
Proceedings of the 2015 Workshop on Biomedical Natural Language Processing (BioNLP 2015), pages 61–70,
Beijing, China, July 30, 2015. c©2015 Association for Computational Linguistics

Stacked Generalization for Medical Concept Extraction from Clinical
Notes

Youngjun Kim
School of Computing

University of Utah
Salt Lake City, UT 84112

youngjun@cs.utah.edu

Ellen Riloff
School of Computing

University of Utah
Salt Lake City, UT 84112
riloff@cs.utah.edu

Abstract

The goal of our research is to extract med-
ical concepts from clinical notes contain-
ing patient information. Our research ex-
plores stacked generalization as a meta-
learning technique to exploit a diverse set
of concept extraction models. First, we
create multiple models for concept extrac-
tion using a variety of information ex-
traction techniques, including knowledge-
based, rule-based, and machine learning
models. Next, we train a meta-classifier
using stacked generalization with a fea-
ture set generated from the outputs of the
individual classifiers. The meta-classifier
learns to predict concepts based on in-
formation about the predictions of the
component classifiers. Our results show
that the stacked generalization learner per-
forms better than the individual models
and achieves state-of-the-art performance
on the 2010 i2b2 data set.

1 Introduction

Clinical notes (or electronic medical records) con-
tain important medical information related to pa-
tient care management. Health care profession-
als enter a patient’s medical history and informa-
tion about their care at a health care provider. A
patient’s diseases, symptoms, treatments, and test
results are often encoded in these notes in an un-
structured manner.

In the last two decades, Natural Language
Processing (NLP) techniques have been applied
to clinical notes for medical concept extraction.
Medical concept extraction typically consists of
two main steps: detection of the phrases that re-
fer to medical entities, and classification of the
semantic category for each detected medical en-
tity. Medical domain knowledge and sophisti-
cated information extraction methods are required

to achieve high levels of performance. Medical
concept extraction is a fundamental problem that
can also serve as the stepping stone for higher level
tasks, such as recognizing different types of rela-
tionships between pairs of medical concepts.

The main goal of our research is to explore
the use of stacked generalization learning for the
medical concept extraction task. Stacked learn-
ing (Wolpert, 1992) is a meta-learning ensemble-
based method that regulates the biases of multi-
ple learners and integrates their diversities. An
ensemble of individual classifiers is created and
then another classifier (the meta-classifier) sits on
top of the ensemble and trains on the predictions
of the component classifiers. A key advantage of
stacked generalization is that the meta-classifier
learns how to weight and combine the predic-
tions of the individual classifiers, allowing for a
fully automated ensemble system. New compo-
nent classifiers can be easily added without the
need for manual intervention. Voting-based en-
sembles are another strategy for combing multi-
ple classification models, and they often perform
well. But they can require manual adjustment of
the voting threshold when new components are
added, and they do not automatically learn how to
weight different components. Stacked generaliza-
tion provides a more easily extensible and adapt-
able framework.

In the next sections, we discuss related work,
describe our individual classifiers for medical con-
cept extraction, and present the stacked general-
ization learning framework. Finally, we present
experimental results on the 2010 i2b2 data set and
compare our results with state-of-the-art systems.

2 Related Work

In early natural language processing (NLP) re-
search for clinical notes, most systems used rule-
based approaches. MedLEE (Friedman et al.,
1994) uses a rule-based system that extracts med-

61



ical concepts by performing a shallow syntactic
analysis and using semantic lexicons. SymText
was developed by Haug et al. (1995; 1997) and
evolved into MPlus (Christensen et al., 2002).
This system was used to extract medical findings,
diseases, and appliances from chest radiograph re-
ports. HITEx (Zeng et al., 2006) is a pipelined sys-
tem with multiple preprocessing modules and has
been used to extract family history information,
principal diagnosis, comorbidity and smoking sta-
tus from clinical notes. MetaMap (Aronson and
Lang, 2010) was developed to recognize Metathe-
saurus concepts from biomedical texts by utilizing
the UMLS (Unified Medical Language System).

