer, we modified 

the network with dropout (Srivastava et al., 2014) 

which is a much simple and efficient method to 

prevent the problem of overfitting. The dropout 

network can prevent the co-adaption between the 

nodes through randomly dropping some nodes or 

make them not work. Learning rate is the most 

important hyper-parameter in deep learning. 

Consequently, we employ Adadelta (Zeiler, 2012) 

an adaptive learning rate method, to automatical-

ly adapt the learning rate instead of configuring it 

manually. Finally, we empirically search for the 

reasonable combination of all the hyper-

parameters and tune in development dataset. The 
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optimal parameters of CNN model are described 

in Table 1. 

hyper-parameter value 

Word embedding 50 

filter 1800 

window [3,5,7] 

layer 3 

dropout 0.3 

batch 128 

Table 1: The parameters of CNN model 

3 Results and Discussions 

This section presents our results on the SeeDev-

binary and BB-event tasks respectively. 

3.1 The results of SeeDev-binary task 

The SeeDev-binary task datasets contains three 

parts, namely the training set, development set 

and test set respectively, which are totally 87 

segments from 20 full articles on seed develop-

ment of Arabidopsis thaliana. The task defines 

17 different types of entities and 22 different 

types of binary relations. Table 2 shows the de-

tailed distribution of data. 

 # Train Dev Test 

Segments 87 39 19 29 

Entities 7082 3259 1607 2216 

Binary 

relations 

3575 1628 819 1128 

Table 2: Detailed statistics of SeeDev-binary task 

corpus 

We aim at extracting the relation between 

the two target entities and reducing the participa-

tion of hand-designed feature engineering by us-

ing our proposed model. Table 3 lists the results 

of our method on the development and test da-

tasets for SeeDev-binary task. The first two lines 

are the systems with the two best F-score in offi-

cial results in BioNLP-ST 2016. 

Our method achieved the F-score of 0.368 

and 0.370 on the development set and test set, 

respectively. Compared to the official results 

from different systems, we stood the similar 

place with the second best system UniMelb 

which achieved the F-score of 0.364. It demon-

strates that our proposed method has a good per-

formance on binary relations extraction. 

In previous methods to binary relations clas-

sification, more systems prefer to rules-based or 

feature engineering methods. However, we em-

ploy a different idea, which utilizes the ad-

vantages of distributive semantic representation 

and the CNN model. From the detailed results in 

Table 4, we can find that the proposed model is 

of benefit to SeeDev binary task. Moreover, the 

better recall than precision is achieved on the test 

datasets. In Table 4, four relations, such as “Oc-

curs_In_Genotype”, and “Regu-

lates_Molecule_Activity”, are not identified by 

the system, which may be a reason that the size 

of these relations in corpus is very small.  

Methods Recall Precision F-score 

LitWay 0.448 0.417 0.432 

UniMelb 0.386 0.345 0.364 

Our method 

(on dev set) 

0.396 0.344 0.368 

Our method 

(on test set) 

0.417 0.333 0.370 

Table 3: Results of our method on the develop-

ment and test data sets for SeeDev-binary task
 

 Binary relation type Dev data set Test data set 

R/P/F-score R/P/F-score 

 

When 

and 

Where 

Exists_In_Genotype 0.506/0.273/0.355 0.520/0.361/0.426 

Occurs_In_Genotype 0.000/0.000/0.000 0.000/0.000/0.000 

Exists_At_Stage 0.125/0.100/0.111 0.100/0.045/0.063 

Occurs_During 0.200/0.333/0.250 0.083/0.143/0.105 

Is_Localized_In 0.426/0.253/0.318 0.290/0.231/0.257 

 

Function 

Is_Involved_In_Process 0.000/0.000/0.000 0.000/0.000/0.000 

Transcribes_Or_Translates_To 0.154/0.286/0.200 0.313/0.208/0.250 

Is_Functionally_Equivalent_To 0.575/0.821/0.677 0.636/0.745/0.686 

 

 

Regulation 

Regulates_Accumulation 0.103/0.231/0.143 0.125/0.100/0.111 

Regulates_Development_Phase 0.119/0.206/0.151 0.221/0.218/0.219 

Regulates_Expression 0.451/0.485/0.467 0.370/0.307/0.336 

Regulates_Molecule_Activity 0.000/0.000/0.000 0.000/0.000/0.000 

Regulates_Process 0.693/0.363/0.476 0.613/0.357/0.451 
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Regulates_Tissue_Development 0.000/0.000/0.000 0.000/0.000/0.000 

