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Abstract 

As a participant in the W-NUT Lexical 
Normalization for English Tweets chal-
lenge, we use deep learning to address 
the constrained task. Specifically, we use 
a combination of two augmented feed 
forward neural networks, a flagger that 
identifies words to be normalized and a 
normalizer, to take in a single token at a 
time and output a corrected version of 
that token. Despite avoiding off-the-shelf 
tools trained on external data and being 
an entirely context-free model, our sys-
tem still achieved an F1-score of 81.49%, 
comfortably surpassing the next runner 
up by 1.5% and trailing the second place 
model by only 0.26%. 

1 Introduction 

The phenomenal growth of social media, web 
forums, and online reviews has spurred a grow-
ing interest in automated analysis of user-
generated text. User-generated text presents sig-
nificant computational challenges because it is 
often highly disfluent. To address these chal-
lenges, we have begun to see a growing demand 
for tools and techniques to transform noisy user-
generated text into a canonical form, most re-
cently in the Workshop on Noisy User Text at 
the Association for Computational Linguistics. 
This work describes a submission to the Lexical 
Normalization for English Tweets challenge as 
part of this workshop (Baldwin et al., 2015)  

Motivated by the success of prior deep neural 
network architectures, particularly denoising au-
toencoders, we have developed an approach to 
transform noisy user-generated text into a canon-
ical form with a feed-forward neural network 
augmented with a projection layer (Collobert et 
al., 2011; Kalchbrenner, Grefenstette, & 
Blunsom, 2014; Vincent, Larochelle, Bengio, & 
Manzagol, 2008). The model performs a charac-
ter-level analysis on each word of the input. The 
absence of hand-engineered features and the 
avoidance of direct and indirect external data 
make this model unique among the three top-
performing models in the constrained task. 

This paper is organized as follows. In Sec-
tion 2 we describe each component of our model. 
In Section 3 we describe the specific instantia-
tion of our model, and in Section 4 we present 
and discuss results. 

2 Architecture and Components 

Our model consists of three components: a Nor-
malizer that encodes the input and then recon-
structs it in normalized form, a Flagger that de-
termines whether the Normalizer should be used 
or if the word should be taken as-is, and a Con-
former that attempts to smooth out simple errors 
introduced by quirks in the Normalizer. 

In this section we will use the simple example 
transformation of “u” to “you” where “u” is the 
input text and “you” is the gold standard normal-
ization. In our example we use a maximum word 
size of three. Figure 1 shows the flow of our ex-
ample through the model. In broad overview, the 
input is preprocessed and sent to both the Nor-
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malizer and the Flagger. The Normalizer com-
putes a candidate normalization, and the Flagger 
determines whether to use that candidate or the 
original word. The Normalizer’s output is passed 
to the Conformer, which conforms it to a word in 
the vocabulary list, and then the candidate, the 
flag, and the original input word are passed to a 
simple decision component that either keeps the 
original word or uses the normalized version 
based on the output of the Flagger. While it may 
seem inefficient that the normalized version is 
always computed, even if it is not used, this ap-
proach is used so that the Normalizer and Flag-
ger can be run in parallel on many inputs at once.  

2.1 Deep Feed-Forward Neural Networks 

As the central element of the Flagger and the 
Normalizer, the deep feed-forward neural net-
work forms the basis of our model. A deep feed-
forward neural network takes a vector of num-
bers as input. This vector is known as a layer and 
each value within it is a neuron. The network 

multiplies the input layer by a matrix of weights 
to return another vector. This new vector is then 
transformed by a non-linearity. A number of 
functions can serve as the non-linearity, includ-
ing the sigmoid and the hyperbolic tangent, but 
our model uses a rectified linear unit, given by 
the following expression. 

𝑦 = max 𝑥, 0  
The rectified linear unit has been successful in a 
number of natural language tasks such as speech 
processing (Zeiler et al., 2013), and it was effec-
tive in an unpublished part-of-speech tagging 
model we developed. 

The transformed vector is referred to as a hid-
den layer because its values are never directly 
observed in the normal functioning of the model. 

