
Grammar Design with Multi-tape Automata and Composition

Mans Hulden
University of Colorado Boulder

mans.hulden@colorado.edu

Abstract

In this paper we show how traditional
composition-based finite-state grammars
can be augmented to preserve intermediate
results in a chain of compositions. These
intermediate strings can be very helpful
for various tasks: enriching information
while parsing or generating, providing ac-
curate information for debugging purposes
as well as offering explicit alignment in-
formation between morphemes and tags
in morphological grammars. The imple-
mentation strategies discussed in the paper
hinge on a representation of multi-tape au-
tomata as a single-tape automaton. A sim-
ple composition algorithm for such multi-
tape automata is provided.

1 Introduction

Applications for morphological and phonological
analysis using finite-state techniques tend to fol-
low established design patterns based on the com-
position of transducers that encode morphotac-
tics and morphophonological alternations. Not
counting a few exceptions that concern noncon-
catenative morphologies, this well-established ap-
proach is indeed quite successful and streamlined
in the domain of morphophonology if the goal is
to produce a monolithic transducer that provides
mappings between lemmas/tags and actual surface
forms of words.

Some types of grammatical information are dif-
ficult to include in such a design, however. In
morphological modeling, one may want to recover
the alignment of morphological tags to the actual
morphemes; in phonological modeling, one may
want to recover intermediate representations that
show how a particular phonological alternation
targets specific segments in a word, what order
phonological alternations occurred in, and what

they were conditioned on. The ability to do so
would make finite-state devices more attractive for
linguistic research, where computational methods
could help streamline the work of lining up large
amounts of data and testing hypothetical gener-
alizations; it might therefore increase linguists’
use of finite-state methods, whose potential has to
date been underexploited in the linguistics litera-
ture (Karttunen, 2003).

In this paper, we argue that a multi-tape model
constructed by composition of individual multi-
tape lexicon or alternation transducers offers a
simple framework that addresses the problem of
intermediate forms, while at the same time re-
taining the straightforward design of morphol-
ogy and morphophonology. Apart from expand-
ing the expressive power of the grammar, the
method also offers the grammar designer the op-
tion to re-convert the multi-tape grammar to a sim-
ple underlying-to-surface transducer, if desired—
as may be the case if the multi-tape representation
is only used for obtaining debugging information.

When drafting a morphological grammar, de-
bugging the alternation rules and lexicon descrip-
tion becomes much less burdensome under the
multi-tape model, since information about each
step in the process of mapping from underlying
to surface form is retained and is available for in-
spection.1

2 Traditional rewrite-rule grammars

A significant portion of morphological analysis
tools are written with the design alluded to above:
(1) a transducer that encodes morphotactics and
tag sequences, and (2) a series of transducers that
model morphophonological/orthographic alterna-
tion. The latter may be expressed as Sound Pattern
of English-inspired ‘rewrite rules’ (Chomsky and
Halle, 1968) or as two-level parallel constraints

1The code and the examples in this paper are available at
http://foma.googlecode.com

tupalan-uõ papi-uõ pulpu-un pulpu kiúikiúi muNkumuNku Underlying form

tupalankuõ /k/-epenthesis
papiwuõ /w/-epenthesis

pulpun Vowel Deletion
pulpa kiúikiúæ muNkumuNka Final Lowering

kiúikiú muNkumuNk Apocope
muNkumuN Cluster Reduction
muNkumu Non-apical Truncation

kiúikiõ Sonorantization

tupalankuõ papiwuõ pulpun pulpa kiúikiõ muNkumu Surface form

Table 1: Interaction of multiple phonological processes in Lardil.

(Koskenniemi, 1983), the former being the ar-
guably more popular choice at present. The result
of composing the lexicon transducer and the mor-
phophonological transducers is one monolithic
transducer that directly performs the bidirectional
mapping from underlying-to-surface forms (gen-
eration) and vice versa (parsing). The prevalence
of this design is probably partly due to known
algorithms (Kaplan and Kay, 1994; Kempe and
Karttunen, 1996; Mohri and Sproat, 1996; Hulden,
2009a) or software tools designed around this
paradigm (such as Xerox’s lexc/xfst/twol (Beesley
and Karttunen, 2003), foma (Hulden, 2009b), or
Kleene (Beesley, 2012)). In the following, we
shall assume the more common ‘rewrite-rule’
paradigm.

