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Abstract

We introduce a highly scalable approach for
open-domain question answering with no de-
pendence on any data set for surface form to
logical form mapping or any linguistic ana-
lytic tool such as POS tagger or named en-
tity recognizer. We define our approach under
the Constrained Conditional Models frame-
work which lets us scale up to a full knowl-
edge graph with no limitation on the size. On
a standard benchmark, we obtained near 4 per-
cent improvement over the state-of-the-art in
open-domain question answering task.

1 Introduction

We consider the task of simple open-domain ques-
tion answering. The answer to a simple question
can be obtained only by knowing one entity and one
property (Bordes et al., 2015).

A property is an attribute which is asked about a
specific thing, place or people in a question. The
thing, place or people in the question are samples
of an entity. The answer to such a question is again
an entity or a set of entities. For instance, in the
question “What is the time zone in Dublin?”, Dublin
is an entity and time zone is a property.

Freebase (Bollacker et al., 2008), the knowledge
graph which we used in our experiments, contains
about 58 million such entities and more than 14
thousands such properties. Hence, entities which
we obtain from the knowledge graph are ambiguous
in majority of cases. We extract metadata available
in the knowledge graph and integrate them into our
system using Constrained Conditional Model frame-

work (CCM) (Roth and Yih, 2005) to disambiguate
entities.

In WebQuestions (Berant et al., 2013), a data
set of 5810 questions which are compiled using the
Google suggest API, 86% of the questions are an-
swerable by knowing only one entity (Bordes et al.,
2015). It suggests that a large number of the ques-
tions which ordinary people ask on the Internet are
simple questions and it emphasizes on the impor-
tance of simple question answering systems. Be-
sides, the best result on this task is 63.9% (Bordes
et al., 2015) which shows open-domain simple QA
is still an unresolved task in NLP.

Despite the title, simple QA is not a simple task
at all. Flexible and unbound number of entities and
their properties in open-domain questions is an in-
timidating challenge for entity recognition. How-
ever, knowledge graphs by providing a structural
knowledge base on entities can help a lot.

We use a knowledge graph to recognize entities at
test time. Defining a model for entity disambigua-
tion on a single question instead of a whole data set
lets us to scale the system up to a large knowledge
graph irrespective to its size. We elaborate on entity
recognition in Sections 6.2 and 6.3.

The contributions of this paper are a highly scal-
able QA system and a high performance entity
recognition model using knowledge graph search.

2 Related works

Domain specific QA has been studied well (Clarke
et al., 2010; Kwiatkowski et al., 2010; Wong and
Mooney, 2007; Zettlemoyer and Collins, 2005; Zelle
and Mooney, 1996) for many domains. In majority
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of these studies, a static lexicon is used for mapping
surface forms of the entities to their logical forms.
Scaling up such lexicons which usually contain from
hundreds to several thousands entities is neither easy
nor efficient. Instead, knowledge graphs contain
millions of entities and are highly efficient structures
which can be used for entity recognition. Knowl-
edge graphs provide rich databases of factual infor-
mation on well-known people, things and places and
they proved being beneficial for different tasks in
NLP including question answering.

There are many studies on using knowledge
graphs for question answering either through infor-
mation retrieval approach (Yao and Durme, 2014;
Bordes et al., 2015) or semantic parsing (Berant et
al., 2013; Berant and Liang, 2014; Cai and Yates,
2013; Kwiatkowski et al., 2013). Even in these
studies, there is still a list of predefined lexicons
for entity recognition (e.g., (Berant et al., 2013; Cai
and Yates, 2013)). Essentially, they use knowledge
graphs only for validating their generated logical
forms and for entity recognition they still depend on
some initial lexicons.

Dependence on predefined lexicons limits the
scope of language understanding only to those pre-
defined ones. In our approach, we don’t use any data
set or lexicon for entity recognition. Instead, we ob-
tain valid entities by querying the knowledge graph
at test time. Then, we apply some constraints on
valid entities to get the correct entity for each ques-
tion.

In part of CCM, it is first proposed by Roth and
Yih in (Roth and Yih, 2005) for reasoning over clas-
sifier results. Some other people used it for different
problems in NLP (Chang et al., 2012; Punyakanok et
al., 2008). (Clarke et al., 2010) proposed a semantic
parsing model using Question-Answering paradigm
on Geoquery (Zelle, 1995) under CCM framework.
Our work differs from them by the size of our data
set and knowledge graph and by the open-domain
nature of the questions.