A deep feed-forward neural network can contain 
any number of hidden layers, each going through 
the same process, multiplying by a matrix of 
weights and transforming via a non-linearity. 
Hidden layers may also be of any size. Multiple 
applications of learnable weight matrices and 
non-linear transformations together allow a deep 
neural network to represent complex relation-
ships between input and output (Bengio, 2009). 

Deep feed-forward neural networks are trained 
by backpropagation. Backpropagation is a train-
ing method by which the gradient of any given 
weight in a network can be calculated from the 
error between the output of the network and a 
gold standard. It is described in more detail in 
(Rumelhart, Hinton, & Williams, 1986). 

2.2 The Normalizer 

Our use of deep feed-forward neural networks 
for the task of normalization is inspired by the 
success of denoising autoencoders. (Vincent et 
al., 2008). Denoising autoencoders are neural 

networks whose output is the same as their input. 
That is, they specialize in developing a robust 
encoding of an input such that the input can be 
reconstructed from the encoding alone. The de-
noising aspect refers to the fact that to encourage 
robustness, denoising autoencoders are given 
inputs that have been deliberately corrupted, or 
“noised” and are expected to reconstruct them 
without the noise. It is this “denoising” aspect 
that makes denoising autoencoders so interesting 
for text normalization. 

The main component of our model, the Nor-
malizer, uses a feed-forward neural network that 
functions on a similar principle to that of a de-
noising autoencoder. It reads the character se-
quence that describes the word and encodes it 

Figure 1: A flowchart detailing the process of normalizing a word. Information flows from left to right and ellipses represent 
data objects while rectangles represent processes. 
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internally, outputting the denoised (normalized) 
version. It accomplishes this in three sets of lay-
ers. First the character projection layer takes a 
string and represents it as a fixed-length numeric 
vector. Next, a feed-forward neural network con-
verts the data into its internal representation and, 
with a special output layer, into a denoised ver-
sion of the input. Figure 2 shows a diagram of 
the Normalizer’s architecture. 

The first step of the Normalizer is performed 
by the character projection layer (Collobert et al., 
2011). The character projection layer learns 
floating point vector representations of charac-
ters, which it concatenates into one large floating 
point vector word representation. In our example, 
the letter “u” is represented by n floating point 
numbers. For example, if n = 3 the representation 
for “u” might be [0.1, -1.2, -0.3]. This vector was 
chosen arbitrarily, but in the actual model, values 
are learned in training. The representations allow 
more information to be associated with a charac-
ter than a simple numeric index.    

In this simple example, the word “u” is com-
posed of one character, but if it were longer, each 
letter would be separately represented. A key 
challenge at this point is that a feed-forward neu-
ral network cannot handle an arbitrary number of 
inputs. Because each position in the vector is a 
neuron matched directly to a set of weights, 
changing the size of the vector would require 
changing the size of the learned weights, and the 
model would have to be retrained.  

To accommodate this, we use a fixed window. 
Before we send our input to the Normalizer, we 

preprocess it to meet a specified length, filling in 
unused spaces with a sentinel padding “charac-
ter” that projects to its own set of learned 
weights like the other characters. Since the max-
imum word size in our example is 3, we use a 
window of size 3. Therefore, our input “u” be-

comes [u, _, _] and then is projected and concat-
enated and becomes something like [0.1, -1.2, -
0.3, 1.3, 0.0, -1.1, 1.3, 0.0, -1.1]. Notice that we 
have nine values now in our input. That is the 
three values from “u” and then the three values 
for “_” ([1.3, 0.0, -1.1]) twice, once for each “_”. 
After this step, the system has a numeric vector 
representation of a word that is always the same 
length. It now sends it to the first layer of the 
feed-forward neural network. We deliberately 
select a large enough window that only in a small 
minority of cases does a word have to be reduced 
to fit into the window. 

The last hidden layer’s values go through one 
final matrix multiplication to output a list of val-
ues wv in size, where w is the size of the window 
and v is the number of possible characters includ-
ing the padding character, that is, the number of 
characters in the alphabet, which is shared be-
tween the input and output layers. In this last 
layer the nonlinear transformation is a special 
version of the softmax operation.  

