
Proceedings of the 10th SIGHUM Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities (LaTeCH), pages 52–62,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

Dealing with word-internal modification and spelling variation in
data-driven lemmatization

Fabian Barteld Ingrid Schröder Heike Zinsmeister

Institut für Germanistik
Universität Hamburg

firstname.lastname@uni-hamburg.de

Abstract

This paper describes our contribution to
two challenges in data-driven lemmatiza-
tion. We approach lemmatization in the
framework of a two-stage process, where
first lemma candidates are generated and
afterwards a ranker chooses the most prob-
able lemma from these candidates. The
first challenge is that languages with rich
morphology like Modern German can fea-
ture morphological changes of different
kinds, in particular word-internal modifi-
cation. This makes the generation of the
correct lemma a harder task than just re-
moving suffixes (stemming). The second
challenge that we address is spelling varia-
tion as it appears in non-standard texts. We
experiment with different generators that
are specifically tailored to deal with these
two challenges. We show in an oracle
setting that there is a possible increase in
lemmatization accuracy of 14% with our
methods to generate lemma candidates on
Middle Low German, a group of historical
dialects of German (1200–1650 AD). Us-
ing a log-linear model to choose the cor-
rect lemma from the set, we obtain an ac-
tual increase of 5.56%.

1 Introduction

Lemmatization is the task of finding the lemma or
base form for a given word token. It is used as
a preprocessing step for information retrieval and
other NLP applications for languages with rich
morphology and has been shown to outperform
stemming for some tasks (Korenius et al., 2004).
Lemmatization can be formalized as a string trans-
duction task where for an input sequence of tokens
t1 . . . tn an output sequence of lemmas l1 . . . ln is

produced. This task has been approached in a va-
riety of ways, e.g. by combining morphological
rules with dictionary lookups (Sennrich and Kunz,
2014). Chrupała (2006) introduced a sequence-
labeling approach to lemmatization in which a to-
ken is labeled with a rule that transforms it to its
lemma. The set of rules from which the labels are
chosen are induced automatically from the train-
ing data. Müller and Schütze (2015) use a similar
setting, but, instead of choosing a rule to apply,
they apply all possible rules and afterwards use
a ranker to select the lemma. Conceptually, this
is a two-stage approach towards lemmatization –
first generating lemma candidates for a given type,
i.e. an inflected word form, and then choosing the
best of these candidates for the token. We fol-
low this approach and present generators that in-
crease the number of correct lemma candidates
that can be generated for out-of-vocabulary (OOV)
words in the case of word-internal modification
and spelling variation:

(i) Word-internal modifications like the umlaut
(Schläge - Schlag “strikes - (the) strike”) and infix-
ation (aufgegessen - aufessen “eaten up - eat up”)
in Modern German (DEU)1 pose special problems
to lemma candidate generation. In order to im-
prove the generalization capabilities of the rules
induced from the training data, we substitute the
edit trees (ET) (Chrupała, 2008) used by Müller
and Schütze (2015) with lexical correspondences
(LC) (Fulop and Neuvel, 2013).

(ii) Spelling variation as it appears in histori-
cal language or computer-mediated communica-
tion results in an increase in data sparsity and
therefore a large number of OOV words. We
add a generator that returns the lemma candidates
for the most similar in-vocabulary (IV) word(s).
Thereby, the lemmatization can be made more ro-

1Abbreviations for language names follow the ISO 639-3
codes.

52

bust against simple misspellings or spelling vari-
ations, since the correct lemma can be returned
even in these cases.

We test our approach on Middle Low German
(GML) texts. GML is a group of historical dialects
of German (1200–1650 AD), which – like DEU
– features word-internal modification. Also, as a
historical language, GML exhibits spelling varia-
tion. In order to see how hard these features make
the task of lemmatizing GML, we compare it with
lemmatizing DEU newswire texts.

2 Related work

The methods presented here are general in nature
and can be incorporated into different lemmati-
zation approaches. We apply our methods with
LEMMING (Müller and Schütze, 2015), a state-
of-the-art lemmatizer which performs lemmatiza-
tion with a log-linear model that combines candi-
date generation with a probabilistic ranker.2 LEM-
MING can be used to do lemmatization indepen-
dently from morphological tagging or to combine
both tasks with a joint model. As we are interested
in lemmatization, we only use the independent
lemmatization model.3 The generator used for
lemma candidate generation can be of any kind.
The original version of LEMMING uses a deter-
ministic rule-based generator and learns the set of
rules from the training data. Following Chrupała
(2008), the standard generator in LEMMING uses
edit trees (ET). In ETs – unlike in the shortest
edit scripts on reversed strings that are used by
Chrupała (2006) – the positions of edits are not all
indexed from one end of the string but either from
the beginning or the end. This is similar to pre-
fix and suffix replacement rules (Gesmundo and
Samardžić, 2012). Therefore prefixes and suffixes
are handled independently from the length of the
word. However, as Jongejan and Dalianis (2009)
point out, languages like German and Dutch also
allow word-internal modifications, which are not
covered independently of the word length by rules
which index the position of the change relative to
either the beginning or the end of the word. This is
illustrated with ETs in Figure (1a) and (1b). The
numbers at the nodes of the ETs denote the po-

2The original version of LEMMING is available at http:
//cistern.cis.lmu.de/lemming/. A version con-
taining the generators described in this paper is available at
https://github.com/fab-bar/cistern.