Table 1 illustrates this standard design using
some example words from a grammar of Lardil—
an example language often used to illustrate com-
plex rule ordering and word-final phonology with
rules that are sensitive to ordering. The original
data stems from Hale (1973), and we follow anal-
yses by Kenstowicz and Kisseberth (1979); Hayes
(2011); Round (2011). Due to the rich interaction
of word-final deletion rules, this is a widely used
data set that has been a target of many analyses,
all of which illustrate the difficulty of marshaling
a complex set of phonological alternations. To ex-
plain the workings of the grammar, we show all
the intermediate steps in mapping from lemma-
and-inflection forms to actual surface realizations.
In actuality, if modeled by transducer composi-
tion, all the intermediate forms are lost through
the composition process, which is one of the short-
comings addressed below. That is, a final compos-
ite transducer simply provides mappings between
parse and surface. For phonological analysis, pos-
sible grammar debugging, and perhaps language
documentation purposes, it would be very desir-

able to be able to produce a rich representation
such as the one in table 1 from either an underly-
ing form (morphological information) or the sur-
face form showing all the processes that the word
undergoes step-by-step.

Under the standard composition model, there is
no easy way to do this, save by applying an un-
derlying form to each of the individual transduc-
ers representing the alternation rules in order, sav-
ing the results, and passing them on as input to
the next transducer. However, in the inverse di-
rection, such a strategy is not directly feasible, in
addition to the fact that not composing the trans-
ducers partly defeats the purpose of using a finite-
state model in the first place.

There is no principled reason, however, why the
composition algorithm should destroy the interme-
diate representations if they are desired later. In
other words, when creating a composite transducer
modeling x:z from transducers x:y and y:z, one
can in principle expand the composition algorithm
to yield x:y:z in some representation, retaining all
the intermediate information.

3 Previous work

The importance of the preservation of intermediate
results in composition has been noted and partly
addressed in Kempe et al. (2004), among others.
Our formulation below differs in representation
and algorithms, and also in that it is intended to
be simple and easily implementable without spe-
cial algorithms for multi-tape automata, i.e. only
using established algorithms for single-tape au-
tomata and transducers. We use the representation
of Hulden (2009a) for multi-tape automata. In that
work, conversion from transducers is not consid-
ered, and no composition algorithm is given, as the
assumption is that multi-tape automata are con-
structed through intersections of constraints on co-

AB Concatenation
A|B Union
A* Kleene Star
˜A Complement
? Any symbol in alphabet
0 The empty string (epsilon)

Aˆk k-ary concatenation
% Escape symbol

[and] Grouping brackets
A:B Cross product
A/B A ignoring intervening B
T.2 Output projection of T

A -> B Rewrite A as B
|| C _ D Context specifier
.#. End or beginning of string

def F(X1,...,Xn) definition of macro
def X definition of language constant

Table 2: Regular expression notation in xfst/foma.

occurrence of symbols on the various tapes, akin
to two-level grammars.

4 Notation

We assume familiarity with regular expression no-
tation to construct automata and transducers. For
ease of replication, we employ the Xerox regular
expression notation (Beesley and Karttunen, 2003)
to define and manipulate automata and transducers
in this paper; the examples should be directly com-
pilable with the xfst or foma tools. The formalism
used is summarized in table 2. Multi-tape addi-
tions are implemented through a Python interface
discussed in section 8.

5 A multi-tape encoding

In the following we will assume a relatively sim-
ple interleaving encoding of a multi-tape automa-
ton and represent one as a single-tape automaton
where the length of any accepted string is always
an even multiple of the number of tapes. Infor-
mally, the automaton first encodes the first column
of the legal contents of an n-tape multi-tape au-
tomaton, top-down, then the second column, etc.
etc. Every symbol in position k in the single-tape
representation corresponds to—in the case of n
tapes—position bk/nc on tape (k mod n). We
assume a special representation for empty symbols
(ε-symbols) in the single-tape model, and repre-
sent them with the symbol �. A string of length
l×n in the single-tape representation would corre-
spond to the multi-tape representation as follows,
where, in parentheses, the tape number is shown
first, followed by the symbol position in the multi-
tape representation.

T0 (0,0) (1,0) . . . (l,0)
. . .

Tn−1 (0,n− 1) (1,n− 1) . . . (l, n− 1)
Tn (0,n) (1,n) . . . (l, n)

For example, if a single-tape representation
contains in its language the string abcde�, this
corresponds to a valid configuration a d

b e
c �

seen from the multi-tape point-of-view (a 3-tape
configuration); i.e. a multi-tape automaton that ac-
cepts the string ad as input, translates it into be,
and then translates this into c (the �-symbol rep-
resenting the empty string).

