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Abstract

Biomedical event extraction systems have
the potential to provide a reliable means of
enhancing knowledge resources and min-
ing the scientific literature. However, to
achieve this goal, it is necessary that cur-
rent event extraction models are improved,
such that they can be applied confidently
to unseen data with a minimal rate of error.
Motivated by this requirement, this work
targets a particular type of error, namely
partial events, where an event is miss-
ing one or more arguments. Specifically,
we attempt to improve the performance
of a state-of-the-art event extraction tool,
EventMine, when applied to a new can-
cer pathway curation corpus. We propose
a post-processing ranking approach based
on relaxed constraints, in order to recon-
sider the candidate arguments for each
event trigger, and suggest possible new ar-
guments. The proposed methodology, ap-
plicable to the output of any event extrac-
tion system, achieves an improvement in
argument recall of 2%-4% when applied
to EventMine output, and thus constitutes
a promising direction for further develop-
ments.

1 Introduction

In text mining, events are currently the most com-
plex information unit that can be extracted from
raw text, in terms of their ability to capture n-ary
dynamic relations between entities and/or other
events as indicated in Figure 1. Their dynamic
properties mean that events constitute the closest
equivalent to human-extracted information. The
structured information representation of events
can be used to enrich current knowledge sources
such as ontologies and databases in an automated

In order to study whether ATX expression affects motility-dependent processes
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Figure 1: Event Extraction example: Localisation
events nested as arguments to Positive Regulation
(+Reg) event 1

manner. This can be particularly useful for re-
searchers in the biomedical domain, who use com-
plicated models to represent molecular reactions,
pathways etc. In order to improve these models,
biologists currently need to sift through a continu-
ously growing mountain of literature (Ananiadou
et al., 2014). Thus, an automated means to ex-
tract knowledge, using event extraction technol-
ogy, and to exploit this knowledge to augment ex-
isting models, would be an immense asset within
biomedical research.

Motivated by the above, the Big Mechanism
project (Cohen, 2014) aims to augment cancer
pathway models automatically with events ex-
tracted from biomedical literature. To this end,
event extraction systems need to be able not only
to extract high quality events that cover a wide
range of biomedical event types but also to ro-
bustly do so even when applied to unseen data. In-
deed, the expectation is that event extraction sys-
tems will be successful in carrying out this task
even when parameters such as text type or domain,
are altered, without the need to retain the system.

However, the structure of current event extrac-
tion systems can hinder the ability to achieve the
above goal. Since event extraction has so far been
treated as a supervised learning task, the perfor-
mance of systems is heavily dependent on the an-
notation, context and domain of the training data,
and may drop significantly when one of the initial

1Sentence taken BioNLP 2013 CG corpus (Nédellec et
al., 2013). Annotation visualised with BRAT annotation tool
(Stenetorp et al., 2012).
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specifications changes, even within the same do-
main. Especially in pipelined architectures, which
consist of sequential classification tasks, addi-
tional annotation constraints are learned from the
training corpus at each stage in the pipeline. While
these additional constraints improve the model’s
precision, they render it less adaptable to deviating
event structures. One of the consequences of this
is the failure to retrieve some of the information
that should be associated with the event, leading to
so-called partial event identification, where some
of the event arguments are missing. Although such
errors may not be of vital importance in all do-
mains, they can be extremely detrimental when at-
tempting to link an event to a biomedical model,
since they can lead to erroneous or useless asser-
tions.

The work described here focusses on resolv-
ing the problem by applying a generic constraint
relaxation post-processing strategy to the output
of an event extraction system (EventMine (Miwa
and Ananiadou, 2013)), with the aim of reducing
the number of recognised events that have miss-
ing arguments. Motivated by an analysis of the
Big Mechanism testing corpus described in Sec-
tion 3, we relax the annotation constraints related
to argument roles and subsequently reconsider all
the entities within a sentence that are valid argu-
ment candidates, by exploiting syntactical depen-
dencies. We employ the confidence values ob-
tained from an Adaboost (Freund and Schapire,
1997) classifier to rank candidate arguments for
each event trigger, and to determine which of them
constitute valid additions to the event. Using this
approach, we are able to improve the recall on par-
tial events identified by EventMine by at least 2%
and, importantly, we gain fruitful insights into fac-
tors that could further improve performance.

