
ACL-IJCNLP 2015

The 53rd Annual Meeting of the
Association for Computational Linguistics and the

7th International Joint Conference on Natural Language
Processing

Proceedings of the Grammar Engineering Across
Frameworks (GEAF) Workshop

July 30, 2015
Beijing, China

Production and Manufacturing by
Taberg Media Group AB
Box 94, 562 02 Taberg
Sweden

c©2015 The Association for Computational Linguistics

Order print-on-demand copies from:

Curran Associates
57 Morehouse Lane
Red Hook, New York 12571
USA
Tel: +1-845-758-0400
Fax: +1-845-758-2633
curran@proceedings.com

ISBN 978-1-932432-66-4 / 1-932432-66-3 (Volume 1)
ISBN 978-1-932432-67-1 / 1-932432-67-1 (Volume 2)

ii

Introduction

Grammar Engineering Across Frameworks (GEAF) 2015 took place on 30 July 2015 in Beijing. This
workshop builds on several previous workshop on the same topic, namely GEAF 2007 at the LSA
Linguistic Institute at Stanford, GEAF 2008 at COLING in Manchester, GEAF 2009 at ACL/IJCNLP in
Singapore and HMGE 2013 at ESSLLI 2013 in Düsseldorf.

Grammar engineering, the practice of developing linguistically motivated grammars in software, is an
active area of research in computational linguistics and comprises contemporary works across many
different theoretical frameworks. The fruits of grammar engineering, namely linguistically motivated
grammars which in many cases provide rich, detailed semantic representations, support the development
of natural language technologies, including both natural language understanding and generation, that
derive much more information from the linguistic signal than is otherwise possible. The goal of this
workshop is to bring together researchers working in grammar engineering and to advance the state of
the art in this field.

In addition to the nine papers included in these proceedings, the workshop featured a panel discussion on
how grammar engineering can continue to be relevant in computational linguistics. The panel addressed
questions such as, What are the strengths of grammars that cannot be ignored? What success stories do
we have? What should be done differently? And what can we learn from other approaches?

We are grateful to the program committee for their thoughtful comments on the submitted papers and to
the authors and panelists for valuable contributions to the study of grammar engineering.

Emily M. Bender, Lori Levin, Stefan Müller, Yannick Parmentier, and Aarne Ranta

iii

Organizers:

Emily M. Bender (U Washington) (Chair)
Lori Levin (Carnegie Mellon University)
Stefan Müller (FU Berlin)
Yannick Parmentier (U Orléans)
Aarne Ranta (U Göteborg)

Program Committee:

Krasimir Angelov (U Göteborg)
Pushpak Bhattacharyya (IIT Bombay)
Philippe Blache (CNRS)
Miriam Butt (U Konstanz)
Robin Cooper (U Göteborg)
Berthold Crysmann (CNRS)
Eric De La Clergerie (Paris 7)
Ramona Enache (U Göteborg)
Dan Flickinger (Stanford)
Antske Fokkens (VU Amsterdam)
Claire Gardent (CNRS)
Sylvain Kahane (U Paris Ouest)
Tracy King (eBay)
Anna Kupsć (U Bordeaux)
Hans Leiss (LMU Munich)
Timm Lichte (U Düsseldorf)
Detmar Meurers (U Tübingen)
Richard Moot (CNRS)
Glyn Morrill (UPC Barcelona)
Guy Perrier (U Lorraine)
Adam Przepiórkowski (PAS)
Frank Richter (U Frankfurt)
Sanghoun Song (NTU)
Francis Tyers (U Tromsø)
Christina Unger (U Bielefeld)
Gertjan van Noord (U Groeningen)

v

Table of Contents

Grammar Engineering for a Customer: a Case Study with Five Languages
Aarne Ranta, Christina Unger and Daniel Vidal Hussey . 1

Building an HPSG-based Indonesian Resource Grammar (INDRA)
David Moeljadi, Francis Bond and Sanghoun Song . 9

