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Abstract

Brown clusters enable POS taggers
to generalize better to words that did
not occur in the labeled data, cluster-
ing distributionally similar seen and
unseen words, thereby making mod-
els more robust to sparsity effects
and domain shifts. However, Brown
clustering is a transductive cluster-
ing method, and OOV effects still
arise. Words neither in the labeled
data nor in the unlabeled data cannot
be assigned to a cluster, and hence,
are frequently mis-tagged. This paper
presents a simple method of learning
finite state automata from Brown clus-
ters that accept and give representa-
tions to truly unseen words. We show
that using automata rather than Brown
clusters lead to significant improve-
ments in performance in unsupervised
cross-domain POS tagging.

1 Introduction

Out-of-vocabulary (OOV) effects are proba-
bly the most common sources of errors in nat-
ural language processing. OOV effects arise
when supervised models are trained on manu-
ally annotated corpora (labeled data) and ap-
plied to new text containing words not in the
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labeled data. The most popular technique to
combat OOV effects in the last decade has ar-
guably been Brown clustering (Brown et al.,
1992). Other alternatives exist, like word em-
beddings (Turian et al., 2010), but more than
twice as many ACL papers talk about word
clusters than about word embeddings.

The main problem with Brown clusters – as
well as word embeddings – is that they are in-
tended for transductive use, i.e., Brown clus-
ters are used to induce distributional classes
(representations) for observed words. In other
words, while they may minimize OOV effects
by bridging between words observed in small
labeled corpora and words observed in huge
unlabeled corpora, they still do not give us
representations for words that we encounter
for the first time in our test data. That is,
words neither in the labeled nor in the unla-
beled data. Such words could, for example,
be spelling variants or truly new words (neol-
ogisms, etc.).

In newswire most truly new words may be
proper nouns, but on social media like Twit-
ter we see a lot of linguistic creativity, many
spelling variants, and all sorts of neologisms.
In our Twitter data, for example, about 40% of
the word types were not observed in neither
the labeled nor the unlabeled data used to in-
fer our POS tagging model.

This paper presents a relatively simple tech-
nique for learning open-ended word represen-
tations from Brown clusters, covering also
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a large portion of the truly unknown words.
In our experiments, we obtain representations
for about 1/4 of these words (1/4 of 40%).
The technique, briefly put, is about construct-
ing minimal finite state automata (FSAs) from
Brown clusters, collect evidence for produc-
tive morpho-phonological alternations (reen-
trant branchings; see §3), and using these to
augment the FSAs. We apply the FSA-based
word representations to unsupervised domain
adaptation of POS taggers to Twitter data -
and show how this leads to significant im-
provements over a strong baseline system.

2 Related work

FSAs Many of the rules used in phonol-
ogy and morphology can be analyzed as spe-
cial cases of regular expressions, and many
linguistic descriptions at this level can be
compiled into finite state automata (FSAs)
(Kaplan and Kay, 1994; Karttunen et al.,
1997). Learning minimal FSAs from samples
is generally NP-hard (Gold, 1978), and most
FSAs used to model phono-/morphotactic
constraints have been manually constructed.
However, learning a minimal FSA for a fixed
set of members of a Brown clusters, is obvi-
ously a much easier problem. We extend the
FSAs to capture spelling variations better us-
ing a simple propagation principle (see §3).

Noeman and Madkour (2010) use FSAs for
named entity transliteration, a problem which
is very related to ours. They learned translit-
eration patterns using techniques from phrase-
based SMT, but formalized the translitera-
tion grammars by composing FSAs. Simi-
larly, de Vinaspre et al. (2013) use FSAs to
learn transliteration of SNOMED CT terms
in Basque. Spelling variations and transliter-
ation seem to form a continuum, from non-
dialectal spelling variations such as Face-
book/fbook, over dialectal variations such
as Baltimore/Baltimaw (observed on Twit-

ter), to cross-language variations such as
München/Munich.

