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Abstract

Lacking standardized extrinsic evaluation
methods for vector representations of
words, the NLP community has relied
heavily on word similarity tasks as a proxy
for intrinsic evaluation of word vectors.
Word similarity evaluation, which corre-
lates the distance between vectors and hu-
man judgments of “semantic similarity”
is attractive, because it is computationally
inexpensive and fast. In this paper we
present several problems associated with
the evaluation of word vectors on word
similarity datasets, and summarize exist-
ing solutions. Our study suggests that the
use of word similarity tasks for evaluation
of word vectors is not sustainable and calls
for further research on evaluation meth-
ods.

1 Introduction

Despite the ubiquity of word vector representa-
tions in NLP, there is no consensus in the commu-
nity on what is the best way for evaluating word
vectors. The most popular intrinsic evaluation task
is the word similarity evaluation. In word similar-
ity evaluation, a list of pairs of words along with
their similarity rating (as judged by human annota-
tors) is provided. The task is to measure how well
the notion of word similarity according to humans
is captured by the word vector representations. Ta-
ble 1 shows some word pairs along with their sim-
ilarity judgments from WS-353 (Finkelstein et al.,
2002), a popular word similarity dataset.

Let a, b be two words, and a,b ∈ RD be their
corresponding word vectors in a D-dimensional
vector space. Word similarity in the vector-space
can be obtained by computing the cosine similar-

Word1 Word2 Similarity score [0,10]
love sex 6.77
stock jaguar 0.92
money cash 9.15
development issue 3.97
lad brother 4.46

Table 1: Sample word pairs along with their hu-
man similarity judgment from WS-353.

ity between the word vectors of a pair of words:

cosine(a,b) =
a · b
‖a‖ ‖b‖ (1)

where, ‖a‖ is the `2-norm of the vector, and
a · b is the dot product of the two vectors. Once
the vector-space similarity between the words is
computed, we obtain the lists of pairs of words
sorted according to vector-space similarity, and
human similarity. Computing Spearman’s cor-
relation (Myers and Well, 1995) between these
ranked lists provides some insight into how well
the learned word vectors capture intuitive notions
of word similarity.

Word similarity evaluation is attractive, because
it is computationally inexpensive and fast, lead-
ing to faster prototyping and development of word
vector models. The origin of word similarity tasks
can be tracked back to Rubenstein and Goode-
nough (1965) who constructed a list of 65 word
pairs with annotations of human similarity judg-
ment. They created this dataset to validate the
veracity of the distributional hypothesis (Harris,
1954) according to which the meaning of words
is evidenced by the context they occur in. They
found a positive correlation between contextual
similarity and human-annotated similarity of word
pairs. Since then, the lack of a standard evaluation
method for word vectors has led to the creation of
several ad hoc word similarity datasets. Table 2
provides a list of such benchmarks obtained from
wordvectors.org (Faruqui and Dyer, 2014a).
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Dataset Word pairs Reference
RG 65 Rubenstein and Goodenough (1965)

MC 30 Miller and Charles (1991)
WS-353 353 Finkelstein et al. (2002)
YP-130 130 Yang and Powers (2006)
MTurk-287 287 Radinsky et al. (2011)
MTurk-771 771 Halawi et al. (2012)
MEN 3000 Bruni et al. (2012)
RW 2034 Luong et al. (2013)
Verb 144 Baker et al. (2014)
SimLex 999 Hill et al. (2014)

Table 2: Word similarity datasets.

In this paper, we give a comprehensive analysis
of the problems that are associated with the eval-
uation of word vector representations using word
similarity tasks.1 We survey existing literature to
construct a list of such problems and also sum-
marize existing solutions to some of the problems.
Our findings suggest that word similarity tasks are
not appropriate for evaluating word vector repre-
sentations, and call for further research on better
evaluation methods

2 Problems

We now discuss the major issues with evaluation
of word vectors using word similarity tasks, and
present existing solutions (if available) to address
them.

