
D S Sharma, R Sangal and E Sherly. Proc. of the 12th Intl. Conference on Natural Language Processing, pages 166–171,
Trivandrum, India. December 2015. c©2015 NLP Association of India (NLPAI)

Judge a Book by its Cover: Conservative Focused Crawling under
Resource Constraints

Shehzaad Dhuliawala Arjun Atreya V
Ravi Kumar Yadav Pushpak Bhattacharyya

Center for Indian Language Technology, CSE Department
IIT Bombay, Mumbai, India,

{shehzaadzd,arjun,ravi,pb}@cse.iitb.ac.in

Abstract

In this paper, we propose a domain spe-
cific crawler that decides the domain rele-
vance of a URL without downloading the
page. In contrast, a focused crawler re-
lies on the content of the page to make the
same decision. To achieve this, we use a
classifier model which harnesses features
such as the page’s URL and its parents’
information to score a page. The classi-
fier model is incrementally trained at each
depth in order to learn the facets of the
domain. Our approach modifies the fo-
cused crawler by circumventing the need
for extra resource usage in terms of band-
width. We test the performance of our ap-
proach on Wikipedia data. Our Conserva-
tive Focused Crawler (CFC) shows a per-
formance equivalent to that of a focused
crawler (skyline system) with an average
resource usage reduction of ≈30% across
two domains viz., tourism and sports.

1 Introduction

Crawling is a process of fetching documents iter-
atively from the web. While generic web search
engines need to crawl and index a huge num-
ber of documents, there exist other search sys-
tems like enterprise search, domain search, patent
search etc., that concentrate on a particular sec-
tion of the web. The crawling infrastructure re-
quired to process the entire web is huge and most
small scale and academic organizations cannot af-
ford them. Even though open source crawling
frameworks help in crawling the web, resource
constraints limit the number of documents be-
ing crawled. Most generic web crawlers employ
a breadth-first approach for fetching documents
from the web. A set of seed URLs which are man-
ually fed to the crawler are processed in the first

depth and then the outlinks are processed for sub-
sequent depths. This process continues for multi-
ple depths to crawl more documents. Every doc-
ument crawled needs to be processed before re-
trieval. Processing a document involves the fol-
lowing sequence of steps:

Fetching The process of downloading the docu-
ment from the web. This is a bandwidth con-
suming task.

Parsing The process of extracting clean content
from a web document. Parsing would also in-
volve extracting outlinks, language, domain
information and other meta information from
the document. This is a CPU intensive task.

Indexing The process of storing the document in
a searchable format. This is a memory inten-
sive task.

In the context of crawling under resource con-
straints, it is important to carefully choose the ap-
propriate outlinks to be crawled at each depth.
Choosing the outlinks before actually fetching
them involves taking a decision based on the out-
link and its parents’ characteristics (which are al-
ready fetched in the previous depths).

The organization of the paper is follows; in Sec-
tion 2, we talk about related work. Section 3 de-
scribes the problem statement. Our approach is
discussed in Section 4 while Section 5 details the
experimental setup, 6 describes our skyline sys-
tem. The analysis of the results obtained are dis-
cussed section 7. We conclude our work in section
8.

2 Related Work

(Chakrabarti et al., 1999) is the first work which
talks about crawling a topic specific set of web-
pages. Classifying a document based on the URL
and its content is discussed in (Kan, 2004). For
the problem of classifying a document based on166

URL only, some of the features mentioned in this
work is found to be useful. The closest work to
our approach is by Aggarwal et al. (2001), which
provides an idea about categorizing the domain of
a URL while crawling but uses a simple weighted
addition for scoring. This paper does not address
the adaptability of the weights across domains.

Kan and Thi (2005) added URL features, com-
ponent length, content, orthography, token se-
quence and precedence to model URL. The re-
sulting features, used in supervised maximum en-
tropy modeling, significantly improve over exist-
ing URL features. Baykan et al. (2009) showed
that machine learning approach outperforms dic-
tionary based approach for URL classification
with n-grams as features.

