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Abstract

Understanding contextual information is
key to detecting metaphors in discourse.
Most current work aims at detecting
metaphors given a single sentence, thus
focusing mostly on local contextual cues
within a short text. In this paper, we
present a novel approach that explicitly
leverages global context of a discourse to
detect metaphors. In addition, we show
that syntactic information such as depen-
dency structures can help better describe
local contextual information, thus improv-
ing detection results when combined. We
apply our methods on a newly annotated
online discussion forum, and show that our
approach outperforms the state-of-the-art
baselines in previous literature.

1 Introduction

Detecting metaphors in text is an active line of
research which has attracted attention in recent
years. To date, most of the previous literature
has looked at lexical semantic features such as
selectional restriction violations (Martin, 1996;
Shutova and Teufel, 2010; Shutova et al., 2010;
Shutova et al., 2013; Huang, 2014) or contrast in
lexical concreteness and abstractness (Turney et
al., 2011; Broadwell et al., 2013; Tsvetkov et al.,
2013). While these approaches have been shown
to be successful in detecting metaphors given a
single sentence, metaphor detection in discourse
brings a new dimension to the task. Consider the
following excerpt from an online Breast Cancer
discussion forum as an example:

welcome, glad for the company .... just
sad to see that there are so many of
us. Here is a thought that I have been
thinking since I was diagnosed. This
disease should be called the “Hurry up

and Wait” illness. Since the day I heard
the dreaded words “you need to have
a biopsy”, I feel like I am on a speed-
ing train. It rushes into every station
where you have to make instant deci-
sions, while this ominous clock is tick-
ing. Wait for test results, wait for ap-
pointments, wait for healing.

In the example above, it is difficult to identify
“rushes into every station” as a metaphorical ex-
pression using the previous approaches, because
it does not violate selectional restrictions or have
any notable contrast in lexical concreteness and
abstractness. The reason for this is clear: the ac-
tion of rushing into stations itself makes perfect
sense literally when it is viewed locally as an iso-
lated phrase, while the contextual cues for this
metaphor are embedded globally throughout the
discourse (e.g. diagonsed, disease, biopsy are se-
mantically contrasted with train, rushes, and sta-
tion). This clearly demonstrates the need for a
new set of computational tools to represent con-
text beyond a single sentence, in order to better de-
tect metaphorical expressions that have contextual
connections outside the sentence in which they are
used.

Context for metaphor detection. Metaphor
is a semantic phenomenon that describes objects
often with a view borrowed from a different do-
main. As such, it is natural that metaphors in-
herently break the lexical coherence of a sentence
or a discourse. Klebanov et al. (2009), for exam-
ple, showed in their study that words related to the
topic of discussion are less likely to be metaphori-
cal than other words in text, implying that contex-
tual incoherence might serve as a cue for detect-
ing metaphors. Based on this observation, the idea
of leveraging textual context to detect metaphors
has been recently proposed by some researchers
(Broadwell et al., 2013; Sporleder and Li, 2009).
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Our contributions. We extend the previous
approaches for detecting metaphors by explicitly
addressing the global discourse context, as well
as by representing the local context of a sen-
tence in a more robust way. Our contribution
is thus twofold: first, we propose several tex-
tual descriptors that can capture global contex-
tual shifts among a discourse, such as semantic
word category distribution obtained from a frame-
semantic parser, homogeneity in topic distribu-
tions, and lexical chains. Second, we show that
global and local contextual information are com-
plimentary in detecting metaphors, and that lever-
aging syntactic features is crucial in better describ-
ing lexico-semantic information in a local con-
text. Our method achieves higher performance
on a metaphor disambiguation task than state-of-
the-art systems from prior work (Klebanov et al.,
2014; Tsvetkov et al., 2013) on our newly created
dataset from an online discussion forum.