2.1 Subjectivity of the task

The notion of word similarity is subjective and
is often confused with relatedness. For example,
cup, and coffee are related to each other, but not
similar. Coffee refers to a plant (a living organ-
ism) or a hot brown drink, whereas cup is a man-
made object, which contains liquids, often coffee.
Nevertheless, cup and coffee are rated more sim-
ilar than pairs such as car and train in WS-353
(Finkelstein et al., 2002). Such anomalies are also
found in recently constructed datasets like MEN
(Bruni et al., 2012). Thus, such datasets unfairly
penalize word vector models that capture the fact
that cup and coffee are dissimilar.

1An alternative to correlation-based word similarity eval-
uation is the word analogy task, where the task is to find the
missing word b∗ in the relation: a is to a∗ as b is to b∗, where
a, a∗ are related by the same relation as a, a∗. For example,
king : man :: queen : woman. Mikolov et al. (2013b)
showed that this problem can be solved using the vector off-
set method: b∗ ≈ b − a + a∗. Levy and Goldberg (2014a)
show that solving this equation is equivalent to computing
a linear combination of word similarities between the query
word b∗, with the given words a, b, and b∗. Thus, the results
we present in this paper naturally extend to the word analogy
tasks.

In an attempt to address this limitation, Agirre
et al. (2009) divided WS-353 into two sets con-
taining word pairs exhibiting only either similar-
ity or relatedness. Recently, Hill et al. (2014) con-
structed a new word similarity dataset (SimLex),
which captures the degree of similarity between
words, and related words are considered dissimi-
lar. Even though it is useful to separate the con-
cept of similarity and relatedness, it is not clear
as to which one should the word vector models be
expected to capture.

2.2 Semantic or task-specific similarity?
Distributional word vector models capture some
aspect of word co-occurrence statistics of the
words in a language (Levy and Goldberg, 2014b;
Levy et al., 2015). Therefore, to the extent these
models produce semantically coherent representa-
tions, it can be seen as evidence of the distribu-
tional hypothesis of Harris (1954). Thus, word
embeddings like Skip-gram, CBOW, Glove, LSA
(Turney and Pantel, 2010; Mikolov et al., 2013a;
Pennington et al., 2014) which are trained on word
co-occurrence counts can be expected to capture
semantic word similarity, and hence can be evalu-
ated on word similarity tasks.

Word vector representations which are trained
as part of a neural network to solve a particular
task (apart from word co-occurrence prediction)
are called distributed word embeddings (Collobert
and Weston, 2008), and they are task-specific in
nature. These embeddings capture task-specific
word similarity, for example, if the task is of POS
tagging, two nouns cat and man might be consid-
ered similar by the model, even though they are
not semantically similar. Thus, evaluating such
task-specific word embeddings on word similarity
can unfairly penalize them. This raises the ques-
tion: what kind of word similarity should be cap-
tured by the model?

2.3 No standardized splits & overfitting
To obtain generalizable machine learning mod-
els, it is necessary to make sure that they do not
overfit to a given dataset. Thus, the datasets are
usually partitioned into a training, development
and test set on which the model is trained, tuned
and finally evaluated, respectively (Manning and
Schütze, 1999). Existing word similarity datasets
are not partitioned into training, development and
test sets. Therefore, optimizing the word vectors
to perform better at a word similarity task implic-
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itly tunes on the test set and overfits the vectors
to the task. On the other hand, if researchers de-
cide to perform their own splits of the data, the
results obtained across different studies can be in-
comparable. Furthermore, the average number of
word pairs in the word similarity datasets is small
(≈ 781, cf. Table 2), and partitioning them further
into smaller subsets may produce unstable results.