Jamali et al. (2006) discusses use of link struc-
ture of web and content for focused crawler. They
use a classifier to compute similarity of given web
page to the topic. Qi and Davison (2009) de-
scribes multiple content based features that can
be used for page classification in focused crawl-
ing. Priyatam et al. (2013) worked with URL
based approach and tokenized them using n-grams
to achieve high precision for Indian languages.
The other works that use URL tokens as features
for document classification are Shih and Karger
(2004), Hernandez et al. (2012) and Anastacio et
al. (2009).

3 Problem Statement

In this work, we address the problem of excess re-
source usage while classifying the document as in-
domain or out-domain during crawling.

The formal problem statement is as follows:
Rank the URLs to be crawled in a given depth

based on the URL and its parents’ information
gathered over previous depths.

4 Our Approach

We propose a light-weight focused crawler which
selectively discards the out-domain URLs without
fetching them. This is done by scoring and prior-
itizing the URLs to be crawled in each iteration.
Our approach gives a set of in-domain URLs to be
fetched at a given depth. As several links get re-
jected before the fetching stage, the cost of fetch-
ing them is averted.

Figure 1 describes the architecture of our pro-
posed crawler. In a generic crawling pipeline,
we integrate a classification module that assigns

Figure 1: The system architecture

a confidence score to each outlink. The classifi-
cation module uses the outlink’s URL along with
some features of the outlink’s parents to decide
the domain of the outlink. We prioritize the URLs
based on these scores that would be fetched in the
subsequent depths. The initial classification mod-
ule is trained on a small set of outlinks. At every
depth, the model is incrementally trained using the
in-domain and out-domain outlinks encountered in
that depth. As shown in figure 1, the initial model,
M0 is trained using a small set of initial positive
and negative outlinks, P0 and N0. In depth i + 1,
the model of the initial depth Mi is incrementally
trained using Pi + 1 and Ni + 1.

4.1 Scoring

The process of assessing the confidence of an
outlink pointing to an in-domain page involves
the creation of a feature vector for every outlink.
This feature vector is then fed to a binary classi-
fier which then assigns a class(in-domain or out-
domain) to the outlink along with a confidence
score.

The scoring model incorporates four sets of to-
kens. These sets are called token pools. Two pools
collate tokens of URLs and anchor texts linking
to all the in-domain pages crawled till the current
depth, while the other two pools comprise of to-
kens of URLs and anchor texts relating to out-
domain pages. The pools also hold a weight for
each token based on its frequency of occurrence.

In order to score every outlink the following fea-
tures are used:

• The weighted overlap between the tokens in
the outlink’s URL with the positive URL to-
ken pool
• The weighted overlap between the tokens in167

the outlink’s anchor text with the positive an-
chor text token pool
• The weighted overlap between the tokens in

the outlink’s URL with the negative URL to-
ken pool
• The weighted overlap between the tokens in

the outlink’s anchor text with the negative an-
chor text token pool
• The weighted overlap between the tokens in

the outlink’s parents’ URL with the positive
URL token pool
• The weighted overlap between the tokens in

the outlink’s parents’ URL with the negative
URL token pool
• The average score of the outlink’s parents
• The total number of in-domain parents
We use the concept of weighted overlap with

pools over a bag-of-words approach is because the
list of tokens relating to a domain is not exhaus-
tive. These pools are updated at each depth with
newer tokens discovered. A weighted overlap is
chosen to accommodate for non-domain specific
words. Tokens with no domain information would
be present in equal amounts in both the negative
and positive pools. Words which provide informa-
tion about the domain and indicate that the outlink
is in-domain would have a higher weight in the
positive token pool.

