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Abstract

In this paper, we present a method to con-
vert morphological inflection tables into un-
weighted and weighted finite transducers
that perform parsing and generation. These
transducers model the inflectional behavior
of morphological paradigms induced from
examples and can map inflected forms of
previously unseen word forms into their
lemmas and give morphosyntactic descrip-
tions of them. The system is evaluated on
several languages with data collected from
the Wiktionary.

1 Introduction

Wide-coverage morphological parsers that return
lemmas and morphosyntactic descriptions (MSDs)
of arbitrary word forms are fundamental for achiev-
ing strong performance of many downstream tasks
in NLP (Tseng et al., 2005; Spoustová et al., 2007;
Avramidis and Koehn, 2008; Zeman, 2008; Hulden
and Francom, 2012). This is particularly true for
languages that exhibit rich inflectional and deriva-
tional morphology. Finite-state transducers are the
standard technology for addressing this issue, but
constructing them often requires not only signifi-
cant commitment of resources but also demands
linguistic expertise from the developers (Maxwell,
2015). Access to large numbers of example inflec-
tions organized into inflection tables in resources
such as the Wiktionary promises to offer a less
laborious route to constructing robust large-scale
analyzers. Learning morphological generalizations
from such example data has been the focus of much
recent research, particularly in the domain of mor-
phologically complex languages (Cotterell et al.,
2016).

In this paper we present a tool for automatic gen-
eration of both probabilistic and non-probabilistic

morphological analyzers that can be represented as
unweighted and weighted transducers. The assump-
tion is that we have access to a collection of exam-
ple word forms together with corresponding MSDs.
We present two systems: one that is designed to be
high-recall and operates with unweighted automata,
the purpose of which is to return all linguistically
plausible analyses for an unknown word form; the
second is an addition to the first in that the word
shapes are modeled with a generative probabilis-
tic model that can be implemented as a weighted
transducer that produces a ranking of the plausible
analyses. The analyzers are constructed with stan-
dard finite state tools and are designed to operate
similarly to a hand-constructed morphophonologi-
cal analyzer extended with a ‘guesser’ module to
handle unknown word forms.

The system takes as input sets of lemmatized
words annotated with an MSD, all grouped into
inflection tables—such as can be found in, for ex-
ample, the Wiktionary. The output is a morpho-
logical analyzer either as an unweighted (in the
non-probabilistic case) or a weighted model (in the
probabilistic case). For the non-probabilistic case
we use the Xerox regular expression formalism
(Karttunen et al., 1996), which we compile into a
transducer with the open-source finite-state toolkit
foma (Hulden, 2009) and for the weighted case we
have used the Kleene toolkit (Beesley, 2012).1

2 Paradigm Learning

The starting point for the research in this paper is
the notion that inflections and derivations of related
word forms can be expressed as functions—this
idea is often filed under the rubric of ‘functional
morphology’ and is strongly related to word-and-
paradigm models of morphology (Hockett, 1954;

1Our code and data are available at: https://github.
com/marfors/paradigmextract
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Figure 1: Generalizing inflection tables into
paradigm functions: (1) a number of complete in-
flection tables are given; (2) the aligned Longest
Common Subsequence is extracted; (3) resulting
identical paradigms are merged. If the resulting
paradigm f1 is interpreted as a function, f1(shr, nk)
produces shrink, shrank, shrunk.

Robins, 1959; Matthews, 1972; Stump, 2001). In
particular, we assume a model where a single func-
tion generates all the possible inflected forms of a
group of lemmas that behave alike. This approach
has earlier been seen as an alternative to finite-state
morphology, and the functions that model inflec-
tional behavior have been hand-built in much pre-
vious work (Forsberg and Ranta, 2004; Forsberg
et al., 2006; Détrez and Ranta, 2012). Here, we
assume the recent model of Ahlberg et al. (2014)
and Ahlberg et al. (2015), which work with a sys-
tem that automatically learns these functions that
model inflection tables from labeled data.

The purpose of modeling inflection types as func-
tions is to be able to generalize concrete manifesta-
tions of word inflection for specific lemmas, and to
apply those generalizations to unseen word forms.
The generalization in question is performed by ex-
tracting the Longest Common Subsequence (LCS)
from all word forms related to some specific lemma
and then expressing each word form in terms of
the LCS (Hulden, 2014). The LCS in turn is bro-
ken down into possibly discontiguous sequences
that express parts of word forms that are variable
in nature. Figure 1 shows a toy example of four
inflection tables generalized into variable- and non-
variable parts by first extracting the LCS, express-
ing the original word forms in terms of this LCS,
and then collapsing the resulting functions that are
identical. The resulting representation, which is es-
sentially a set of strings which have variable parts
(x1, . . . , xn), and fixed parts (such as i, a, u) that

can be used to generate an unbounded number of
new inflection tables by instantiating the variable
parts in new ways and concatenating the variables
and the fixed parts.

