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Multilingual Text Processing

National Research Council Canada
Ottawa, ON K1A0R6

Firstname.Lastname@nrc.ca

Abstract

We describe the system built by the Na-
tional Research Council (NRC) Canada
for the 2015 shared task on Discriminat-
ing between similar languages. The NRC
system uses various statistical classifiers
trained on character and word ngram fea-
tures. Predictions rely on a two-stage pro-
cess: we first predict the language group,
then discriminate between languages or
variants within the group. This year, we
focused on two issues: 1) the ngram gen-
eration process, and 2) the handling of
the anonymized (“blinded”) Named Enti-
ties. Despite the slightly harder experi-
mental conditions this year, our systems
achieved an average accuracy of 95.24%
(closed task) and 95.65% (open task), end-
ing up second or (close) third on the closed
task, and first on the open task.

1 Introduction

Although language identification is largely con-
sidered a solved problem in the general setting,
a number of frontier cases are still under study.
For example, when little data is available (eg sin-
gle twitter post), when the input is mixed or when
discriminating similar languages or language vari-
ants.

The Discriminating between similar languages
(DSL) shared task offers precisely such a situation,
by offering an interesting mix of close languages
and variants, and relatively short, one-sentence
texts. This year, four groups contain similar lan-
guages:

• Bosnian, Croatian and Serbian;

• Indonesian and Malaysian;

• Czech and Slovakian;

• Bulgarian and Macedonian.

Two groups contain variants of the same language:

• Portuguese: European vs. Brazilian;

• Spanish: European vs. Argentinian.

In addition, instances to classify are single sen-
tences, a more realistic and challenging situation
than full-document language identification.

There are two interesting additions to the 2015
challenge. A second test set, with Named En-
tity anonymized, was added to evaluate the influ-
ence of local information on the predictions. In
addition, sentences from “other”, unknown lan-
guages were added to the test sets. This means that
group/language prediction is not limited to the 13
languages in the training set.

Following some good results at last year’s eval-
uation (Goutte et al., 2014; Zampieri et al., 2014),
we took part to this years evaluation in order to see
how our system would handle the additional lan-
guage pair, and the two challenges of anonymized
named entities and more varied test data. In addi-
tion, we wanted to further explore the way char-
acter ngrams should be more efficiently extracted
from the raw text.

The overall longer term motivation is to use lan-
guage and variant detection to help natural lan-
guage processing, for example in machine trans-
lation (Zbib et al., 2012). Discriminating similar
languages may also be a first step to identify code
switching in short messages (Elfardy et al., 2013).

The following section describes the models we
used, and the features we extracted from the data.
We then briefly describe the data we trained on
(Section 3), and summarize our experimental re-
sults in Section 4.

2 Models

Our approach relies on a two-stage process. We
first predict the language group, then discriminate
the languages or variants (which for convenience
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we simply all call “language” from now on) within
the group. This approach works best if the first
stage (i.e. group) classifier has high accuracy, be-
cause if the wrong group is predicted, it is im-
possible to recover from that mistake in the sec-
ond stage. On the other hand, as most groups
only comprise two languages, our two-stage pro-
cess makes it possible to rely on a simple binary
classifier within each group, and avoid the extra
complexity that comes with multiclass modeling.

We first describe the features we extract from
the data (Section 2.1). We then provide a quick
overview of how the probabilistic group classi-
fier works (Section 2.2). Finally, we describe the
within-group language predictors in Section 2.3.

2.1 Features

Based on previous experience, we focus on char-
acter and word ngrams as features. We generate
several feature spaces, depending on the basic se-
quence unit (character or word), size of the ngram
(N) and way to extract it from the sentence to clas-
sify.

bowN: Within-sentence consecutive subsequence
of N words. We focus on unigrams (bag of
words) and bigrams, as higher orders seem
to degrade performance. Bigrams use spe-
cial tokens to mark begining and end of sen-
tences.

charN: Character ngrams, extracted from the
complete sentence including whitespaces and
punctuation.

pcharN: Character ngrams, extracted from the
complete sentence including whitespaces, but
removing the punctuation.

scharN: Within-word character ngrams, after
removing punctuation. Word boundaries are
included, but ngrams are not extracted over
two or more words. Words smaller than the
ngram size are include, e.g. “I” yields the
ngram “ I ” for N ≥ 3.

For character ngrams, we generated all feature
spaces corresponding to N = 2 . . . 6, while we
limit word ngrams to bow1 and bow2. We index
all ngrams observed at least once in the entire col-
lection.