4.2 Facets of a domain
A domain cannot be only categorized using a small
exhaustive list of words. A domain often has sev-
eral facets. Hence, trying to train a complete clas-
sifier for domain identification is often a huge task.
For example, the domain sports may have sub-
domains such as:

• Football

• Cricket

• Hockey

Quite obviously, the terms associated with the
three above sub-domains of the domain of sports
will not be the same. A classifier model which is
trained using the terms of Football may be unable
to recognize the terms of another sub-domain like
Cricket. To overcome this we use an online classi-
fication model. The classification model is incre-
mentally trained at every depth as newer outlinks
are discovered. The online training is described in
section 4.3.

4.3 Online Learning

Over multiple iterations the performance of the
classifier may decrease as new tokens are encoun-
tered; online learning, in such a scenario, seems
like a viable option (Priyatam et al., 2013). The
incremental training aspect of the model manifests
two major benefits. First, it allows for the initial
set of training data to be relatively small (Zheng
et al., 2013). Secondly, it prevents the accuracy
from dipping over depths as new tokens are en-
countered.

Over the iterations, the size of the pools grow.
The classifier uses the new training data to incre-
mentally learn. There can be multiple combina-
tions to create this training set. We selectively
train our classifier with only a small fraction of the
pages.

The risk of an incremental classifier, however,
comes in the form of topic drift. A small amount
of corruption in the training pool, can cause the
classifier to accept several out-domain examples
for training and hence decreasing the accuracy. As
the model is further trained, it begins to assert its
belief.

5 Experimental Setup

We customize the open source crawler, Nutch 1.7
for our experimental setup.

We replace the scoring mechanism by our
model. For the classifier we use an online Naive
Bayes classifier. Given that we begin our crawl
with a very small set of initial training data, we
employ a Naive Bayes classifier.

5.1 Generating initial pools and training data

CFC requires a very small data set to initially train
itself. The crawler starts with a single seed URL
(The content page of the category). This crawler
initially runs until it crawls 400 in-domain and
400 out-domain pages. This information is used
to populate the initial set of pools and create the
initial training file.

5.2 Crawling

We use Apache-Nutch-1.7 as the basic crawl
frame work. The single seed URL for each of the
domains is listed in table 2. The crawlers (CFC
and Skyline) are instructed to fetch 100 in-domain
URLs in every depth and the crawl is run for a total
of 20 depths.168

Figure 2: Scoring the token with the token pools

5.3 Data

We use English Wikipedia as our data set for ex-
periments. Wikipedia was specifically chosen as
pages are highly linked, so offering a highly con-
nected web graph. Secondly, Wikipedia pages are
category tagged. This allows for gold data to be
effectively identified. In our experiments we aim
to crawl over two topic domains: Indian Tourism
and sports.

5.3.1 Preparing Gold Data
Each document in Wikipedia is associated with
a set of categories. Each category represents a
collection of documents belonging to a particu-
lar topic. A category may have one or more sub-
categories resulting in a hierarchical structure.

For tourism we choose the category Tourism
in India1 and for sports we choose Sports2.
Along with the chosen topic root categories, we
choose the sub categories in their respective cate-
gory trees.

The category lists obtained are further manually
pruned to refine our gold category set.

6 Skyline

For a skyline, we use the idea behind a generic
focused crawler. Here every page is downloaded
before the crawler verifies its domain. The Sky-
line Crawler is built by inserting a domain identi-
fier 6.1 into the pipeline of a generic crawler. The
domain identifier downloads each page and asserts
its domain. This is a bandwidth intensive process.

6.1 Domain Identifier

For the creation of our Skyline Crawler, we cre-
ate a binary class, bag of words text classifier.