Recently, statistical learning approaches have
received more attention because of the manual ef-
fort typically required to create rule-based sys-
tems. Most current information extraction (IE)
systems in clinical NLP use statistical machine
learning approaches that often achieve better per-
formance than rule-based approaches. Our work is
also closely related to Named Entity Recognition
(NER). For both newswire and biomedical texts,
machine learning models have achieved good re-
sults for extracting specific types of entities (e.g.,
(Collier et al., 2000; Lafferty et al., 2001; Collins,
2002; Zhou and Su, 2002; McDonald and Pereira,
2005)).

Our research focuses on the medical concept de-
tection task that was introduced in 2010 for the
i2b2 Challenge Shared Tasks (Uzuner et al., 2011).
These challenge tasks included: (a) the extrac-
tion of medical problems, tests, and treatments,
(b) classification of assertions made on medical
problems, and (c) relations between medical prob-
lems, tests, and treatments. The best performance
on the 2010 i2b2 concept extraction task (a) was
achieved by de Bruijn et al. (2011) with 83.6% re-
call, 86.9% precision, and 85.2% F1 score. They
integrated many features commonly used in NER
tasks including syntactic, orthographic, lexical,
and semantic information (from various medical
knowledge databases). Jiang et al. (2011) trained
a sequence-tagging model that consisted of three
components in a pipeline: concept taggers with
local features and outputs from different knowl-
edge databases, post-processing programs to de-
termine the correct type of semantically ambigu-
ous concepts, and a voting ensemble module to
combine the results of different taggers. Their sys-
tem achieved an 83.9% F1 score. Subsequent re-

search by Tang et al. (2013) showed that cluster-
ing and distributional word representation features
achieved an higher F1 score of 85.8%.

Ensemble methods that combine multiple clas-
sifiers have been widely used for many NLP tasks
and generally yield better performance than indi-
vidual classifiers. For protein/gene recognition,
Zhou et al. (2005) used majority voting from mul-
tiple classifiers to achieve better performance than
any single classifier. Finkel et al. (2005) combined
the outputs of forward and backward (reversing
the order of the words in a sentence) sequence la-
belling, which improved recall. Similarly, Huang
et al. (2007) integrated the outputs of three models
for gene mention recognition. They applied inter-
section to the outputs of forward and backward la-
beling SVM (support vector machine) models and
then union with the outputs of one CRF (condi-
tional random fields) model. Doan et. al (2012)
showed that a voting ensemble of rule-based and
machine learning systems obtained better perfor-
mance than individual classifiers for medication
detection. For medical concept detection, Kang
et al. (2012) used majority voting between seven
different systems for performance improvement.

Our research explores an ensemble method
called stacked generalization (Wolpert, 1992;
Breiman, 1996), which has been shown to pro-
duce good results for several NLP tasks. Stacking
is an ensemble-based method for combining mul-
tiple classifiers by training a meta-classifier us-
ing the outputs of the individual classifiers. Ting
and Witten (1999) showed that stacked generaliza-
tion using confidence scores from the predictions
of multiple classifiers obtained better results than
the individual systems. Džeroski and Zeno (2004)
showed good performance for stacked learning on
a collection of 21 datasets from the UCI Repos-
itory of machine learning databases (Blake and
Merz, 1998). Nivre and McDonald (2008) applied
stacked learning to dependency parsing by inte-
grating two different models (graph-based models
and transition-based models). Recently, some re-
search has used stacked learning in the bioinfor-
matics domain. Wang et al. (2006) used stacked
learning with two base learners for predicting
membrane protein types. Netzer et al. (2009) ap-
plied stacked generalization to identify breath gas
marker and reported improved classification accu-
racy. For NLP from clinical texts, Kilicoglu et al.
(2009) used stacked learning for document level
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classification to identify rigorous, clinically rele-
vant studies.