The softmax operation transforms a vector 
such that each of its values is between zero and 
one and the new vector sums to one. Mathemati-
cally, it is given as: 

𝜎 𝑧 ! =
𝑒!"

𝑒!"!
!!!

 

Where K is the number of values in the vector. In 
our model, K = v, the size of the alphabet. These 
individual values can alternately be considered 
posterior probabilities for each of the possible 
decisions. If each value is mapped to a character, 

one can simply take the highest value to select 
the most likely character. In this case, we are 
predicting a window of w characters rather than a 
single character, so we perform softmax sepa-
rately on each of the w sets of v values in the lay-
er. In prediction, we simply take the index of the 

Figure 2: A diagram of the Normalizer correcting "u" to "you." The circles represent values, the lines weights. 
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highest value in each of the w sets, but in training 
we take the whole prediction distribution and try 
to maximize the likelihood of each correct letter. 
We do not attempt to predict character embed-
dings because we are learning them, and the 
model would be likely to learn a trivial function 
with character embeddings that are all equal. 

Training the Normalizer as a whole relies on 
generating posterior distributions and attempting 
to minimize the total negative log likelihood of 
the gold standard. Mathematically, our objective 
function is  

cost = − 𝑙𝑛 𝑝
!∈!

 

Where p is an element in P, the vector of the 
probabilities of each gold standard letter. So, if 
our model predicts “y” as 75% likely for charac-
ter 1, “o” as 95% likely for character 2, and “u” 
as 89% likely for character 3 in our window of 
size 3, the negative log likelihoods calculated as 
(.29, .05, .12) are summed to get the error. This 
sum error gives a simple measurement of per-
formance to optimize, which backpropagates 
through the model to learn all the weights de-
scribed above (Rumelhart et al., 1986). 

2.3 The Flagger 

The Flagger identifies what does and does not 
require normalization. The vast majority of the 
training data (91%) does not require normaliza-
tion, so returning the reconstructed encoding of 
every word would risk incorrectly regenerating 
an already canonical token.  

The Flagger has the same general structure as 
the Normalizer itself except for the final layer. 
Instead of generating text at the last layer, a 
softmax layer predicts whether the token should 
be normalized at all. Thus, the Flagger’s output 
layer is two neurons in size, one representing the 
flag “Do Normalize,” and another representing 
the flag “Do Not Normalize.” In the construction 
of the gold standard for the task, there were three 
reasons a token would not be normalized: firstly, 
the token is already correct, second, the token is 
in a protected category (hashtags or foreign 
words), or third, it was simply unrecognizable 
such that the human normalizer could not find 
the correct form. The Flagger accounts for but 
does not distinguish between these three possibil-
ities. 

2.4 The Conformer 

Even when a token should be corrected, it is pos-
sible that the normalizer will come very close to 

correcting it without succeeding. Reconstructing 
the word “laughing,” for instance, the normalizer 
can fail completely if it predicts even one letter 
wrong. An early analysis of validation data found 
that the normalizer had predicted “laugling” in-
stead of laughing. These off-by-one errors are a 
frequent enough occurrence to merit a module to 
deal with them. The Conformer is also useful for 
correctly normalizing rare words whose correct 
normalization is too long for the window to rep-
resent. In particular “lmfao” expands to an im-
pressive 27 characters, but if the Normalizer pre-
dicts only the first 25 characters, the Conformer 
can easily select the correct token. 

To correct these small normalizer errors we 
construct the Conformer by collecting a diction-
ary from the gold standard training data. The dic-
tionary is simply a list of all the unique words in 
the gold standard data. Then at runtime, whenev-
er the Normalizer runs and predicts a word that is 
not present in the dictionary, we replace it with 
the closest word in the dictionary according to 
Levenshtein distance (Levenshtein, 1966). Ties 
are resolved based on which word comes first in 
the dictionary. Because Python’s set function, 
which does not guarantee a specific order of its 
contents, is used to construct the dictionary, the 
dictionary’s order is not predictable and thus ties 
are resolved unpredictably. 