This learning method often produces a very
small number of functions compared with the num-
ber of complete inflection tables that have been
input—obviously, because many lemmas behave
alike and result in identical functions. We note that
the output of this procedure is human-readable, i.e.
it can be inspected (even in real-world scenarios)
for correctness and also hand-corrected in case of
noise in the learning data. In the current work, we
use these functions as the backbone of a generative
model and implement them as transducers that can
be run in the inverse direction to map fully inflected
forms into their lemmas and morphosyntactic de-
scriptions.

2.1 Paradigm functions

The variables x1, . . . , xn that are used in the
paradigm function representation capture possible
inter-word variation. This means that each lemma
that gives rise to an inflection table can be directly
represented as simply an instantiation of the vari-
ables, together with the inflection function. As seen
in Figure 1, the function f1 learned from the inflec-
tion tables swim and drink can be used to represent
some other word, e.g. sing by instantiating x1 as s
and x2 as ng.

As we collect a large number of inflection ta-
bles, many of which result in identical paradigms,
we can also collect statistics about the variables
involved and how they were assumed to be instan-
tiated in the original table. For example, from the
truncated tables in Figure 1, we can gather that
f1 has witnessed x1 as both dr and sw, and x2

as nk and m. These statistics can be used to turn
the learned functions into a restricted generative
model that produces entire inflection tables, but
also taking advantage of how variables tend to be
instantiated in that paradigm function.

Additionally, since each possible inflected form
consists of the same variables, we can also define a
string-to-string mapping between any two related
forms, where the content of the variable parts stay
fixed, and the non-variable parts change. For ex-
ample, in Figure 1, we know that we can, for some
verbs, go from the past participle (e.g. drunk)
to the past (e.g. drank) by a string transforma-
tion x1 u x2→ x1 a x2, with some constraints
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on the nature of x1 and x2. This information can
then be encoded in transducer form where the vari-
able parts can be modeled as a probabilistic lan-
guage model (for weighted transducers) or a non-
probabilistic, constrained model (for unweighted
transducers).

Figure 2 illustrates this idea. We have learned a
paradigm in Spanish—we call the paradigm avenir
(arbitrarily), since that is one of the verbs out of
12 that behaved the same way and gave rise to the
same function. A natural mapping to learn from
the data is how to go from any inflected form to the
dictionary or ‘citation’ form. For example, going
from the present participle to the infinitive would
involve changing the fixed i occurring between the
two variables x1 and x2 into e and then changing
the fixed suffix after x2 from iendo to ir. The
figure also shows how the different variables were
instantiated in the training data: x1 showed up in
variable shapes (but always ending in v), while x2

was always n.
Although the learning model in principle states

nothing about the nature of the variables, mor-
phophonological restrictions will constrain their
appearance and the key to producing a transducer
that can inflect unseen words without undue over-
generation is to take these restrictions into account.
We do so in two ways: (1) for the unweighted case,
we collect statistics on the seen variables and con-
strain their possible shapes in an absolute manner,
and (2) for the weighted case, we induce a language
model over the shapes of the variables, which can
later be used to rank parses produced by the system.

3 The unweighted case: constraining
variables

Different generalized inflection tables naturally
give rise to different variable instantiations for
x1, . . . , xn. However, many of the seen variables
will not differ arbitrarily in a paradigm. This is
something we can take advantage of when design-
ing a parsing mechanism; in particular, we can
express preferences to the effect that such parses
where variables resemble already seen instantia-
tions should be preferred.

Figure 3 is a case in point. Here, we show the
implicit string-to-string rule in the paradigm which
derives the lemma form from the present partici-
ple and the first person singular present forms in
Spanish. In both the paradigms learned, the vari-
ables x1 and x2 show a somewhat repetitive pat-

tern. In the paradigm avenir, x1 ends in the letter v
for all the inflection tables seen that produced that
paradigm, while x2 always consists of the single
letter n. Likewise, in the other paradigm (negar),
x2 is consistently the string eg across all forms
seen (the inflected forms of cegar, denegar, etc.).
The only variable that does not show such a regular
pattern is the x1 variable for the paradigm called
negar.