2.2 Group Prediction
Predicting the language group, including X, is a 7-
way classification task. For this first stage, we use
the same probabilistic model as last year (Gaussier
et al., 2002; Goutte et al., 2014). This model of-
fers a convenient and fast way to handle the group
prediction, and its performance on last years’ data
proved excellent. This is a generative model for
co-occurrences of words w in documents d. It
models the probability of co-occurrence P (w, d)
as a mixture model over classes c:

P (w, d) = P (d)
∑

c

P (w|c)P (c|d), (1)

where P (w|c) is the profile for class c, ie the prob-
ability that each word1 w in the vocabulary may be
generated for class c, and P (c|d) is the profile for
document d, ie the probability that a word from
that document is generated from each class. This
is a supervised version of the Probabilistic La-
tent Semantic Analysis model (Hofmann, 1999),
similar to Naı̈ve Bayes (McCallum and Nigam,
1998), except that instead of sampling the class
once per document and generating all words from
that class, this model can resample the class for
each word in the document. This results in a much
more flexible model, and higher performance.

Model estimation is done by maximum likeli-
hood and is identical to Naı̈ve Bayes:

P̂ (w|c) =
1
|c|

∑
d∈c

n(w, d). (2)

Model behaviour depends solely on this set of
class profile vectors. They provide lexical proba-
bilities for each class. For predicting class assign-
ment for a new document, we introduce the new
document d̃ and associated, unknown parameters
P (d̃) and P (c|d̃). We estimate the posterior as-
signment probability P (c|d̃) by folding in d̃ into
the collection and maximizing the log-likelihood
of the new document,

L̃ =
∑
w

n(w, d̃) log P (d̃)
∑

c

P (c|d̃)P (w|c),

with respect to P (c|d̃), keeping the class profiles
P (w|c) fixed. This is a convex optimization prob-
lem that may be efficiently solved using the itera-
tive Expectation Maximization algorithm (Demp-

1In the context of this study, a “word” w is a (word or
character) ngram, according to Section 2.1.
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ster et al., 1977). The resulting iterative, fixed-
point equation is:

P (c|d̃)← P (c|d̃)
∑
w

n(w, d̃)

|d̃|
P (w|c)∑

c P (c|d̃)P (w|c)
,

(3)
where |d̃| =

∑
w n(w, d̃) is the length of docu-

ment d̃. Because the minimization is convex w.r.t.
P (c|d̃), the EM update converges to the unique
maximum.

Given a corpus of annotated documents, model
parameters are estimated using Eq. 2. This is
extremely fast and ideal for training on the large
corpus available for this evaluation. At test time,
we initialize P (c|d̃) with the uniform distribution
and run the EM equation (3) until convergence for
each test sentence. Although this phase is slower
than training, it may be easily and efficiently par-
allelized on, e.g. multicore architecture.

Note that the 7-way group prediction task is, in
practice, handled using a 14-class model predict-
ing the languages (including “Other”), and map-
ping the predictions to the 7 groups.

2.3 Language Prediction

Once the group is predicted from the previous
stage, within-group language prediction becomes
a binary classification problem in most groups, or
a 3-way classification problem in group A.

For groups B to G, we rely on Support Vector
Machines, powerful binary discriminative classi-
fiers which typically perform very well on text. In
our experiments, we use the SVMlight (Joachims,
1998) implementation. We trained a binary SVM
on each of the feature spaces described in Section
2.1. The training examples are limited to the two
languages within the group under consideration.
Each SVM is therefore trained on a smaller docu-
ment set, making training more manageable. We
used a linear kernel, and set the C parameter in
SVMlight to the default value. Prediction with a
linear kernel is very fast as it only requires com-
puting the dot product of the vector space repre-
sentation of a document with the equivalent linear
weight vector for the model.

For group A, we need to handle the 3-way mul-
ticlass situation to discriminate between Bosnian,
Croatian and Serbian. This is done by first training
one linear SVM per class in a one-versus-all fash-
ion. We then apply a calibration step using a Gaus-
sian mixture on SVM prediction scores in order to

transform these scores into proper posterior proba-
bilities (Bennett, 2003). We then predict the class
with the highest calibrated probability. Once the
calibration model has been estimated on a small
held-out set, applying the calibration to the three
models and picking the highest value is very effi-
cient.

2.4 Voting

Each feature space (Section 2.1) yields a set of
group and language classifiers. Each may yield
different performance and make different mis-
takes. There are several ways to combine different
feature sets.

One method is to concatenate features into a
larger, single feature space on which classifiers
are trained. Choosing the feature spaces to com-
bine and concatenating them poses some (mild)
computational and combinatorial problems. In ad-
dition, we did not find this approach particularly
effective in our 2014 experiments, so we did not
consider it this year.

