
Proceedings of the Grammar Engineering Across Frameworks (GEAF) Workshop, 53rd Annual Meeting of the ACL and 7th IJCNLP, pages 41–48,
Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

A Cloud-Based Editor for Multilingual Grammars

Thomas Hallgren Ramona Enache Aarne Ranta
Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
hallgren@chalmers.se ramona.enache@chalmers.se aarne@chalmers.se

Abstract

Writing deep linguistic grammars has
been considered a highly specialized skill,
requiring the use of tools with steep learn-
ing curves and complex installation proce-
dures. As the use of statistical methods
has increased, new generations of compu-
tational linguists are getting less and less
prepared for grammar writing tasks. In
an aim to provide a better learning expe-
rience for grammar writers, we present a
grammar engineering tool that resides in
the cloud. It has been used in several tu-
torial courses and self-studies, and it al-
lows absolute beginners to write their first
grammars and parse examples in 10 min-
utes. The cloud-based grammar engineer-
ing tool is built on top of GF (Grammatical
Framework), a grammar formalism that
has an explicit tecto/phenogrammar dis-
tinction, is based on ideas from type theory
and functional programming and comes
equipped with a grammar library support-
ing 30 languages.

1 Introduction

Writing deep linguistic grammars has been con-
sidered a highly specialized skill. As the use of
statistical methods has increased, new generations
of computational linguists are getting less and less
prepared for grammar writing tasks. A part of
the problem is the steep learning curve in tools:
systems like LKB (Copestake, 2002) and XLE
(Xerox Linguistic Environment) are designed for
professional linguists. Getting started with their
use requires substantial training, and installing the
tools requires large and unfamiliar software pack-
ages, in addition to a firm knowledge of operating
system command-line tools.

GF (Ranta, 2004) is a more recent grammar for-
malism, born so to say in the middle of the statis-

tical era. GF shares the ambition of the “classi-
cal” formalisms to enable deep linguistic descrip-
tions, which it wants to support with some new
ideas: type theory, functional programming, and
an explicit tecto/phenogrammar distinction. How-
ever, GF was also meant to be a formalism for
“ordinary” programmers without linguistic train-
ing. Thus the majority of the currently 30 lan-
guages included in the GF Resource Grammar Li-
brary (Ranta, 2009a) are in fact written by students
and scholars in computer science, who find the
GF style of programming familiar from other con-
texts, in particular compiler construction (Appel,
1998).

However, the GF approach has a “nerdy”
flavour to it, in particular requiring coping with
command line tools, text editors, and Haskell li-
braries. Some programmers are helped by the
Eclipse plug-in (Camilleri, 2012), but installing
both GF and Eclipse on a personal computer can
be a daunting task for many.

The present paper describes an attempt to elim-
inate all trouble with software installation from
linguistic grammar writing. We describe a gram-
mar engineering tool that resides in the cloud and
can be used in ordinary web browsers. The tool
supports writing grammars in the cloud, compil-
ing them to executable parsers and translation sys-
tems, and finally running and testing them in the
cloud. Thus an entire grammar project can be
written and used without installing any specific
software. The project can also be published and
shared, so that many users can work on the same
grammars (although not simultaneously yet in the
current version).

The cloud-based GF editor has been used on
several tutorial courses and self-studies. It enables
absolute beginners to write their first grammar and
parse examples in 10 minutes. It scales up to most
of the grammars described in the GF book (Ranta,
2011), although it has some limitations, in partic-

41



abstract Foods = {

flags startcat = Comment;

cat Comment; Kind; Item; Quality;

fun Pred : Item -> Quality -> Comment;

This, That : Kind -> Item;

Bread, Fish, Wine : Kind;

Very : Quality -> Quality;
Bad, Good : Quality;
Cold, Warm : Quality;

}

Figure 1: Abstract syntax Food.gf.

ular a simplified module system, which makes it
unpractical for larger tasks. But students who have
got the first experience of grammar writing with-
out the overhead of installation troubles are more
likely to proceed to the full-scale systems when
they feel the need for it.

1.1 Grammar development with GF

Writing a multilingual grammar in GF consists
of writing (1) an abstract syntax that captures the
meanings of interest and (2) a number of concrete
syntaxes that map the meanings of the abstract
syntax to concrete representations in the natural
(or formal) languages relevant to the application.

Traditionally, GF grammars are created in a text
editor. For example, to create a grammar for com-
ments about food, the grammar author would cre-
ate an abstract syntax file Food.gf (Figure 1) and
perhaps a concrete syntax file FoodsGer.gf for
German (Figure 2). But text editors know very
little (if anything) about the syntax of GF gram-
mars, and thus provide little guidance for novice
GF users. Instead, to be able to write grammars
like the one above, users have to rely on sepa-
rately available documentation (manuals, tutorials
and books) for guidance.