3.1 Estimating probabilities of new variable
instantiations

That the parts of paradigms that vary from lemma
to lemma, i.e. the ‘variables’, are not subject to
arbitrary variation can be used to constrain their
shape. To model the unweighted transducers, we
begin by formalizing our belief in not seeing novel
variable shapes in the future. To quantify this, we
assume we have seen n concrete instantiations of t
different types of variables, and subsequently ask:
if there were in fact t + 1 types, all of which are
drawn from a uniform distribution, how likely are
we to have witnessed only the t types we did? This
quantity can be expressed as

punseen = (1− 1
t+ 1

)n (1)

For example, the measure for the x2 variable in
Figure 3 (avenir) becomes (1 − 1

2)12 ≈ 0.0002.
We can use this as a cutoff parameter that defines
how much evidence we require to declare a variable
not subject to further variation apart from the types
we have already seen. With this, we assume that
if punseen ≤ 0.05 for some variable, that variable in
the paradigm will not exhibit new types.2

3.2 Expressing constraints through regular
expressions

We also expand this measure to cover variables
that show variation only in non-edge positions. For
example, x2 in the avenir-paradigm in Table 3 is
always n and can be assumed to not be subject to
variation by the calculation above. The paradigm’s
x1-variable, however, cannot. That variable seems
to vary much more, with the exception of the last
letter, which is always v. To capture this, we ex-
tend the method to apply not only to the whole

2Estimating the probability of the existence of unseen types
is a classical problem (Good, 1953); see Ogino (1999) and
Kageura and Sekine (1999) for linguistics-related discussions
and Chen and Goodman (1996) for the relationship to smooth-
ing in language models.
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1∪w2∪ . . .∪wn) if the variable is assumed
to be fixed, where the wis are the complete
strings seen as instantiations.

2. (p1 ∪ . . . ∪ pn)Σ∗ ∩ Σ∗(s1 ∪ . . . ∪ sn), if
both prefixes and suffixes can be constrained;
here the pis correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the sis
the suffixes.

3. (p1∪ . . .∪pn)Σ∗ if only prefixes appear fixed.

4. Σ∗(s1∪ . . .∪ sn) if only suffixes appear fixed.

5. Σ+ otherwise.

In the above, Σ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (Σ∗v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Rule: 1p sg pres → inf
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Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(Σ+)︸ ︷︷ ︸
x1

(i :ε) e g︸︷︷︸
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego→ cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 ∪ f2 ∪ . . . ∪ f1 ∪ . . . ∪ fm (4)

5 Prioritizing analyses

The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each xi must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
Σ+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
∪P Constrained ∪P Unconstrained.
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This in effect leads to an analyzer that can be
thought of as first consulting Original, and that fail-
ing to produce an analysis, consults Constrained,
and if that also fails, consults Unconstrained. The
same effect can also be modeled in runtime code by
keeping the three transducers separate for potential
savings of space. Table 2 illustrates this priority
effect with two Spanish words being analyzed.

6 The weighted case: language models
over variables

The above unweighted model provides a hierarchi-
cal system by which to return plausible analyses,
while curbing implausible ones. However, it lacks
the power to provide a ranking of analyses within
each layer of ever laxer constraints on the vari-
ables. An alternative to that model is to directly
use the statistics over the variable parts to generate
a weighted transducer that performs the same type
of parsing, but with a (hopefully) strict ranking of
candidate parses. We address this by inducing an
n-gram model over each variable in each paradigm.
We calculate these individual n-gram models in the
usual way for a single variable v, consisting of the
letters v1, . . . , vn:

P (v1, . . . , vn) =
n∏

i=1

P (vi|vi−(n−1), . . . , vi−1)

(5)
For each variable and function, we perform a

standard maximum likelihood estimate of the n-
grams by

P (vi|vi−(n−1), . . . , vi−1)

=
#(vi−(n−1), . . . , vi−1, vi)

#(vi−(n−1), . . . , vi−1)
(6)

with some additional add-δ smoothing to prevent
zero counts. The resulting variable models can
then (after taking negative logs) replace the variable
portions of each individual transducer that maps a
word form to its citation form. The fixed parts of
the inflection mappings retain the weight 0.

These language models are then concatenated
with the same model as used for the unweighted
case in place of the variables. This is illustrated in
Figure 4.

