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Abstract

Temporal relation extraction is important
for understanding the ordering of events
in narrative text. We describe a method
for increasing the number of high-quality
training instances available to a temporal
relation extraction task, with an adaptation
to different annotation styles in the clinical
domain by taking advantage of the Unified
Medical Language System (UMLS). This
method notably improves clinical tempo-
ral relation extraction, works beyond fea-
turizing or duplicating the same informa-
tion, can generalize between-argument sig-
nals in a more effective and robust fashion.
We also report a new state-of-the-art result,
which is a two point improvement over the
best Clinical TempEval 2016 system.

1 Introduction

Temporal relation extraction is important for under-
standing ordering of events from a narrative text.
Recent years have seen annotated corpora created
for temporal information extraction, from newspa-
per text (Pustejovsky et al., 2003; Verhagen et al.,
2007; Verhagen et al., 2010; UzZaman et al., 2013),
to clinical narratives (Savova et al., 2009; Sun et
al., 2013; Styler et al., 2014), all with the aim of de-
veloping systems for building event timelines from
textual descriptions of events. Such narrative time-
lines are important for information extraction tasks
such as question answering (Kahn et al., 1990),
clinical outcomes prediction (Schmidt et al., 2005;
Lin et al., 2014), and the identification of temporal
patterns (Zhou and Hripcsak, 2007) among many.

In a typical supervised approach to the temporal
relation extraction task, argument pairs consist of
pairs of events or temporal expressions. Corpora
differ in their syntactic annotation of such expres-

sions. For example, the THYME corpus, consisting
of oncology, pathology and radiology notes, anno-
tated only event headwords (Styler et al., 2014),
while the i2b2 corpus, consisting of discharge sum-
maries, annotated entire noun phrases as events
(Sun et al., 2013). As a result, it is necessary to
account for these differences when implementing a
generalizable relation extraction system.

However, the annotations of the temporal rela-
tions between the events remain unaffected by the
choice of headwords or phrases for the event an-
notation. For example, in a relation between the
temporal expression yesterday and the event severe
lower abdominal pain, if the argument had been
the head word pain it still would have been an in-
stance of the same temporal relation. Thus, we can
automatically create additional training examples
by varying the extent of headword expansion. For
example, the relation between yesterday and severe
lower abdominal pain can automatically generate
four valid relations of the same type where the sec-
ond arguments are pain, abdominal pain, and lower
abdominal pain.

In this paper, we describe an automatic method
that generates more temporal training instances by
semantically expanding gold medical events based
on a clinical ontology, the Unified Medical Lan-
guage System (UMLS) (Lindberg et al., 1993). It
bridges the gap between different syntactic anno-
tations of events in clinical corpora. We show that
this method is superior to representing the same
information as additional features, that it differs
from plain upsampling, and that the primary mech-
anism of improvement is in the better representa-
tion of between-argument features. Our method
can be viewed as a new form of data augmenta-
tion, akin to the generation of image variants for
vision recognition (Krizhevsky et al., 2012) or the
generation of word substitutions for information
extraction (Kolomiyets et al., 2011).
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Figure 1: Example expansion of the event “scan”

2 Method

First, the text was scanned for any medical concepts
from the UMLS Metathesaurus (http://www.
nlm.nih.gov/research/umls/), a collec-
tion of concepts from different biomedical termi-
nologies. Apache cTAKES (http://ctakes.
apache.org) was used to extract such UMLS
concepts. Next, we use these UMLS concepts
and gold standard events to expand relation argu-
ments. For a gold standard event e annotated by
the headword, we define EXPAND(e) as the set
of UMLS entities whose spans cover e. If e is
involved in a temporal relation r, we assume u
(u ∈ EXPAND(e)) is involved in the same relation
and therefore we generate a new temporal relation
that is identical to r but with the event e replaced
by a UMLS entity u. Figure 1 shows an example
of expanding the gold event “scan” to its covering
UMLS entities and generating related relations.

We differentiate temporal relations into event-
time and event-event, and expand relations as de-
tailed in Algorithm 1 and Algorithm 2, respectively.
For event-event, we ensure the event spans do not
overlap after expansion. Our event-time model clas-
sifies all relations – CONTAINS, BEFORE, OVER-
LAP, BEGINS-ON, ENDS-ON and NONE, while
our event-event model classifies only CONTAINS

and NONE relations due to the very low inter-
annotator agreement for the other relation types
in our evaluation corpus (Styler et al., 2014). For
both models, NONE is used to indicate that there is
no relation between a pair of arguments.