POS tagging with Brown clusters Brown
et al. (1992) introduced the Brown cluster-
ing algorithm, which induces a hiearchy of
clusters optimizing the likelihood of a hid-
den Markov model. Each word is assigned
to at most one cluster. The algorithm can be
used as an unsupervised POS tagger (Blunsom
and Cohn, 2011), but Brown clusters have
also been used as features in discriminative se-
quence modeling (Turian et al., 2010).

Ritter et al. (2011) and Owoputi et al.
(2013) use Brown clusters induced from a
large Twitter corpus to improve a POS tagger
trained on a small corpus on hand-annotated
tweets (Gimpel et al., 2011). Several re-
cent papers on domain adaptation of POS tag-
gers use discriminative taggers trained with
Brown clusters as features as their baseline,
e.g., Plank et al. (2014).

3 FSA word representations

Our approach is to learn FSAs from Brown
clusters and use statistics over the learned
FSAs to propagate non-determinisms, in-
creasing the coverage of our word representa-
tions in domains such as Twitter. We explain
our word representation algorithm by the fol-
lowing example:

Say we have learned the Brown cluster
{cos, coz, coss, cozzz} consisting of short
forms of because. We can then construct
the minimal FSA that accepts only these four
strings. However, in this case, we can con-
struct an even smaller FSA if we allow cyclic
transitions going out from the first accepting
state. This leads to the automaton in Fig-
ure 1, which accepts the regular expression
co{s|z}+. In practice we will introduce cy-
cles whenever we observe character duplica-
tion, replacing a1a2 . . . am with a+. This is
supposed to capture productive character du-

163



plication in Twitter English, e.g.:

(1) Also, crackers and cheeeese is the best.

However, spelling variation on Twitter goes
beyond character duplication, e.g.:

(2) Jimmy keeps me company in the baf-
room

We therefore introduce the notion of k-
bounded reentrant branchings in minimal
FSAs. Formally, a k-bounded reentrant
branching is a pair of paths p and p′ of length
at most k such that 〈si, sj〉 ∈ p, i.e., there is
a path of at most k transitions labeled p tak-
ing you from si to sj , and 〈si, sj〉 ∈ p′, and
p 6= p′. In all our experiments, k = 3. From
the automaton in Figure 1, we derive the 3-
bound reentrant branchings s-ss, s-sss, s-z, s-
zz, s-zzz, s-zz, s-zzz, z-ss, . . .

After we have learned FSAs from C Brown
clusters, we rank the observed 3-bound reen-
trant branchings by their frequency. We then
take the m most frequent 3-bound reentrant
branchings and use them to construct new
FSAs. If an FSA F contains a transition la-
beled s from state si to sj , for example, and
s − z is in the top m most frequent non-
determinisms, we create a copy FSA with all
the states and transitions of F , as well as with
a transition z from si to sj .

From 1000 clusters used in our experiments
below, we generate 565,807 3-bound reentrant
branchings.

Just like we can construct feature represen-
tations over Brown clusters, e.g., a bag-of-
words (or bag-of-clusters) representation indi-
cating which Brown clusters have active mem-
ber words in the current sliding window, we
can use FSAs the same way. For example, we
can use a sliding window to represent emis-
sions by what unigrams and bigrams occur
as neighbors of the target word, as well as
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Figure 1: Example FSA for Brown cluster
{cos, coz, coss, cozzz}

’s s s z
a e ie y

ed ing ey y
ing n d ed

d s in n

Table 1: Top 10 3-bound reentrant branchings
in our Twitter clusters

what FSAs accept the target or the neighbor-
ing words. This way each word can be rep-
resented as a binary vector indicating what
FSAs accept this word. We use binary fea-
tures for lexical forms, Brown clusters, as well
as the extended set of FSAs.