3 Settings and Evaluation 

The model was implemented in Theano, a Py-
thon library for fast evaluation of multi-
dimensional arrays using matrix operations 
(Bastien et al., 2012; Bergstra et al., 2010). We 
used Theano’s implementation of backpropaga-
tion to train our model. For our window size, we 
selected 25 characters, which is large enough to 
completely represent 99.9% of the tokens in the 
training data while remaining computationally 
feasible. There are also a number of hyper-
parameters: the number and size of hidden lay-
ers, the size of character embeddings, and the 
dropout rate. We tried various combinations of 
values between 50 and 6000 for the size and 1 
and 4 for the number of hidden layers in both our 
Normalizer and Flagger. Some combinations we 
tried can be seen in the results section. Especially 
large sizes and numbers of layers proved to re-
quire more memory than our GPU could support, 
and training them on our CPU was exceptionally 
slow. We also tried 50% and 75% dropout, 
meaning that during training we randomly ex-
cluded hidden nodes from consideration at each 
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layer. Dropout has been shown to improve per-
formance by discouraging overfitting on the 
training data, and 50% and 75% are common 
dropout rates (Hinton, 2014). 

We found the highest F1 score on the valida-
tion data for the Normalizer with two hidden lay-
ers of size 2000 each and 50% dropout. This was 
close to the maximum size our GPU could sup-
port without reducing the batch size to be too 
small to take advantage of the parallelism. The 
Flagger’s highest score was found at two hidden 
layers of size 1000 each and 75% dropout. At-
tempts to provide hidden layers of different sizes 
consistently found inferior results. For the size of 
each embedding in the character projection layer, 
10 had proven effective earlier in a simpler un-
published Twitter part-of-speech task. We select-
ed 25 for our character embedding size to ac-
count for the greater complexity of a normaliza-
tion task. 

We separated the provided training data into 
90% training data, 5% validation data and 5% 
was held out as test data. In order to construct a 
useful model on the small amount of available 
data, we iterate training over the same data many 
times. Our model stopped training after 150 
training iterations in which there was no im-
provement on the validation set. We chose 150 
iterations as the smallest value that did not lead 
to ending the training at a clearly suboptimal 
value. The training also stops at 5,000 iterations 
but in practice it converged before reaching this 
value.  

Early in development we found that the Nor-
malizer had exceptional trouble reconstructing 
twitter-specific objects, that is, hash-tags 
(#goodday), at-mentions (@marysue) and URLs 
(http://blahblah.com). Generally its behavior in 
all three cases was to follow the standard marker 
characters (@, #, http://) with a string of gibber-
ish unrelated to the word itself. Because these are 
protected categories that should not be changed, 
we removed them from the training data and rely 
on the Flagger to flag them as not to be correct-
ed. 

 We used layer-wise pre-training, meaning we 
first trained with zero hidden layers (going di-
rectly from the character projection to the soft-
max layer) to initialize the character embeddings, 
then we trained with one hidden layer, initializ-
ing the character embeddings with their previ-
ously trained values. When we trained the full 
model using two hidden layers, we initialized 
both the character projection layer and the 
weights from the projected input to the first hid-

den layer with the values learned before. The 
model continued to learn all the weights it used. 
Pretrained weights continued to be trained in the 
full model, although “freezing” some pretrained 
weights after pretraining and only training later 
weights in the full model has shown success 
when working with large amounts of unsuper-
vised data and may be worthwhile to consider in 
future work (Yosinski, Clune, Bengio, & Lipson, 
2014).  

Running on an NVIDIA GeForce GTX 680 
GPU with 2 GB of onboard memory, training the 
Normalizer took about six hours. We do not in-
clude CPU and RAM specifications because they 
were not heavily utilized in the GPU implemen-
tation. The Flagger was considerably faster to 
train than the Normalizer, taking only a little 
over half an hour. 

4 Results and Discussion 

The model earned third place in the competition, 
with scores very close to the second place model. 
The model’s results in the competition compared 
to the first, second, and fourth place models is 
shown in Table 1. The precision scores are much 
higher than the recall scores for all models be-
cause in this task precision measures the capabil-
ity of the model to not normalize what does not 
need normalizing while recall requires that a 
model both correctly identify what needs to be 
normalized and correctly normalize it.  