3This is referred to as LEMMING-P in Müller and Schütze
(2015).

sition of the substring this node represents mea-
sured from the beginning and the end of the type.
In the case of Bäume and Baum the longest com-
mon substring um starts after the second charac-
ter in Bäume and ends before the last character.
Therefore, the first node is indexed with 2 and
1. See Chrupała (2008) for a detailed description
of edit trees.4 As can be seen from Figure (1a)
and (1b) the word-internal umlaut leads to differ-
ent indices. Our contribution to this challenge is
to test rules that model word-internal modifica-
tions independently of the word length. We use
lexical correspondences that have been proposed
in Whole Word Morphology by Fulop and Neu-
vel (2013) and have been used in morphological
learning (Neuvel and Fulop, 2002).

Our second addition to the generator addresses
spelling variation. Spelling variation is often dealt
with in a preprocessing step called normalization
before taggers or lemmatizers are applied to the
data (Eisenstein, 2013). Formally, such a normal-
ization is a string transduction task like lemmati-
zation. Therefore, LEMMING directly deals with
spelling variation by learning rules that gener-
ate the lemma, simultaneously removing inflection
and normalizing variation. The rules inferred from
the training data, however, will only deal with spe-
cific combinations of inflection and spelling vari-
ation.

A way of dealing with spelling variation in-
dependently of inflection is to identify possible
spelling variants and use them for the lemmatiza-
tion. In several approaches spelling variation pat-
terns are learned from the training data exploiting
the annotation (Kestemont et al., 2010; van Hal-
teren and Rem, 2013; Logačev et al., 2014). Apart
from using these patterns to expand the training
data by creating probable spelling variants, Keste-
mont et al. (2010) produce IV words that have a
high probability to be a spelling variants for OOV
words and use their lemmatization to predict the
lemma of OOV words. We adopt a similar ap-
proach for lemma candidate generation: We deter-
mine probable spelling variants for all OOV types
in the set of IV types and generate lemma candi-
dates based on these. We experiment with differ-
ent similarity measures for detecting the probable
spelling variants.

4Note that for a given pair of type and lemma more
than one ETs might exist, see Appendix A.1 for details.
The appendices can be found at https://github.com/
fab-bar/paper-LaTeCH2016.

53

(2,1)

e/ε(0,1)

ä/aø
(a) Bäume→ Baum
“trees - (the) tree”

(3,1)

e/ε(0,1)

ä/aø
(b) Träume→ Traum

“dreams - (the) dream”

ä e

X Y

a
(c) Lexical correspondence for

Träume→ Traum, Bäume→ Baum

Figure 1: Edit trees and lexical correspondence for the a-umlaut + -e inflection pattern

3 Dealing with word internal
modification

As mentioned above, edit trees (ET) do not gen-
eralize over word-internal modifications. An ET
learned from the pair Bäume, Baum “trees –
(the) tree” cannot predict the lemma Traum “(the)
dream” for Träume “dreams”. In order to allow
for such generalizations, we use lexical correspon-
dences for lemma candidate generation instead.

We define a lexical correspondence (LC) for
two words over some alphabet w1, w2 ∈ Σ∗ as the
tuple 〈T ,L〉5 where T and L are two sequences
of constants and variables with the requirement
that the same variables appear in both sequences.6

Constants are elements of Σ∗\{ε}, i.e. the possible
words over the alphabet Σ with the exception of
the empty word ε. Variables are placeholders that
can be replaced with constants. Note that we do
not allow empty strings as constants. Therefore, a
variable must be replaced with at least one letter.
Figure (1c) depicts the LC for the ETs in Figures
(1a) and (1b). This shows that LCs are able to gen-
eralize over pairs of type and lemma that ETs do
not generalize over.

The solid arrows in Figure (1c) represent
the sequence T (representing e.g. Bäume) and
the dashed arrows the sequence L (representing
e.g. Baum). The variables X and Y are depicted in
the middle. By replacing the latter with the miss-
ing parts of the words, e.g. {X/B, Y/um}, type
and lemma can be read off the sequences.

In order to create a lemma given a type and
a LC, the constants in sequence T are matched
with characters in the type and the variables are

5Note that the order of the sequences is fixed as we always
use lexical correspondences between type and lemma in that
order.

6Our definition of lexical correspondence is less strict
than the original definition given by Fulop and Neuvel
(2013). Their definition also takes syntactic categories and
semantic relations into account.

replaced with the remaining substrings. Then the
lemma can be read off the second sequence L.
For instance, given the type Träume and the LC
in Figure (1c) the constants match with ä and
the final e in Träume, creating the replacements
{X/Tr, Y/um}. Using these replacements in the
second sequence creates the lemma Traum.

An ET can be unambiguously transformed into
a LC. Hence, type-lemma pairs from which the
same ET is induced lead to the same LC. This
proves that LCs generalize over all cases over
which ETs generalize.7 On the other hand,
as Fulop and Neuvel (2013) pointed out, lex-
ical correspondences with more than one vari-
able cannot always be unambiguously applied.
One example is the type Säbelschläge “(the)
blows with a saber” and the LC from Fig-
ure (1c). The ä can be matched with two
positions in the type leading to two different
replacements and corresponding lemma candi-
dates: {X/S, Y/belschläg} (lemma candidate:
*Sabelschläg) and {X/Säbelschl, Y/g} (lemma
candidate: Säbelschlag).