Stacked learning is similar to weighted majority
voting (Littlestone and Warmuth, 1994) and Cas-
cading learning (Gama and Brazdil, 2000). How-
ever, weighted majority voting only determines a
voting weight for each individual classifier, while
stacked learning can assign different weights to
different types of predictions. Training in cascad-
ing learning requires multiple rounds of learning,
while stacked learning typically consists of just
two stages. Also, cascading learning does not need
multiple base learners. Tsukamoto et al. (2002)
employed cascaded learning using a single algo-
rithm that improved performance on an NER task.

Our stacked generalization framework is differ-
ent from weighted majority voting or cascading
learning. Our stacked learning architecture trains
a meta-classifier using features derived from the
predictions and confidence scores of a set of di-
verse component classifiers. To the best of our
knowledge, this research is the first to use stacked
generalization with a rich set of meta-features for
medical concept extraction from clinical notes.

3 Stacked Generalization with Multiple
Concept Extraction Models

The goal of our research is to investigate stacked
generalization learning for medical concept ex-
traction with a diverse set of information extrac-
tion models. We will first describe each individ-
ual model and then present the stacked learning
framework.

3.1 Information Extraction Models

Our ensemble consists of four types of individual
component systems, which are described below.

MetaMap: We use a widely-used knowledge-
based system called MetaMap (Aronson and Lang,
2010). MetaMap is a rule-based program that as-
signs UMLS Metathesaurus semantic concepts to
phrases in natural language text. Unlike our other
IE systems, MetaMap is not trained with machine
learning so it is not dependent on training data. In-
stead, MetaMap is a complementary resource that
contains a tremendous amount of external medical
knowledge.

We encountered one issue with using this re-
source for our task. MetaMap can assign a large
set of semantic categories, many of which are not
relevant to the i2b2 concept extraction task. How-

ever it is not obvious how to optimally align the
MetaMap semantic categories with our task’s se-
mantic categories because their coverage can sub-
stantially differ. Therefore we built a statistical
model based on the concepts that MetaMap de-
tected in the training data. We collected all of
MetaMap’s findings in the training data, aligned
them with the gold standard medical concepts,
and calculated the probability of each MetaMap
semantic category mapping to each of our task’s
three concept types (“problem”, “treatment”, and
“test”). We then assigned a MetaMap semantic
type to one of our concept types if the seman-
tic type is ranked among the top 30% of seman-
tic types based on Prob(concept type | sem type).
For example, “sosy” (“Sign or Symptom” in
MetaMap) was mapped to the “problem” concept
type because it had a high probability of being
aligned with labeled problems in the data set. Ta-
ble 1 shows the semantic types that we ultimately
used for concept extraction.1

Category MetaMap semantic types

Problem acab, anab, bact, celf, cgab, chvf,
dsyn, inpo, mobd, neop, nnon,
orgm, patf, sosy

Treatment antb, carb, horm, medd, nsba,
opco, orch, phsu, sbst, strd, topp,
vita

Test biof, bird, cell, chvs, diap, enzy,
euka, lbpr, lbtr, mbrt, moft, phsf,
tisu

Table 1: MetaMap semantic types used for con-
cept extraction.

Rules: We used the training data to automati-
cally create simple rules. The idea is to exploit
the training data to create a simple rule-based sys-
tem without any manual effort. For each phrase
labeled as a medical concept in the training data,
we created a rule that maps the phrase to the con-
cept type that it was most frequently assigned to in
the training data. Similar to the MetaMap model
above, we then computed P(concept type | phrase)
using frequency counts.

To generate phrase matching rules, we applied

1Refer to http://metamap.nlm.nih.gov/
Docs/SemanticTypes_2013AA.txt for the mapping
between abbreviations and the full semantic type names.
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two thresholds to each rule: a minimum proba-
bility threshold (θP ) and a minimum frequency
threshold (θF ). First, we extracted annotated
phrases from the training data. Next, for each
phrase we computed its overall frequency and
P(concept type | phrase) for each of the 3 concept
types. We then selected the phrases that passed
the two thresholds and assigned them to the corre-
sponding concept type. In cases where one phrase
subsumed another phrase, such as “disease” and
“coronary disease”, and both phrases pass the
thresholds, we only chose the longer phrase. We
then created a rule for each phrase that labels all
instances of that phrase as the concept type (e.g.,
“diabetes”→ Problem). A concept was extracted
when the candidate phrase occurs more than two
times (θF ) in the training data and the rule’s prob-
ability is over 60% (θP ).