5.1 Conversion from transducers
An existing transducer can evidently be converted
to this multi-tape representation— that is, to a 2-
tape representation—without much effort. To con-
vert a transducer where transitions are encoded
as symbol pairs, one simply expands each sym-
bol pair x:y to a two-symbol sequence x y in the
corresponding n-tape automaton. We call this op-
eration “flattening”. If the original transducer T
maps a string x1 . . . xn to y1 . . . yn by a sequence
of transitions with labels ((x1, y1), . . . , (xn, yn)),
then the automaton flatten(T) accepts a string
(x1y1 . . . xnyn). In the result, ε-symbols are re-
placed with the �-symbol. So-called UNKNOWN

symbols—in the Xerox formalism, placeholders
for future alphabet expansion in incremental con-
struction of automata (Beesley and Karttunen,
2003), which we denote by ? in regular expres-
sions and @ in automata—can be retained as is.

Conversion of transducers is particularly con-
venient since we can take advantage of existing
algorithms for building complex transducers for
NLP use. This includes replacement-rule trans-
ducers available in many toolkits, as well as lex-
icon transducers constructed through essentially
right-linear grammars. Figure 1 shows a replace-
ment rule compiled into a transducer, and the re-
sult of subsequently converting that transducer to
a 2-tape automaton in the encoding used here.

6 Multi-tape composition

Interestingly, a multi-tape composition algorithm
in this representation can be encoded entirely al-

0

@

1x

2<x:0>
@

x

<x:0>
0

1

@

2x

@

3□

4
x

@ x

x -> ε || _ .#. flatten(x -> ε || _ .#.)

Figure 1: Illustration of a replacement-rule en-
coded as a transducer (left) and subsequently con-
verted to a 2-tape automaton using the encoding
presented here.

multi-tape composition
1 ### Assume m-tape automaton A ###
2 ### and n-tape automaton B as input ###
3
4 def eInsertA [0:2^m [0:?^(n-1)-0:2^(n-1)]];
5 def PadA [?^m 0:?^(n-1)];
6
7 def eInsertB [[0:?^(m-1) - 0:2^(m-1)] 0:2^n];
8 def PadB [0:?^(m-1) ?^n];
9

10 def ExtendA [A .o. [eInsertA|PadA]*].2;
11 def ExtendB [B .o. [eInsertB|PadB]*].2;
12
13 def Sync ?^(m+n-1);
14
15 ### Define composition filter ###
16 def X0 ?^(m-1) 2^n ;
17 def XY [?^(m-1) - 2^(m-1)] 2 [?^(n-1) - 2^(n-1)];
18 def 0Y 2^m ?^(n-1) ;
19
20 def Filter ~[Sync* [0Y [X0|XY] | X0 [0Y|XY]] ?*];
21 def Composition ExtendA & ExtendB & Filter ;

Figure 2: The multi-tape composition algorithm
in Xerox notation. The variables m and n in-
terspersed in the regular expressions denote the
number of tapes assumed to be present in the two
multi-tape automata to be composed.

gebraically, which is to say, as regular expressions.
Given two multi-tape automata A and B encoded
as above, each representing some specified num-
ber of tapes m and n, the core idea is to break
down their composed representation as the follow-
ing process, which returns an m+ n− 1 tape rep-
resentation of the composite.

1. Force automata A and B to be of the same
number of tapes (m+ n− 1) by alternatively
inserting columns of empty (�) symbols fol-
lowed (in A) or preceded (in B) by arbitrary
symbols, or retaining the original columns in
A an B but inserting arbitrary symbols after
each column (inA) or before each column (in
B).

2. Call the new automata Aextend and Bextend:
now, the result of intersecting the two
Aextend ∩ Bextend (using standard automa-

a
b
c

d
e
□ c

□
x
x

□
z
u
x

□
w
w
w

?
?
?

?
?
?

?
?
?
?
?
?

a
b
c

□
□
□
?
?
?