1https://en.wikipedia.org/wiki/Category:Tourism
2https://en.wikipedia.org/wiki/Category:Sports

Domain Accuracy
Indian Tourism 95.4

Sports 94.8

Table 1: Domain Identifier accuracies

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 500 1000 1500 2000

H
a
rv

e
s
t
R

a
te

No. of URLs

CFC
Skyline

Figure 3: Harvest Rate: Indian Tourism

This classifier was trained over pre-crawled gold
topic data. The classifier was trained using 1000
Wikipedia pages belonging to the required domain
along with 1000 randomly selected general cate-
gory documents. The classifier used was a C-SVC
type SVM. The five-fold accuracies obtained by
the classifiers for the domains of Indian Tourism
and sports are described in table 1.

7 Results

7.1 Harvest-rate

This section discusses the performance of CFC
when pitted against the Skyline crawler 6. We ob-
serve that CFC’s performance is close to skyline
accuracy.

The metric used to compare the crawlers per-
formance is the harvest-rate obtained. (Li et al.,
2008) defines harvest rate as:169

Domain Initial seed URL
Indian Tourism https://en.wikipedia.org/wiki/Tourism in India

Sports https://en.wikipedia.org/wiki/Sport

Table 2: Seed URLs

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 500 1000 1500 2000

H
a
rv

e
s
t
R

a
te

No. of URLs

CFC
Skyline

Figure 4: Harvest Rate: Sports

Crawler Indian Tourism Sports
CFC 0.82 0.82

Skyline 0.83 0.91

Table 3: harvest rate comparison

The harvest rate represents the fraction
of web pages crawled that satisfy the
crawling target R among the crawled
pages P. If the harvest ratio is high, it
means the focused crawler can crawl
the relevant web pages effectively; oth-
erwise, it means the focused crawler
spends a lot of time eliminating irrele-
vant pages, and it may be better to use
another crawler instead. Hence, a high
harvest rate is a sign of a good crawling
run.”

The harvest rate for both Indian tourism and
sports domain is depicted in figures 3 and 4. In
figure 3, CFC starts with a very high harvest rate.
However, this doesn’t seem to be mirrored in fig-
ure 4. We feel this is just by chance as the harvest
rate seems to soon stabilize. The graphs (figures
3 and 4) show that the Skyline outperforms CFC.
However, as the number of URLs increase, the do-
main identifier is unable to maintain its high accu-
racy. A likely reason for this is that, over time, the
domain identifier gets several pages of different
facets of the domain which it hasn’t been trained
on. CFC, however, doesn’t suffer from this dip as

 100

 120

 140

 160

 180

 200

 0 5 10 15 20

N
o
.
o
f
 p

a
g
e
s
 d

o
w

n
lo

a
d
e
d

Depth

CFC
Skyline

Figure 5: Resources: Indian Tourism

the online classifier model is constantly updated
with new terms and tokens. Towards the end of
the graphs, we notice that CFC and Skyline reach
very close.

7.2 Resources

In this section we aim to compare CFC with the
Skyline crawlers based on the amounts of re-
sources required. Bandwidth (for fetching) is a
major resource involved in crawling. All other re-
sources like processing power (for parsing), mem-
ory (for indexing) depends on the number of pages
fetched. Hence, we evaluate our crawling perfor-
mance in terms of bandwidth usage.

The Skyline crawler requires an additional
amount of internet bandwidth owing to the fact
that it needs to download a page to determine the
domain of the page. While CFC scores an out-
link before the page is downloaded, only a fixed
number of pages are downloaded at every depth.
Downloading of extra pages increases the usage
of bandwidth and also increases the time required
for crawling.

Figures 5 and 6 show that the number of pages
which need to judge the domain is much higher.
The figures don’t indicate any specific trend, how-
ever we notice that the average number of pages
needed to be downloaded for sports is relatively
higher than that for tourism. The maximum pages
which needed to be downloaded in any depth is
around 180 for each of the domains.170

 100

 120

 140

 160

 180

 200

 0 5 10 15 20

N
o
.
o
f
 p

a
g
e
s
 d

o
w

n
lo

a
d
e
d

Depth

CFC
Skyline

Figure 6: Resources: Sports

Crawler Indian Tourism Sports
CFC 137.4 157.5

Skyline 100 100

Table 4: Average pages downloaded

The metric indicating number of pages down-
loaded does not do complete justice when trying
to judge the crawler on its resource usage. Sev-
eral offline factors also do come into play. The
Skyline crawler needs to train an SVM classifier
on a huge number of documents. This clearly
uses more computing power than training a Naive
Bayes classifier on a few set of numeric features.
The Skyline crawler also needs the huge set of in-
domain documents which it can be trained upon.