Contextual Classifier (SVM): We created a su-
pervised learning classifier with contextual fea-
tures. We applied the Stanford CoreNLP tool
(Manning et al., 2014) to our data sets for to-
kenization, lemmatization, part-of-speech (POS)
tagging, and Named Entity Recognition (NER).
We trained a Support Vector Machine (SVM) clas-
sifier with a linear kernel using the LIBLINEAR
(Library for Large Linear Classification) software
package (Fan et al., 2008) for multi-class classifi-
cation.

We reformatted the training data with IOB tags
(B: at the beginning, I: inside, or O: outside of
a concept). We defined features for the targeted
word’s lexical string, lemma, POS tag, affix(es),
orthographic features (e.g. Alphanumeric, Has-
Digit), named entity tag, and pairwise combina-
tions of these features. Also, we used the predic-
tions of MetaMap as additional features. Table 2
shows the complete feature set used to create the
SVM model, as well as the CRF models described
below. We set the cost parameter to be c= 0.1 (one
of LIBLINEAR’s parameters) after experimenting
with different values by performing 10-fold cross
validation on the training set.

Sequential Classifier (CRF): We trained sev-
eral sequential taggers using linear chain Con-
ditional Random Fields (CRF) supervised learn-
ing models. In contrast to the contextual classi-
fier mentioned above, the CRF classifiers use a
structured learning algorithm that explicitly mod-
els transition probabilities from one word to the
next. Our CRF models also use the features in

Feature Description

Word w0 (current word),
w−1 (previous word),
w1 (following word),
w−2 (second previous word),
w2 (second following word)

Bi-grams of
words

[w−2, w−1], [w−1, w0],
[w0, w1], [w1, w2]

Lemmas l−3, l−2, l−1, l1, l2, l3

Affixes prefixes and suffixes,
up to a length of 5

Orthographic 15 features based on regular
expressions for w0, w−1, w1

POS tags p0, p−1, p1, p−2, p2

Bi-grams of
POS tags

[p−2, p−1], [p−1, p0],
[p0, p1], [p1, p2]

Lemma + POS [l0, p0]

NER class n0

MetaMap
semtype

m0, m−1, m1,
[m−1, m0], [m0, m1]

Table 2: Feature set for SVM and CRF models.

Table 2. We used Wapiti (Lavergne et al., 2010),
which is a simple and fast discriminative sequence
labeling toolkit, to train the sequential models. As
with the SVM, 10-fold cross validation was per-
formed on the training set to tune the Wapiti’s CRF
algorithm parameters. We set the size of the in-
terval for the stopping criterion to be e = 0.001.
For regularization, L1 and L2 penalties were set
to 0.005 and 0.4 respectively.

Post processing: The concepts annotated by the
i2b2 annotation guidelines2 include modifying ar-
ticles, pronouns, and prepositional phrases. For
treatments such as medications, the amount, dose,
frequency, and mode are included in the annota-
tion only when they occur as pre-modifiers. How-
ever, when they are part of signatura, which ex-
plains how to use the medication for the patient,
they are excluded from concept boundaries. For
example,

800 mg ibuprofen
Lasix 20 mg b.i.d. by mouth

2https://www.i2b2.org/NLP/Relations/
assets/ConceptAnnotationGuideline.pdf
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“800 mg ibuprofen” is annotated as a treatment
concept, while only “Lasix” is annotated in the
second example.

When applying MetaMap to the training set,
we observed that there is a huge difference be-
tween the i2b2 annotations and MetaMap’s con-
cept boundary definition, especially with respect
to articles and pronouns. MetaMap typically ex-
cludes modifying articles, pronouns, and preposi-
tional phrases. For example, for “a cyst in her kid-
ney”, only “cyst” was extracted by MetaMap.