The rest of the paper is organized as follows.
Section 2 relates our work to prior work. Section 3
explains our method in detail, specifically in re-
gards to how we use global context and local con-
text for metaphor detection. Section 4 describes
the Breast Cancer dataset annotated and used for
our experiment. In Section 5, we present our ex-
perimental results and show the effectiveness of
our method with the task of metaphor disambigua-
tion. Section 6 analyzes the results and identifies
potential areas of improvement, and we give our
concluding remarks in Section 7.

2 Relation to Prior Work

The main approaches to computationally detect-
ing metaphors can be categorized into work that
considers the following three classes of features:
selectional preferences, abstractness and concrete-
ness, and lexical cohesion.

Selectional preferences relate to how seman-
tically compatible predicates are with particular
arguments. For example, the verb drink prefers
beer as an object over computer. The idea behind
using selectional preferences for metaphor detec-
tion is that metaphorical words tend to break se-
lectional preferences. In the case of “the clouds
sailed across the sky”, for instance, sailed is deter-
mined to be metaphorically used because clouds
as a subject violates its selectional restriction. The
idea of using violation of selectional preferences
as a cue for metaphors has been well studied in a

variety of previous work (Martin, 1996; Shutova
and Teufel, 2010; Shutova et al., 2010; Shutova et
al., 2013; Huang, 2014) In general, this work can
be further categorized into work that uses lexical
resources and the work that uses corpus-based ap-
proaches to obtain selectional preferences

From the observations that metaphorical words
(source domain) tend to use more concrete and
imagination rich words than the target domain
of metaphors, the abstractness/concreteness ap-
proaches computationally measure the degree
of abstractness of words to detect metaphors.
Take the following two phrases as examples that
demonstrate this concept: green idea (metaphori-
cal expression) and green frog (literal expression.)
The former has a concrete word (green) modify-
ing an abstract concept (idea), thus being more
likely to be metaphorical. The idea of leveraging
abstractness/concreteness in detecting metaphors
has been proposed and studied by several groups
of researchers (Turney et al., 2011; Broadwell
et al., 2013; Tsvetkov et al., 2013; Assaf et al.,
2013; Neuman et al., 2013). Note that most of
this work uses datasets that comprise grammati-
cally restricted sentences (e.g. ones with S+V+O
or A+N structures) for their experiments, in order
to test their hypothesis in a controlled way.

Another line of work considers lexical coher-
ence of text as a cue for metaphor. The lexi-
cal coherence approach is motivated by the ob-
servation that metaphorical words are often se-
mantically incoherent with context words. There
have been several approaches proposed to com-
pute lexical coherence. Broadwell et al. (2013),
for instance, employed topic chaining to catego-
rize metaphors, whereas Sporleder and Li (2009)
have proposed to use lexical chains and semantic
cohesion graphs to detect metaphors. Shutova and
Sun (2013) and Shutova et al. (2013) have formu-
lated the metaphor detection problem similar to
outlier detection or anomaly detection tasks, and
proposed to use topic signatures as lexical coher-
ence features. Schulder and Hovy (2014) used TF-
IDF to obtain domain term relevance, and applied
this feature to detect metaphors.

Klebanov et al. (2014) propose to use various
lexical features such as part-of-speech tags, con-
creteness ratings, and topic scores of target words
to detect word-level metaphors in a running text.
Our approach is different from theirs in that we ex-
plicitly gather global contextual information from
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discourse to detect metaphors and that we lever-
age the syntactic structures to better represent lo-
cal contextual information.

3 Our Method

In this section, we describe our method to measure
nonliteralness of an expression in context. Specif-
ically, we describe how we use contextual infor-
mation as features for metaphor classification in
discourse.

We first define lexical cohesion before we in-
troduce our motivation and method for utilizing
global contexts as features for detecting metaphor.
A text is said to be lexically cohesive when the
words in the text describe a single coherent topic.
Specifically, lexical cohesion occurs when words
are semantically related directly to a common
topic or indirectly to the topic via another word.
Figure 1 illustrates the lexical cohesion among
words shown as a graph.

Figure 1: Graph representation depicting lexical
cohesion among words in a given text. Edges rep-
resent lexical relatedness between a topic and a
word or between words. For example, w1 is di-
rectly related to the topic of discussion, whereas
w7 is only indirectly related to the topic through
w2.