A

B

epsilon-insertion

padding

padding

c
□
x
x

□
z
u
x

□
w
w
w

a
b
d
e
□

aaaa
bbb
cccc

A

Figure 3: Illustration of multi-tape composition:
the shaded areas show possible contents of the
original multi-tape automata A and B, while the
remaining areas show the result of insertions to co-
erce the automata to have the same dimensions and
epsilon-behavior before intersection of A and B.

ton intersection) represents their composition
A ◦MT B, seen from a multi-tape point of
view (with intermediate steps retained).

An illustration of the main logic behind the
padding and column insertion mechanisms is
given in figure 3.

6.1 Path filtering
A well known problem of standard composition
algorithms for transducers also carries over to the
multi-tape representation; this is the problem of
producing multiple alternate paths in the result-
ing transducer when epsilon-symbols are present
(ε-multiplicity). The cause of this is that there
exist many equivalent paths that yield the same
transduction: e.g. a:ε ◦ ε:b can be represented
as a:b, a sequence a:ε ε:b, or a sequence ε:b a:ε;
figure 4 illustrates different but equivalent out-
puts for the composition of two multi-tape au-
tomata. None of the multiple paths for describ-
ing a relation are incorrect, but the inconvenience
of handling the possibility of multiple equiva-
lent parses or generations motivates an attempt
to provide unambiguous paths for each composi-
tion during the process itself. Furthermore, in a
weighted automaton/transducer scenario—which
we will not specifically deal with here—use of a
non-idempotent semiring can yield incorrect re-
sults if multiple paths are not filtered out.

The common solution in the classical transducer
domain is to either design a separate filter trans-

A B a d
b e
c �

 c � �

� z w
x u w
x x w

A ◦MT B

a d �
b e �
c � �
� z w
x u w
x x w

a � d
b � e
c � �
� z w
x u w
x x w

a d � �
b e � �
c � � �
� � z w
x � u w
x � x w

a � d �
b � e �
c � � �
� z � w
x u � w
x x � w

a � � d
b � � e
c � � �
� z w �
x u w �
x x w �

Figure 4: Various solutions to the composition of two multi-tape automata A and B, illustrating different
alignments of epsilon-symbols. Here, what is shown is composition behavior with respect to two par-
ticular configurations in A and B, for the purposes of illustration. A subsequent filter, expressed as an
automaton, removes all the solutions except the leftmost one.

ducer that serves to prefer some order of epsilon-
interleaving (Mohri et al., 2002) or to incorporate
this filter mechanism directly into the composition
algorithm (Hulden, 2009a). In the multi-tape case,
however, this filtering mechanism can be encoded
entirely as a regular language filter which disal-
lows certain interleavings of epsilon-symbols, in
particular those where an x:�-transition (when au-
tomaton A has an epsilon on the last tape in some
position) immediately follows or precedes a �:y-
transition (when automaton B inserts a symbol on
its first pair of tapes). This filter can then be inter-
sected with the output of the earlier algorithm. As
mentioned, this regular expression (Filter) can
simply be intersected with the earlier result to re-
move redundant paths in the composition (shown
in lines 16-20 in the algorithm). An implementa-
tion of the composition algorithm including filter-
ing of multiple paths is given in figure 2 using the
Xerox notation.

7 Composition in grammars

The composition algorithm is the only extension
needed to retain all the intermediate information
in an ordered rewrite-rule grammar. One can sim-
ply convert any individual transducers to a multi-
tape representation and proceed with the compo-
sition, yielding a multi-tape representation of the
same grammar. Parsing and generation of a string
s can be performed by creating a padded multi-
tape automaton where either the underlying repre-
sentation or the surface representation is in place,
with arbitrary symbols present on the other tapes.
This multi-tape automaton can then be intersected
with the grammar G, yielding a string representa-

tion of the set of legal parses or generations, with
their intermediate representations intact.

parsing
def Parse(s, G) [s .o. [0:?^(n-1) ?]*].2/2 & G;

generation
def Gen(s, G) [s .o. [? 0:?^(n-1)]*].2/2 & G;

7.1 Adding intermediate information
It was hinted above that annotating the effect of
various transducers is a very useful feature (as
seen in Figure 1) for debugging or phonological
analysis. Incorporating such information can be
done separately from the multi-tape encoding; that
is, one can first incorporate the desired informa-
tion in a standard transducer and subsequently per-
form the conversion to a multi-tape representation.
For morphophonological processes, it suffices to
modify the transducers that encode the relevant
replacement rules in such a way as to add infor-
mation about each process. In most cases, this
would only entail naming the process in question.
Such an annotation mechanism can be encoded in
a macro/function in the xfst/foma formalism:

def Mark(Rule, L, B)
[Rule (B:0 ?:0 | B ?:L | 0:B 0:L)] &
[\B* (B:0 ?:0) | [?-B]* [0:?|?:0|?:?-?]
[[?-B]:[?-B]|?:0|0:?]* [0:B 0:L | B ?:L]];