2 Background: The Event Extraction
Task in Biomedicine

In this section we provide an overview of the
event extraction procedure, focussing on biomed-
ical events. Our emphasis is on the details of
pipelined event extraction, since this is the ap-
proach employed by the EventMine system, which
we use to perform event extraction. Finally, we re-
view the main approaches for adapting event ex-
traction to new or unseen data.

2.1 Event Structure
In text mining, events refer to units representing
dynamic, n-ary relations between named entities.
In the biomedical domain, this definition can be
narrowed to units representing molecular interac-
tions stated within textual documents (Björne and
Salakoski, 2011).

The typical structure of events (as defined and
used in BioNLP shared tasks, e.g., (Kim et al.,
2009), (Nédellec et al., 2013)) includes an obliga-
tory predicate/trigger, i.e., a word sequence in text
that characterises the event type. Potentially, an
event may also have one or more arguments, i.e.,
entities in text that are semantically linked to the
trigger. Considering the trigger and the arguments
as nodes, the links between them can be consid-
ered as directed edges (from the trigger to the ar-
gument), which represent the role that the argu-
ment plays with respect to the trigger. As events
are dynamic elements, the same entity can partici-
pate in different events, and may assume different
roles in each event. Also, since events are solid in-
formation units, they can themselves act as argu-
ments to other events, leading to the extraction of
complex/nested events (Björne et al., 2010). These
characteristics can be observed in the example of
Fig 1 presented in Section 1.

2.2 Event Mining Architecture
In order to extract structures of the complex-
ity illustrated in Figure 1, current state-of-the-art
systems break event extraction down into multi-
ple classification tasks that have to be solved in
order to produce the final structured event rep-
resentation. The learning process to carry out
these tasks can be undertaken either sequentially
in a pipelined manner, as in EventMine (Miwa
and Ananiadou, 2013) and TEES (Björne and
Salakoski, 2013), or as joint learning task, as for
FAUST (Riedel and McCallum, 2011). Event-
Mine, the system employed in this work, utilises
the pipelined approach, and consists of the follow-
ing modules:

• Event trigger classifier: Identifies spans of text
that act as triggers and annotates them with the
corresponding type (event label).
• Argument detector: Links each trigger with at

most one argument and annotates the edge (link)
with the corresponding argument role type.
• Multiple argument detector: Adds additional ar-

guments to the pairs of the previous step, final-
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ising each event structure.
• Modification detector: Identifies event modifi-

cations (negation and speculation)

All the above are formulated as multi-class
tasks that are learned in a supervised way, using
one-versus-rest SVM implementation of LibLin-
ear (Fan et al., 2008). EventMine is able to per-
form with state-of-the-art accuracy, achieving F-
score of 52% on the CG and 53% on PC task of the
latest BioNLP shared task (Nédellec et al., 2013),
rendering it a suitable tool for this study.

2.3 Adaptation and generalisation
approaches

One of the problems usually encountered with su-
pervised models, such as those used by Event-
Mine, is that they are specifically tailored to fea-
tures of the corpus on which they have been
trained. As a result, their functionality is restricted
to the trigger, argument and role types that they
have been trained to identify and extract. For ex-
ample, some corpora focus only on protein-protein
interactions, while others include chemical reac-
tions, anatomical entities and or a combination of
the above. Intuitively, in order to capture events
that encompass all the above types, either one
would have to re-annotate a corpus with all the
required types of interest, or use some combina-
tion of either the corpora or the models trained on
them.

Since corpus annotation is an expensive and
time consuming task, various computational ap-
proaches to combining information have been pro-
posed. A particularly straightforward approach is
to combine the models in a stacking manner as in
(Wolpert, 1992), where a method inspired from
cross-validation is used to train different models
on subsets of the different corpora, and then use
the validation set to learn how to combine their
outputs to obtain the desired result. More re-
cently, a range of domain adaptation techniques
have been proposed that try to adapt to a new cor-
pus by either selectively training on the instances
and/or features that are expected to maximize per-
formance (Chen et al., 2011; Xia et al., 2013),
or by attempting to tailor feature distributions to
the one of the new corpus with various methods
such as kernel based ones (Daumé III, 2009; Kulis
et al., 2011) or transfer component analysis (Pan
et al., 2011). Finally, (Miwa et al., 2013) sug-
gests the use of a filtering model, which consid-

ers the overlap of the available corpora and filters
redundant and contradicting labelling across dif-
ferent corpora and then merges the corpora in or-
der to train a single model on their combination.
The filtering, as Miwa explains, is heuristically
achieved by limiting the generation of negative in-
stances in each corpus to only those cases in which
the corresponding surface expression matches at
least one positive instance of an annotated type
in any corpus that shares that type. The method,
referred to as wide coverage, when implemented
in EventMine outperforms other stacking and do-
main adaptation methods as shown in (Miwa et al.,
2013). Accordingly, it was the chosen approach
for this work.