The intuition for our main idea is that
metaphorically-used words would often break lex-
ical cohesion of text, while literal expressions
would maintain a single connected graph of top-
ically or semantically related words. Therefore,
we identify that these incohesive words may serve
as cues for nonliteral expressions. The follow-
ing two examples illustrate the described phe-
nomenon, both of which contain the same phrase
“break the ice”.

... Meanwhile in Germany, the cold
penetrated the vast interior of Cologne
cathedral, where worshippers had to

break the ice on holy water in the font.
The death toll from the cold also in-
creased ...

... “Some of us may have have acted
as critics at one point or another,
but for the most part its just as film-
goers,” he said. And, breaking the ice
at a press conference, he praised his
vice-president, French actress Cather-
ine Deneuve ...

The phrase “break the ice” in the first example
is used with words such as cold and water which
are semantically coherent with its literal meaning,
whereas in the second example, the phrase is used
with press conference, praised, and vice-president,
which are far from the literal meaning of break and
ice.

Note that this contextual information lies in dif-
ferent parts of a discourse, sometimes locally in
the same sentence as the target word or globally
throughout multiple surrounding sentences in a
discourse. Given this observation, we categorize
contextual information into two kinds depending
on the scope of the context in text: global and lo-
cal. Global contexts range over the whole doc-
ument, whereas local contexts are limited to the
sentence that contains the expression of interest.
Section 3.1 explains how we represent global con-
texts. Section 3.2 describes the features we use
for local contexts, and how we leverage syntactic
information to make a more robust use of the se-
mantic features in local context.

3.1 Global Contextual Features
We use the following features to represent global
contexts of a given text.

Semantic Category: Lexico-semantic re-
sources (e.g. FrameNet, WordNet) provide cat-
egorical information for much of the English lexi-
con. If a target word is used literally, the document
may have a high proportion of words in the same
semantic category. If the word is used metaphori-
cally, the document may contain more words that
share different semantic categories. To implement
this intuition, we use SEMAFOR (Das et al., 2014)
to assign each word to one of the categories pro-
vided by the FrameNet 1.5 taxonomy (Baker
et al., 1998). Then, we compute the relative pro-
portion of the target word’s category with regards
to categories appearing in the document to mea-
sure the alignment of categories of the target word
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and the surrounding contexts. Formally, we define
the value of the global word category feature as∑

w∈d 1(cw = ctw)
Nd

,

where cw is the category of word w, ctw is the cat-
egory of the target word, and Nd is the number of
words in document d. 1(.) is an indicator function
that equals 1 when the expression inside is true and
0 otherwise.

We have also used WordNet1’s 44 lexnames
in our preliminary experiment to obtain word cat-
egories. However, we have found that its coarse
categorization of words (44 categories as opposed
to FrameNet’s 1204) led to poorer performance,
thus we have used FrameNet here instead.

Topic Distribution: Our intuition for using
topic distributions is that non-literal words tend
to have a considerably different topic distribution
from that of the surrounding document (global
context). To implement this idea, we run a
topic model to obtain a word-topic distribution (=
P (topic|word)) and document-topic distribution
(= P (topic|document)). We use Latent Dirichlet
Allocation (LDA) (Blei et al., 2003) to find 100
topics from the entire corpus, and calculate the
topic distribution per document and the topic dis-
tribution per word from the trained topic model.
Specifically, we begin by training our model for
2,000 iterations on a large data set. Then, for the
estimation on test documents we apply this model
to our test data set for 100 iterations of Gibbs sam-
pling.

The original LDA computes P (word|topic) in-
stead of P (topic|word). In order to compute
P (topic|word), the first 20 iterations out of 100 are
used as a burn-in phase, and then we collect sam-
ple topic assignments for each word in every other
iteration. This process results in a total of 40 topic
assignments for a word in a document, and we use
these topic assignments to estimate the topic dis-
tributions per word as in (Remus and Biemann,
2013). We used the GibbsC++ toolkit (Phan and
Nguyen, 2007) with default parameters to train the
model.