In the context of LEMMING, we can generate
both variants and let the ranker decide. However,
this leads to a trade-off between better general-
ization of the rules and possible indeterminacy,
i.e. bigger candidate sets.8 The latter increases
the computational costs for training and applying
the ranker. It also introduces new possible er-
rors for the ranker. Consequently, we are looking
for a way to restrict the overgeneralization. One
source of overgeneralization are LCs of the form
〈[X,Y], [X, ‘constant’, Y]〉. An LC like this is ap-
plicable to all types. It creates a lemma candidate
by inserting the constant and does this between all

7See Appendix A.2 for details.
8Note that the ET in Figure (1a) learned from Bäume,

Baum will be applicable to Säbelschläge as well and creates
the lemma candidate Sabelschläg. Therefore, in this case, it is
unlikely that the LC generates more false lemma candidates
than created with using ETs.

54

the letters. One example for a similar LC results
from the German pair sind, sein “(they) are – (to)
be” which leads to 〈[X,Y, ‘d’], [X, ‘e’, Y]〉. This
LC is applicable to all types ending with d and al-
lows the insertion of e at multiple positions.

In order to avoid this kind of overgeneration in-
sertions are anchored by their character offset ei-
ther from the beginning or the end of the type.
This position can be read off directly from an ET.9

Therefore, these lexical correspondences with an-
chored insertions (LC-AI) have a generalization
capacity that is reduced in comparison to un-
anchored LCs but is still higher when compared
to ETs.

4 Dealing with spelling variation

In this section, we present a method for allowing
the lemmatizer to deal with spelling variation –
namely generating lemma candidates from similar
in-vocabulary (IV) types. Using this approach, the
correct lemma candidate can be generated for out-
of-vocabulary (OOV) types that are spelling vari-
ants of IV types. We restrict this additional gener-
ation of lemma candidates to OOV types to avoid
overgeneration.

An upper bound for improving the coverage by
this method is given by generating the lemma can-
didates for all of the training instances and add
them to the lemma candidate set for OOV types.
The problem with this approach is the large num-
ber of lemma candidates for OOV words. This
makes it hard for the ranker to find the correct
lemma. Therefore, our aim is to select an ap-
propriate subset from the training data that con-
tains possible spelling variants and only add the
candidates generated on this subset to the lemma
candidates. There are distance measures explic-
itly proposed for finding spelling variants (Kemp-
ken, 2005; Pilz, 2009; Bollmann, 2012) that could
be used for this task. However, these measures
need to be trained on pairs of spelling variant and
standard spelling which are not available in our
case. Consequently, we use string similarity mea-
sures that can be used without training data of
this kind. Kestemont et al. (2010) use the Lev-
enshtein distance (Levenshtein, 1966) and Dice’s
coefficient (Dice, 1945) to detect spelling vari-
ants in Middle Dutch texts. While they report a
better performance of the Levenshtein distance,
Jin (2015) achieves good results with the Jaccard

9See Appendix A.3 for a detailed description.

Index (Levandowsky and Winter, 1971) for can-
didate generation in normalizing English Twitter
data and also proposes a weighted version.10 This
weighted version is given by Equation 1.

JaccardIndexw(f(t1), f(t2)) =∑
f∈f(t1)∩f(t2)

w(f)

∑
f∈f(t1)∪f(t2)

w(f)
(1)

Here, f(t) ⊆ F is the set of similarity features for
a type t and w : F → R is a weight function. Both
can be chosen differently allowing to fine-tune the
measure for specific data. For normalizing Twitter
data, Jin uses bigrams, skip-1-bigrams and sets the
weight for each feature to 1.

Barteld et al. (2015) use yet another similarity
measure, Proxinette (Hathout, 2014), for spelling
variant detection. Similar to the Jaccard Index,
Proxinette uses similarity features to compute the
similarity of two types. Differing from the Jac-
card Index, in Proxinette the similarity score is
obtained by the probability of a random walk in
a bipartite graph with types and similarity features
as vertices. This leads to a weight for the features
of 1

deg(f) , where deg(f) is the degree of the vertex
f , i.e. the number of types having this similarity
feature. Since in this form, the weights are depen-
dent on the corpus size, we use 1 − relFreq(f)
as a weight function. Thereby we keep the general
idea of giving more weight to infrequent similar-
ity features while avoiding the dependency on the
corpus size.11 The relative frequency is estimated
based on a training corpus (in our case the training
corpus for the lemmatizer) leading to a weight of
0 for all features that appear in every type of the
corpus, and 1 for features that did not appear in
the corpus.

The similarity features used in Proxinette are
not only character n-grams of given lengths, but
all possible n-grams above a given length includ-
ing the whole type. This is a way to prevent a sim-
ilarity of 1 for two different types, a problem that

10As Dice(x, y) = 2∗JaccardIndex(x,y)
JaccardIndex(x,y)+1

(Egghe, 2010)
Dice’s coefficient and the Jaccard Index will give the same
results in our threshold setting. Therefore, we restrict our-
selves to the Jaccard Index.

11This weight is only dependent on the size of the corpus
in the sense that bigger corpora lead to better estimates of the
relative frequency.