An HPSG-based Shared-Grammar for the Chinese Languages: ZHONG [|]
Zhenzhen Fan, Sanghoun Song and Francis Bond . 17

Parsing Chinese with a Generalized Categorial Grammar
Manjuan Duan and William Schuler . 25

Orthography Engineering in Grammatical Framework
Krasimir Angelov .33

A Cloud-Based Editor for Multilingual Grammars
Thomas Hallgren, Ramona Enache and Aarne Ranta . 41

Formalising the Swedish Constructicon in Grammatical Framework
Normunds Gruzitis, Dana Dannells, Benjamin Lyngfelt and Aarne Ranta . 49

Representing Honorifics via Individual Constraints
Sanghoun Song . 57

Resumption and Extraction in an Implemented HPSG of Hausa
Berthold Crysmann . 65

vii

Workshop Program

Thursday, July 30, 2015

9:15–9:30 Opening session

9:30–10:30 Session 1

09:30–10:00 Grammar Engineering for a Customer: a Case Study with Five Languages
Aarne Ranta, Christina Unger and Daniel Vidal Hussey

10:00–10:30 Building an HPSG-based Indonesian Resource Grammar (INDRA)
David Moeljadi, Francis Bond and Sanghoun Song

10:30–11:00 Coffee break

11:00–12:30 Session 2

11:00–11:30 An HPSG-based Shared-Grammar for the Chinese Languages: ZHONG [|]
Zhenzhen Fan, Sanghoun Song and Francis Bond

11:30–12:00 Parsing Chinese with a Generalized Categorial Grammar
Manjuan Duan and William Schuler

12:00–12:30 Orthography Engineering in Grammatical Framework
Krasimir Angelov

12:30–14:00 Lunch break

ix

Thursday, July 30, 2015 (continued)

14:00–15:30 Session 3

14:00–14:30 A Cloud-Based Editor for Multilingual Grammars
Thomas Hallgren, Ramona Enache and Aarne Ranta

14:30–15:00 Formalising the Swedish Constructicon in Grammatical Framework
Normunds Gruzitis, Dana Dannells, Benjamin Lyngfelt and Aarne Ranta

15:00–15:30 Representing Honorifics via Individual Constraints
Sanghoun Song

15:30–16:00 Coffee break

16:00–18:00 Session 4

16:00–16:30 Resumption and Extraction in an Implemented HPSG of Hausa
Berthold Crysmann

16:45–18:00 Panel discussion: the future of grammar engineering

x

Proceedings of the Grammar Engineering Across Frameworks (GEAF) Workshop, 53rd Annual Meeting of the ACL and 7th IJCNLP, pages 1–8,
Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Grammar Engineering for a Customer: a Case Study with Five Languages

Aarne Ranta
University of Gothenburg
and Digital Grammars AB

aarne@chalmers.se

Christina Unger
Bielefeld University

cunger@cit-ec.uni-bielefeld.de

Daniel Vidal Hussey
University of Gothenburg

daniel.vidal.hussey@gmail.com

Abstract

This paper describes a grammar-based
translation system built by a company for
a paying customer. The system uses a mul-
tilingual grammar for English, Finnish,
German, Spanish, and Swedish written in
GF (Grammatical Framework). The gram-
mar covers a corpus of technical texts in
Swedish, describing properties of places
and objects related to accessibility by dis-
abled people. This task is more com-
plex than most previous GF tasks, which
have addressed controlled languages. The
main goals of the paper are: (1) to find
a grammar architecture and workflow for
domain-specific grammars on real data (2)
to estimate the quality reachable with a
reasonable engineering effort (3) to assess
the cost of grammar-based translation and
its commercial viability.

1 Introduction

While statistical methods dominate in assimila-
tion (browsing quality) translation, grammars have
been argued to have a niche in dissemination (pub-
lication quality). The rationale is that such tasks
are often domain-specific and need high preci-
sion rather than wide coverage. A recent effort in
this direction was the European MOLTO project
(Hallgren et al., 2012), which developed tools for
such tasks building on the grammar formalism GF
(Grammatical Framework, (Ranta, 2011)).