8 Conclusion

In this paper, we developed a preemptive crawler
that selectively picks a set of in-domain URLs to
be crawled in each depth. Using the outlink’s URL
and its parent’s information to determine a page’s
domain, yields results comparable to that of a fully
fledged focused crawler. Our experimental results
on tourism and sports domains validate reduced
bandwidth usage of ≈30%. As a future work, we
aim to evaluate our system on the open web which
has a more complex web-graph as compared to
Wikipedia.

References
Charu C Aggarwal, Fatima Al-Garawi, and Philip S Yu.

2001. Intelligent crawling on the world wide web
with arbitrary predicates. In Proceedings of the 10th
international conference on World Wide Web, pages
96–105. ACM.

Ivo Anastácio, Bruno Martins, and Pável Calado.

2009. Classifying documents according to loca-
tional relevance. In Progress in Artificial Intelli-
gence, pages 598–609. Springer.

Eda Baykan, Monika Henzinger, Ludmila Marian, and
Ingmar Weber. 2009. Purely url-based topic clas-
sification. In Proceedings of the 18th international
conference on World wide web, pages 1109–1110.
ACM.

Soumen Chakrabarti, Martin Van den Berg, and Byron
Dom. 1999. Focused crawling: a new approach
to topic-specific web resource discovery. Computer
Networks, 31(11):1623–1640.

Inma Hernández, Carlos R Rivero, David Ruiz, and
Rafael Corchuelo. 2012. A statistical approach to
url-based web page clustering. In Proceedings of the
21st international conference companion on World
Wide Web, pages 525–526. ACM.

Mohsen Jamali, Hassan Sayyadi, Babak Bagheri
Hariri, and Hassan Abolhassani. 2006. A method
for focused crawling using combination of link
structure and content similarity. In Proceedings of
the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence, pages 753–756. IEEE Com-
puter Society.

Min-Yen Kan and Hoang Oanh Nguyen Thi. 2005.
Fast webpage classification using url features. In
Proceedings of the 14th ACM international confer-
ence on Information and knowledge management,
pages 325–326. ACM.

Min-Yen Kan. 2004. Web page classification with-
out the web page. In Proceedings of the 13th inter-
national World Wide Web conference on Alternate
track papers & posters, pages 262–263. ACM.

Hang Li, Ting Liu, Wei-Ying Ma, Tetsuya Sakai, Kam-
Fai Wong, and Guodong Zhou. 2008. Informa-
tion Retrieval Technology: 4th Asia Information Re-
trieval Symposium, AIRS 2008, Harbin, China, Jan-
uary 15-18, 2008, Revised Selected Papers, volume
4993. Springer.

Pattisapu Nikhil Priyatam, Srinivasan Iyengar, Krish
Perumal, and Vasudeva Varma. 2013. Dont use a lot
when little will do: Genre identification using urls.
Research in Computing Science, 70:207–218.

Xiaoguang Qi and Brian D Davison. 2009. Web page
classification: Features and algorithms. ACM Com-
puting Surveys (CSUR), 41(2):12.

Lawrence Kai Shih and David R Karger. 2004. Using
urls and table layout for web classification tasks. In
Proceedings of the 13th international conference on
World Wide Web, pages 193–202. ACM.

Jun Zheng, Furao Shen, Hongjun Fan, and Jinxi Zhao.
2013. An online incremental learning support vector
machine for large-scale data. Neural Computing and
Applications, 22(5):1023–1035.

171