 
Composition 

and 

Membership 

Composes_Primary_Structure 0.200/0.500/0.286 0.563/0.750/0.643 

Composes_Protein_Complex 0.000/0.000/0.000 0.667/0.067/0.121 

Is_Protein_Domain_Of 0.172/0.278/0.213 0.129/0.400/0.195 

Is_Member_Of_Family 0.364/0.308/0.333 0.547/0.338/0.418 

Has_Sequence_Identical_To 0.613/0.905/0.731 0.730/0.852/0.786 

Interaction Interacts_With 0.281/0.500/0.360 0.019/0.500/0.036 

Binds_To 0.208/0.227/0.217 0.188/0.240/0.211 

Other Is_Linked_To 0.087/0.133/0.105 0.350/0.350/0.350 

 =[ALL RELATIONS]= 0.396/0.344/0.368 0.417/0.333/0.370 

Table 4: Detailed results of our method on the development and test data sets for SeeDev-binary task 

3.2 The results of BB-event task 

For localization relations extraction of Bacteria 

Biotope task, we also use our proposed system to 

evaluate the performance. Table 5 shows the re-

sults on the development and test datasets. The 

F-score of 0.478 on test dataset suggest that the 

proposed method has positive effects on identify-

ing the binary relation. However, the recall on 

the test dataset is lower than the precision, which 

may be overfitting on training data. The F-score 

of 0.499 on the development data set achieve 

better performance than that on test data set.  

The prediction of location relations remains 

many challenges. First, high diversity of bacteria 

and locations increases the difficult of the correct 

pairing. Second, cross-sentences relations caused 

by coreferences usually are ignored by most sys-

tem due to complexity and difficulties. In our 

system, we only considered the relations in one 

sentence, which many relations in cross sentenc-

es were ignored and might cause some reduce on 

the performance.  

Data set Recall Precision F-score 

Dev 0.561 0.449 0.499 

Test 0.397 0.600 0.478 

Table 5: Results of our method on the develop-

ment and test data sets for BB-event task 

From above analysis, the cross-sentences re-

lations extraction is a big challenge, due to much 

coreferences relations and increasing negative 

examples. We conduct another experiment to 

extract relations at the documental level, but not 

considering the coreferences resolution. Table 6 

shows the evaluated results of our method on the 

development set and test sets at the documental 

level and sentence level.  

At the documental level, the F-score has an 

about 2% increase on development dataset, while 

the F-score increases by 6% on test dataset. It 

may be because the distribution of relations on 

two datasets has large different, which there are 

more cross-sentence relations on test dataset than 

development dataset. Furthermore, Table 7 

shows the statistics of positive and negative ex-

amples on training data and development data at 

the two levels. (It is not nearly possible to have 

relations between two candidate entities if their 

distance is too large. Therefore, we remove the 

candidate examples if the distance is larger than 

60.) We can find that, the ratio between positive 

and negative examples at the documental level is 

significantly higher than that at the sentence lev-

el. The imbalance between positive and negative 

examples can significantly influence the perfor-

mance of models. Therefore, we should devote 

more techniques and good designs to cross-

sentences relation extraction. 

Models Recall Precision F-score 

CNN-Doc 

(on dev set) 

0.552 0.496 0.523 

CNN-Sen 

(on dev set) 

0.561 0.449 0.499 

CNN-Doc 

(on test set) 

0.563 0.515 0.538 

CNN-Sen 

(on test set) 

0.397 0.600 0.478 

Table 6: Results of our method on the develop-

ment and test data sets for BB-event task 

Models #Positive 

examples 

#Negative 

examples 

Ratio 

Doc-level 

(on train set) 

16%(298) 84%(1525) 5.1 

Sen-level 

(on train set) 

45%(227) 55%(275) 1.2 

Doc-level 

(on dev set) 

13%(210) 87%(1462) 6.9 

Sen-level 

(on dev set) 

32%(165) 68%(348) 2.1 
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Table 7: Statistics of positive and negative ex-

amples on training data and development data at 

the documental and sentence levels for BB-event 

task (ratio = #negative examples / #positive ex-

amples). 

We conduct another experiment on SVM1 to 

analysis the superiority of CNN model compared 

with SVM model. Each raw input into the SVM 

and CNN models is same, which contains words 

between two candidate entities, distance between 

two candidate entities, and the types of two can-

didate entities. Then, the raw input for SVM is 

represented traditional one-hot features, and the 

raw input for CNN is represented by distributed 

representation. In Table 8, we compared the two 

models. F-score of using CNN model is higher 

than that using SVM model on two data sets, 

which shows that the effectiveness of using CNN 

model and distributed representation. 