55

has been noted by Jin (2015) for the Jaccard Index
with character n-grams of fixed lengths.

Even when no training data for spelling vari-
ation in the form of variant and standard form
is available, variation patterns can be learned ap-
proximately using data annotated with POS tags
and/ or lemmas (Kestemont et al., 2010; van Hal-
teren and Rem, 2013; Logačev et al., 2014). We
follow Kestemont et al. (2010), who use word
forms annotated with the same lemma that have
a Levenshtein distance of 1 as proxies for pairs
of spelling variants. They train a memory-based
learner (MBL) on the typical differences between
those spelling variants and use it to rerank Lev-
enshtein neighbours according to these variation
patterns. As using a MBL is slow at tagging time,
we estimate the probability of two types being
spelling variants directly, following an approach
similar to Logačev et al. (2014). Given an edit op-
eration e, we estimate its probability of leading to
a spelling variant, P (e), by

∑
(ti,tj)∈tr(e)

min(1, |l(ti) ∩ l(tj)|) ∗ 1
|tr(e)| (2)

where tr(e) = {(ti, tj)|ti e−→ tj}, i.e. the set of all
pairs of types (ti, tj) from the training data, such
that ti can be transformed into tj by applying e and
l(t) is the set of all lemmas type t appears with in
the training data. The P (e) for an edit operation e
that does not appear in the training data is set to 1 –
thereby the probabilities capture negative evidence
against the assumption that an edit operation leads
to a spelling variant.

Given a pair of two types (t1, t2) we estimate
the probability of (t1, t2) being spelling variants
by the product of the probabilities of all the atomic
edit operations that transform t1 into t2. Using the
null hypothesis that the pairs are spelling variants,
any set of possible spelling variants can be reduced
by removing those for which the probability is be-
low a given threshold.

We will apply these different similarity mea-
sures to extract types more similar to a given OOV
type than a threshold from the IV types. These ex-
tracted types will then be used to generate lemma
candidates for the OOV type. All possible gener-
ators are usable for this. We only use the lemmas
that occured with the selected IV types in the train-
ing data and combine these with the lemma candi-
dates generated by a rule-based generator (using
LCs or ETs) from the OOV type.

5 Experiments

In this section we evaluate the effects of using lex-
ical correspondences and the generation of lemma
candidates from similar IV types. We test our
approach on Middle Low German (GML). The
data comes from the ‘Reference Corpus Middle
Low German/ Low Rhenish (1200-1650)’ (ReN)
(Peters and Nagel, 2014).12 We use two texts:
Johannes (19,641 tokens) as training data and
Griseldis (9,057 tokens), that we split into two
nearly equal parts, as development set (4,505 to-
kens) and test set (4,552 tokens). Full bibliograph-
ical information is given in the bibliography.13

To assess the difficulty of lemmatizing GML, we
compare our results with the accuracy on Mod-
ern German (DEU) newswire texts. For this, we
use the TIGER corpus (Release 2.2) (Brants et al.,
2004) with the same splits as Müller and Schütze
(2015). In order to make the tasks on GML and
DEU more comparable, we limit the training data
to roughly 20,000 tokens and lowercase all types
and lemmas in both datasets.

Examples for word-internal modification in
DEU have been given in Figure (1). An ex-
ample for spelling variation in GML is the pair
of types vigenbome and vighenbome “(the) fig
tree.SG.DAT” (Johannes). The corresponding
lemma vı̂genbôm also illustrates a special conven-
tion in the lemmatization of the GML texts: di-
acritics are added. In this case they denote the
length of the vowels. These diacritics have the
same effect as word-internal modification for the
lemmatization.14

We evaluated the effects of different parameter
settings on the development set.15 The numbers
in this section report the performance of selected
settings on the test set measured on tokens.

12Note that the corpus is still under construction. The to-
kenization and the annotations used are prefinal. Therefore,
the size of the texts might deviate from the numbers given
elsewhere.

13We do not train and evaluate the lemmatization accuracy
on splits of the same text as we are interested in the perfor-
mance of the lemmatization in the situation were a set of lem-
matized texts exists for training and the obtained model is
applied to a new text.

14The lemmas also contain numbers to disambiguate
meanings. Since this adds a word-sense-disambiguation task
to the lemmatization, they have been removed for the experi-
ments.

15The results can be found in Appendix B.

56

5.1 Coverage experiments

First, we look at the coverage of the different gen-
erators described in the previous sections, i.e. the
number of tokens for which the generated set of
lemma candidates contains the correct lemma, in
other words, the accuracy given an oracle that
chooses the correct lemma. We train the genera-
tors on the training set. In addition to the lemma
candidates generated by the rules induced from the
training data, we always extend the set of lemma
candidates by all the lemmas that an IV type ap-
pears with in the training data.

Coverage should be increased because it sets an
upper bound to the lemmatization accuracy. At the
same time, the average size of the candidate sets
should be kept as small as possible, to make the
task of the ranker easier, i.e. choosing the correct
lemma in real-life settings without an oracle.