3 Corpora and Annotation
Considerations

3.1 Training Corpora
For training the wide coverage method was ap-
plied on the combination of the training sets of the
following corpora, treated as described in (Miwa
et al., 2013) : Genia09 of BioNLP ’09 (Kim et al.,
2009), Genia11, EPI & ID of BioNLP ’11 (Kim et
al., 2011), DNA-methylation (Ohta et al., 2011),
ePTM (Pyysalo et al., 2011), mTOR (Caron et al.,
2010), and MLEE (Pyysalo et al., 2012).

3.2 Testing Corpora
The corpus that provided the motivation for this
work, henceforth referred to as BM, is a small
annotated set of six passages extracted from full-
text biomedical research papers in PubMed 2. It
concerns cancer pathway curation and was manu-
ally annotated with biomedical named entities and
events by expert biologists participating in the Big
Mechanism project (Cohen, 2014). In total it con-
sists of 155 event and 247 named entity annota-
tions. The range of the entities and events anno-
tated render it a valid candidate for the application
of the wide coverage approach described in Sec-
tion 2.3, because the entities span across Chem-
ical, Protein and Cell instances, while the event
types cover pathways, various protein interactions
(Binding, Regulation, etc) and other cancer related
events. Since there is no single related training
corpus with similar annotations, a model that can
learn labels from different corpora is necessary to
facilitate recognition of all of the above event and
entity types.

2PubMed ids: PMC2872605, PMC3058384
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The annotation scheme in BM corpus differs
from the uniform annotation scheme used in the
training corpora in the following ways:

• The entity labels are different to those used in
the training corpora (see Fig 3 and section 4.1)
• No distinction is made between different event

types in the test corpus annotations
• A simplified edge type annotation was followed

in the BM corpus, discriminating only between
simple arguments and arguments indicating the
site (cellular location) where the event took
place. As opposed to the BioNLP schema the
edge annotations in BM contain less semantic
information (there is no discrimination between
roles such as Instrument, Participant, Cause etc)

Figure 2 illustrates an event annotated according
to both BioNLP guidelines and to the BM corpus
guidelines. The simplifications of the BM corpus

All four drugs blocked ERK activity in BRAFmutant A375 melanoma cells
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All four drugs blocked ERK activity in BRAFmutant A375 melanoma cells

Figure 2: Example of event annotation in the BM
corpus (top) versus BioNLP (bottom) : we can ob-
serve the different labels used for entities, events
and edges

annotation scheme, compared to the scheme used
in the training corpora, motivated our approach to
relaxing the constraints used to link arguments to
event triggers, as described in the previous section.

Due to the small size of BM corpus presented
above, our experiments were repeated on the
MLEE corpus (Pyysalo et al., 2012), using the
development set as a test case. The MLEE cor-
pus was chosen because as BM it displays a wide
range of entities and events that spanned across
different levels of biological organisation (molec-
ular to organ) instead of focusing on protein reac-
tions. The experiments were repeated twice, once
including the MLEE training corpus in the train-
ing data, and once keeping it only for test pur-
poses, in order to provide a comparison between

application on seen and unseen data (see Section
6). For the purposes of this study, the edge anno-
tations in MLEE are simplified to Arg1 and Arg2,
such that it is in line with the annotation scheme of
the BM corpus, allowing for the relaxed constraint
approach to be applied and for a better comparison
of the results.
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= MLEE only
= ID and MLEE
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Training corpora BM corpus

Figure 3: Initial named entity labels for the cor-
pora used in the experiments. BM corpus labels
were adapted to the training corpora as explained
in section 4.1