We now present some of the solutions suggested
by previous work to avoid overfitting of word vec-
tors to word similarity tasks. Faruqui and Dyer
(2014b), and Lu et al. (2015) evaluate the word
embeddings exclusively on word similarity and
word analogy tasks. Faruqui and Dyer (2014b)
tune their embedding on one word similarity task
and evaluate them on all other tasks. This ensures
that their vectors are being evaluated on held-out
datasets. Lu et al. (2015) propose to directly evalu-
ate the generalization of a model by measuring the
performance of a single model on a large gamut of
tasks. This evaluation can be performed in two
different ways: (1) choose the hyperparameters
with best average performance across all tasks, (2)
choose the hyperparameters that beat the baseline
vectors on most tasks.2 By selecting the hyper-
parameters that perform well across a range of
tasks, these methods ensure that the obtained vec-
tors are generalizable. Stratos et al. (2015) divided
each word similarity dataset individually into tun-
ing and test set and reported results on the test set.

2.4 Low correlation with extrinsic evaluation

Word similarity evaluation measures how well the
notion of word similarity according to humans
is captured in the vector-space word representa-
tions. Word vectors that can capture word simi-
larity might be expected to perform well on tasks
that require a notion of explicit semantic similar-
ity between words like paraphrasing, entailment.
However, it has been shown that no strong corre-
lation is found between the performance of word
vectors on word similarity and extrinsic evalua-
tion NLP tasks like text classification, parsing,
sentiment analysis (Tsvetkov et al., 2015; Schn-
abel et al., 2015).3 An absence of strong corre-
lation between the word similarity evaluation and
downstream tasks calls for alternative approaches

2Baseline vectors can be any off-the-shelf vector models.
3In these studies, extrinsic evaluation tasks are those tasks

that use the dimensions of word vectors as features in a ma-
chine learning model. The model learns weights for how im-
portant these features are for the extrinsic task.

to evaluation.

2.5 Absence of statistical significance
There has been a consistent omission of statisti-
cal significance for measuring the difference in
performance of two vector models on word sim-
ilarity tasks. Statistical significance testing is im-
portant for validating metric gains in NLP (Berg-
Kirkpatrick et al., 2012; Søgaard et al., 2014),
specifically while solving non-convex objectives
where results obtained due to optimizer instabil-
ity can often lead to incorrect inferences (Clark et
al., 2011). The problem of statistical significance
in word similarity evaluation was first systemati-
cally addressed by Shalaby and Zadrozny (2015),
who used Steiger’s test (Steiger, 1980)4 to com-
pute how significant the difference between rank-
ings produced by two different models is against
the gold ranking. However, their method needs ex-
plicit ranked list of words produced by the models
and cannot work when provided only with the cor-
relation ratio of each model with the gold ranking.
This problem was solved by Rastogi et al. (2015),
which we describe next.

Rastogi et al. (2015) observed that the im-
provements shown on small word similarity task
datasets by previous work were insignificant. We
now briefly describe the method presented by
them to compute statistical significance for word
similarity evaluation. LetA andB be the rankings
produced by two word vector models over a list of
words pairs, and T be the human annotated rank-
ing. Let rAT , rBT and rAB denote the Spearman’s
correlation between A : T , B : T and A : B
resp. and r̂AT , r̂BT and r̂AB be their empirical
estimates. Rastogi et al. (2015) introduce σr

p0
as

the minimum required difference for significance
(MRDS) which satisfies the following:

(rAB < r)∧(|r̂BT−r̂AT | < σr
p0

) =⇒ pval > p0

(2)
Here pval is the probability of the test statistic un-
der the null hypothesis that rAT = rBT found us-
ing the Steiger’s test. The above conditional en-
sures that if the empirical difference between the
rank correlations of the scores of the competing
methods to the gold ratings is less than σr

p0
then

either the true correlation between the competing
methods is greater than r, or the null hypothesis
of no difference has p-value greater than p0. σr

p0

4A quick tutorial on Steiger’s test & scripts: http://
www.philippsinger.info/?p=347
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depends on the size of the dataset, p0 and r and
Rastogi et al. (2015) present its values for com-
mon word similarity datasets. Reporting statisti-
cal significance in this way would help estimate
the differences between word vector models.