We experimented with using only rules that ap-
pear at least n times with type-lemma pairs in the
training data. In addition, we tested whether a
POS-tag dependent application of the rules would
limit the amount of overgeneration. We found that
using all rules POS-tag dependently gave the best
trade-off between coverage and average candidate
set size on the development set.16

Table 1 and 2 give the results from the ex-
periments on the test data. Table 1 contains a
comparison between DEU and GML. The results
show that lemmatizing GML is harder than lem-
matizing DEU. Given a similar amount of training
data (about 20,000 tokens), there is a difference
of about 24.5% in the coverage between the two
languages – using ETs the coverage drops from
98.92% for DEU to 74.3% for GML. While for
DEU all of the generators reach a high coverage
with a small average number of lemma candidates
(� cand.) the coverage for GML is significantly
lower with an average size of the candidate sets
that is more than three times larger than for DEU.
The reason for the drop in coverage and the in-
crease in the average number of lemma candidates
might be more word internal modifications and the
existence of spelling variation in GML. Follow-
ing, we present the improvements coming from the
methods we introduced to deal with word-internal
modification and spelling variation.

16We used gold tags for the training and evaluation. When
using predicted POS tags, the performance of POS-tag de-
pendent candidate generation depends on the quality of the
predictions.

Word-internal modification. Next to the re-
sults for ETs, Table 1 gives the coverage results for
lexical correspondences (LC) and lexical corre-
spondences with anchored insertions (LC-AI, see
section 3) on the test data. The improvements
in coverage coming from the better modeling of
word-internal modifications are the same for LCs
and LC-AIs for both languages while LC-AIs ef-
fectively reduce the number of wrongly generated
lemma candidates compared with pure LCs. This
is especially visible for GML.

For DEU, using LC(-AI)s leads to a small im-
provement for OOV words of 0.41% which is
an error reduction of about 10%. Given the ho-
mogeneity of data in the TIGER corpus, this
only leads to an overall improvement of the cov-
erage of 0.12%. These numbers decrease fur-
ther when more training material is used. Using
about 100,000 tokens from the TIGER corpus for
training, the coverage goes up to 99.50% (OOV:
97.84%) with ETs and 99.54% (OOV: 98%) with
LC-AIs. However, the numbers indicate that even
languages with moderate word-internal modifica-
tion can benefit from the usage of LCs, especially
when the amount of training data is limited and
the lemmatizer has to deal with a large number
of OOV types. As has been expected, the effect
of using LC(-AI)s is bigger for GML, leading to
an overall increase of 1.25% points. However, the
gap in performance between DEU and GML re-
mains huge.

Spelling Variation. The additional complex-
ity of the task on GML is at least partially due
to spelling variation. To deal with this, we car-
ried out experiments with a regularized17 version
of the data and compare it with the generation of
lemma candidates from similar IV types described
in Section 4. The regularized version of the data is
created using a rule-based approach with 26 hand-
crafted rewrite rules (in the form of regular ex-
pressions and substitutions), which was created by
experts on GML for the purpose of reducing the
spelling variation.18 Like before, lemma candi-

17We follow Barteld et al. (2015) by using the term reg-
ularization, as normalization is usually used to describe a
mapping to a standardized or modern variety of the language
which is not the case here.

18The script has been created by Melissa Farasyn in the
project ‘Corpus of Historical Low German’ (CHLG; http:
//www.chlg.ac.uk/index.html) and contains rules
by Melissa Farasyn with additions by Sarah Ihden and Katha-
rina Dreessen both from the project ‘Reference Corpus Mid-
dle Low German/ Low Rhenish (1200-1650)’.

57

all oov
Data Generator Coverage (%) � cand. Coverage (%) � cand.
DEU ET 98.92 2.79 96.65 3.69

LC-AI 99.04 3.20 97.06 4.64
LC 99.04 4.20 97.06 7.04

GML ET 74.30 10.73 24.06 14.78
LC-AI 75.55 14.12 27.60 22.45
LC 75.55 25.17 27.60 47.53

Table 1: Coverage statistics \
Coverage (%): number of tokens for which the candidate set contains the correct lemma;� cand.: the average size of the candidate sets.

dates are generated using all LC-AIs learned from
the training data POS-tag dependently. For IV
types, all their lemmas from the training data are
added as well.

Firstly, we determined an upper bound by
adding all lemmas that appeared in the training
data to the candidate sets. Table 2 shows that the
coverage increases from 74.3% to 88.31% using
our method. This is a potential gain of about 14%
– 7.58% more than with regularization (80.73%).
However, using all lemma candidates for OOV
types increases the average candidate set size to
302.46.

Secondly, we tested the trade-off between cov-
erage and set size for our method of generat-
ing lemma candidates only from similar IV types
(cf. Section 4). Table 2 gives examplary results on
the test set.

We explored the effects of different paramater
settings on the development set. For the Leven-
shtein distance, we used the maximal distance as
parameter and Levenshtein automata (Schulz and
Mihov, 2002) for finding candidates efficiently.19

For the Jaccard Index, we varied the minimal
similarity (between 0 and 0.7 in steps of 0.1,
adding 0.25 and a smaller step size of 0.11 be-
tween 0.1 and 0.2), the minimal size of charac-
ter n-grams ({1, 2, 3, 4}), the maximal size of n-
grams ({2, 3, 4,∞}) and the maximal size of skips
({0, 1, 2, 3, 4}). Furthermore, we optionally ap-
plied the frequency-based weighting on the sim-
ilarity features.