MOLTO also built showcases for a few do-
mains (mathematics (Saludes and Xambó, 2011),
paintings (Damova et al., 2014), business models
(Davis et al., 2012), and touristic phrases (Ranta
et al., 2012)). But these showcases were all
dealing with CNL (controlled natural language),
which was defined by the grammar writers and de-
signed to be processable by formal grammars. The

present paper takes a step beyond these research
prototypes, as the language to be translated is not
controlled, but naturally written by different au-
thors at different times. The system was ordered
by a paying customer to solve a real problem. Also
the size of the language is larger than in the men-
tioned MOLTO applications.

The task was to create a translation system for a
web service documenting the accessibility to dif-
ferent sites, e.g. whether they can be visited by
wheelchair users1. The service provider had a set
of text templates written in Swedish, for instance
stating that the width of the door is [X]. These
templates had previously been translated by pro-
fessional translators to English and partly to other
languages. Also Google translate had been used
for some languages.

For quality reasons, Google translate was
deemed unsatisfactory by the customer. Manual
translation was problematic because of its high
cost and low speed: the system is updated by new
texts continuously, and their translations should
appear without delays. Therefore the customer
contracted a company2 to build an automatic sys-
tem that could deliver high-quality translations
faster than before.

This paper addresses a part of the task: a gram-
mar used for translating from Swedish to English,
Finnish, German, and Spanish. The translation
system parses Swedish sentences (i.e. templates)
and generates translations in other languages, by
using the interlingual grammar architecture of GF.
The translations are manually revised and post-
edited, partly because the customer wants to be
sure about their quality, partly because the input
is noisy and contains typos, grammar errors, and
other problems not amenable to purely grammar-
based automatic translation. A fully automatic
system would require more control on the input

1Tillgänglighetsdatabasen, www.t-d.se.
2Digital Grammars AB, www.digitalgrammars.com.

1

language. This was left to future work.
The approach we chose was the “Embedded

CNL” (Ranta, 2014): a Controlled Natural Lan-
guage embedded in a general purpose syntactic
grammar. The parser gives priority to CNL analy-
ses whenever possible, but also provides coarser
analyses as back-up. This makes the automatic
translation robust. Since the system knows which
grammar rules are used for each part of the trans-
lation, it can show confidence information to the
user and the post-editor.

The main questions of this paper are:
• How to best build an embedded CNL system

for a task like this?
• How good is the quality, in terms of the usual

MT scores and post-editing required?
• Is this approach commercially viable, i.e.

competitive with human of translation?
The paper has the following structure: Section 2
describes the text corpus to be translated. Sec-
tion 3 is a very brief introduction to GF. Sec-
tion 4 outlines the structure of the grammar and
the grammar writing process. Section 5 outlines
the translation and post-editing workflow. Sec-
tion 6 gives evaluation on two dimensions: the
time taken by grammar writing and post-editing,
and the usual scores (BLEU) for translation qual-
ity. Section 7 discusses related work. Section 8
concludes, trying to answer the three questions
and give recommendations for later work.

2 The corpus

The starting point was a set of texts in Swedish.
Most of them had manual translations in English,
many also in Finnish and German. The cus-
tomer was happy with the English translations but
wanted to replace the Finnish and German ones, as
well as to create Spanish translations. The num-
ber of texts was around 1,900, mostly short sen-
tences of under 10 words. But as the texts also had
heavy HTML markup, which had to be rendered
correctly in translation, the corpus with tags and
repetitions of texts had 26,000 tokens.

The most interesting part of the markup was the
variable, a segment into which some actual value
is inserted when the text is used to describe some
object. As the first step of translation, we erased
all markup but the variable. As the last step, we
inserted it back by using an alignment between the
source and the translation.