Algorithm 1 Expansion for event-time relations
1: Given a gold-standard annotated event-time relation

r(e,t), where e is an event, t is a temporal expression,
r ∈ {CONTAINS, BEFORE, . . . , NONE}

2: for UMLS entity u ∈ EXPAND(e) do
3: Create relation r′(u, t), r′ ← r
4: Add r′ to training data
5: end for

Algorithm 2 Expansion for event-event relations
1: Given a gold-standard annotated event-event

relation r(ea,eb), where ea, eb are events,
r ∈ {CONTAINS, NONE}

2: for UMLS entity ua ∈ EXPAND(ea) do
3: if not overlaps(span(ua), span(eb)) then
4: Create relation r′(ua, eb), r′ ← r
5: Add r′ to training data
6: end if
7: end for
8: for UMLS entity ub ∈ EXPAND(eb) do
9: if not overlaps(span(ea,ub)) then

10: Create relation r′(ea, ub), r′ ← r
11: Add r′ to training data
12: end if
13: end for

3 Experiments

3.1 Dataset

We tested our event expansion technique on a pub-
licly available clinical corpus: the colon cancer set
of the THYME corpus (Styler et al., 2014) used
in SemEval 2015 Task 6 (Bethard et al., 2015)
and SemEval 2016 Task 12: Clinical TempEval
(Bethard et al., 2016). It contains 600 documents
(400 oncology notes and 200 pathology notes) of
200 colon cancer patients. The gold standard an-
notations contain events (including both medical
and general events, all annotated by head words),
temporal expressions (e.g. tomorrow, postopera-
tive, and March-11-2009), and temporal relations.
We used the same training/development/test split
as Clinical TempEval. The development set was
used for testing research questions and building
final models. Once the models were deemed final-
ized, they were rebuilt on the combined training
and development sets and tested on the test set.

3.2 Models

We built two within-sentence temporal-relation
classification models, one for event-time relations
and one for event-event relations. We paired every
gold event with every gold time expression within
the same sentence to form candidate instances for
the event-time classifier. We paired all gold events
within a sentence to form candidates for the event-
event classifier. For training, gold relations were
also expanded by calculating the closure sets of all
possible relations in a clinical document.

We use the LIBLINEAR (Fan et al., 2008) L2-
regularized L2-loss dual SVM as the learning algo-
rithm for both models. Our features for event-time
and event-event models are shown in Table 1.
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Feature Description EE ET
Tokens the first and the last word of each concept, all words covered by a concept as a bag,

bag-of-words around each concept for a window of [-3, 3], bag-of-words between two
concepts, and the number of words between two concepts

Part-of-speech tags the POS tags of each concept as a bag
Event attributes all event-related attributes such as polarity, modality, and type
UMLS feature UMLS semantic types as features
Dependency path the dependency path between two concepts and the number of dependency nodes in-

between
Overlapped head if two concepts share the same head word
Temporal attributes the class type of a time expression, e.g. Date, Time, Duration, etc.
Special words Any words from the time lexicon developed by NRCC (Cherry et al., 2013a) that the

concepts or the context in-between contain
Nearest flag if the event-time pair in question is the closest among all pairs in the same sentence
Conjunction feature if there is any conjunction word between the arguments

Table 1: Features used for event-event (EE) and event-time (ET) classifiers

3.3 Research questions

We investigate the following questions:

1. Can the effect of the UMLS expansion tech-
nique be replicated using additional features?
One may wonder if adding instances via UMLS
expansion is isomorphic to adding more features
that capture the UMLS information. To answer
this question, we find all covering UMLS enti-
ties, but instead of creating new instances, ex-
tract token features from these entities and add
those to the other features for the instance.

2. Is it better to expand to the longest UMLS en-
tity or to expand to all possible spans? In our
Figure 1 example, the longest UMLS entity
covering “scan” is “CT-scan of abdomen and
pelvis”. But we could also create instances for
the UMLS entities “scan”, “CT-scan” and “CT-
scan of abdomen”. We also compare against
a purely linguistic expansion to the immediate
enclosing noun phrase (NP).

3. Is the improvement due to the replication of in-
stances? Our expansion technique creates many
similar relations, and in cases where a UMLS
entity has the same span as a gold event, the
technique creates true duplicate instances. For
example, the relation CONTAINS(scan, March
11) is duplicated in Figure 1. Thus we also
compare our UMLS-informed expansion of in-
stances to simple duplication of instances1.

4. Which types of features benefit most from the
expansion? There are three groups of token

1In SVM classification, duplicating training instances can
affect the cost penalty by altering the number of instances
within the margin. It is thus critical to tune cost parameter C
for all experiments, which we do on development data.

features: within each argument, between the ar-
guments, and the preceding and following three
words (context) of an argument. We test the
performance one feature group at a time, with
and without the event expansion.

We test all research questions by training on the
training set and testing on the development set with
token-based features for the event-time relations.
Note that expansion is applied only to the training
set, not to the development or test set.

3.4 Evaluation

For results on the development set, we calculate
closure-enhanced precision, recall and F1-score
(UzZaman and Allen, 2011) on just the within-
sentence relations (since that’s what our models
are able to predict). Precision is the percentage
of system-generated relations that can be verified
in the transitive closure of the gold standard rela-
tions. Recall is the percentage of gold standard
relations that can be found in the transitive clo-
sure of the system-generated relations. The final
F1-score is the harmonic mean of the transitive-
closure-processed precision and recall.