To improve the precision, we calculated
the probability of the possible spelling vari-
ants returned by the best parameter set-

19We used the implementation from https:
//github.com/universal-automata/
liblevenshtein-java.

tings for different thresholds on the set size
({15, 16, 17, 18, 19, 20}), using the product of the
P (e) estimated by Equation 2. We tested different
thresholds on the probability below which the pair
was excluded (between 0.5 and 0.2, decreasing by
0.1 and decreasing by 0.025 between 0.2 and 0).

The Levenshtein distance is an easy to use
method, leading to good results with a distance of
1 or 2. Using a distance of 1 already leads to a
better coverage than the regularization with only a
small increase in the average set size. The Jaccard
Index has more parameters. With tuning them, it
is possible to reach better coverage for any given
upper bound on the average set size than with Lev-
enshtein. In sum, we get best results by using the
Jaccard Index with a small similarity threshold, n-
grams up to the length of the type, allowing skips
in the n-grams, and weighting the features by their
inverse frequency. In addition, using the probabil-
ities for edit operations to exclude unlikely pairs
helped to improve precision.

5.2 Lemmatization accuracy

In contrast to the oracle setting in the previous
section, we present the actual accuracy gain for
lemmatization in this section. For evaluation we
use the log-linear model described in Müller and
Schütze (2015) to select the best lemma candidates
from the sets. The authors report state-of-the-
art results for a couple of languages among them
DEU with this model. We use all the features de-
scribed there.20 The only exception is Wikipedia
data for GML as this does not exist. We train the

20We also include morphological tags as we train and lem-
matize using gold tags. When using predicted tags, us-
ing this feature might hurt the performance as described
by Müller and Schütze (2015). For Wikipedia, we use
the dump available at http://cistern.cis.lmu.de/
marmot/naacl2015/ (Müller et al., 2015).

58

all oov
Spelling variation handling Coverage (%) � cand. Coverage (%) � cand.
None (ET) 74.30 10.73 24.06 14.78
None (LC-AI) 75.55 14.12 27.60 22.45
Regularization 80.73 13.92 29.58 24.45
Upper 88.31 302.46 68.72 951.33
Levenshtein(1) 83.79 14.52 54.14 23.73
Levenshtein(2) 86.27 17.83 62.14 34.41
Jaccard(0.25,2-∞,0) 81.00 14.46 45.15 23.55
Jaccard(0.25,2-∞,3) 84.73 15.09 57.18 25.59
Jaccard-weighted(0.25,2-∞,3) 84.29 14.75 55.77 24.47
Jaccard-weighted(0.25,2-∞,3), P ≥ 0.05 84.14 14.58 55.27 23.94

Table 2: Coverage for lemma generation with handling of spelling variation on GML
Parameter for Levenshtein: maximal distance; Parameters for Jaccard: minimal similarity, minimal and
maximal size of character n-grams, maximal size of skips; P denotes the product of the P(e).

model using the implementation of L-BFGS (Liu
and Nocedal, 1989) from MALLET (McCallum,
2002).

For the rule-based generators we compare ETs
as they are used in the original version of LEM-
MING and our LC-AIs both with all rules induced
from the training data. In contrast to the experi-
ments in Müller and Schütze (2015), we apply the
rules POS-tag dependently.

For the variation handling we tested the genera-
tors with the best coverage below different thresh-
olds in candidate set size (increasing by 0.1) on
the development set. The accuracy first increases
but starts to decrease when the average set size be-
comes larger than 14.6. This shows that this spe-
cific log-linear model cannot exploit the potential
of our generators, because it is tailored to the us-
age of ETs as generators. We selected the genera-
tor that led to the best results on the development
set.

Table 3 shows the results of the best models.
For spelling variation handling, we compare our
approach with the rule-based regularization. The
oracle experiment has shown that the rule-based
regularization does not remove all of the spelling
variation. Therefore, we applied our approach to
spelling variation handling to the regularized data
as well, again choosing the best parameters set-
tings on the development set.

The results show that using LCs to generate can-
didates leads to better results. As expected from
the coverage data (Section 5.1), the DEU data
shows only a small but statistically significant in-

crease in accuracy (χ2
1 = 11.40, p < 0.001).21

GML profits more from using LCs (1.23%; χ2
1 =

52.16, p < 0.001). The handling of spelling vari-
ation has a bigger impact than modeling word-
internal modification. The ranker cannot exploit
the full potential of the generator and performs
best with parameter settings that lead to a small in-
crease of the average set size. The best performing
model used LC-AIs to generate lemma candidates.
The total increase in accuracy with this method is
5.56% (χ2

1 = 34.88, p < 0.001) above the base-
line model, i.e. generating lemma candidates us-
ing ETs without handling spelling variation. This
is comparable to the increase obtained by regular-
izing the texts before applying the lemmatization
with LCs as generator (5.87%). The difference
between both methods for handling the spelling
variation is not significant (χ2

1 = 0.2, p = 0.66).
Combining regularization and handling of spelling
variation during lemmatization results in an addi-
tional increase of 1.6% (χ2

1 = 21.87, p < 0.001)
over the model using LC-AIs with regularized
texts, leading to a total improvement of 7.38%
over the baseline.

6 Conclusion

We presented two methods for dealing with word-
internal modification and spelling variation in
lemma candidate generation. Both were imple-
mented and tested in the context of data-driven
lemmatization with the program LEMMING.

The experiments showed that a better modeling
21Significance has been tested using McNemar’s test (Mc-

Nemar, 1947) with continuity correction (Edwards, 1948).