For testing, grammars can be loaded in the GF
shell. For example, by loading FoodsGer.gf, the
user can check that the German sentence dieses
Brot ist sehr gut can be parsed and represented as
Pred (This Bread) (Very Good) in the abstract
syntax.

GF grammar source files can also be compiled
to Portable Grammar Format files (Angelov et al.,
2010) that can be used with the GF run-time li-
brary to include natural language processing in ap-

concrete FoodsGer of Foods =

open SyntaxGer, LexiconGer in {

lincat Comment = Utt;
Kind = CN;
Item = NP;
Quality = AP;

lin
Pred item qual = mkUtt(mkCl item qual);
This kind = mkNP this_Det kind;
That kind = mkNP that_Det kind;
Bread = mkCN bread_N;
Fish = mkCN fish_N;
Wine = mkCN wine_N;
Very quality = mkAP very_AdA quality;
Bad = mkAP bad_A;
Good = mkAP good_A;
Cold = mkAP cold_A;
Warm = mkAP warm_A;

}

Figure 2: Concrete syntax FoodGer.gf.

plications. The key operations provided by the
run-time library are parsing, generation, and (by
combining the former two) translation. The GF
run-time library is also available as a web service,
which can be used to create interactive natural
language web applications (Bringert et al., 2009;
Ranta et al., 2010). Examples can be seen in Fig-
ures 6 and 7.

While applications based on GF grammars
could be made available online by using the GF
web service, until now the grammars themselves
had to be created with offline tools that the gram-
mar developer had to download and install on
his/her own computer. With the cloud-based editor
presented here, the grammars can also be created
online.

1.2 Outline

In section 2 we describe the cloud-based grammar
editor introduced above. In section 3 we describe
a new technique for example-based grammar writ-
ing that we are adding support for in the cloud-
based editor. This makes it possible for a user with
minimal knowledge of GF grammar construction
to add new languages to a multilingual grammar
by translating automatically generated examples
in one of the existing languages to the new lan-
guage. In section 4 we present some implemen-
tation details and in sections 5 and 6 we describe
related and future work.

42



Figure 3: GF online editor for simple multilingual grammars

2 The GF online grammar editor

As the name suggests, the GF online editor for
simple multilingual grammars is available online
(Hallgren, 2013), so all that is needed to use the
editor is a device with a reasonably modern web
browser. Even smartphones and tablets can be
used. To help novice grammar authors, the editor
provides some guidance, e.g. by showing a skele-
ton grammar file and hinting how the parts should
be filled in. When a new part is added to the gram-
mar, it is immediately checked for errors.

Figure 3 illustrates what the editor looks like.
Editing operations are accessed by clicking on
editing symbols embedded in the grammar dis-
play: +, x and % to add, delete and edit items.
These are revealed when hovering over items. On
touch devices, hovering is in some cases simulated
by tapping, but there is also a button to ”Enable
editing on touch devices” that reveals all editing
symbols.

The current version of the editor supports a
small but useful subset of the GF grammar nota-
tion. Grammars consist of one module for the ab-
stract syntax, and a number of modules for con-
crete syntaxes. Proper error checking is done on
the fly for abstract syntax, but not (yet) for con-
crete syntax.

Grammars can import modules from the Re-
source Grammar Library (Ranta, 2009a), freeing
the grammar author from dealing directly with the
linguistic complexities of natural languages, such
as inflection and agreement.

2.1 Abstract syntax

The definition of an abstract syntax consists of

• a list of inherited abstract syntaxes,
• a list of category names, C1 ; ... ; Cn,
• a list of functions, Funi : Ci1 → ...→ Cin

• and the designation of a start category.

This is somewhat restricted compared to the full
GF grammar formalism, e.g. dependent types are
not supported.

Available editing operations include:

• Inherited abstract syntaxes can be added and
removed.
• Categories can be added, removed and re-

named. When renaming a category, occur-
rences of it in function types will be updated
accordingly.
• Functions can be added, removed, renamed

and edited. Concrete syntaxes are updated to
reflect changes.
• Functions can be reordered using drag-and-

drop.

The editor checks the abstract syntax for correct-
ness as it is entered. Syntactically incorrect func-
tion definitions are rejected. Semantic errors such
as duplicated definitions or references to unde-
fined categories, are highlighted. This is enough
to ensure that a grammar that is accepted by the
editor will also be accepted by the GF grammar
compiler.