Another approach is to combine outputs from
models trained on different feature spaces. This
can be done by training a combination model us-
ing these outputs as its inputs, as in, e.g., stacked
generalization (Wolpert, 1992). Of course, this re-
quires training an additional model, setting aside
data to estimate it, etc. Previous investigations
(Goutte et al., 2013) suggest that a simpler ap-
proach is actually more effective. We simply com-
bine the output of models by voting: for a given
set of models trained on different feature spaces,
each model votes for the class it predicts, and the
final prediction goes to the class with the most
votes. In order to simplify the choice of the set
of models, we rank all feature spaces according
to their cross-validated prediction error, and pick
the number of models that yields the highest per-
forming vote, again according to cross-validation.
This simple approach is surprisingly and consis-
tently effective. One explanation is that prediction
errors for different models tend to be independent,
so that these errors usually don’t conspire towards
the wrong prediction.

3 Data

For the closed task experiments, we used the
DSLCC v.2.0 corpus provided by the organizers
(Zampieri et al., 2015). This corpus covers 13 lan-
guages in 6 groups, plus “Other”. Although the
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number of groups and languages is similar to last
year’s shared task (Zampieri et al., 2014), the En-
glish group was dropped in favour of a new group
for Bulgarian and Macedonian, called G in Table
1. For the closed task experiment, no other re-
source of any sort was used.

For the open task, we combined the DSLCC
v.2.0 data used for the closed task with the rel-
evant portion of the DSLCC v.1.0 provided last
year (Tan et al., 2014). Specifically, we ignore
the two variants of English from the 2014 col-
lection, and added the rest to the 2015 training
data. We actually tried to use the DSLCC v.2.1
collection, with the additional Mexican Spanish
and Macanese Portuguese data, to check whether
this would help improve the group prediction (first
stage), but that did not help according to the cross-
validation estimator.

Note that the data is nicely balanced across
classes. We used a stratified 10-fold cross-vali-
dation estimator, respecting the class proportions
across folds, in order to estimate prediction per-
formance. The data provided as development set
was used as one fold in this estimator.

Table 1 shows the size of the training and test
sets. Two test sets were provided: test set A con-
tains original unmodified sentences, while test set
B was modified to replace named entities with a
placeholder (#NE#). Our closed task system used
only the “Train 2015” data, while the open task
added the “Train 2014” data to estimate models.

One key difference between the 2014 and 2015
data is the sentence length. In 2015, all sentences
have between 20 and 100 words, while in 2014,
they had up to 600 words in some groups.

4 Results

4.1 Submitted Systems

We ended up submitting two runs to each of the
tasks (close and open), and each of the test sets
(A and B), resulting in eight runs in total. The
difference between the closed and open tasks runs
is simply the data used for training, as explained
in the previous section.

For test set A, our first run is the best system us-
ing a single feature space, as estimated by 10-fold
cross-validation, Our second run is the best voting
combination, again estimated by cross-validation.

For test set B, we focused on feature spaces that
would be relatively insensitive to the anonymized
named entity. We removed the #NE# placeholder

Task closed open
Test set A B A B
Run # 1 2 1 2 1 2 1 2
# errors 3 3 5 4 1 2 2 2

Table 2: Number of errors (out of 14000 test sen-
tences) made by the group-level classifier for the
eight runs (two runs per task and per test set).

in test set B before extracting the bow1 and all
scharN ngram features. Our first run is the best
system using only character ngrams, which ends
up being schar6 in all cases. Our second run is
trained on bag of words, bow1. No voting combi-
nation was used on test set B, resulting as expected
in lower performance.

4.2 Group Prediction

We first look at the number of mistakes made by
the group-level predictor. As mentioned above,
this is important because the language prediction
further down the line will be unable to recover
from mistakes made at the group level.

The number of group-level errors varies de-
pending on the task (closed or open) and the fea-
ture space used (best or vote). On the closed task,
the cross-validated accuracy is 99.971% for the
best feature space (pchar6) and 99.976% for the
best vote (pchar6, bow1 and char6), corre-
sponding to 80 and 67 errors, respectively, out of
280,000 examples. For the open task, the accuracy
is 99.977% for the best and 99.979% for the vote,
i.e. respectively 64 and 59 errors. Most of the
errors are caused by X (Other) documents being
predicted in the E (Spanish) group.

Table 2 shows the number of actual prediction
errors made on the test sets by the group-level clas-
sifiers for each of our eight runs. Note that in last
year’s shared task, a single test document was in-
correctly classified at the group level. This year
shows a large increase, especially on test set B,
for which we did not have any example document
before the test phase. The open task, using more
data, allows for slightly better performance.