4 Methodology

4.1 Adapting the entity labels without
supervision

Since there is no widely accepted standard in the
community in terms of the annotation labels for
named entities, a common issue when processing
multiple corpora, is overlapping annotations. In
other words, different labels may be used to de-
scribe the same entity type, and that exactly is
the case for the BM corpus when compared to
the training corpora.3 Hence, when testing on un-
seen data, it is necessary to map the labels of the
test corpus to the ones that the model is trained to
recognise, in order to obtain optimal results. For
example, proteins were annotated as GeneOrPro-
tein in the BM corpus and as Protein in the training
corpora. For the filtering and unification of anno-
tations instead of manually identifying the over-
lapping annotations, a heuristic automated label
filtering method was implemented, in order to map
the labels of the target/test corpus (TL) to those of
the source/training one (SL). To that end, label
similarity was calculated based on the following
heuristic formula:

3The training corpora also contained conflicting / over-
lapping annotations initially that were priorly resolved in a
similar manner
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TLi → SLj ,

SLj → argmax
k

(
#(AnnE TLi ∩AnnE SLk)

#AnnE SLk
)

(1)
where AnnE TLi corresponds to an annotated

text span under the label TLi in the target corpus,
while AnnE SLj to an annotated text span un-
der the label SLj . The aforementioned text spans,
can be single or multi-word tokens. Using this
method, each label from the test corpus was as-
signed to the most similar label in the training cor-
pus. For BM the labels were adapted as following:

BM corpus Training Corpora
GeneOrProtein → Protein
ProteinFamily → Protein
ProteinSite → Protein 4

ChemicalOrDrug → Chemical
CellLine → Cellular component
SubcellularLocation → Protein

Table 1: Mapping between BM and trining cor-
pora named entity annotations

It should be mentioned that in the case of the BM
corpus, while there were obviously synonymous
labels, the actual overlap found by the above tech-
nique was less than 10% for all labels, nonetheless
still valid. In general this technique allows cor-
pora to be added or removed without the need to
fully revise the corpus. The same method could be
used for different annotation types, such as event
or edge type annotation.

4.2 Re-evaluating argument candidates of
correct partial events

We hypothesise that, owing to the complexity of
event patterns sought by the model, it sometimes
fails to identify the complete set of arguments for
an event, even if those arguments are correctly
identified in the text as entities. This leads to the
identification of partial events, such as the one pre-
sented in Figure 4. In order to identify the miss-
ing arguments, we aim to reduce the complexity of
learned patterns, while complying with the anno-
tation of the BM corpus.

Thus, we apply a relaxed post-processing step
to the event extraction results, such that constraints
regarding the learned roles of arguments are no
longer imposed. Approaches that relax rule or
pattern constraints have previously been shown to

4No overlap found, manual decision.

BRAF is not active and is not required for MEK/ERK activation in RAS mutant cells.
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Figure 4: Example of partial event from the test
corpus: BRAF should also be linked to the event
but is missed by the EventMine model

constitute an efficient method of achieving gener-
alisation and allowing models to be better adapted
to other natural language processing tasks such
as named entity recognition in (Tatar and Cicekli,
2011) and (Zhou and Su, 2003) or information ex-
traction in (Ciravegnia and Lavelli, 2004). In our
case, the relaxed constraints permit a re-evaluation
of the possible relations between event triggers
and recognised entities in a given sentence.

We implemented a ranking approach such that
for each identified event trigger, all the entities in
the same sentence that are not already linked to it
by the EventMine model are ranked according to
their likelihood of being related to the trigger.

The entity ranking is based on syntactic depen-
dencies between word tokens for each sentence.
The underlying assumption is that for an entity
to be linked to an event trigger as an argument,
there has to be some syntactic relation between
the two terms. Syntactic analysis is undertaken
by the Enju syntactic parser (Miyao et al., 2008),
which has a model trained on biomedical corpora.
Since each dependency can be seen as a link be-
tween two words, we can consider dependency re-
lations as structured dependency graphs. Depen-
dency graphs have been used before in event ex-
traction (Buyko et al., 2009; Liu et al., 2013) with
Liu’s approach, on subgraph matching of directed
dependency graphs, achieving high precision but
low recall. Aiming for high recall, we take a dif-
ferent approach; in the undirected graphs, we ex-
pect the path between a trigger word and its related
arguments to be shorter than the path between the
same trigger word and other, non related entities
in the same sentence. We thus consider the short-
est dependency path length as the main feature for
ranking. For example from the Enju output for the
partial event shown in Figure 5, we can see that
the shortest dependency path length between the
entity BRAF and the event trigger is equal to 1
(direct link). To facilitate full exploitation of the
dependency graph, we considered the following:
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BRAF is not active and requirednot for MEK/ERK activationis