Here, each alternation rule transducer is aug-
mented with the following behavior: at the end
of the string a label (L) is appended, preceded
by a boundary mark (B). If another label is al-
ready present (from a previous process in a chain
of compositions), that label is simply replaced
with the current label. If the rule doesn’t fire
(doesn’t change anything for a particular input

string), nothing is appended and any existing la-
bels are removed.

For example, a rule that deletes the latter of con-
secutive vowels could be encoded as follows:

def VD Mark([V -> 0 || V _], "Vowel Del", "#");

and would have the following effect on input
words (a) papiin and (b) papi, respectively:

(a) (b)
p a p i i n p a p i
p a p i n # Vowel Del p a p i

8 Implementation

As the tools xfst, foma, and OpenFST have ex-
isting Python bindings that can be used to call
the underlying algorithms, we have implemented
the multi-tape automaton encoding as a separate
Python-class (data type) MTFSM. This allows for
a certain level of transparency in the bookkeep-
ing needed. For example, the information about
how many tapes are encoded in an FSM is auxil-
iary information that it is necessary to store during
a composition process, since the multi-tape encod-
ing does not inherently contain this information. A
simple interface to the xfst/foma formalism allows
for transparent conversion of transducers to 2-tape
automata, which may then be incrementally com-
posed to yield representations with multiple tapes:

>>> r1 = MTFSM("x -> y || c _ ")
>>> r2 = MTFSM("y -> z || _ d")
>>> composed = r1.compose(r2)
>>> print composed

States: 35
Transitions: 126
Final states: 7
Deterministic: 1
Minimized: 1
Numtapes: 3

>>> composed.generate("c x d")
c x d
c y d
c z d

8.1 An example
Returning now to the original Lardil example;
annotating replacement rules with additional de-
scriptive symbols to be inserted at the ends of
strings every time a rule fires in combination with
the multi-tape composition mechanism allows us
to essentially automatically replicate the linguist-
friendly representation given in table 1. Table 3
shows an example parse of the word undergoing
the largest number of alternations given earlier, il-
lustrating the output of the multi-tape generation
where each intermediate result occupies a tape.

lardil.generate("muNkumuNku")
m u N k u m u N k u
m u N k u m u N k u
m u N k u m u N k u
m u N k u m u N k u
m u N k u m u N k u
m u N k u m u N k a # Final Lowering
m u N k u m u N k # Apocope
m u N k u m u N # Cluster Reduction
m u N k u m u # Non-apical truncation
m u N k u m u
m u N k u m u

Table 3: Illustration of generating a word with
the multi-tape encoding. This is the result of
a standard composed transducer-grammar, con-
verted to a multi-tape representation, with replace-
ment rules also appending their own descriptions
to an input string in case they fire.

9 Conclusion

We have proposed a general method for construct-
ing finite-state grammars in the composed rewrite-
rule tradition. The method in effect replaces
the use of transducers with multi-tape automata.
Existing algorithms for constructing transducers
from rewrite-rule specifications can still be used
if converted to multi-tape representations. The
model itself assumes little machinery beyond the
ability to compose the resulting multi-tape au-
tomata, but offers a way to produce rich represen-
tations of grammars constructed in this vein. If
desired (for memory efficiency reasons) the result-
ing multi-tape automata can still be re-converted to
transducers by eliminating the intermediate repre-
sentations. This offers the possibility to only use
the multi-tape representation for debugging pur-
poses, if the final intent is to produce a simpler
underlying-to-surface mapping, or vice versa.

The above techniques may be useful for other
applications as well. In modeling historical sound
changes, for example, ‘debugging’ problems sim-
ilar to those in phonology and morphology tend
to arise—much exacerbated by the fact that one
is often dealing with multiple languages at the
same time. Keeping track of hundreds of proposed
sound laws together with their effect on lexical
items across languages is a task that is well suited
for the type of modeling presented in this paper.

Although the application focus of this paper
has been more along the lines of modeling tra-
ditional non-probabilistic grammars, the meth-
ods presented above—the composition algorithm
in particular—are also adaptable to weighted au-
tomata.