Figure 1 shows a sample from the corpus. The

variables are in brackets. The brackets contain
identifiers marking what kind of value is to be in-
serted in them; the final grammar distinguishes be-
tween 13 different variables, which typically be-
long to different syntactic categories.

After the removal of markup, the number of
unique texts was 1,185, word count 7,309. There
were 1,258 unique words and 980 unique lem-
mas, as measured by the morphological analyser
of SALDO (Borin et al., 2013). 906 of these were
content words (nouns, adjectives, verbs), most of
which had precise technical meanings.

In the grammar writing process, it turned out
that many word combinations must be treated as
multiword constructions, since their translations
are not compositional. For instance, Swedish
motsvarande is literally corresponding, but the
proper translation of NP eller motsvarande is NP
or similar in English, NP o elemento parecido in
Spanish.

72 such constructions were included in the fi-
nal lexicon. This number is relatively low because
Swedish forms compounds without spaces, and
these were easy to identify as tokens at the out-
set. For comparison, the final English lexicon has
274 multiwords. Starting with English would thus
involve more work in identifying the multiwords.

3 GF and resource grammars

GF started at Xerox (XRCE) to support multilin-
gual generation in controlled-language scenarios
(Dymetman et al., 2000). A GF grammar consists
of an abstract syntax, which captures the seman-
tics of the application domain, and a set of con-
crete syntaxes, which map abstract syntax trees
into strings of different languages. As an example
from the domain of this paper, one could have an
abstract syntax function

fun Length :
Object -> Measure -> Fact

to model sentences such as the length of the chang-
ing table is 120 cm. The concrete syntax is given
by a linearization rule,

lin Length o m =
"the length of" ++ o ++ "is" ++ m

This rule is nothing but a string template, which
together with the abstract syntax rule is a decom-
position of the context-free grammar rule

Fact ::=
"the length of" Object "is" Measure

2

avåkningsskyddet är placerat på [object]
the protective guards are placed on [object]

begränsad gångyta är [units] bred
the limited pedestrian area is [units] wide

karusell [exist] som är anpassad för rullstol
roundabout adapted for wheelchair is [exist]

språk vid visning eller guidning [is] speciellt anpassat för att vara enkelt och lättförståeligt
language when showing or guiding [is] especially adapted to be simple and easy to understand

Figure 1: Parallel English-Swedish sentences from the corpus.

to a “tectogrammarical” and “phenogrammatical”
rule (Curry, 1961). The strength of GF is that dif-
ferent languages can have not only different lin-
earizations but also different types of lineariza-
tions. Thus for instance Object in English is
a string, but in German case-dependent string,
which is rendered in the genitive in this construc-
tion. The German linearization rule is thus

"die Länge" ++ gen o ++ "ist" ++ m

which generates die Länge des Wickeltisches ist
120 cm for the object whose nominative form is
der Wickeltisch. The Finnish and Spanish rules are

gen o ++ "pituus on" ++ m
"la longitud"++ gen o ++"es de"++ m

respectively, where Finnish has a different word
order and Spanish adds the preposition de.

The first GF grammars were small, typically
involving up to 200 abstract syntax rules; their
context-free expansions could of course be thou-
sands of rules, due to parametric variations such
as case. But it soon turned out that writing
such grammars from scratch for each applica-
tion was untenable, as each application had to re-
implement morphology and syntax. To relieve this
task, the GF Resource Grammar Library (RGL)
(Ranta, 2009) was created, inspired by the re-
source grammars of CLE (Core Language Engine)
(Rayner et al., 2000). The current RGL includes
30 languages, implementing the inflectional mor-
phology and a comprehensive part of the syntax
of each language. The RGL has a common API
(Application Programmer’s Interface) based on an
abstract syntax. Thus for instance

possCN : CN -> NP -> CN

is a function that forms the possessive “CN of NP”
for any CN (common noun) and NP (noun phrase)
in any of the 30 languages. The linearization rules
of Length can now be written

mkCl (mkNP the_Det
(possCN (mkCN length_N)) o) m

uniformly in these four languages, by just varying
the definition of the constant length N, which in
turn can be written

mkN "length"
mkN "Länge"
mkN "pituus"
mkN "longitud"

using the smart paradigms (Détrez and Ranta,
2012) of each language, which infer the morpolog-
ical properties of words from one or more forms.
In Spanish, the argument m must be made into a
prepositional phrase (prepNP de Prep m).