Figure 5: Dependency link representation example
for a Biomedical sentence as analysed by Enju

• Dependency type: Enju provides the depen-
dency type (prepositional, coordination, noun
modifier, etc) for each dependency link/edge.
This type can be exploited either to assign dif-
ferent weights to each dependency edge of the
argument-trigger path, or to consider different
path patterns. Such manipulation has been em-
ployed in rule-based event extraction in (Kil-
icoglu and Bergler, 2009), achieving good ac-
curacy but low recall. Also, extracting specific
path patterns renders the approach dependent on
a particular parser, thus limiting the indepen-
dence and adaptability of its application. Since
the focus of this study was on recall and adapt-
ability, the dependency type information was ig-
nored, except for the case that follows.

• Flattening coordination: We decided that pre-
processing was necessary to resolve coordi-
nation dependencies, such that a given entity
would have the same distance to a trigger, re-
gardless of the existence of a coordination ar-
gument dependency. Accordingly, in the calcu-
lation of the shortest paths, all coordination de-
pendencies (labelled as coord arg by Enju) are
flattened as shown in Figure 6.

BRAF inhibitors hyperactivate andCRAF MEK

BRAF inhibitors hyperactivate andCRAF MEK

Figure 6: Flattening coordination dependencies

• Nested Events: To handle nested events, ex-
tracted events were also considered as entities,
using the trigger as the representative text span,
used to calculate the distance to the trigger of
the top-level event and the rest of the features.

In order to obtain the rankings, we firstly consider
our problem as one of binary classification, where

the task is to classify each entity with respect to
each trigger, as a valid (positive case) or non-valid
(negative case) argument. Then, in training a clas-
sifier on the above binary classification task, we
can employ the prediction confidence of the clas-
sifier model in order to rank the entities with re-
spect to the event. The top ranked entity is selected
and added to the event. In order to train a strong
classifier model, a greater number of attributes that
indicate the relation of an entity to a trigger were
considered and implemented as additional features
for the classifier. The main feature classes of the
final feature set are listed below:

• Shortest dependency path (numeric)
• Entity Type (nominal)
• Participation in other events (binary)
• PoS (Part of Speech) (nominal)
• Context PoS (surrounding tokens) (nominal)
• Relative position to the event trigger (be-

fore/after) (nominal)
• Dependency on a prepositional token - type

of prepositional token (binary-nominal)
• Event type (nominal)
• Token distance to trigger (numeric).

For the binary classification task, after comparison
of an SVM, a logistic regression and an Adaboost
classifier (implemented with random tree models),
the AdaBoost classifier was chosen as it outper-
formed the rest by at least 10% (10 fold cross val-
idation F-score on training set: 0.93). 5

We also tried to avoid the addition of spurious
arguments to events. Our initial experiments re-
vealed that a considerable number of events re-
quire either a single argument or no arguments.
For some event types such as Gene Expression,
such cases constituted more than 80% of the
events. In order to avoid the addition of spuri-
ous arguments, and inspired by (Rahman and Ng,
2009) , an artificial ”null” named entity instance
was created for each event, and assigned to the
events in the training set that did not require a sec-
ond (or even a first) argument. Thus, the classifier
would consider and rank the null entity along with
the rest for each event.

Finally, to account for entities that are indirectly
linked to events, i.e. those which occur as argu-
ments of nested events, for each trigger, entities

5It should be noted that, while Adaboost appears to be
most efficient for the purposes of our study, our classification
task is only binary, and it is not straightforward to assume
that it would outperform SVM in the rest of the EventMine
pipeline, without additional testing
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belonging to its parent event or its nested events
were excluded from ranking. Furthermore, enti-
ties that were already assigned to a different event
having the same trigger, as in Figure 7, were con-
sidered mutually exclusive.

BRAF inhibitors hyperactivate CRAF and MEK in these cells

Pro Predicate
Predicate

Pro Pro
SecondArg

SecondArg

Figure 7: CRAF and MEK are mutually exclusive

5 Evaluation

In order to evaluate the performance of our method
we compare the identified arguments with the ones
annotated in the gold corpus.