43



Figure 4: Adding a new concrete syntax

2.2 Concrete syntax

When adding a new concrete syntax to a gram-
mar, the editor shows a list of supported natural
languages and the user just picks one. See Fig-
ure 4. The name of the new module is filled in
automatically based on naming conventions, e.g.
FoodsEng if abstract syntax is called Foods and
we are adding a translation to English. The body
of the new concrete syntax can be created by copy-
ing and modifying an existing concrete syntax, or
by starting with a skeleton based on the abstract
syntax.

The key components of a concrete syntax are
linearization types for the categories and lin-
earizations for the functions in the abstract syn-
tax. The editor automatically provides correct left-
hand sides for these, since they are determined by
the abstract syntax, while the right-hand sides can
be edited freely.

The editor allows a concrete syntax to open
some of the relevant Resource Grammar Library
modules. A list of suitable library modules is
shown, e.g., SyntaxEng and LexiconEng in
a concrete syntax for English, so the user does not
need to know their names by heart. See Figure 5.

The editor also supports definitions of param-
eter types and auxiliary operations, but usually it
is enough to rely on the types and operations pro-
vided by the Resource Grammar Library.

The editor checks all user editable parts of the
concrete syntax for syntactic correctness as they
are entered. Duplicated definitions of parameter
types or operations are highlighted. Checks for
other semantic errors are delayed until the gram-

Figure 5: Opening modules from the Resource
Grammar Library

Figure 6: Testing grammars in the Minibar

mar is compiled.

2.3 Compiling and testing grammars
When pressing the Compile button, the grammar
is uploaded to the server and compiled with GF,
and any errors not detected by the editor will be
reported. Error-free grammars can be tested by
clicking on the the Minibar button, which is a
web-based translation tool, and the Quiz button,
which is a web-based language training tool (Abo-
lahrar, 2011). See Figures 6 and 7.

2.4 Grammars in the cloud
While grammars created in the editor are stored
locally in the device by the browser, it is also pos-
sible to store grammars in the cloud. Each device
is initially assigned to its own unique cloud and
has its own set of grammars, but it is also possible
to merge clouds and share a common set of gram-
mars between multiple devices.

Users can also choose to “publish” a grammar.
A copy of the grammar is then added to a list of

44



Figure 7: Testing grammars in the Translation
Quiz

grammars visible to all users of the cloud-based
grammar editor.

3 Example-based grammar writing

The example-based grammar writing mechanism
is aimed at helping users who build concrete gram-
mars using the resource grammar for the given
language. The resource library provides over
300 functions for building grammatical constructs
such as predication, complementation, etc (Ranta,
2009b). Using the resource library is advanta-
geous on one hand, because it alleviates the dif-
ficulty of reimplementing language-specific fea-
tures every time when writing a grammar for the
language, but on the other hand it assumes a work-
ing knowledge of the resource library, which could
lead to a larger overall effort. We aim at freeing
users from this burden by making it possible for
them to write function linearizations by giving ex-
ample of their usage. In the current scenario, we
assume that a large lexicon covering the words that
could be used in the grammar is available already.
We will use the resource grammar enhanced with
the larger dictionary for parsing the examples from
the user in order to infer the right linearization
form.

Since the functions from the grammar could
take arguments, in order to give an example for
the usage of a certain function, we need to have
one example for each of its arguments in order to
get more precise information about the behavior

Figure 8: Example-based grammar construction

of the function. For this reason, only the function
for which all arguments can be found among the
already implemented functions, are highlighted as
available for the example-based method.

In order to clarify the usage of a certain func-
tion, its context is made explicit by embedding
the function into a tree returning the start category,
like in Figure 8 where ”this fish” is used to make
phrases like ”this fish is delicious”. Since certain
parts of the phrase are not relevant for the task,
they are underspecified by using ”?” instead. In
case that the grammar returns more than one parse
tree, the results are ranked in the descending or-
der of their probability (defined in the correspond-
ing resource grammar or defined by the user), and
the first tree from which the arguments can be ab-
stracted is chosen as the linearization tree.

The technique has been used as an experimental
way for developing a tourist phrasebook grammar
in GF for 4 languages (Ranta et al., 2011), but no
tool support was available at that time. The pos-
itive results obtained were a strong motivation to
make the method available to end users as part of
a GF grammar writing system.

The example-based grammar writing system is
still work in progress and the basic prototype cur-
rently available will be further developed and im-
proved. It is possible to use it already for 5 lan-
guages where a large dictionary is available in GF
(English, Swedish, Finnish, Bulgarian, French).