The most recent work and state-of-the-art on sim-
ple QA belongs to (Bordes et al., 2015) in which
they used memory networks for answering the ques-
tions in SimpleQuestions data set (Bordes et al.,
2015). They proposed their system on a limited ver-
sion of Freebase containing 2 and 5 million entities
(FB2M, FB5M). A 0.5 % decrease in the perfor-

mance of their system when scaling from FB2M to
FB5M suggests that QA in a full knowledge graph is
quite a difficult task. CCM lets us to scale QA from
limited freebase to the full version with more than
58 million entities.

3 Knowledge graph (Freebase)

Knowledge graphs contain large amounts of factual
information about entities (i.e., well-known places,
people and things) and their attributes such as place
of birth or profession. Large knowledge graphs gen-
erally cover numerous domains and they may be a
solution for scaling up domain-dependent systems to
open-domain ones by expanding their boundary of
entity and property recognition. Besides, knowledge
graphs are instances of the linked-data technologies.
In other words, they can be connected easily to any
other knowledge graph and it increases their domain
of recognition.

A knowledge graph is a collection of assertions.
In an assertion, a source entity is connected to a tar-
get entity through a directed and labeled edge. Large
knowledge graphs such as Freebase contain billions
of such assertions. The elements in an assertion (i.e.,
source and target entities and the connecting edge)
are identified using a unique id which is called ma-
chine id or simply MID. These elements are all ob-
jects and it means they have some attributes which
are called properties. The number of properties is
quite huge. However, for the purpose of this pa-
per is enough to know about “id”, “mid”, “name”,
“alias”, “type”, and “expected type”.

Each entity in the graph has one unique “id”
and one unique “mid”. In contrast to “mid” which
has no meaningful association with the entity, “id”
sometimes is meaningfully similar to its entity’s sur-
face form. “name” is one surface form for the re-
spective entity and is usually a literal in form of raw
text, date or a numerical value. “alias” contains the
aliases for its entity.

Each entity has a set of “type”s. A “type” defines
an “IS A” relation with its entity. For instance, entity
“dublin” has types “/topic”, “/book subject”1, etc
which says “dublin” not only is a general topic, but
also is the name of a book.

1Properties are in abbreviated form to save space. For in-
stance, the full form for this property is “/book/book subject”
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“expected type” is defined only for edges. It
states, what you should expect to get as a target en-
tity when traversing the graph through this edge or
property. Each edge has zero or at most one ex-
pected type.

4 Constrained Conditional Model

Constrained Conditional Model (CCM) provides
means of fine-tuning the results of a statistical
model by enforcing declarative expressive con-
straints (Roth and Yih, 2005) on them. Constraints
are essentially Boolean functions which can be gen-
erated using available metadata about entities and
properties in Freebase. Freebase assigns a set of
“type”s to each entity. It also assigns a unique
“expected type” to each property. Intuitively, the
“type” of an answer to a question should be the
same as the “expected type” of the property for that
question. To each test question, a set of properties
each of which with different probabilities and dif-
ferent “expected type”s is assigned. Some of the
properties does not have “expected type” and the
types assigned to answers are not usually unique.
Due to the huge number of entities and their asso-
ciated types in large knowledge graphs, translating
a typical constraint into a feature set for training a
statistical model is practically unfeasible. However,
it can be done easily using Integer Linear Program-
ming (ILP) (Wen-tau, 2004). In this way, we simply
penalize the results of a statistical model which are
not in accordance with our constraints. We elaborate
more on the constraints in Section 5.

5 The learning model

Let’s define P and E as the space of all properties
and entities respectively in a test question. For each
question like “What is the time zone in Dublin?”,
we intend to find the tuple (p e) ∈ P ×E for which
p’s probability and e’s score with respect to some
features and constraints are maximal. Therefore, we
would like to get “/location/location/time zones”2

as the best property and “/en/Dublin” as the best-
matching entity in this question.

We decompose the learning model into two steps,
namely; property detection and entity recognition.
In property detection, we decide which property best

2i.e., /Type 1/Type 2/Predicate

describes the purpose of a given question. In this
step, we model the assignment of properties given
questions using the probability distribution in Equa-
tion 1. We use logistic regression technique to train
the model and use the model for N-best property as-
signment to each question at test time.