For each event annotated by EventMine, we de-
fine argument recall and precision as :

Recall =
argEM ∩ arggold

arggold
(2)

Precision =
argEM ∩ arggold

argEM
(3)

where argEM is the set of arguments EventMine
identifies for this event and arggold the corre-
sponding set of arguments identified in the gold
standard. 6

6 Results and Discussion

6.1 Experimental Results
We applied and evaluated the ranking methodol-
ogy to the corpora described in Section 3 and the
results are shown in Tables 2 and 3.

Precision Recall Fscore Percent.
EM +R EM +R EM +R in corpus

Phosphorylation 0.93 0.82 0.86 0.93 0.89 0.87 10
Planned process 0.5 0.5 0.5 0.5 0.50 0.50 2

Negative regulation 0.91 0.86 0.83 0.83 0.87 0.84 16
Localization 1 1 0.67 0.67 0.80 0.80 1
Regulation 0.88 0.88 0.88 0.88 0.88 0.88 3

Gene expression 0.8 0.8 0.75 0.75 0.77 0.77 7
Binding 0.47 0.47 0.43 0.47 0.45 0.47 2

Positive regulation 0.66 0.59 0.61 0.63 0.63 0.61 44
Total 0.67 0.63 0.62 0.64 0.64 0.63

Table 2: Results on BM corpus before (EM) and
after Re-ranking (+R)

For both corpora, our ranking method leads
to an increase in recall compared to the default
EventMine application. However, our method
also results in a decrease in precision. In or-
der to appreciate the impact of missing argu-
ments on unseen data we repeat the experiment

6For events that are not matched in the gold standard both
values are zero.

Precision Recall Fscore Percent.
EM +R EM +R EM +R in corpus

Protein catabolism 0.5 0.5 0.5 0.5 0.50 0.50 2
Phosphorylation 0.69 0.59 0.69 0.69 0.69 0.64 5

Dissociation 0.78 0.44 1 1 0.88 0.61 1
Transcription 0.5 0.5 0.5 0.5 0.50 0.50 2

Negative regulation 0.5 0.48 0.38 0.5 0.43 0.49 9
Regulation 0.53 0.43 0.4 0.47 0.46 0.45 4

Gene expression 0.88 0.88 0.86 0.86 0.87 0.87 27
Localization 0.63 0.61 0.69 0.76 0.66 0.68 6

Positive regulation 0.72 0.65 0.63 0.67 0.67 0.66 32
Binding 0.66 0.68 0.56 0.64 0.61 0.66 11

Total 0.7 0.67 0.64 0.68 0.67 0.67

Table 3: Results on MLEE corpus before (EM)
and after Re-ranking (+R)

using the MLEE training corpus during training
for EventMine. In this case (see Table 4), the re-
call is higher and the improvement from the post-
processing step not significant, suggesting that
the post-processing methodology is advantageous
mostly when EventMine is applied to new do-
mains.

Precision Recall Fscore Percent.
EM +R EM +R EM +R in corpus

Protein catabolism 0.6 0.6 0.6 0.6 0.60 0.60 1
Death 0.71 0.71 0.71 0.71 0.71 0.71 1

Transcription 0.5 0.5 0.5 0.5 0.50 0.50 1
Localization 0.76 0.67 0.77 0.77 0.76 0.72 5
Development 0.55 0.55 0.55 0.55 0.55 0.55 4
Regulation 0.49 0.45 0.45 0.46 0.47 0.45 7
Breakdown 0.78 0.78 0.78 0.78 0.78 0.78 1

Positive regulation 0.68 0.64 0.63 0.64 0.65 0.64 22
Growth 0.88 0.88 0.88 0.88 0.88 0.88 3

Phosphorylation 0.69 0.56 0.69 0.69 0.69 0.62 2
Blood vessel development 0.96 0.96 0.75 0.75 0.84 0.84 16

Dissociation 0.67 0.42 1 1 0.80 0.59 1
Cell proliferation 0.92 0.92 0.92 0.92 0.92 0.92 1

Pathway 0.54 0.46 0.46 0.48 0.50 0.47 1
Planned process 0.81 0.77 0.7 0.71 0.75 0.74 10