Models Recall Precision F-score 

SVM 

(on dev set) 

0.459 0.490 0.474 

CNN 

(on dev set) 

0.561 0.449 0.499 

SVM 

(on test set) 

0.336 0.594 0.429 

CNN 

(on test set) 

0.397 0.600 0.478 

Table 8: Results of using SVM and CNN models 

on the development and test data sets for BB-

event task 

4 Conclusions 

Instead of complicate hand-designed feature en-

gineering, we employed the distributed semantic 

representation and CNN model to extract binary 

relations between entities. SeeDev-binary task 

and BB-event task are regarded as classification 

problems. And then, Word embedding, POS em-

bedding, distance embedding and entity type 

embedding, which contain rich semantic 

knowledge, are built to be fed into Convolutional 

neural network and to learn the inner relationship 

between candidate entities. The results with F-

score of 0.370 and 0.478 in our participant tasks, 

which were evaluated on the test data set with 

online evaluation2 show that our proposed meth-

od has been contributed to binary relation extrac-

tion.  

                                                 
1 http://www.cs.cornell.edu/People/tj/svm_light/ 
2 http://2016.bionlp-st.org/tasks/seedev/seedev-evaluation 

Only using embedding of original words fed 

into CNN, may be not sufficient for understand-

ing the hidden information among words. There-

fore, in our future work, we will still concentrate 

more on the building of rich distributed semantic 

embedding and construct a better representation 

with human knowledge for CNN model. Fur-

thermore, we will also explore various neural 

networks with multi-layer architectures, such as 

RNN, to address binary relation or event extrac-

tion. 
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Abstract 

We participate in the BB3 and GE4 tasks of BioNLP-

ST 2016. In the BB3 task, we adopt word 

representation methods to improve the feature-based 

Biomedical Event Extraction System, and take the 4th 

place. In the GE4 task, based on the Uturku system, a 

two-stage method is proposed for trigger detection, 

which divides trigger detection into recognition stage 

and classification stage, using different features in 

each stage. In the edge detection, we adopt Passive-

aggressive (PA) online algorithm, then we constitute 

events by post-processing of TEES. 

1 Method 

In the BB3 task, we improve the performance of 

the biomedical event extraction by word repre-

sentation methods, which include distributed 

word representation, and Brown clusters repre-

sentation. The framework of the proposed system 

includes input data, preprocessing, feature extrac-

tion, learning & classification and output data. 

The system preprocesses the input data from 

Medline literature and BB'16, and then extracts 

the features including word representation feature, 

common feature and Brown clusters feature, 

based on SVM classifier to learn and classify. 

In the GE4 task, the system has three main 

components: trigger detection, edge detection and 

post-processing. During the trigger detection, we 

propose a two-stage method, which divides trig-

ger detection into recognition stage and classifi-

cation stage. During the recognition stage, we 

just discern the words which are trigger words, 

selecting the features that are more suitable for 

recognition; in the classification stage, we classi-

fy the triggers which are identified already, se-

lecting the features that are more helpful to clas-

sification. In the edge detection, a muti-class PA 

algorithm is used, finally the events are obtained 

by post-processing of TEES. 

 Precision Recall F-Score 

Baseline 61.61% 38.35% 47.27% 

Ours 59.91% 39.23% 47.42% 

Table 1: Performance comparison on the test set 

2 Experimental Results  

In the BB3 task, the system achieves an F-score 

of 56.38% on the development set, which is 4.38 

percentage points higher than the baseline. On the 

test set, it achieves an F-score of 47.4% on the 

BB3 event task, the result is shown as table 1. 

   In the GE4 task, the performance of our system 

is evaluated on the test dataset of the BioNLP’16 

with online evaluation. The results related to 

event extraction are listed on Table 2 and Table 3. 

Relations Recall Precision F-Score 

ThemeOf 0.51 0.50 0.51 

CauseOf 0.22 0.55 0.32 

Table 2: The result of relations 

Denotations Recall Precision F-score 

Gene-expression 0.85 0.88 0.87 

Binding 0.68 0.72 0.70 

Localization 0.51 0.84 0.63 

Phosphorylation 0.86 0.85 0.86 

Potein_catabolism 0.85 0.69 0.76 

ALL 0.83 0.92 0.87 

         Table 3: The result of denotations 

3 Conclusion  

In the BB3 task, our system applies distributed 

word representation and Brown clusters represen-

tation methods, and obtains better performance 

than baseline, achieving the 4th place. In the GE4 

task, we adopt a two-stage method for trigger de-

tection, which effectively avoids the situation that 

excessive negative samples are classified into 

positive samples, and the performance of the sys-

tem is improved. In addition, we select different 

features in each stage. 
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