P (p|q) =
exp(ωT

p φ(q))
Σpi exp(ωT

pi
φ(q))

(1)

Given a question q, the aim is to find N-best prop-
erties which best describe the content of the ques-
tion and generate the correct answer when querying
against the knowledge graph. φ in the model is a
feature set representing the questions in vector space
and ω are the parameters of the model.

In the second step, i.e., entity recognition, we de-
tect and disambiguate the main entity of a question.
We use an integer linear classifier for assigning the
best-matching entity to each test question at test time
(Equation 2). Entity recognition consists of entity
detection and entity disambiguation.

best entity(q) = arg max
e

(αT s(pq eq))

(pq ep) ∈ Pq × Eq

(2)

A typical question usually contains tokens that all
are available in the knowledge graph while only one
of them is the main focus of the question. For in-
stance, in the question “what is the time zone in
Dublin?”, there are eleven entities which are all
available in the knowledge graph ( “time, zone, time
zone, ..., Dublin”) while the focus of the question is
on “Dublin” and we try to detect it in entity detec-
tion.

Detected entities are mostly ambiguous. Given an
entity like “Dublin”, we need to know what Dublin
(i.e., Dublin in Ireland, Dublin in Ohio, etc.) is the
focus of the question. To help the system with entity
disambiguation, we use heuristics as a constraint to
increase the chance of correct entities. 3 Having N-
best properties assigned to each question, we initial-

3The search space in these experiments is not exponentially
large hence, instead ILP, simple search methods could be used.
However, this is our base line system and we are introducing
more complex constraints which can not be solved by search-
ing. To make sure our baseline system is compatible with future
improvements, we used an ILP solver form the scratch.
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ize s(pq ep) vector. By optimizing a vector of indi-
cator variables (α) subject to two sets of constraints,
we eliminate irrelevant entities.
Pq are N-best properties for a given question q

and Eq are valid entities in q. s(pq ep) is a vector
of pq probabilities. α represents a vector of indica-
tor variables which are optimized through constraint
optimization. Constraints for each question are cat-
egorized into three categories:

• Constraints in the first category enforce the
type of answers of (pq ep) to be equal to the
expected type of pq in each question. We call
the constraints in this category type constraints.

• Constraints in the second category dictate that
ep score which is lexical similarity ratio (edit
distance) between the string values of “name”
and “id” properties connected to an entity
should be maximal. We call the constraints in
this category similarity constraints.

• To make sure that the output of the entity recog-
nition step is zero or at most one entity per
question, we define the third constraint to re-
turn at most one entity.

A type constraint helps in detecting the main fo-
cus of a given question among other valid entities.
Despite the assigned properties, each question has E
number of valid entities. By valid we mean entities
which are available in the knowledge graph.

After property detection, N-best properties are as-
signed to each question each of which has no or at
most one “expected type”. The product between
the N-best properties and the E valid entities gives
us N × E tuples of (entity property). We query
each tuple and obtain the respective answer from the
knowledge graph. Each of the answers has a set of
“type”s. If the “expected type” of the property of
each tuple was available in the set of its answer’s
“type”s, type constraint for the tuple holds true oth-
erwise false.

A similarity constraint helps in entity disam-
biguation. Each entity has an “id” and a “name”
properties. Ambiguous entities usually have the
same “name” but different “id”s. For instance,
entities “/m/02cft” and “/m/013jm1” both have
“Dublin” as their “name” while the “id” for the

first one is “/en/dublin” and for the second one is
“/en/dublin ohio”(and more than 40 other different
entities for the same “name”).

“name” assigns a surface form for entities and
this is the property which we use for extracting
valid entities at first place. In this case, similarity
constraint for entity “/m/02cft” holds true because
among all other entities, it has the maximal edit dis-
tance ratio between its “name” and “id” values. It
is possible that the content of “id” property for an
entity is the same as its “mid”. In such cases, in-
stead “id”, we use “alias” property which contains
a set of surface forms for entities.