45



4 Implementation

The implementation of the cloud-based editor con-
sists of a client-side part and a server-side part.

The client-side part is written directly in
JavaScript. In total, roughly 6350 lines of
JavaScript (180KB) is loaded by the browser when
opening the editor. This divides roughly into 2800
lines written specifically for the editor, 2600 lines
of code for other components (the minibar) and
750 lines of supporting library code.

All server-side code is written in Haskell. This
includes the GF grammar compiler, the PGF run-
time library and the PGF web service (Bringert et
al., 2009). We created a new GF cloud service
API (Hallgren, 2014) to support the editor. It in-
cludes functionality for grammar syntax checking,
grammar upload, grammar compilation and access
to the GF shell. It’s implemented as 500 lines of
Haskell code.

To support example-based grammar writing, we
added 200 lines of client-side JavaScript code and
680 lines of Haskell code in the server.

5 Related work

GF is a grammar formalism comparable in expres-
sive power to HPSG (Pollard and Sag, 1994) and
LFG (Bresnan, 1982), but different due to the dis-
tinction between the abstract and concrete dimen-
sion of a grammar, along with the possibility to
share the abstract syntax which makes translation
between any pair of languages possible. In the
same way, the GF resource library could be com-
pared to two other multilingual resources based on
the above-mentioned formalisms: LinGO Gram-
mar Matrix (Bender et al., 2002) for HPSG and
ParGram (Butt et al., 2002) for LFG.

Since the task of developing a multilingual
grammar within such a grammar formalism poses
specific challenges, each system comes equipped
with its own IDE/editor that aids the grammar
development process. LinGO Grammar Matrix
has a grammar-customization system (Bender et
al., 2010) and ParGram has XLFG, a customized
IDE (Clément, 2009). While XLFG allows storing
and editing grammars, it is only available for En-
glish and French. The customization system from
LinGO Grammar Matrix allows specifying lin-
guistic features of certain grammar constructions
in the shape of a questionnaire and it is mainly
used for developing new language resources for
the Matrix library. The further use of the resources

is supported by a parser, sentence generator and fa-
cilities for profiling and regression testing (Oepen
and Flickinger, 1998).

In addition to the cloud-based IDE, GF also has
a desktop IDE, implemented as an Eclipse plugin
(Camilleri, 2012).

6 Future work

The GF grammar editor described here already
supports a useful subset of the GF grammar no-
tation. Some of the guidance and error checking
is done in the editor on the client side (resulting
in well integrated user friendly error indications),
some is delegated to the server (resulting in less
user friendly error messages). We do not expect to
create a full implementation of GF that runs in the
web browser.

If we want to support the full-fledged GF gram-
mar formalism, the easy way out would be to
duplicate a typical desktop development environ-
ment in the browser, i.e. create an environment
with a text editor and command line tools, or per-
haps a more integrated Eclipse-like environment.
But we would prefer to create something that is
more interactive and provides more guidance for
novice users, so we are thinking of an interactive
development environment in the style of proof as-
sistants based on type theory, such as Alfa (Hall-
gren, 2004) and Agda (Norell, 2007). However,
being a batch compiler, GF does currently not pro-
vide an API that makes it easy to create this kind
of development environment. If a GF server with
an appropriate API becomes available, it should
be possible to extend the editor to support a larger
fragment of GF, to provide more user guidance,
more user friendly error reporting, and in general
make more of the functionality in the existing GF
tools accessible directly from the online editor.

More work is needed on the grammar cloud
storage service. In particular, it is currently not
suitable for multiple users developing a grammar
in collaboration. This could be done by interfacing
with a online collaboration tool (like GitHub), or
by allowing concurrent access to shared grammars
and propagating edits to all users in real-time (like
in Google Docs).

Combining the cloud-based grammar editor
with other cloud-based tools opens up possibilities
for new applications, such as a tourist phrasebook
that can be extended by the user with a new topic
of interest, or a language training tool (like the one

46



in Figure 7) that instructors or students can cus-
tomize for training or testing a particular vocab-
ulary or particular grammatical forms. It should
be possible to make this kind of customizations in
minutes, without installing any software.

Future work on the example-based method in-
cludes combining it with traditional grammar writ-
ing and the possibility to develop more languages
in parallel and use one as an example for the other.
Moreover, since currently the method works for
the case when the linearization type is a category
from the resource library (noun phrase, sentence,
etc.), one could also extend the algorithm in or-
der to handle record types comprising more such
syntactic categories. Last but not least, we aim
at covering languages for which large dictionaries
are not available by making the method robust to
unknown words that could be later implemented
by the user.