We tune the model for each language evaluated
by doing a grid search on (1) the order of the n-
gram (1–5), (2) the prior on the n-grams (0.01–3.0),

(3) the prior of picking a paradigm (we include a
paradigm weight for each individual paradigm).

Similarly to the unweighted case, the final model
is a union of all the individual inflection models for
each paradigm and word, with the language models
for the variables interleaved.

7 Evaluation

To evaluate the systems, we used the data set pub-
lished by Durrett and DeNero (2013) (D&DN13),
which includes full inflection tables for a large
number of lemmas in German (nouns and verbs),
Spanish (verbs), and Finnish (nouns+adjectives and
verbs). That source also provides a division into
train/dev/test splits, with 200 tables in dev and test,
respectively. We then evaluated the ability of our
systems to provide a correct lemmatization and
MSD of each word form in the held-out tables,
testing separately on each part of speech. For the
unweighted analyzer, we use the three-part setup
as described above. For the weighted case, we
produce a single highest scoring analysis. The
train/dev/test sets are entirely disjoint and share no
tables.

We trained the models by inspecting all the word
forms and corresponding MSDs, organizing them
into tables, learning the paradigms, and the gen-
erating weighted and unweighted transducers as
described above. These transducers were then run
on the test data to provide lemmatization and analy-
ses of the unseen word forms. Table 4 summarizes
the number of inflection tables seen during train-
ing, together with the final number of paradigms
learned. Table 5 shows the statistics in the held-out
data.

Because we focus on the recall figures of the
analyzers, we also calculated an “inherent ambi-
guity” measure of the test data. This is the aver-
age number of different MSDs that are given for
each word form. This ambiguity may arise as fol-
lows: the Spanish verb tenga, for example, can
be either the first person singular present subjunc-
tive of tener ‘to have’ or the third person singular
present subjunctive. Such ambiguity shows that
there exist cases where returning multiple analy-
ses is warranted, given that we do not have any
sentence context to determine the correct choice.

For the weighted case, sometimes the system
returns multiple equally scoring parses. This is due
to the fact that the language model only operates
over the variables, and, in many languages multi-
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Language L-recall L+M-recall L/W L+M/W

nouns 95.30 95.06 2.08 9.52
German verbs 91.18 92.44 4.16 9.57

nouns+verbs 92.11 93.04 4.91 14.10

Spanish verbs 98.06 97.98 1.93 2.20

nounadj 88.69 88.48 4.10 5.30
Finnish verbs 94.52 94.47 3.77 4.60

nounadj+verbs 92.63 92.43 12.56 16.40

Table 3: The result of the unweighted evaluation, where we report separately on the recall of just the
lemma (L-recall), and the recall of the lemma and corresponding MSD (L+M-recall). Also shown are the
average number of unique lemmas returned per word form to be analyzed (L/W), and the average number
of lemmas and MSDs returned (L+M/W).

i:e/0.0 i/0.0 e:r/0.0 n:ϵ/0.0 d:ϵ/0.0 o:ϵ/0.0 ϵ:[/0.0 ϵ:type=participle/0.0 ϵ:]/0.0

x1 x2

aviniendo → avenir[type=participle]

LMx1 LMx2

Figure 4: Illustration of the coupling of language models for variables x1 and x2 to create the weighted
analyzer. Here, LMx1 and LMx2 illustrate a collection of states representing the language models for the
variables, inferred from variable instantiations seen in the training data.

Language Tables Paradigms

nouns 2564 70
German verbs 1827 139

nouns+verbs 4391 209

Spanish verbs 3855 96

nounadj 6200 259
Finnish verbs 7049 276

nounadj+verbs 13249 535

Table 4: Statistics on the D&DN13 train+dev sets.
Paradigms is the corresponding number of in-
duced paradigm functions.

Language Tables Unique wf’s Amb.

nouns 200 553 2.89
German verbs 200 2324 2.32

nouns+verbs 400 2877 2.43

Spanish verbs 200 10003 1.14

nounadj 200 5198 1.08
Finnish verbs 200 10466 1.03

nounadj+verbs 400 15664 1.05

Table 5: Statistics on the D&DN13 test set. Amb.
is the average number of lemma-MSD pairs per
unique word form (wf).