59

correct (%)
Data Generator Spelling variation handling all oov
DEU ET - 97.76 93.35

LC-AI - 97.83 93.57
GML ET - 71.86 23.78

LC-AI - 73.09 27.25
ET Regularization 76.58 36.16
LC-AI Regularization 77.64 39.35
LC-AI Generator 77.42 41.19
LC-AI Regularization+Generator 79.24 44.52

Table 3: Lemmatization accuracy

of word-internal modification leads to small im-
provements for a language like Modern German
that features a moderate amount of word-internal
modification (0.22% on OOV types). On a ho-
mogenous resource like the TIGER corpus, the
overall effect of better coverage of OOV types
on the lemmatization accuracy is small (0.07%).
However, for languages with more word-internal
modification and data with more OOV types the
gain is higher. This was shown with a Middle
Low German corpus. Here, using lexical corre-
spondences (LC) leads to an increase in accuracy
of 1.23%.

For the historical Middle Low German texts
handling spelling variation is another impor-
tant factor in lemma candidate generation.
Our language-independent approach to generate
lemma candidates from potential IV spelling vari-
ants for OOV types leads to an increase of 5.56%
in accuracy. In comparison, limiting the spelling
variation by preprocessing the data with rewrite
rules created manually by language experts leads
to an improvement of 5.87%. Combining both
methods lead to a total increase of 7.38%.

While these are good improvements of the accu-
racy, the potential accuracy in terms of coverage is
even higher for our data-driven method. However,
the actual ranker used in our experiments was not
able to exploit this potential. Consequently, there
are two possible ways for further research: Firstly,
adapting the ranker to our modified generators, or,
secondly, to improve the precision of the genera-
tors. We plan to concentrate on the second strand
for further research.

An alternative solution for the problem of re-
stricting the generative capacity of LCs (see Sec-
tion 3) might be an anchoring by lexicalization,
i.e., adding letters before or/and after insertion as

a constant. For instance German sind, sein “(they)
are – (to) be” would lead to the less permissive LC
〈[‘s’, Y, ‘d’], [‘se’, Y]〉. This strategy is similar to
adding context to lemmatization rules used by Lo-
ponen and Järvelin (2010).

The distance measures for detecting possible
spelling variants used in this paper only use string
similarities of the types ignoring their distribution
in the texts. Barteld et al. (2015) also took context
similarity into account by filtering the subset ob-
tained from the string similarity with Brown clus-
ters (Brown et al., 1992), keeping only those IV
types which are in the same cluster as the OOV
type. This – or other methods to include contex-
tual similarity in the selection of potential spelling
variants – is a promising way to improve the pre-
cision of the measures.

7 Resources

The paper is created reproducibly using org-mode
(http://orgmode.org). The org-file and the
scripts that where used to run the experiments are
available at github (https://github.com/
fab-bar/paper-LaTeCH2016). This ver-
sion also includes the appendices.

With this paper, we also release our addi-
tions to LEMMING including the generators de-
scribed in this paper. They are available at github
as well (https://github.com/fab-bar/
cistern).

Acknowledgements

The work of the first and second authors has been
funded by the DFG. We would like to thank the
anonymous reviewers for their helpful remarks
and Andrew Fassett for improving our English.
All remaining errors are ours.

60

Primary data

Johannes Buxtehuder Evangeliar. GML
manuscript from about 1480. Transcribed
in the DFG-funded project “Referenzkor-
pus Mittelniederdeutsch / Niederrheinisch
(1200-1650)”.

Griseldis Griseldis / Sigismunda und Guis-
cardus. GML print of two tales
from 1502. Transcribed in the DFG-
funded project “Referenzkorpus Mittel-
niederdeutsch / Niederrheinisch (1200-
1650)”.

References
Fabian Barteld, Ingrid Schröder, and Heike Zinsmeis-

ter. 2015. Unsupervised regularization of histori-
cal texts for POS tagging. Proceedings of the Work-
shop on Corpus-Based Research in the Humanities
(CRH), pages 3–12.

Marcel Bollmann. 2012. (Semi-)automatic normaliza-
tion of historical texts using distance measures and
the Norma tool. In Francesco Mambrini, Marco Pas-
sarotti, and Caroline Sporleder, editors, Proceedings
of the Second Workshop on Annotation of Corpora
for Research in the Humanities (ACRH-2), pages 3–
14.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Sil-
via Hansen-Schirra, Esther König, Wolfgang Lezius,
Christian Rohrer, George Smith, and Hans Uszko-
reit. 2004. TIGER: Linguistic interpretation of a
German corpus. Research on Language and Com-
putation, 2(4):597–620.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer,
Vincent J. Della Pietra, and Jenifer C. Lai. 1992.
Class-based N-gram models of natural language.
Computational Linguistics, 18(4):467–479.

Grzegorz Chrupała. 2006. Simple data-driven con-
textsensitive lemmatization. Procesamiento del
Lenguaje Natural, 37:121–127.

Grzegorz Chrupała. 2008. Towards a machine-
learning architecture for lexical functional grammar
parsing. Ph.D. thesis, Dublin City University.

Lee R. Dice. 1945. Measures of the amount of
ecologic association between species. Ecology,
26(3):297–302.