References
Elnaz Abolahrar. 2011. Multilingual Grammar-Based

Language Training: Computational Methods and
Tools. Master’s thesis, Chalmers University of
Technology.

Krasimir Angelov, Björn Bringert, and Aarne Ranta.
2010. PGF: A Portable Run-time Format for Type-
theoretical Grammars. Journal of Logic, Language
and Information, 19:201–228. 10.1007/s10849-
009-9112-y.

Andrew W. Appel. 1998. Modern Compiler Imple-
mentation in ML. Cambridge University Press.

Emily M. Bender, Dan Flickinger, and Stephan Oepen.
2002. The grammar matrix: an open-source starter-
kit for the rapid development of cross-linguistically
consistent broad-coverage precision grammars. In
COLING-02 on Grammar engineering and evalua-
tion, pages 1–7, Morristown, NJ, USA. Association
for Computational Linguistics.

Emily M. Bender, Scott Drellishak, Antske Fokkens,
Laurie Poulson, and Safiyyah Saleem. 2010. Gram-
mar Customization. Research on Language & Com-
putation, 8(1):23–72. 10.1007/s11168-010-9070-1.

Joan Bresnan. 1982. The Mental Representation of
Grammatical Relations. MIT Press.

Björn Bringert, Krasimir Angelov, and Aarne Ranta.
2009. Grammatical framework web service. In
Proceedings of the Demonstrations Session at EACL
2009, pages 9–12, Athens, Greece, April. Associa-
tion for Computational Linguistics.

Miriam Butt, Helge Dyvik, Tracy Holloway King, Hi-
roshi Masuichi, and Christian Rohrer. 2002. The

Parallel Grammar project. In COLING-02 on Gram-
mar engineering and evaluation, pages 1–7, Morris-
town, NJ, USA. Association for Computational Lin-
guistics.

John J. Camilleri. 2012. An IDE for the Grammatical
Framework. Gothenburg, Sweden, June.

Lionel Clément. 2009. XLFG5 Documenta-
tion. https://signes.bordeaux.inria.
fr/xlfg5/doc/en/, October.

Ann Copestake. 2002. Implementing typed feature
structure grammars, volume 110. CSLI publica-
tions Stanford.

Thomas Hallgren. 2004. Home Page of the
Proof Editor Alfa. www.cse.chalmers.se/
˜hallgren/Alfa/.

Thomas Hallgren. 2013. GF online editor for sim-
ple multilingual grammars. http://cloud.
grammaticalframework.org/gfse/.

Thomas Hallgren. 2014. GF Cloud Service API.
http://cloud.grammaticalframework.
org/gf-cloud-api.html.

Ulf Norell. 2007. Towards a practical programming
language based on dependent type theory. Ph.D.
thesis, Department of Computer Science and En-
gineering, Chalmers University of Technology, SE-
412 96 Göteborg, Sweden, September.

Stephan Oepen and Daniel P. Flickinger. 1998. To-
wards Systematic Grammar Profiling Test Suite
Technology Ten Years After. Special Issue on Eval-
uation), 411, 12:411–436.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. University of Chicago
Press.

Aarne Ranta, Krasimir Angelov, and Thomas Hall-
gren. 2010. Tools for multilingual grammar-based
translation on the web. In Proceedings of the ACL
2010 System Demonstrations, pages 66–71, Upp-
sala, Sweden, July. Association for Computational
Linguistics.

Aarne Ranta, Ramona Enache, and Grégoire Détrez.
2011. Controlled Language for Everyday Use: the
MOLTO Phrasebook. Proceeding of the 2nd Work-
shop on Controlled Natural Languages (CNL 2010).

Aarne Ranta. 2004. Grammatical Framework: A
Type-Theoretical Grammar Formalism. The Jour-
nal of Functional Programming, 14(2):145–189.

Aarne Ranta. 2009a. The GF resource grammar li-
brary. Linguistic Issues in Language Technology,
2(2).

Aarne Ranta. 2009b. Grammars as Software Li-
braries. In Yves Bertot, Gérard Huet, Jean-Jacques.
Lévy, and Gordon Plotkin, editors, From Seman-
tics to Computer Science. Essays in Honour of

47



Gilles Kahn, pages 281–308. Cambridge Univer-
sity Press. http://www.cse.chalmers.se/
˜aarne/articles/libraries-kahn.pdf.

Aarne Ranta. 2011. Grammatical Framework: Pro-
gramming with Multilingual Grammars. CSLI Pub-
lications, Stanford. ISBN-10: 1-57586-626-9 (Pa-
per), 1-57586-627-7 (Cloth).

48