Finally, we use the cosine similarity between
P (topic|document) and P (topic|word) as features
that represent the global alignment of topics be-
tween the target word and the document.

Lexical Chain: We use lexical chains (Morris
and Hirst, 1991) to obtain multiple sequences of

1https://wordnet.princeton.edu/man/lexnames.5WN.html

semantically related words in a text. From the in-
tuition that metaphorical words would not belong
to dominant lexical chains of the given text, we
use the lexical chain membership of a target word
as a cue for its non-literalness. Because each dis-
course instance of our dataset tends to be short and
thus does not produce many lexical chains, we use
a binary feature of whether a target word belongs
to the longest chain of the given text. In our imple-
mentation, we use the ELKB toolkit (Jarmasz and
Szpakowicz, 2003) to detect lexical chains in text
which is built on Roget’s thesaurus (Ro-
get, 1911). Note that a similar approach has been
used by Sporleder and Li (2009) to grasp topical
words in a text.

Context Tokens: In addition, we use unigram
features to represent the global context. Specifi-
cally, we use binary features to indicate whether
the context words appeared anywhere in a given
discourse.

3.2 Local Contextual Features

The local contextual information within a sentence
is limited because it often contains fewer words,
but the information could be more direct and richer
because it reflects the immediate context of an ex-
pression of interest. We represent local contex-
tual information using the semantic features listed
below, combined with grammatical dependencies
to induce relational connections between a target
word and its contextual information.

Semantic Category: We follow the same in-
tuition as using semantic categories to represent
global features (Section 3.1), and thus compare the
target word’s semantic category and that of other
words in the same sentence to induce local contex-
tual information. However, since a sentence often
has only a small number of words, the proportion
of the target word’s category in one sentence de-
pends too much on the sentence length. Therefore,
we instead look at the words that have dependency
relations with the target word, and create nomi-
nal features by pairing word categories of lexical
items with their dependency relations. The paired
dependency-word category features specifies how
local contextual words are used in relation to the
target word, thus providing richer information. We
also specify the target word’s category as a cat-
egorical feature, expecting that the interplay be-
tween the target word’s category and other words’
categories is indicative of the non-literalness of the
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target word.
Semantic Relatedness: If the semantic related-

ness between a target word and the context words
is low, the target word is likely to be metaphori-
cally used. From the observation that the words
that are in grammatical relation to the target word
are more informative than other words, we use the
dependency relations of a target word to pick out
the words to compute semantic relatedness with.
To represent the semantic relatedness between two
words, we compute the cosine similarity of their
topic distributions.

We use the semantic relatedness information in
two different ways. One way is to compute aver-
age semantic relatedness over the words that have
dependency relations with a target word, and use it
as a feature (AvgSR). The other is to use semantic
relatedness of the words in grammatical relations
to the target word as multiple features (DepSR).

We use the same techniques as in Section 3.1
to compute topic distribution using an LDA topic
model.

Lexical Abstractness/Concreteness: People
often use metaphors to convey a complex or ab-
stract thought by borrowing a word or phrase hav-
ing a concrete concept that is easy to grasp. With
this intuition, Turney et al. (2011) showed that the
word abstractness/concreteness measure is a use-
ful clue for detecting metaphors.

To represent the concreteness of a word, we
used Brysbaert’s database of concreteness ratings
for about 40,000 English words (Brysbaert et al.,
2014). We use the mean ratings in the database
as a numerical feature for the target word. In ad-
dition, we also use the concreteness ratings of the
words in grammatical relations to the target word
as local context features.

Grammatical Dependencies: We use the
stanford-corenlp toolkit (Manning et al.,
2014) to parse dependency relations of our data
and apply grammatical dependencies as described
above for each semantic feature. We use gram-
matical dependencies only between content words
(e.g. words with syntactic categories of noun,
verb, adjective, and adverb).