6 Method

At training time, we have training questions accom-
panied with their knowledge graph assertions each
of which includes an entity, a property and an an-
swer. Entities and answers are in their MID formats.
We also have access to a knowledge graph (i.e. Free-
base) through an MQL query API (Google, 2013).
First, all questions are fixate to 20 token. Then we
chunk them into their tokens and compute φ(q) by
replacing each token with its vector representation.
To train our classifier, we assign a unique index to
each property in the training data set and use them
as label for the training questions. Given a test ques-
tion at test time, we first get the N-best properties
using our trained model as it is explained below.

6.1 Property detection

In property detection, we train a model which as-
signs N-best property to each question based on its
contents. One approach for doing so is to repre-
sent the words in questions as one-hot vectors and
train a classifier on them. However, representing
words as discreet entities leads the classifier to disre-
gard possible similarity between two tokens. This is
known as sparsity problem and vector representation
of words partially solve this problem. Word vec-
tors or embeddings capture useful information about
words and their relations to other ones. There are
studies that shows there are nice directions like gen-
der (king→ queen) or even major city of countries
(Germany → Berlin) in learned word vectors (Col-
lobert et al., 2011). This attribute makes embed-
dings useful features for different NLP tasks spe-
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cially those ones which require making decisions on
the semantic contents of the texts. We use word
embeddings as features in our logistics regression
model instead of words themselves. It is like a one
layer neural network and it is not much efficient.
Still it obtained competitive results with respect to
the state-of-the-art.

In another experiment, we added more layers to
enhance the performance of the classifier. Finally to
enhance the model even further by taking the role
of neighboring words into account, we used a Con-
volutional Neural Network (CNN) with different fil-
ter sizes and with a max pool layer on the top. The
architecture of our CNN model is similar to Yoon
Kim (Kim, 2014) with some minor modifications.

The CNN model contains four consecutive layers
in which the first one embeds words into low dimen-
sional vector representation. In this step, we adopted
two approaches for learning embeddings. In the first
approach, we let the graph to learn word embed-
dings directly from data by initializing it with a ran-
dom uniform distribution. In the second approach
we used pre-trained Word2vec word embeddings.

The second layer in the CNN slides a convolu-
tion window with different sizes over the embed-
dings and the third layer max pools the result into
a vector which is fed into a softmax layer for classi-
fication in the last layer. For convolution layer, we
used 1,2 and 3 size windows and for the next layer
we tried average and max pooling. Finally we tried
1, 2, and 3 fully connected softmax layers at the end.
We trained a model in training time and then we use
it to obtain N-best properties at test time. Having
the properties, the next step in the model is entity
recognition which includes entity detection and en-
tity disambiguation.

6.2 Entity detection
Instead relying on external lexicons for mapping sur-
face forms to logical forms, we match surface forms
and their MIDs directly using the knowledge graph
at test time. For entity detection, we extract spans
in questions which are available in the knowledge
graph. To do so, we slide a flexible size window over
each question and extract all possible spans with all
possible sizes. We query a live and full version of
Freebase using Meta-Web Query Language (MQL).
MQL is a template-base querying language which

uses Google API service for querying Freebase on
real time.

We query the entity Mid of each span against
the knowledge graph. We have two alternatives
to obtain initial entity Mids; greedy and full. In
greedy approach, only the longest valid entities are
reserved and the rest which may be still valid are
disregard. In full approach, however, all the enti-
ties are reserved. For instance, in a simple span like
“time zone”, while greedy approach returns only
“time zone”, full approach returns “time”,“zone”
and “time zone”. Spans with at least one entity Mid
are recognized as valid entities. Enforcing the type
constraints on valid entities distinguishes relevant
entities from irrelevant ones.

6.3 Entity disambiguation

Detected entities in the last step in many cases are
ambiguous. Entities in large Knowledge graphs
each have different meanings and interpretations.
In a large knowledge graph, it is possible to find
“dublin” as the name of a city as well as the name of
a book. Moreover, when it is the name of a city, that
name is not still unique as we saw in earlier section.
We consider similarity constraints as true, if the lex-
ical similarity ratio between “id” and “name” prop-
erties connected to that entity is maximal. It heuris-
tically helps us to obtain an entity which has highest
similarity with the surface form in a given question.