Language Lemma L+MSD MSD

German nouns 77.06 69.44 79.50
verbs 90.02 89.76 92.78

Spanish verbs 96.92 96.92 97.43

Finnish nounadj 70.29 69.68 91.59
verbs 90.44 90.44 98.02

Table 6: Evaluation of the weighted model (all
figures represent the recall).

ple MSDs often have the same surface form. For
example, Spanish compraba ‘bought 1P/3P’ (and
-aba suffix-bearing verbs in general) are always am-
biguous between 1st/3rd past tense. For this reason,
we calculate the recall (as opposed to accuracy) of
all the top scoring parses. The weighted system
always returns a single lemma in the evaluation. It
can, of course, produce a number of ranked analy-
ses if needed—an example of extracting the top-10
ranked analyses of a word form is given in Table 7.

7.1 Results

Table 3 shows the main results of the evaluation
of the unweighted model and Table 6 the results
of the weighted model. For the unweighted case,
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rank w paradigm vars lemma analyses

1 14.10 p1_abadernar (1=compr) comprar [pers=2 num=sg tense=past mood=ind]

2 18.22 p1_abadernar (1=comprast) comprastar [pers=1 num=sg tense=pres mood=sub]
comprastar [pers=3 num=sg tense=pres mood=sub]

3 23.57 p5_abogar (1=compr) comprar [pers=2 num=sg tense=past mood=ind]
4 24.58 p4_abolir (1=comprast) comprastir [pers=3 num=sg tense=pres mood=ind]
5 24.58 p8_acrecentar (1=com,2=pr) comprar [pers=2 num=sg tense=past mood=ind]
6 25.51 p37_colgar (1=c,2=mpr) comprar [pers=2 num=sg tense=past mood=ind]
7 26.20 p10_acostar (1=c,2=mpr) comprar [pers=2 num=sg tense=past mood=ind]
8 26.61 p7_acceder (1=comprast) compraster [pers=3 num=sg tense=pres mood=ind]
9 26.87 p8_acrecentar (1=comp,2=r) comprar [pers=2 num=sg tense=past mood=ind]
10 29.98 p20_cegar (1=c,2=ompr) comprar [pers=2 num=sg tense=past mood=ind]

Table 7: Weighted parsing example: top-10 ranked parses for the word form compraste ‘buy PAST’
in Spanish with weights (in effect the negative log probability), the inferred variable division, the
lemmatization, and MSDs. Lemmas and parts of the analysis that are correct are given in boldface. Note
that several paradigms can produce an entirely correct parse for a single form such as this one, even
though the paradigms would differ in other forms.

we consider the lemma-recall and lemma+MSD
recall, and also document the average number of
unique parses returned (lemma or lemma+MSD).
For the weighted model, we give the recall for all
combinations of lemma+MSD.

The weighted recall is—for obvious reasons—
consistently below the unweighted version as the
unweighted case uses the hierarchical model to
potentially return a much larger number of anal-
yses. The weighted version always returns a sin-
gle lemma, and possibly several equally ranked
MSDs, as discussed above. Still, for some lan-
guages (Spanish and Finnish verbs in particular),
despite returning only a single analysis, perfor-
mance is on par with the unweighted model, which
returns 1.93 analyses on average (Spanish) and 3.77
(Finnish). We emphasize that the test set for our
experiments is entirely disjoint from the training
set, and that the figures therefore reflect potential
performance on unseen word forms, not standard
per-token performance in running text, which is
presumably much higher. The reported figures can
thus be interpreted to correspond to a per-type per-
formance for OOV items.

8 Conclusion and future work

We have described two supervised methods for pro-
ducing finite-state models morphological analyzers
and guessers from labeled word forms, organized
into inflection tables. The method can be used to
quickly produce high-recall morphological anal-
ysis from labeled data with little or no linguistic
development effort.

These tools can be used as is and can also be

modified to exploit unlabeled data in the form of
raw text corpora in a semi-supervised lexicon ex-
pansion setting. Some potential extensions could
be of immediate value: the generative weighted
model could be combined and evaluated on a
task of tagging/disambiguating running text where
contextual features could be used and seamlessly
combined with the morphological language model.
The weighted model also offers paths for further
experimentation—for example, it is not immedi-
ately obvious that an n-gram model is the best
choice. It seems reasonable to assume that those
parts of the variables modeled that stand closer to
the fixed parts, i.e. at the edges, would be more
important in judging similarity to previously seen
inflected forms. Table 2 hints at this being the case
since, for example, the Spanish variables seem far
more constrained at edge positions than in the mid-
dle of the variable string. Which parts to weight
as more important in judging similarity could also
be inferred from data. Another potential extension
is to also constrain the analysis form by integrat-
ing a word-level language model instead of only
a variable-level one, either replacing the variable-
level model or working in conjunction with it.
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