In addition to the challenge results, we per-
formed a more in-depth analysis on our own 
held-out validation and test data. Our analysis of 
the scores is shown in Table 2. 

Initial data on the Flagger is in Table 3. We 
further analyzed the different errors made on the 
validation data. Our findings can be found in Ta-
ble 4. Given the large proportion of errors mis-
takenly marked “Do Not Normalize,” we looked 
at these errors. A few examples can be found in 
Table 5. Although the Flagger was not trained 
with Normalizer confidence in mind, it does an 
impressive job of only cancelling a normalization 
when the normalization is either unnecessary or 
would fail. In no case did the Flagger prevent the 
Normalizer from making a correct normalization. 

An analysis in Figure 3 shows some early re-
sults from using only the Normalizer without a 
Conformer or Flagger. To fit this many runs in a 
reasonable time span, we used only ten percent 
of the training data. In this analysis, error rate is 
measured by token. To put the error rates in per-
spective, our final error rate was close to three 
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percent. We show this graph to illustrate a num-
ber of points. Particularly, we wish to illustrate 
the challenge of encoding and reconstructing 
every item in a massive vocabulary, the value of 
additional iterations of layer-wise pre-training, 
and the large spikes in the error rates at certain 
points in the model. 

 
Model Precision Recall F1-Score 

NCSU_SAS 
_NING 

0.9061 0.7865 0.8421 

NCSU_SAS 
_WOOKHEE 

0.9136 0.7398 0.8175 

NCSU_SAS 
_SAM 

0.9012 0.7437 0.8149 

Iitp 0.9026 0.7191 0.8005 
Table 1: Results of the constrained task 

Data Precision Recall F1-
Score Accuracy 

Valida-
tion  

0.8942 0.7752 0.8305 0.9740 

Test 0.8229 0.6870 0.7488 0.9656 
Table 2: Model Scores on Validation and Test Data 

Data Precision Recall F1-
Score Accuracy 

Valida-
tion  

0.9818 0.9939 0.9878 0.9776 

Test 0.9783 0.9930 0.9856 0.9736 
Table 3: Flagger scores on Validation and Test Data 

Error Percentage 
Occurrence 

Correctly flagged, 
misnormalized 13.85% 

Mistakenly flagged 
“Do Not Normalize” 66.15% 

Mistakenly flagged 
“Do Normalize” 20.00% 

Table 4: Analysis of errors. Percentages given are out of the 
total error count.  

Original Gold Stand-
ard Normalized 

FB Facebook fabol 
Fuhh f*** fuhh 

OPENFOLLOW open follow openffolow 
Feela Feels feela 
Bkuz because bkuze 
Kin kind of kin 

Bruuh brother bruuhr 
Table 5: Examples of tokens that were mistakenly flagged 
"Do Not Normalize.” The “Normalized” column is what the 
model would have produced if the Flagger had produced the 
flag “Do Normalize” 

The Normalizer demands much more rep-
resentational power when not assisted by the 
Flagger. Before we added the Flagger, we 

saw continual improvement of results going 
up to four layers of six thousand nodes each. 
We saw greater improvements from adding 
more nodes per layer than from adding more 
layers. The cluster of three lines near the top 
all have layers of 1500 or 2000 nodes each, 
and the next cluster down is the models we 
tried with 4500 and 6000 nodes. Incidentally, 
all but the smallest of these models were too 
large for our GPU’s 2GB of onboard 
memory. As a reminder, after we added the 
flagger, we only required two layers of 2000 
nodes each to get competitive results. In each 
case we used a dropout rate of 50%. 

The default models pre-trained each layer for 
250 iterations and we also trained models with 
the same structure for 500 iterations. We find a 
noticeable improvement in the error rate for the 
models that were pre-trained for more iterations. 
In the graph, the models with more pre-training 
make up the cluster of lines near the bottom of 
the graph. 