Therefore we added a post-processing step that
uses three simple heuristics to adjust concept
boundaries to reduce mismatch errors. Although
these rules were originally compiled for use with
MetaMap, we ultimately decided to apply them to
all of the IE models. The three heuristic rules are:

1. We include the preceding word contiguous to
a detected phrase when the word is a quanti-
fier (e.g., “some” ), pronoun (e.g., “her” ), ar-
ticle (e.g., “the’), or quantitative value (e.g.,
“70%”).

2. We include a following word contiguous to
a detected phrase when the word is a closed
parenthesis (“)” ) and the detected phrase
contains an open parenthesis (“(” ).

3. We exclude the last word of a detected phrase
when the word is a punctuation mark (e.g.,
period, comma).

3.2 Ensemble Methods

We explored two types of ensemble architectures
that use the medical concept extraction methods
described above as components of the ensemble.
We created a Voting Ensemble, as a simple but
often effective ensemble method, and a Stacked
Generalization Ensemble, which trains a meta-
classifier with features derived from the outputs
of its component models. Both architectures are
described below.

Voting Ensemble Method: We implemented
the majority voting strategy suggested by Kang
et al. (2012) with a simple modification to avoid
labeling concepts with overlapping text spans.
When two different concepts have overlapping
text spans, the concept that receives more votes is
selected. For overlapping concepts with identical
vote counts, we used the normalized confidence
scores from the individual classifiers and select the
concept with the higher confidence score. Each

confidence score, s ∈ S (the set of all confidence
scores), was normalized by Z-score as:

Nor(s) =
s− E(S)
std(S)

where

E(S) = the mean of the scores

std(S) = the standard deviation of the scores

Stacked Generalization Method: We created
a meta-classifier by training a SVM classifier with
a linear kernel based on the predictions from the
individual classifiers. Figure 1 shows the archi-
tecture of our stacked learning ensemble. First, to
create training instances for a document, all of the
concept predictions from the individual IE models
are collected. We then use a variety of features to
consider the degree of agreement and consistency
between the IE models. Each concept predicted by
an IE model is compared with all other concepts
predicted in the same sentence. For each pair of
concepts, the following eight matching criteria are
applied to create eight features:

• If the text spans match
• If the text spans partially match (any word

overlap)
• If the text spans match and concept types

match
• If the text spans partially match and the con-

cept types match
• If the text spans have the same start position
• If the text spans have same end position
• If one text span subsumes the other
• If one text spans is subsumed by the other

Features are also defined that count how many dif-
ferent models produced a predicted concept, and
features are defined for predictions produced by
just a single model (indicating which model pro-
duced the predicted concept).

In addition, we created a feature for the confi-
dence score of each predicted concept. When mul-
tiple components predicted a concept, the highest
score was used. We also created a feature that
counts how many times the same phrase was pre-
dicted to be a concept in other sentences in the
same document. The number of word tokens in
a prediction, and whether the prediction contains
a conjunction or prepositional phrase, were also
used as features.

We performed 10-fold cross validation on the
training set to obtain predictions for each classi-
fier. These predictions were used to train the meta-
classifier.
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Figure 1: Stacked Learning Ensemble Architecture

4 Experimental Results

We present experimental results for each of our
concept extraction components individually, as
well as for each of the two ensemble methods: vot-
ing and stacked generalization learning.

4.1 Data
The 2010 i2b2 Challenge corpus was used for
evaluation. The corpus consists of discharge sum-
maries from Partners HealthCare (Boston, MA)
and Beth Israel Deaconess Medical Center, as well
as discharge summaries and progress notes from
the University of Pittsburgh Medical Center (Pitts-
burgh, PA). It contains 349 clinical notes as train-
ing data and 477 clinical notes as test data. 18,550
problems, 13,560 treatments and 12,899 tests (for
a total of 45,009 medical concepts) are annotated
as the semantic concepts in the test data.

4.2 Performance of Individual Models
We used the i2b2 Challenge evaluation script to
compute recall, precision, and F1 scores. In this
paper, we present the results of class exact match:
both the text span and semantic category must ex-
actly match the reference annotation.