Negative regulation 0.76 0.7 0.66 0.67 0.71 0.68 10
Gene expression 0.88 0.88 0.88 0.88 0.88 0.88 9

Binding 0.73 0.71 0.65 0.68 0.69 0.69 4
Tissue remodeling 1 1 1 1 1.00 1.00 1

Total 0.76 0.73 0.68 0.69 0.72 0.71

Table 4: Results on MLEE corpus before (EM)
and after Re-Ranking (+R) (MLEE training set
added to the training corpora of EventMine)

Moreover, we can observe in Tables 3 and 4 that
the event types recognised are not 100% overlap-
ping. Indeed, since in the first case EventMine is
not trained on the MLEE corpus, the set of event
types that it is trained to recognise only partially
overlaps with the event types annotated in MLEE.
As such, in a large number of cases, even though
the event trigger is correctly extracted, it is at-
tributed an event type other than the one annotated
in the gold standard. For example some of the
BreakDown events (in Table 4) tend to be recog-
nised as Negative Regulation when the model is
not trained on the MLEE events (Table 3). We
thus wanted to examine the impact of erroneous
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event type identification on the linking and pre-
cision of argument linking, given that EventMine
models learn different annotation constraints for
each event type. Table 5 compares the perfor-
mance achieved by our method when the event
type assigned by EventMine matches the label in
the gold standard, with the overall performance.
It can be observed that when the labels do match
the performance increases significantly. Thus, it
seems that part of error in linking arguments to an
event derives from an erroneous recognition of the
type of the argument, that is often linked to events
that the model is not trained to recognise properly.

Overall Results Same label in GS
Precision Recall Precision Recall Percentage

Protein catabolism 0.5 0.5 1 1 0.67
Phosphorylation 0.69 0.69 1 1 1

Dissociation 0.78 1 1 1 0.33
Transcription 0.5 0.5 1 1 1

Negative regulation 0.5 0.38 1 0.75 0.93
Localization 0.53 0.4 0.89 0.67 0.93

Gene expression 0.88 0.86 1 1 0.91
Regulation 0.63 0.69 0.79 0.87 1

Binding 0.72 0.63 0.93 0.81 1
Positive regulation 0.66 0.56 0.87 0.75 0.94

Table 5: Performance of EventMine for matching
type annotations versus overall results

6.2 Analysis of Results and Performance
Considerations

The results shown in the previous section are
promising in terms of recall. However, there is still
considerable room for improvement, especially in
terms of decreasing the added noise, so as to min-
imise the drop in precision. Below we present the
most important observations regarding our results
and we analyse the errors produced.

• Correct identification of the partial event but
erroneous identification of the missing argu-
ment: Of the noisy events, 60% constituted
cases that were correctly identified as partial
events, but where the ranking algorithm failed to
identify the correct entity to link to the trigger.
This was a common pattern in cases where the
argument was an event, but the ranking system
actually selected one of that event’s arguments
instead of the whole event, as illustrated in Fig-
ure 8. It is important to note that in some of
such cases, the event trigger was not annotated
by EventMine in the first place. Thus, it was im-
possible for our method to capture it. This em-
phasises the strong dependency of our method
on EventMine’s performance. A possible solu-
tion to this problem, which will be considered as

Dopamine pretreatment increases the translocation of SPH-2

Dopamine pretreatment increases the translocation of SPH-2

Chemical Predicate Predicate Predicate Pro
FirstArg FirstArg FirstArgSecondArg

Chemical Predicate Predicate Predicate Pro
FirstArg FirstArgSecondArg

FirstArg

Figure 8: Linking the nested event argument in-
stead of the trigger: Compare correct annotation
(top) with produced one (bottom)

future work, is to reformulate the problem as a
joint learning task, in which one classifier would
focus on ranking single named entity candidates
and the other on ranking event candidates, and
they would be combined in the test corpus in or-
der to choose the most likely solution. Such an
approach would, however, have increased com-
plexity, and its results remain to be tested. 7

• Entities related to the event in a complemen-
tary manner: In a considerable number of er-
roneous cases, the ranking system identified ar-
guments that were not annotated in the gold cor-
pus, but which nevertheless were related to the
trigger. Two distinctive patterns emerged, as il-
lustrated in Figure 9.