The RGL has increased the productivity of CNL
implementations in GF, so that a system with a few
hundred abstract syntax rules can be created in a
few days and portable to any new language in a
few hours (Ranta et al., 2012). The RGL has re-
cently also scaled up to open-domain translation,
due to improved parsing algorithms and statisti-
cal disambiguation (Angelov and Ljunglöf, 2014),
chunk-based back-up of syntactic parsing (Ranta,
2014), and the ease of building large lexica with
smart paradigms. As a demonstration, a wide-
coverage translator (WCT) has been released as
a mobile app (Angelov et al., 2014).

4 The grammar writing process

The grammar writing task was given the following
constraints, for reasons of commercial viability:

1. The abstract syntax and Swedish should be
built in 2 person weeks.

2. Each of the other languages should be built in
1 person week, including the postprocessing
of the translations.

3. Later translations of similar text should be
five times as fast as human translation.

3

4. Each language could be implemented by a
different programmer, who does not need to
know the other grammars.

5. The grammarians need basic GF skills and
native knowledge of the target language, but
no Swedish.

Constraints 1 and 2 meant that we had to stop the
grammar development at some point and proceed
to post-editing, even if the grammar was not yet
perfect. Thus the workflow for each target lan-
guage (after the abstract syntax and Swedish) was
defined as follows:

• Days 1,2: Initial grammar, complete for the
abstract syntax.

• Days 3,4: Translation + post-editing + gram-
mar improvement loop.

• Day 5: Post-editing to deliver the final trans-
lations.

Constraint 3 means that the grammar must be
good enough to support faster translation in later
tasks. Constraint 4 means that the work can be
done in parallel, constraint 5 that the grammar
can easily be extended with new languages. In
the actual task reported here, the three program-
mers were native speakers of Finnish, German,
and Spanish, two of them GF experts and the third
one a student with a basic course of GF covering
most of the textbook (Ranta, 2011).

The source texts were in Swedish, but requir-
ing knowledge of Swedish would make it too hard
to find grammarians for new languages. Two of
the grammarians actually had to work on the ba-
sis of the English translations. It turned out useful
to write an English concrete syntax to help their
work, so that they knew exactly what was intended
with each abstract rule. The English grammar was
not a part of the deal, but it was needed for this
purpose as well as for future use. It was also a san-
ity check of the abstract syntax: building a gram-
mar with only one language in mind could result
in an abstract syntax that is not abstract enough, as
pointed out in the “best practices” of the MOLTO
project (Hallgren et al., 2012).

The process thus started with the abstract syntax
together with concrete syntaxes for Swedish and
English. We had two main options for the gram-
mar writing process:

• bottom-up: build a dedicated CNL and im-
plement it with the RGL (resource grammar
library);

• top-down: start with the WCT (wide-

coverage translator) and improve it by
domain-specific rules (using RGL).

The bottom-up approach was excluded almost im-
mediately, because we had to take the corpus as
it was: we had to translate sentences written in
different times by different human authors, which
could not be expected to follow strict CNL rules.

Figure 2 shows the grammar writing phases.
The rectangles are off-the-shelf components from
GF open source repositories. The ovals are gram-
mar parts created in the project. The dashed rect-
angle RGL means that the RGL is used as a li-
brary rather than as a part of the run-time transla-
tion grammar.

Phase 0: WCT

We started with a baseline using WCT out of
the box, just extended with rules for the vari-
ables. The results were far from satisfactory.
We did receive translations to all sentences, but
they were too often relying on robustness (i.e.
chunking rather than full analyses), lexical choices
were bad, and many words were returned un-
translated because they were missing. The same
happens with Google translate, because there are
many uncommon Swedish words. The grammar
at this phase was just the wide-coverage transla-
tion grammar of GF.