7 Experiment

The input for training step in our approach is train-
ing and validation sets with their knowledge graph
assertions. Using Word2Vec toolkit (Mikolov et
al., 2011), we replaced the tokens in the data sets
with their vector representations to use them as φ(q)
in our model. We pruned questions with more
than 20 tokens in length and fixate shorter ones by
adding extra <.> token. We already did some sim-
ple pre-processing jobs on the input data includ-
ing non-alphanumeric character removal and space-
separation tokens.

Using these features and the model described
above, we trained a classifier using logistic regres-
sion, neural network and CNN technique. We used
the trained classifier at test time for detecting 100-
best properties for each test question. For multilayer
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trained on property Acc. over all Acc. knowledge graph
Bordes et al. SQ - 61.6 FB5M
Constraint-based(LR) SQ 69.80 61.20 Full FB
Constraint-based(NN) SQ 74.08 63.89 Full FB
Constraint-based(CNN-1) SQ 78.02 65.16 Full FB
Constraint-based(CNN-2) SQ 78.82 65.19 Full FB

Table 1: Experimental results on test set of SimpleQuestions (SQ) data set. LR stands for logistic regression model,
NN for neural network, CNN-1 for convolutional neural network with one channel and CNN-2 for CNN two channels
model.

neural network, we used two hidden layer each with
1024 neurons and for CNN we used the same num-
ber of neurons for convolution and softmax layers.
We tried to enforce regularization on weight vec-
tors, however as already tested in (Zhang and Wal-
lace, 2015) it had no effect on final results. We also
included a new channel in our CNN using POS of
tokens which improved the final model but not sig-
nificantly.

The trained classifier, test questions and Freebase
knowledge graph (February 2016) are inputs at test
time. For testing our system, we used SimpleQues-
tions data set (Bordes et al., 2015) which contains
108442 factoid questions. We divided the data set
into 70%, 10%, and 20% portions for train, vali-
dation and test sets respectively and we did this for
three times randomly as a mean of cross validation.
However, to make our result comparable to the re-
sults of SimpleQuestion authors we reported our re-
sults on the official separation test data.

For entity recognition (including detection and
disambiguation), we defined two sets of constraints
which are described above. Constraints in the first
category (i.e., type constraints) helped with en-
tity detection and constraints in the second cate-
gory (i.e.,lexical similarity) helped with entity dis-
ambiguation. We used Gurobi solver for searching
through the space of possible entities. The space of
search for each question is around 100 to 500 thou-
sands entities. With this space, Gurobi solver was
able to detect entity for 20 questions per second.

We used path-level accuracy for evaluating the
system. In path-level accuracy, a prediction is con-
sidered correct if the predicted entity and the prop-
erty both are correct. This is the same evaluation
metric which is used by the data set authors.

We obtained our best validation accuracy using
greedy approach for entity recognition and 128 di-
mensional embeddings for property detection. Us-
ing the same configuration, we reported the accuracy
of our system on test data.

8 Result

We used only SimpleQuestions to train our system
and then reported the results on official test data sep-
aration (Table 1).

We reported the accuracy for property detection
and overall system separately. As we mentioned ear-
lier, in future studies we intend to work on more
complex and effective constraints to improve the
system performance. However, in these series of ex-
periments, the improvement on overall system accu-
racy is due only to the improvement on property de-
tection. Although our system makes query on the
whole knowledge graph, to make sure our results
are comparable, we eliminate entities which are not
available in FB5M. In this settings, with 99% cover-
age, we obtained 61.2% accuracy in our logistics re-
gression model which is competitive to the results in
(Bordes et al., 2015) when training on the same data
set (61.6%). Our neural network system obtained
63.89 which is the same with (Bordes et al., 2015)
best results when they trained on three training data
sets (WebQuestions and paraphrase data sets in ad-
dition to Simple Question). Finally our CNN model
obtained 65.19% accuracy only trained on Simple-
Questions. Since we work on full knowledge graph,
we hope that our system can answer every possible
simple question which its answer is available in the
full knowledge graph but not in the FB2M.
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9 Conclusion

We introduced a question answering system with no
dependence on external lexicons or any other tool.
Using our system and on a full knowledge graph,
we obtained state-of-the-art results on simple ques-
tion answering task without any linguistic analytic
tool or lexicon. By means of enforcing expressive
constraint on statistical models, our approach is able
to easily scale up QA systems to a large knowledge
graph irrespective to its size.
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