MetaMap: We used MetaMap 2013v2 with the
2013AB NLM relaxed database.3 As we men-
tioned in Section 3.1, we only used a subset of
MetaMap’s semantic types based on statistics col-
lected by aligning MetaMap’s findings with the
medical concepts in the labeled training data.4 We

3We used the following MetaMap options: -C -V NLM -y
-i -g --composite phrases 3 --sldi

4Using all of MetaMap’s semantic types produces ex-
tremely low precision.

selected the top 30% of its semantic types (shown
in Table 1) based the collected probabilities. The
first row of Table 3 shows the results for MetaMap
using these semantic categories. As explained be-
fore, MetaMap suffers from boundary mismatch
errors due to the difference between the i2b2 an-
notations and MetaMap’s concept boundary defi-
nition. In spite of our added post-processing rules
to address this issue, we could not eliminate this
problem especially for concepts containing many
pre-modifiers or prepositional phrases. We also
observed that MetaMap often did not recognize
acronyms and abbreviations in the clinical notes.

Method Rec Pr F

MetaMap 36.1 47.4 41.0
Rules 18.5 72.6 29.5
SVM 81.2 77.5 79.3

CRF-fwd 81.5 86.2 83.8
CRF-fwd w/ MetaMap 82.5 86.7 84.5
CRF-rev 82.4 86.5 84.4
CRF-rev w/ MetaMap 82.9 87.0 84.9

Voting ensemble 83.5 88.2 85.8
Stacked ensemble 83.5 88.6 86.0

Table 3: Recall (Rec), Precision (Pr), and F1 score
(F) of each method on the 2010 i2b2 Challenge
test data.

Rules: The second row of Table 3 shows the re-
sults of matching with the rules that we extracted
from the training data. This simple approach ob-
tained fairly good precision of 72.6%, but low
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recall. This method relies entirely on common
words found in the training data, so unseen words
in the test data were not recognized. In addition,
pre-modifiers were often missed. For example,
only “embolization” was extracted from text men-
tioning “coil embolization”.

SVM: The SVM context-based classifier
achieved an F1 score of 79.3% (third row in Table
3) with its rich contextual features. A subsequent
analysis revealed that this classifier excels at
recognizing concepts that consist of a single word,
achieving recall of 89.3% for these cases, about
2.3% higher than the sequential classifiers (CRFs)
perform on these cases.

CRF: We implemented four different varia-
tions of sequential classifiers. We trained CRF
classifiers with both forward and backward
tagging (by reversing the sequences of words)
(Kudo and Matsumoto, 2001; Finkel et al.,
2005). As a result, each medical concept had
different IOB representations. For example,
the IOB tags of “positive lymph nodes” by
forward and backward tagging were “positive/B-
problem lymph/I-problem nodes/I-problem” and
“positive/I-problem lymph/I-problem nodes/B-
problem”, respectively. For each of these forward
(CRF-fwd) and backward (CRF-rev) taggers, we
created versions both with and without MetaMap
output as features. Overall, the CRF models
performed better than the other IE methods.
Among the four sequential models, backward
tagging with MetaMap features obtained the best
results, which are shown in row 7 of Table 3,
with an F1 score of 84.9%. A subsequent analysis
revealed that this classifier excels at recognizing
multi-word concepts, achieving a recall of 79.8%
(about 5% higher than the SVM) and a precision
of 82.8% (about 7.4% higher than the SVM) for
medical concepts with multiple words.

4.3 Performance of Ensembles

Finally, we evaluated the performance of the two
ensemble architectures described in Section 3.2.