DATA baseline FSAs err.red
FOSTER.DEV 90.0 90.3 0.030
GIMPEL.DEV 74.4 75.0 0.023
FOSTER.TEST 90.0 90.4 0.040
RITTER.TEST 81.8 82.3 0.027
HOVY.TEST 82.2 83.2 0.056

Table 2: Results (k = 200, tuned on dev).
Effect significant over the entire test data (p <
0.01 using Wilcoxon’s test)
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4 Experiments

We train a linear CRF model on newswire,
using a publicly available implementation
(CRFsuite),1 and adapt the feature representa-
tion to optimize performance on Twitter data.

Data As our training data we use the
OntoNotes 4.0 training split of the Wall Street
Journal section of the Penn Treebank. As our
held-out data, we use the development sec-
tions of Foster et al. (2011) and Gimpel et al.
(2011). Our test datasets come from Foster et
al. (2011), Ritter et al. (2011) (using the splits
from Derczynski et al. (2013)), and Hovy et
al. (2014). In other words, one out of three
test sets comes from the same sample as one
of our development sets, but two come from
new ones. This prevents false findings due
to over-fitting. All datasets were mapped to
the universal tagset presented in Petrov et al.
(2011), following Hovy et al. (2014).

Learning CRFsuite uses L-BFGS and L2-
regularization by default.

Features Our baseline feature representa-
tion uses a combination of unigram, bigram
and Brown cluster features, i.e., the CRF-
suite default feature model augmented with
Brown clusters. The Brown clusters were in-
duced from an in-house Twitter dataset of 57m
tweets using Percy Liang’s code,2 after tok-
enizing the tweets using Twokenize.3 We use
a minimum frequency cut-off at two and in-
duce 1,000 clusters (C = 1000). We induce
our base FSAs from these clusters using the
XFST toolkit.4 The extended set of FSAs is
used to build binary word representations in a
sliding window (see above).

The only parameter set is the k-most fre-
quent 3-bound reentrant branchings (set to

1http://www.chokkan.org/software/crfsuite/
2https://github.com/percyliang/brown-cluster/
3http://www.ark.cs.cmu.edu/
4http://web.stanford.edu/∼-

laurik/fsmbook/home.html

200). All other parameters were default in
CRFsuite. As already mentioned, we detect
565,807 3-bound reentrant branchings, so by
setting k = 200 we only use a very small
fraction of these. At k = 200, the least fre-
quent 3-bound reentrant branchings occur 8
times in our clusters. The most frequent non-
determinism occurs 117 times. The top 10
3-bound reentrant branchings are listed in Ta-
ble 1. Note that some of these 3-bound reen-
trant branchings capture inflectional forms,
e.g., ed-ing, while others capture spelling vari-
ations such as ’s-s and d-ed.

5 Results

Our results are presented in Table 2. It is
clear that going from Brown clusters to FSAs
lead to modest, but consistent improvements
across the board. This is not only the case on
development data, or test data taken from the
same sample as some of our development data
(FOSTER.TEST), but across all test sets, in-
cluding a much newer dataset (HOVY.TEST).
The improvements are statistically significant
(p < 0.001).

Setting k = 200 results in 1,699 new words
being assigned representations in the anno-
tated Twitter data. Coverage, even with au-
tomata representations, was only 69%, show-
ing the need for inductive representations.
When we analyze the errors of our FSA-based
model, it is clear that most errors are due to
known hard cases such as distinguishing be-
tween adjectives and adverbs, or distinguish-
ing between adpositions and particles. See
Plank et al. (2014) for some discussion.

6 Conclusions

We introduced a new approach to distri-
butional word representations, representing
words by the FSAs that accept them. We
learn the FSAs from Brown clusters induced
from Twitter data, by propagating frequent
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3-bound reentrant branchings. The 3-bound
reentrant branchings seem to capture morpho-
logical rules and known spelling variations
well, and lead to significant improvements in
POS tagging of Twitter.
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