For results on the test set, we used the official
Clinical TempEval evaluation scripts so that our
results are directly comparable with the outcomes
of Clinical TempEval 2016 (Bethard et al., 2016).
These scripts use similar definitions of closure-
enhanced precision, recall and F1-score, but evalu-
ate only CONTAINS relations in oncology notes.

4 Results on the development set

Question 1 is answered by the first two rows of Ta-
ble 2: adding token features representing expanded
UMLS entities does not achieve the same perfor-
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P R F #instances Settings
0.587 0.538 0.561 8423 no Expansion
0.466 0.455 0.460 8423 UMLS as features
0.578 0.533 0.555 16846 duplicate instances
0.580 0.534 0.556 25269 triple instances
0.605 0.557 0.580 9506 longest UMLS
0.592 0.592 0.592 10705 expand to NPs
0.654 0.591 0.621 12966 all UMLS

Table 2: Results on the development set. No expan-
sion vs. encoding UMLS as features; duplicating
and triplicating training instances; expand to the
longest UMLS span, expand to the immediate en-
closing NP vs. expand to all UMLS spans.

P R F #instances Settings
0.359 0.155 0.217 8423 (A) no expansion
0.582 0.206 0.304 12966 (A) with expansion
0.087 0.116 0.099 8423 (B) no expansion
0.600 0.546 0.572 12966 (B) with expansion
0.587 0.254 0.355 8423 (C) no expansion
0.648 0.264 0.375 12966 (C) with expansion

Table 3: Results on the development set. Compari-
son of improvement for feature groups: (A) words
covered by the arguments; (B) words in between
the arguments; (C) words around the arguments.

mance as UMLS expansion, and in fact decreases
performance. Question 2 is addressed in the last
three rows: expanding to all possible UMLS spans
works better than expanding only to the longest
span or to the immediate enclosing NP. Expand-
ing to NPs achieved the second best result, sug-
gesting that when a domain-specific ontology is
unavailable, expansion via syntax might provide a
viable alternative. Question 3 is answered by rows
1, 3 and 4: when the cost parameter is properly
tuned, doubling or tripling instances (rows 3 and 4)
does not improve performance over no expansion
(row 1). Question 4 is addressed by Table 3: fea-
tures extracted between the two arguments achieve
the biggest gain from our expansion method.

5 Results on the test set

Once the parameters were fine-tuned, we trained
both event-time and event-event models on the com-
bined training and developments sets, and tested
them on the test set. All features described in Ta-
ble 1 are used. The first two rows of Table 4 eval-
uate both event-event and event-time models, the
next two rows evaluate only the event-time model,
and the last two rows evaluate only the event-
event model. Statistical significance is computed
via Wilcoxon signed-rank tests over document-by-
document comparisons, as in (Cherry et al., 2013b).

P R F Settings P-value
0.635 0.549 0.589 (1) no Expansion 0.117
0.669 0.534 0.594 (1) with Expansion
0.673 0.291 0.407 (2) no Expansion
0.708 0.287 0.408 (2) with Expansion
0.594 0.252 0.354 (3) no Expansion
0.628 0.243 0.351 (3) with Expansion

Table 4: Results on the test set with all features. (1)
Evaluate both Event-Time and Event-Event mod-
els; (2) Evaluate Event-Time model only; (3) Eval-
uate Event-Event model only. See Section 3.4 for
explanation for why shaded scores are different
from their counterparts in Table 2.

6 Discussion

Our experiments show our method is helpful for the
event-time model, and not harmful for the event-
event model. We hypothesize that the multiple in-
stances capture the important surrounding context
between arguments and allow more generalization
over it. For the example in Figure 1, the most im-
portant features are “performed on.” Our method
weeds out less discriminative features by strength-
ening the important contextual signals that appear
across many different entity boundaries. This is
supported by the results of Table 3 (B). We sus-
pect that the small improvement seen on the test
data may be a result of the additional development
examples canceling the benefit of augmented exam-
ples. This suggests that this method may be most
effective in tasks with limited training instances.

Event-event relations are more complicated, first
in that they have lower annotation quality than
event-time relations (see Table 5 from (Styler et
al., 2014)). And while almost every temporal ex-
pression in a sentence is important, not all events in
a sentence are, creating many potential “distractor”
events (e.g., showed) in the context of the clinical
domain. We performed some exploratory exper-
iments (not shown), restricting the data to only
adjacent medical events in notes with high inter-
annotator agreement, and saw significant perfor-
mance improvements. But further study is needed
to generalize this to all event-event relations.

With the presented method, our temporal relation
system achieved F1 of 0.594, a two percentage-
point improvement over the best Clinical Temp-
Eval 2016 system’s F1 of 0.573 (Bethard et al.,
2016). Our results also suggest that gains may be
possible in the general domain by using syntactic
constituents for expansion. The method is avail-
able open source at the temporal module of Apache
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cTAKES2 (Savova et al., 2010).
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