Voting Ensemble: We created a Voting ensem-
ble consisting of all seven individual IE models:
the rules, MetaMap, the contextual classifier, and
all four sequential tagging models. The 8th row
in Table 3 shows the results with a voting thresh-
old of three (i.e. three votes are needed to label
a concept). This voting ensemble obtained better
performance than any of the individual classifiers,

0.00 
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100.00 

2 3 4 5 6 7 

percent 

voting threshold 
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Pr 
F 

Figure 2: Recall (Rec), Precision (Pr), and F1

score (F) of the voting ensemble for varying voting
thresholds.

reaching an F1 score of 85.8%.
The voting threshold is a key parameter for Vot-

ing Ensembles that can dramatically affect perfor-
mance. The voting threshold can serve as a re-
call/precision knob to obtain different trade-offs
between recall and precision. In Figure 2, we show
results for voting thresholds ranging from two to
seven. The curves show that precision increases as
the threshold gets higher, but recall drops simulta-
neously. When the voting threshold exceeds five,
recall drops precipitously.

Stacked Generalization: We evaluated the
Stacked Generalization Ensemble using the same
set of seven individual IE models used in the Vot-
ing Ensemble. The last row of Table 3 shows that
the Stacked Ensemble achieved slightly higher
precision than the Voting Ensemble, overall pro-
ducing 83.5% recall, 88.6% precision, and an
86.0% F1 score. Using a paired t-test across the
F1 scores for all test documents (i.e., each F1 score
was calculated for each document, and then aver-
aged across all test documents), the Stacked En-
semble performed significantly better than all of
the individual IE models (p < 10−4), but not sig-
nificantly better than the Voting Ensemble (p =
0.0849).

We performed ablation tests for both the Voting
and Stacked Generalization Ensembles to evaluate
the impact of each IE model on the ensembles. An
ablated ensemble was tested by removing a sin-
gle model from the ensemble. Table 4 shows the
F1 score for each ablated ensemble and the differ-
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Method Voting Stacked

F1 score Impact F1 score Impact

MetaMap 85.69 -0.10 85.81 -0.20
Rules 85.76 -0.02 85.93 -0.08
SVM 85.51 -0.28 85.70 -0.31
CRF-fwd 85.56 -0.23 85.84 -0.17
CRF-fwd w/ MetaMap 85.56 -0.22 85.83 -0.18
CRF-rev 85.41 -0.37 85.76 -0.25
CRF-rev w/ MetaMap 85.41 -0.37 85.77 -0.24

Table 4: The ablation tests of Voting and Stacked Generalization Ensembles

ence from the F1 score of the original (complete)
ensemble. As shown in Table 4, every IE model
contributed to the performance of both the Vot-
ing and Stacked Ensembles. Removing the Rules
component had a very small impact, presumably
because the machine learning models also acquire
information from the training data. All of the other
IE models appear to have played a valuable role.
For the voting ensemble, the F1 score dropped the
most when the CRF-rev or CRF-rev w/ MetaMap
models were removed. For Stacked Generaliza-
tion, removing the SVM model had the biggest
impact.

Overall, our results confirm that ensemble ar-
chitectures consistently outperform individual IE
models. Although the Stacked Ensemble and
Voting Ensemble produce similar levels of per-
formance, Stacked Generalization has a signifi-
cant practical advantage over Voting Ensembles.
Adding new models to an ensemble is easy, but
Voting Ensembles require a voting threshold that
must be adjusted when the number of component
models changes. Consequently, it can be difficult
to assess the overall impact of adding new models
(e.g., adding twice as many models may require a
higher voting threshold, which may yield higher
precision but substantially lower recall). A simple
count-based voting threshold is coarse, so small
changes can sometimes produce dramatic effects.
In contrast, Stacked Generalization uses a meta-
classifier to automatically learn how to best weight
and use the components in its ensemble. Conse-
quently, adding new models to a Stacked Ensem-
ble only requires re-training of the meta-classifier.

To demonstrate this advantage over voting, we
added a second copy of the MetaMap component
as an additional system in our ensemble. Vot-
ing between the eight systems using our origi-

nal threshold of three dropped the F1 score by -
0.3%. Adding a third copy of the MetaMap com-
ponent (producing nine component systems) de-
creased the F1 score by -6.8% (absolute). In the
same scenarios, the Stacked Learning Ensemble
proved to be much more robust, showing almost
no change in performance (-0.2% and -0.3% with
eight and nine systems respectively).