2.6 Frequency effects in cosine similarity
The most common method of measuring the sim-
ilarity between two words in the vector-space is
to compute the cosine similarity between the cor-
responding word vectors. Cosine similarity im-
plicitly measures the similarity between two unit-
length vectors (eq. 1). This prevents any biases in
favor of frequent words which are longer as they
are updated more often during training (Turian et
al., 2010).

Ideally, if the geometry of embedding space is
primarily driven by semantics, the relatively small
number of frequent words should be evenly dis-
tributed through the space, while large number of
rare words should cluster around related, but more
frequent words. However, it has been shown that
vector-spaces contain hubs, which are vectors that
are close to a large number of other vectors in
the space (Radovanović et al., 2010). This prob-
lem manifests in word vector-spaces in the form
of words that have high cosine similarity with a
large number of other words (Dinu et al., 2014).
Schnabel et al. (2015) further refine this hubness
problem to show that there exists a power-law re-
lationship between the frequency-rank5 of a word
and the frequency-rank of its neighbors. Specif-
ically, they showed that the average rank of the
1000 nearest neighbors of a word follows:

nn-rank ≈ 1000 · word-rank0.17 (3)

This shows that pairs of words which have sim-
ilar frequency will be closer in the vector-space,
thus showing higher word similarity than they
should according to their word meaning. Even
though newer datasets of word similarity sample
words from different frequency bins (Luong et al.,
2013; Hill et al., 2014), this still does not solve the
problem that cosine similarity in the vector-space
gets polluted by frequency-based effects. Differ-
ent distance normalization schemes have been pro-
posed to downplay the frequency/hubness effect
when computing nearest neighbors in the vector
space (Dinu et al., 2014; Tomašev et al., 2011),

5The rank of a word in vocabulary of the corpus sorted in
decreasing order of frequency.

but their applicability as an absolute measure of
distance for word similarity tasks still needs to in-
vestigated.

2.7 Inability to account for polysemy

Many words have more than one meaning in a lan-
guage. For example, the word bank can either cor-
respond to a financial institution or to the land near
a river. However in WS-353, bank is given a sim-
ilarity score of 8.5/10 to money, signifying that
bank is a financial institution. Such an assump-
tion of one sense per word is prevalent in many of
the existing word similarity tasks, and it can in-
correctly penalize a word vector model for captur-
ing a specific sense of the word absent in the word
similarity task.

To account for sense-specific word similarity,
Huang et al. (2012) introduced the Stanford con-
textual word similarity dataset (SCWS), in which
the task is to compute similarity between two
words given the contexts they occur in. For ex-
ample, the words bank and money should have a
low similarity score given the contexts: “along
the east bank of the river”, and “the basis of all
money laundering”. Using cues from the word’s
context, the correct word-sense can be identified
and the appropriate word vector can be used. Un-
fortunately, word senses are also ignored by ma-
jority of the frequently used word vector mod-
els like Skip-gram and Glove. However, there
has been progress on obtaining multiple vectors
per word-type to account for different word-senses
(Reisinger and Mooney, 2010; Huang et al., 2012;
Neelakantan et al., 2014; Jauhar et al., 2015;
Rothe and Schütze, 2015).

3 Conclusion

In this paper we have identified problems associ-
ated with word similarity evaluation of word vec-
tor models, and reviewed existing solutions wher-
ever possible. Our study suggests that the use of
word similarity tasks for evaluation of word vec-
tors can lead to incorrect inferences and calls for
further research on evaluation methods.

Until a better solution is found for intrinsic eval-
uation of word vectors, we suggest task-specific
evaluation: word vector models should be com-
pared on how well they can perform on a down-
stream NLP task. Although task-specific evalu-
ation produces different rankings of word vector
models for different tasks (Schnabel et al., 2015),
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this is not necessarily a problem because different
vector models capture different types of informa-
tion which can be more or less useful for a partic-
ular task.
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