4 Data

We conduct experiments on data acquired from
discussion forums for an online breast cancer sup-
port group. The data contains all the public posts,
users, and profiles on the discussion boards from

October 2001 to January 2011. The dataset con-
sists of 1,562,459 messages and 90,242 registered
members. 31,307 users have at least one post, and
the average number of posts per user is 24.

We built an annotated dataset for our experi-
ments as follows. We first picked seven metaphor
candidates that appear either metaphorically or lit-
erally in the Breast Cancer corpus: boat, can-
dle, light, ride, road, spice, and train. We then
retrieved all the posts in the corpus that contain
these candidate words, and annotated each post as
to whether the candidate word in the post is used
metaphorically. When the candidate word occurs
more than once in a single post, all occurrences
within a post were assumed to have the same us-
age (either metaphorical or literal).

Note that our annotation scheme is differ-
ent from the VU Amsterdam metaphor-annotated
dataset (Steen et al., 2010) or the essay data used
in (Klebanov et al., 2014), where every word in
the corpus is individually labeled as a metaphor or
a literal word. Our approach of pre-defining a set
of metaphor candidate words and annotating each
post as opposed to every word has several prac-
tical and fundamental benefits. First, metaphors
often have a wide spectrum of “literalness” de-
pending on how frequently they are used in ev-
eryday text, and there is a continuing debate as to
how to operationalize metaphor in a binary deci-
sion (Jang et al., 2014). In our work, we can cir-
cumvent this metaphor decision issue by annotat-
ing a set of metaphor candidate words that have a
clear distinction between metaphorical and literal
usages. Second, our annotation only for ambigu-
ous words ensures to focus on how well a model
distinguishes between metaphorical and literal us-
age of the same word.

We employed Amazon Mechanical Turk
(MTurk) workers to annotate metaphor use
for candidate words. A candidate word was
highlighted in the full post it originated from.
MTurkers were asked to copy and paste the
sentence where a highlighted word is included
to a given text box to make sure that MTurkers
do not give a random answer. We gave a simple
definition of metaphor from Wikipedia along
with a few examples to instruct them. Then, they
were asked whether the highlighted word is used
metaphorically or literally. Five different MTurk
workers annotated each candidate word, and they
were paid $0.03 for annotating each word. For
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candidate # %
N L N L

boat* 54 281 16.12 83.88
candle* 4 18 18.18 81.82
light 503 179 73.75 26.25
ride 234 185 55.85 44.15
road 924 129 87.75 12.25
spice* 3 21 12.50 87.50
train 94 41 69.63 30.37
all 1816 854 68.01 31.99

Table 1: Metaphor use statistics of data used for
MTurk (* indicates metaphor candidates for which
the literal usage is more common than the non-
literal one, N: nonliteral use L: literal use).

annotation quality control, we requested that all
workers have a United States location and have
98% or more successful submissions. We ex-
cluded annotations for which the first task of copy
and paste failed. 18 out of 13,348 annotations
were filtered out in this way.

To evaluate the reliability of the annotations by
MTurkers, we calculated Fleiss’s kappa (Fleiss,
1971), which is widely used to evaluate inter-
annotators reliability. Using a value of 1 if the
MTurker coded a word as a metaphorical use, and
a value of 0 otherwise, we find kappa value of
0.81, suggesting strong inter-annotator agreement.

We split the data randomly into two subsets,
one as a development set for observation and anal-
ysis, and the other as a cross-validation set for
classification. The development set contains 800
instances, and the cross-validation set contains
1,870 instances. Table 1 shows the metaphor use
statistics of the annotated data.

5 Evaluation

We evaluate our method on a metaphor disam-
biguation task detailed in Section 5.1. Section 5.2
lists the metrics we used for the evaluation on this
test set. Section 5.3 describes the baselines we
compare our method against on these metrics. We
detail our classification settings in Section 5.4 and
report our results in Section 5.5.

5.1 Task

The task for our experiment is metaphor disam-
biguation: given a candidate word, decide whether
the word is used as a metaphor or as a literal
word in a post. For example, boat in (1) is used

metaphorically, whereas boat in (2) is used liter-
ally. The task is thus to classify each of the seven
candidate metaphors defined in Section 4 into ei-
ther a metaphor or a literal word.