Phase 1: WCT + lexicon

This phase added the missing words to the lexicon,
but the syntax was still the WCT syntax. Many
compounds were first translated compositionally
from their parts: thus lekplatsområde became the
incomprehensible game place section instead of
the correct playground area. Such problems could
have been partly solved by using the corpus as
data for statistical phrase alignment and deriving
a GF multiword lexicon from that (Enache et al.,
2014). But the data was fully available only for
English, and it did not have the desired termi-
nological consistency. Thus we ended up creat-
ing a lexicon semiautomatically from the corpus,
occasionally adding multiword constructions later
when new languages required this. The grammar
at this phase was the wide-coverage grammar plus
the domain-specific lexicon.

Phase 2: CNL as extended subset of WCT

There were two problems with the grammar built
using the top-down strategy:

4

Figure 2: The four phases of grammar development.

• Ambiguity: including all syntax rules creates
ambiguities that are not adequately solved by
the generic statistical model of WCT.

• Incompleteness: even though all sentences
are parsed, the parses don’t capture idiomatic
constructions typical of this domain.

The incompleteness concerned not only multiword
constructions, but also general syntactic rules.
Some authors of the corpus had used a tele-
graphic style, with missing articles and endings;
Swedish expresses definiteness in morphology, for
instance, dörren = dörr + en (“the door”). These
phenomena required new rules in the general syn-
tax, not just domain-specific CNL rules.

At the same time, only some of the RGL struc-
tures turned out to be actually needed. Less than a
third of the 216 combination rules in the RGL ab-
stract syntax were used in correct analyses of the
corpus; the rest were just creating spurious parses

The module system of GF provides a way to
reuse and recombine parts of grammars, even of
grammars given as “black boxes” such as the RGL
in its standard binary distribution. Using these
techniques, we made two kinds of changes on top
of the standard RGL:

• Removing rules until we got just those parses
that made sense for the domain.

• Adding rules that enabled parsing input that
was not parsed correctly before.

We ended up removing all but 30 rules of the stan-
dard RGL and adding about 40 new rules, having
to do with the telegraphic style, measument units,
and existential constructions. In addition, 16 rules
were needed to embed the variables in standard
syntactic constructions. They were not always just
words, but syntactic functions.

For example, the existential variable [exist],
as shown in Figure 1, marks a semantic function

that is realized in different ways in different lan-
guages. The abstract syntax is simply

fun VarExistNPS : NP -> S

The linearization has a variable that gets both
positive and negative values, “there is/are (not)”.
This cannot be done by simple slot-filling, be-
cause the filler may depend on the surrounding
sentence (e.g. “is/are” in English) and because,
conversely, the surrounding sentence may depend
on the slot filler (in Finnish, the NP is in the nomi-
native if the existential is positive, partitive if neg-
ative). However, human translators had been inge-
nious and found ways to generate acceptable lan-
guage even with slot filling. Thus the existential
verb of Swedish was rendered as an adjective in
English ((not) available) and in German ((nicht)
erhältlich). Swedish (finns (inte)) and Spanish
((no) hay) could both be treated with verbs.

From the engineering point of view, the syntax
part was extremely simple. The GF source code
is around 180 lines for all languages, as opposed
to the lexicon, which is around 1050 lines. The
RGL and its common API come with the promise
that writing grammars by using the RGL is equally
complicated for all languages supported, which is
corroborated by these figures; see the full code
statistics in Table 2.

The resulting grammar was a CNL based on an
abstract syntax that was syntactic rather than se-
mantic. Thus for instance the length of X is Y is
not parsed as the logical predication (Length X
Y) but as an NP-VP predication

Pred (PossNP X (UseN längd_N))
(MeasureVP Y)

This kind of abstract syntax is also used in
ACE (Attempto Controlled English) (Fuchs et al.,
2008). The syntactic structures and their logi-

5

cal semantics are known since (Montague, 1974),
which makes ACE well suited for inference. But it
is not so good for translation, because syntax may
have to be changed when going from one language
to another. Adding semantic constructions to the
abstract syntax would therefore be the way to go
if perfect quality was required.