4.3 Language Prediction

Tables 3 and 4 show all results obtained by our
runs, as well as the results per group. The overall
picture is similar to last year’s evaluation. Group
A is the hardest, followed by the Spanish (E) and
Portuguese (D) varieties groups. Groups B and
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# sentences
Group Language or Train Train Test sets

Variety 2015 2014 A B
Bosnian 20,000 20,000 1000 1000

A Croatian 20,000 20,000 1000 1000
Serbian 20,000 20,000 1000 1000

B Indonesian 20,000 20,000 1000 1000
Malaysian 20,000 20,000 1000 1000

C Czech 20,000 20,000 1000 1000
Slovak 20,000 20,000 1000 1000

D Brazil Portuguese 20,000 20,000 1000 1000
Portugal Portuguese 20,000 20,000 1000 1000

E Argentine Spanish 20,000 20,000 1000 1000
Spain Spanish 20,000 20,000 1000 1000

G Bulgarian 20,000 - 1000 1000
Macedonian 20,000 - 1000 1000

X Others (“xx”) 20,000 - 1000 1000

Table 1: Number of sentences in the Discriminating Similar Languages Corpus Collections (DSLCC)
provided for the 2014 and 2015 shared tasks, plus test sets with (A) or without (B) named entities, across
groups and languages. The system for the closed task was trained on 2015 data only, the system for the
open task was trained on 2014 and 2015 data.

Task closed
Test set A B
Run # 1 2 1 2

Acc. #err Acc. #err Acc. #err Acc. #err
Group A 88.53 344 89.90 303 87.00 390 84.57 463
Group B 99.30 14 99.35 13 98.80 24 98.90 22
Group C 99.95 1 99.95 1 100.0 0 99.95 1
Group D 92.40 152 92.70 146 86.75 265 86.15 277
Group E 89.40 212 89.95 201 85.20 296 84.35 313
Group G 99.95 1 99.95 1 100.0 0 100.0 0
Overall 94.82 725 95.24 666 93.01 979 92.30 1078

Table 3: Language prediction test accuracy for the closed task, both test sets and all runs. Our best
results are in bold (tied for second overall). Overall #err is larger than column sum due to “Other”.

Task open
Test set A B
Run # 1 2 1 2

Acc. #err Acc. #err Acc. #err Acc. #err
Group A 89.90 303 90.43 287 87.47 376 85.87 424
Group B 99.50 10 99.60 8 98.65 27 98.85 23
Group C 99.95 1 100.0 0 100.0 0 100.0 0
Group D 92.90 142 93.05 139 87.85 243 87.35 253
Group E 90.90 182 91.35 173 86.30 274 85.35 293
Group G 99.95 1 99.95 1 100.0 0 100.0 0
Overall 95.43 640 95.65 609 93.41 922 92.89 995

Table 4: Language prediction test accuracy for the open task, both test sets and all runs. Our best results
are in bold (first overall). Overall #err is larger than column sum due to “Other”.
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especially C and G are relatively easy, reaching
above 99% performance.

Performance is clearly impacted by removing
the named entities, as shown by the results on test
set B. This degrades the accuracy by around 2%.
This clearly shows that named entities help lan-
guage detection. In our case, this effect is some-
what amplified by the fact that we did not run a
voting system on test set B. As shown by the test
set A results, voting brings us 0.25-0.5% improve-
ments in accuracy. On the other hand, it is slightly
surprising that on the two groups with highest per-
formance (C and G), we get perfect performance
on test set B while we make one mistake on test set
A. Of course this could be due to sample variation,
as test set A and B are different.

In last year’s evaluation (Zampieri et al., 2014),
two groups (Lui et al., 2014; King et al., 2014)
compiled additional textual material in several lan-
guages in order to compete in the open track. Their
submission on the open track turned out several
points of accuracy lower than their performance
on the closed track. By contrast, our inclusion of
the DSLCC v.1.0 from last year in our open sub-
mission helped us consistently reduce the number
of errors by about 10% (a boost of at least 0.4%
in accuracy). This may be due to the fact that de-
spite the differences in sentence length, DSLCC
v.1.0 was fairly similar to this year’s corpus, and
helped more than independently acquired mate-
rial. This is a typical domain adaptation effect,
often observed in natural language processing.

We also note that the final test accuracy on test
set A was very well estimated by the 10-fold cross-
validation, always with 0.5% and typically much
less.

5 Conclusions

We described the National Research Council’s
entry to the second shared task on Discriminat-
ing between similar languages. Our system uses
a fairly straightforward processing and modeling
approach, building a two stage predictor relying on
a probabilistic document classifier to predict the
group, and Support Vector Machines to identify
the language within each group. We tested vari-
ous word and character ngram features. Group-
level classification was very accurate, making only
a handful of mistakes mostly due to the pres-
ence of confounding documents from other lan-
guages. Our top system yields an average accu-

racy of 95.65% on test set A (open task), the top
result (by a hair) reported on this new collection.
Performance on test set B is clearly impacted by
the lack of named entities, degrading average ac-
curacy by about 2%. On the closed task, accuracy
is 0.4% lower
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