(1) Just diagnosed late November.
Stage I and with good prognosis.
... Now I am having to consider a
hysterectomy and am really scared
and don’t know what to do. I have
no children and don’t really think I
want to. I really want to do what is
best for me but it is so hard to know.
Anyone else been in the same boat
with the endometriosis?

(2) Good Morn Girls, It is 52 this
morn. WOW! there is a bad storm
rolling in at this time and tornado
watches but those are pretty com-
mon. ... Hubby started his truck
driving school today. We use to
have ski boats so he and I could
both drive a semi. Backing is the
hardest part cause the trailer goes
opposite of the direction you turn
but once you get use to it, it’s not
hard. ...

5.2 Evaluation Metrics
We report four evaluation metrics: accuracy, pre-
cision, recall, and F-score.

Accuracy: Accuracy is the percentage of cor-
rectly classified instances among all instances.

Precision: Precision is the percentage of cor-
rectly classified instances among instances as-
signed to a particular class (metaphor or literal) by
the model.

Recall: Recall is the percentage of correctly
classified instances among all nonliteral or literal
instances. Precision and recall are recorded for
both metaphorical and literal labels.

F-score: F-score is the harmonic mean of pre-
cision and recall.

5.3 Baselines
We compare our method to a context unigram
model as well as two other baselines from re-
cent work on metaphor detection: Klebanov et
al. (2014), and Tsvetkov et al. (2013).

Context unigram model uses all the context
words including the target word in a post as fea-
tures.
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Type Model A P-M R-M P-L R-L F1

Baseline
Tsvetkov et al. (2013) 0.245 0.857 0.168 0.236 0.991 0.207
Klebanov et al. (2014) 0.833 0.830 0.984 0.866 0.340 0.694
U 0.836 0.867 0.929 0.697 0.535 0.751

Global

U+GWC 0.842 0.869 0.934 0.716 0.541 0.759
U+GT* 0.843 0.873 0.931 0.711 0.557 0.763
U+LC 0.839 0.866 0.934 0.709 0.530 0.753
U+GWC+GT+LC* 0.845 0.871 0.936 0.724 0.546 0.762

Local

U+LWC 0.849 0.874 0.939 0.735 0.557 0.634
U+SR(AvgSR) 0.852 0.873 0.965 0.563 0.243 0.628
U+SR(DepSR) 0.858 0.880 0.943 0.756 0.580 0.783
U+AC 0.853 0.880 0.936 0.735 0.582 0.778
U+LWC+SR+AC* 0.862 0.885 0.942 0.759 0.598 0.791

Global+Local
ALL* 0.860 0.882 0.943 0.761 0.589 0.788
ALL-LC* 0.863 0.886 0.941 0.759 0.605 0.793

Table 2: Performance on metaphor disambiguation evaluation. (Models) U: context unigram, GWC:
global word category, GT: global topic dist., LC: lexical chain, LWC: local word category, SR: semantic
relatedness, AC: abstractness/concreteness. (Metrics) A: accuracy, P-M: precision on metaphors, R-M:
recall on metaphors, P-L: precision on literal words, R-L: recall on literal words, F1: Average F1 score
over M/L., *: statistically significant improvement over baselines

Tsvetkov et al. (2013) use local contextual
features (such as abstractness and imageability,
supersenses, and vector space word representa-
tions), and targets for two syntactic construc-
tions: subject-verb-object (SVO) and adjective-
noun (AN) tuples. Note that the output of this
system is a sentence level label rather than a
word (e.g. they output a binary label that in-
dicates whether the target sentence contains any
metaphorical phrase). Thus, we take the output of
their sentence level label on the sentence that con-
tains our target word, and treat their output as a
label for our target word disambiguation task. Al-
though it is therefore not a fair comparison, we
included this system as a baseline because this is
a state-of-the-art system for metaphor detection
tasks. In addition, we can make this compari-
son to contextualize results with regards to how
a state-of-the-art non-discourse model (i.e. not us-
ing global context) will perform in more general
discourse contexts.