1. Aliases of the original argument, used in the
same sentence (usually a superclass)

2. Text spans with multiple annotations that are
linked multiple times to the event as separate
entities

Its PLX4720 phenotype was associated with MEK/ERK activation

Sorafenib is a class II drug that inhibits V600EBRAF at 40 nM

Pro Chemical Pro

Pathway

Pro

Predicate
Predicate

Argument
Equiv_Argument
Equiv_Argument
Argument

Chemical Chemical Predicate Protein
ArgumentEquiv_Argument2

Argument2

Figure 9: Multi annot. (top): Pathway entity erro-
neously considered a valid additional argument
Alias (bottom): Sorafenib and its superclass both
considered valid argument candidates that are not
mutually exclusive

• Overfitting to “null” instances: As can be de-
duced from the result tables (2, 3 and 4), there
was a considerable percentage of partial events
whose missing arguments were still not fully
identified by our method. In those cases, the
classifier ranked the “null” instance mentioned
7However the performance will still depend on the recall

of the event extraction system.
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in Section 4 as the best option. Investigation re-
vealed that for partial events, the correct missing
argument was ranked second after the “null” in-
stance in more than 50% of cases (null instance
suggestions accounted for 80%-70% of the to-
tal suggestions). A possible solution to further
increase the recall would be to drop the “null”
instance implementation, and use a confidence
threshold instead. However, such a method
would be more ad hoc, having severe implica-
tions on the generalisability of the model.

As a final note, it should be mentioned that in some
cases, our method made suggestions that could
correct events containing errors (i.e., correct trig-
ger but wrong argument). While these cases were
not considered in the scope of this work, it would
be interesting to investigate how our method could
be adapted/expanded to suggest argument correc-
tions as well as additions.

7 Conclusions and Future Work

Our novel approach to improving event extraction
results has successfully shown that identifying and
ranking additional arguments by relaxing annota-
tion constraints can aid in improving the argument
recall and reducing partial (and sometimes even
erroneous) event extraction. Of particular note is
the demonstration that our approach has the great-
est impact when applied to unseen data. As such,
we consider that our results are extremely promis-
ing, even though there is still a large margin for
further improvements and experimentation.

An important feature of our approach is that
the methodology employed is generic enough to
be applied to output of any other event extraction
architecture (particularly pipelined ones) or any
other biomedical corpus without significant mod-
ification. Future testing on different corpora and
annotation schemes will help to reinforce the ro-
bustness and generalisability of our method.

However, this study has already revolved var-
ious promising areas for further investigation, in
terms of both increasing recall and reducing noisy
additions. Of particular interest would be to
see whether employing methods with multiple
classifiers (co-training, joint-learning or ensemble
methods) would improve the performance and re-
duce the noise. Such an approach could target ei-
ther classifiers trained on different argument types
(named entities or entire events) or even classifiers
specialising in particular event types. However,

this would constitute a whole new area of research
and experimentation.

A further aspect, only minimally considered in
this work, is the influence of the training instances
and labels on the performance. On the MLEE cor-
pus, it was observed that for events whose auto-
matically assigned event type did not match the
gold standard, argument recall and precision also
deteriorated. Hence, we can deduce that improv-
ing the accuracy of event type assignment would
have a positive impact on event extraction perfor-
mance. The same conclusion could hold also for
the named entity labels; as mentioned in Section 4,
the BM corpus was initially annotated with a dif-
ferent NE label-set that was automatically (with-
out supervision) aligned with the training corpus
annotations in order for the trained model to be ap-
plied to it. However, instead of adapting the test-
ing corpus annotations, it would be worthwhile to
provide efficient unsupervised methods for adapt-
ing the labels in the training corpus to those in
the testing corpus. Such an approach could boost
the precision without compromising recall by re-
ducing the impact of training on instances (events)
that are not related to the ones in the test set. To
that end, it would be interesting to combine the
wide coverage approach (Miwa et al., 2013) with
domain adaptation approaches such as the ones
mentioned in Section 2.3 or simply instance re-
weighting ones such as (Jiang and Zhai, 2007).

The above considerations will be vital in facil-
itating the incorporation of constraint relaxation
as an integral part of the EventMine architecture,
rather that as a post-processing step. This will
help to enhance EventMine’s properties of gener-
alisability and adaptability, and thus allow it it to
achieve more robust performance. However, the
challenge will be to consider the constraint relax-
ation and adaptation problem globally, rather than
only for argument role annotation constraints.
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