Table 5 shows the performance of other state-
of-the-art systems for medical concept extraction
alongside the results from our Stacked Learn-
ing Ensemble. The Stacked Ensemble produces
higher precision than all of the other systems.
Overall, the F1 score of the Stacked Ensemble is
comparable to the F1 score of the best previous
system by Tang et al. (2013). Our Stacked En-
semble achieves slightly higher precision, while
the the Tang et al. system produces slightly higher
recall.

System Rec Pr F

de Bruijn et al. (2011) 83.6 86.9 85.2
Kang et al. (2012) 81.2 83.3 82.2
Tang et al. (2013) 84.3 87.4 85.8
Stacked Ensemble 83.5 88.6 86.0

Table 5: Recall (Rec), Precision (Pr), and F1

score (F) of other state-of-the-art systems and our
Stacked Ensemble.

5 Analysis

We did manual error analysis to better under-
stand the nature of the mistakes made by our sys-
tem. Many of the errors revolved around incor-
rect boundaries for extracted concepts. When al-
lowing a ±1 boundary error for the outputs of the
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Stacked Ensemble, the F1 score went up to 87.9%.
Most of these boundary errors on the test set were
due to omitting a premodifier or incorrectly in-
cluding a preceding verb. The first row of Table
6 shows examples of false negatives that fell into
this category. The reference annotations appear in
boldface and the system outputs are surrounded
by brackets.

Boundary Examples

±1 positive [lymph nodes]
[repeat the echocardiogram]

±2 [overdosing] on insulin
[head wound remain dry]
1000 ml [fluid restriction]

Others active source of [bleeding]
[careful monitoring of heart rate]

Table 6: Examples of boundary errors by the
Stacked Ensemble.

When allowing for ±2 boundary word errors,
the F1 score increased to 89.4%. The omission of
a prepositional phrase or a pre-modifying phrase
and the incorrect inclusion of a verb phrase were
frequently observed in these errors. For broader
boundaries, the errors are similar to ±2 cases but
caused by longer pre-modifying phrases.

We also analyzed false negatives that did not
contain any words in common with the outputs of
the Stacked Learning Ensemble. For about 34% of
the false negative concepts that were missed, none
of the words in the concept appeared in the train-
ing data.

6 Conclusion

We demonstrated that a Stacked Generalization
Ensemble achieves high precision and overall per-
formance comparable to the state-of-the-art for the
task of medical concept extraction from clinical
notes. Stacked learning offers the advantage of
being able to easily incorporate any set of indi-
vidual concept extraction components because it
automatically learns how to combine their predic-
tions to achieve the best performance. We be-
lieve that Stacked Generalization offer benefits for
many problems in medical informatics because it
allows for easy, flexible, and robust integration
of multiple component systems, including rule-
based systems, external dictionaries and knowl-

edge bases, and machine learning classifiers.
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Özlem Uzuner, Brett R South, Shuying Shen, and
Scott L DuVall. 2011. 2010 i2b2/VA challenge on
concepts, assertions, and relations in clinical text. J
Am Med Inform Assoc, 18:552–556.

Shuang-Quan Wang, Jie Yang, and Kuo-Chen Chou.
2006. Using stacked generalization to predict
membrane protein types based on pseudo-amino
acid composition. Journal of Theoretical Biology,
242(4):941–946.

David H. Wolpert. 1992. Stacked generalization. Neu-
ral Networks, 5:241–259.

Qing T Zeng, Sergey Goryachev, Scott Weiss, Mar-
garita Sordo, Shawn N Murphy, and Ross Lazarus.
2006. Extracting principal diagnosis, co-morbidity
and smoking status for asthma research: evaluation
of a natural language processing system. BMC Med
Inform Decis Mak, 6:30.

GuoDong Zhou, Dan Shen, Jie Zhang, Jian Su, and
SoonHeng Tan. 2005. Recognition of Protein/Gene
Names from Text Using an Ensemble of Classifiers.
BMC Bioinformatics, 6(S1):S7.

GuoDong Zhou and Jian Su. 2002. Named entity
recognition using an hmm-based chunk tagger. In
Proceedings of ACL 2002, pages 473–480.

70