Klebanov et al. (2014) use target word lexi-
cal features such as part-of-speech tags, concrete-
ness rating, and topic score. Their approach does
not use any contextual information as our method
does. As a result, the same words are most likely
to obtain the same features. Note that Klebanov et
al. (2014) evaluated their approach for each con-
tent word in a given text, but in our paper we

evaluate how their method performs on ambigu-
ous words in particular.

5.4 Classification

We used the LightSIDE toolkit (Mayfield and
Rosé, 2010) for extracting features and performing
classification. For the machine learning algorithm,
we used the logistic regression classifier provided
by LightSIDE with L1 regularization. We used
basic unigram features extracted by LightSIDE,
and performed 10-fold cross validation for the fol-
lowing experiments. Instances for each fold were
randomly chosen.

5.5 Results

The classification results on the Breast Cancer
corpus are shown in Tables 2 and in 3.

Note that both our global context features
(e.g.U+GWC+GT+LC, U+GT) and local context
features (e.g.U+LWC+SR+AC) perform signifi-
cantly better than all of the baselines (p < 0.05).
This indicates that our contextual features suc-
cessfully capture additional information from dis-
course both locally and globally. In general, it can
be seen that local features are more powerful in-
dicators of metaphors than global features. Note
also that Tsvetkov et al. (2013) performs poorly
on this task, probably due to the reasons men-
tioned in Section 5.3. It is interesting to note that
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Target word A P-M R-M P-L R-L F1
boat 0.843 0.886 0.935 0.500 0.351 0.843
light 0.831 0.857 0.920 0.738 0.594 0.773
ride 0.843 0.847 0.888 0.836 0.782 0.838
road 0.926 0.936 0.983 0.823 0.543 0.806
train 0.711 0.759 0.887 0.429 0.231 0.559

Table 3: Performance on metaphor disambiguation task per target word with the best setting ALL-LC.
Note that the performance results on target words candle and spice are not reported because of their small
number of instances.

Klebanov et al. (2014) performs poorly at recall
on literal words. We conclude that our methods
significantly outperform the baselines in detecting
metaphors in discourse.

6 Discussion

The results of our methods on the metaphor dis-
ambiguation task are promising, indicating that
both global features and local features can serve
as strong indicators of metaphor.

Note that the combined global+local features
did not show significant improvement over the lo-
cal features on this task in Table 2. We had be-
lieved that local and global features (aside from
unigram features) would provide synergistic pre-
dictions, however we found that the local features
provided stronger predictions and drowned out the
effect of the global features.

We identify the following possible sources of
errors of our method: first of all, the low perfor-
mance of lexican chain (LC) features is notice-
able. This might be due to errors originating from
the output of the ELKB toolkit which we employ
to obtain lexical chains. More specifically, ELKB
builds lexical chains using a standard thesaurus,
which is extremely vulnerable to noisy text such
as our online discussion forum (which contains ty-
pos, abbreviations, medical terms, etc.).

Secondly, the semantic relatedness scores ob-
tained from LDA gives high scores to frequently
co-occurring words, thus inevitably reducing ef-
fectiveness in disambiguating frequently used
metaphors. While this is an issue inherent in any
distributional semantics approach, we find that our
LDA-based features do improve overall perfor-
mance.

7 Conclusion

We summarize our contributions as follows: we
identified that both global and local contextual fea-

tures can serve as powerful indicators of metaphor,
and proposed several methods to represent contex-
tual features in discourse. We also extended previ-
ous literature that considers local contextual infor-
mation by explicitly incorporating the syntactic in-
formation, such as dependency relations, into local
contextual features, resulting in an improved per-
formance. The performance was evaluated on our
newly built Breast Cancer dataset, which provides
examples of metaphors in a discourse setting. We
showed that our method significantly outperforms
the systems from recent literature on a metaphor
disambiguation task in discourse. Our method can
be easily applied to disambiguate all the content
words in text once we have correspondingly la-
beled data.
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