Allen L. Edwards. 1948. Note on the “correction
for continuity” in testing the significance of the dif-
ference between correlated proportions. Psychome-
trika, 13(3):185–187.

Leo Egghe. 2010. Good properties of similarity mea-
sures and their complementarity. Journal of the
American Society for Information Science and Tech-
nology, 61(10):2151–2160.

Jacob Eisenstein. 2013. What to do about bad lan-
guage on the internet. In Proceedings of the North
American Chapter of the Association for Computa-
tional Linguistics (NAACL), pages 359–369.

Sean A. Fulop and Sylvain Neuvel. 2013. Networks of
morphological relations. In Proceedings of the In-
ternational Symposium on Artificial Intelligence and
Mathematics (ISAIM-2014).

Andrea Gesmundo and Tanja Samardžić. 2012. Lem-
matisation as a tagging task. In Proceedings of the
50th Annual Meeting of the Association for Compu-
tational Linguistics: Short Papers-Volume 2, pages
368–372.

Nabil Hathout. 2014. Phonotactics in morphologi-
cal similarity metrics. Language Sciences, 46, Part
A:71–83.

Ning Jin. 2015. NCSU-SAS-Ning: Candidate gener-
ation and feature engineering for supervised lexical
normalization. In Proceedings of the Workshop on
Noisy User-generated Text, pages 87–92.

Bart Jongejan and Hercules Dalianis. 2009. Automatic
training of lemmatization rules that handle morpho-
logical changes in pre-, in- and suffixes alike. In
Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing
of the AFNLP: Volume 1, pages 145–153.

Sebastian Kempken. 2005. Bewertung historischer
und regionaler Schreibvarianten mit Hilfe von Ab-
standsmaßen. Ph.D. thesis, Universität Duisburg-
Essen.

Mike Kestemont, Walter Daelemans, and Guy De
Pauw. 2010. Weigh your words—memory-based
lemmatization for Middle Dutch. Literary and Lin-
guistic Computing, 25(3):287–301.

Tuomo Korenius, Jorma Laurikkala, Kalervo Järvelin,
and Martti Juhola. 2004. Stemming and lemmati-
zation in the clustering of Finnish text documents.
In Proceedings of the Thirteenth ACM International
Conference on Information and Knowledge Man-
agement.

Michael Levandowsky and David Winter. 1971. Dis-
tance between sets. Nature, 234(5323):34–35.

Vladimir Levenshtein. 1966. Binary codes capable of
correcting deletions, insertions, and reversals. So-
viet Physics Doklady, 10:707–710.

Dong C. Liu and Jorge Nocedal. 1989. On the limited
memory BFGS method for large scale optimization.
Mathematical Programming, 45(1-3):503–528.

61

Pavel Logačev, Katrin Goldschmidt, and Ulrike
Demske. 2014. POS-tagging historical corpora:
The case of Early New High German. In Proceed-
ings of the Thirteenth International Workshop on
Treebanks and Linguistic Theories (TLT-13), pages
103–112.

Aki Loponen and Kalervo Järvelin. 2010. A
dictionary-and corpus-independent statistical lem-
matizer for information retrieval in low resource lan-
guages. In Maristella Agosti, Nicola Ferro, Carol
Peters, Maarten de Rijke, and Alan Smeaton, edi-
tors, Multilingual and Multimodal Information Ac-
cess Evaluation, pages 3–14. Springer, Berlin and
Heidelberg.

Andrew K. McCallum. 2002. MALLET:
A machine learning for language toolkit.
(http://mallet.cs.umass.edu).

Quinn McNemar. 1947. Note on the sampling error
of the difference between correlated proportions or
percentages. Psychometrika, 12(2):153–157.

Thomas Müller and Hinrich Schütze. 2015. Robust
morphological tagging with word representations.
In Proceedings of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL: HLT), pages
526–536.

Thomas Müller, Ryan Cotterell, Alexander Fraser, and
Hinrich Schütze. 2015. Joint lemmatization and
morphological tagging with Lemming. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2268–2274.

Sylvain Neuvel and Sean A. Fulop. 2002. Unsuper-
vised learning of morphology without morphemes.
In Proceedings of the ACL-02 workshop on Morpho-
logical and phonological learning-Volume 6, pages
31–40.

Robert Peters and Norbert Nagel. 2014. Das digi-
tale ,Referenzkorpus Mittelniederdeutsch / Nieder-
rheinisch (ReN)‘. Jahrbuch für Germanistische
Sprachgeschichte, 5(1):165–175.

Thomas Pilz. 2009. Nichtstandardisierte Rechtschrei-
bung - Variationsmodellierung und rechnergestützte
Variationsverarbeitung. Ph.D. thesis, Universität
Duisburg-Essen.

Klaus Schulz and Stoyan Mihov. 2002. Fast string cor-
rection with Levenshtein-automata. International
Journal of Document Analysis and Recognition,
5:67–85.

Rico Sennrich and Beat Kunz. 2014. Zmorge: A
German morphological lexicon extracted from Wik-
tionary. In Proceedings of the 9th International
Conference on Language Resources and Evaluation
(LREC 2014), pages 1063–1067.

Hans van Halteren and Margit Rem. 2013. Dealing
with orthographic variation in a tagger-lemmatizer
for fourteenth century Dutch charters. Language
Resources and Evaluation, 47(4):1233–1259.

62