Looking at the graphs, one may notice that 
some lines have brief spikes multiple percentage 
points in size. Because it only takes a one-letter 
mistake for a word to be misnormalized, we ex-
pect that at these times a small error arose that 
affected a large number of words. It is worth 
pointing out that each model continues to im-
prove while in its spike, eventually dropping 
back to pre-spike levels. 

The model is unique among the three top-
performing models in that it avoids external data 
both directly and through indirect sources. The 
constrained task does not allow external data, but 
it does allow the use of off-the-shelf tools trained 
on external data. Our model does not use any 
such tools. Without the assistance of tools such 
as part-of-speech taggers, attempts to use context 
proved ineffective, likely because of increased 
sparsity. A given word that appears in the train-
ing set three hundred times may only appear 
three times after another particular word, and 
may not occur more than once with a particular 
prior word and following word, so it is more dif-
ficult to find patterns in limited data. Future 
work could either attempt to use tools to provide 
additional information or could simply take ad-
vantage of large amounts of data to learn directly 
the relationships such tools traditionally abstract 
for the benefit of conventional machine learning. 

There is one other point:  the human graders 
often made different decisions about whether or 
what a term should be normalized to.  For exam-
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ple, sometimes the word “pics” used to refer to 
pictures was normalized to “pictures” but other 
times it was left as “pics”.  These inconsistencies 
in the gold standard make it difficult to accurate-
ly judge the quality of the models submitted. Oc-
casionally when we examined mistakes the mod-
el made, we found that the model’s prediction 
was correct according to the gold standard, but 
that the gold standard was wrong. An inter-rater 
reliability measure would help us to gauge not 
only how well our models compare to each other 
but how they compare to agreement between 
human coders.  

5 Conclusions and Future Work 

Normalization of Twitter text is a challenging 
task. With a direct application of simple deep 
learning techniques and without relying on any 
sources of external data, direct or indirect, we 
built a model that performed competitively with 
the other models in the task. Our method shows 
the ability of deep learning to tackle complex 
tasks without labor-intensive hand-engineering 
of features. 

An important direction for future work is sim-
plifying the normalization pipeline. The need for 
a Conformer in particular suggests that there is 
room for improvement in the model. Although 
constructing the normalized form rather than se-
lecting from a list leaves the possibility open that 
a system could normalize to a correct word that 
did not appear in the training data, in practice 

this happened much less often than having the 
system normalize incorrectly. A model that pre-
dicts words from a vocabulary instead of recon-
structing them would be faster to train and would 
not require a Conformer, and, considering the top 
two models were vocabulary based, might out-
perform our reconstruction-based model.  

A second direction for future work centers on 
leveraging external data. With more time and 
greater computing power, it may be the case that 
it is possible to learn sophisticated language 
models in an unsupervised fashion from both 
standard conversational text and twitter data. 

With this additional data, a model may be able to 
effectively use context in distinguishing between 
multiple possible normalizations of a word. De-
noising autoencoders in particular are known to 
make good use of unsupervised data. 

A third direction for future work is to investi-
gate more challenging normalization tasks that 
include correction of syntax and do not present 
the text already tokenized. These will give us an 
opportunity to attempt tasks closer to the chal-
lenges our normalization systems will face in the 
real world. 

Finally, it will be important to investigate the 
overall utility of normalization of text as a pre-
processing step for other analysis. While many 
tasks will only benefit from cleaning the data, it 
is not clear that the canonical forms of words 
retain the same connotations that the original 
“noisy” versions held. For a simple example, if 
we were to normalize “cooooooool” to “cool” we 

Figure 3: The Normalizer component validation scores by epoch. Model structures are given by “LxN” where L is the size of 
each layer and N is the number of layers and more_pretrain indicates that pretraining has continued for 500 instead of 250 
iterations, and they cluster at the bottom with the lowest error.  To smooth the graphs and make them more interpretable, 
values at each epoch are the average of a 10-epoch window. 
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would lose the emphasis implied by the elonga-
tion of the vowel. For some tasks, it may be im-
portant to retain the information contained in 
such non-canonical forms. 
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