References

Beesley, K. R. (2012). Kleene, a free and
open-source language for finite-state program-
ming. In 10th International Workshop on Finite
State Methods and Natural Language Process-
ing (FSMNLP), pages 50–54.

Beesley, K. R. and Karttunen, L. (2003). Finite
State Morphology. CSLI Publications, Stan-
ford, CA.

Chomsky, N. and Halle, M. (1968). The Sound
Pattern of English. Harper & Row.

Hale, K. (1973). Deep-surface canonical dispari-
ties in relation to analysis and change: An Aus-
tralian example. Current trends in linguistics,
11:401–458.

Hayes, B. (2011). Introductory Phonology. John
Wiley & Sons.

Hulden, M. (2009a). Finite-state Machine Con-
struction Methods and Algorithms for Phonol-
ogy and Morphology. PhD thesis, University of
Arizona.

Hulden, M. (2009b). Foma: a finite-state compiler
and library. In Proceedings of the 12th confer-
ence of the European Chapter of the Association
for Computational Linguistics,, pages 29–32.

Kaplan, R. M. and Kay, M. (1994). Regular mod-
els of phonological rule systems. Computa-
tional Linguistics, 20(3):331–378.

Karttunen, L. (2003). Computing with realiza-
tional morphology. In Computational Linguis-
tics and Intelligent Text Processing, pages 203–
214. Springer.

Kempe, A., Guingne, F., and Nicart, F. (2004).
Algorithms for weighted multi-tape automata.
XRCE Research Report 2004/031.

Kempe, A. and Karttunen, L. (1996). Parallel re-
placement in finite state calculus. In Proceed-
ings of the 34th annual meeting of the Associa-
tion for Computational Linguistics.

Kenstowicz, M. and Kisseberth, C. (1979). Gen-
erative phonology. Academic Press.

Koskenniemi, K. (1983). Two-level morphology:
A general computational model for word-form
recognition and production. Publication 11,
University of Helsinki, Department of General
Linguistics, Helsinki.

Mohri, M., Pereira, F., and Riley, M. (2002).
Weighted finite-state transducers in speech

recognition. Computer Speech & Language,
16(1):69–88.

Mohri, M. and Sproat, R. (1996). An efficient
compiler for weighted rewrite rules. In Pro-
ceedings of the 34th annual meeting on As-
sociation for Computational Linguistics, pages
231–238. Association for Computational Lin-
guistics.

Round, E. (2011). Word final phonology in Lardil:
Implications of an expanded data set. Australian
Journal of Linguistics, 31(3):327–350.

10 Appendix: Lardil grammar
def Mark(Rule, Label) [Rule ("#":0 ?:0 | "#" ?:Label | 0:"#" 0:Label)] & [\"#"* ("#":0
?:0) | [?-"#"]* [0:?|?:0|?:?-?] [[?-"#"]:[?-"#"]|?:0|0:?]* [0:"#" 0:Label | "#" ?:Label]
];

def Vow [a | æ | i | u];
def Cons [p | t | ! | t ̪ | t" |k | m | n | ɳ | ŋ | ŋ | n ̪ | n#| ɾ | l | w | ɻ | j];
def Apical [t | ! | n | ɳ | ɾ | l | ɻ];

def Nasal [m | n | ɳ | ŋ | ŋ | n ̪ | n#];

def kEpenthesis Mark([[..] -> k || Nasal _ u ɻ], "k-Epenthesis");
def wEpenthesis Mark([[..] -> w || i _ u] , "w-Epenthesis");
def VowelDeletion Mark([Vow -> 0 || Vow _], "Vowel Deletion");
def FinalLowering Mark([i -> æ, u -> a || _ [.#.|"#"]], "Final Lowering");
def Apocope Mark([Vow -> 0 || Vow Cons* Vow Cons* _ [.#.| "#"]], "Apocope");
def ClusterRed Mark([Cons -> 0 || Cons _ [.#.|"#"]], "Cluster Reduction");
def NonApicalDel Mark([[Cons - Apical] -> 0 || _ [.#.|"#"]] , "Non-Apical
truncation");
def Sonorantization Mark([! -> ɻ || _ [.#.|"#"]], "Sonorantization");

def Grammar kEpenthesis .o. wEpenthesis .o. VowelDeletion .o. FinalLowering .o. Apocope
.o. ClusterRed .o. NonApicalDel .o. Sonorantization ;
regex Grammar;