The grammar at this point was a CNL with the
lexicon generated in the previous phase, together
with a minimal set of syntax rules. This grammar
was able to translate 95% of the corpus.

Phase 3: Embedded CNL in WCT
The grammar of phase 2 left 54 sentences un-
parsed. These sentences were long, tricky, and of-
ten ungrammatical. Extending the grammar would
have been hard work with diminishing returns.
What is more, the time allocated for grammar de-
velopment was coming to its end. The practical
solution was to switch back to the WCT for the
remaining sentences.

Since the same grammar was expected to be
used later for new sentences, we wanted a solution
with the best of both worlds: use CNL as much as
possible and WCT only as a back-up. An embed-
ded CNL does this by combining the two gram-
mars under a common start category, say S top.
This category can be produced in two ways:

UseCNL : S_cnl -> S_top
UseWCT : S_wct -> S_top

The weights in the probabilistic parser are set so
that UseCNL is given priority over UseWCT.

However, even unparsed sentences may have
parts that belong to the CNL. For instance, they
can contain noun phrases that are technical terms
whose translation is domain-specific. To make
maximal use of these parts, the robust grammar
has coercion rules from 12 subsentential cate-
gories of the CNL to corresponding categories of
the WCT, for instance,

CoerceNP : NP_cnl -> NP_wct

The weights are again set in a way that gives this
rule priority over other rules producing NP wct.

The additional grammar module for the robust
grammar is just 70 lines, actually the same for all
languages except for the import list telling which
RGL modules are used. It can therefore be pro-
duced automatically for any new language.

The final version of the grammar was now able
to parse all sentences in the corpus, 95% with the
CNL and 5% with robustness.

5 The translation workflow

With the abstract syntax, Swedish, and English in
place, the grammarians of Finnish, German, and
Spanish started their work. The Swedish/English
grammarian meanwhile produced a treebank cov-
ering the whole corpus, to guide the other gram-
marians. The grammarians used the trees in the
treebank to generate their own translations. Fig-
ure 3 shows an example entry from the treebank.

The GF translation is often different from the
original human translation, either because it is
wrong or because it just expresses the meaning in
a different way. In Figure 3, both reasons apply.
The translation is wrong because it uses the indef-
inite article; this in turn because the telegraphic
Swedish null determiner is rendered as an indefi-
nite in the English grammar - which is correct in
most cases, but not in this one (where the omis-
sion of determiner in the source is actually a ques-
tionable choice). The grammar moreover uses a
different word for gångyta, namely walking area
instead of pedestrian area. This is fine, because
both translations occur in the reference.

The grammarians used the treebank to guide
their grammar development. In the last phase,
they moved on to just post-editing the translations.
The final deliverable of the grammarians was the
concrete syntax modules, the machine translations
produced by the grammar, and the post-edited cor-
rect translations.

6 Evaluation

The first evaluation question is the quality of the
translations. Table 1 shows BLEU scores for each
language, computed by the Asiya tool (Gonzàlez
et al., 2012) by using the post-edited translations
as reference, as well as the percentage of transla-
tions that were correct without post-editing. The
results cover all 1,185 texts of the corpus and
are also shown separately for the CNL and robust
translations. The Google translate scores are also
with a reference obtained by post-editing the MT
result minimally. These scores are for a sample
of 40 sentences for CNL and 10 for robust trans-
lations and hence less representative. Notice that
this is not a proper evaluation in the usual sense,
because the grammar is tested on the same mate-
rial that was used for building it; the purpose here
is to measure the quality that can be produced by
a limited effort, and also to check how it com-
pares to Google translate, which had been previ-

6

Swe: begränsad gångyta är [units] bred
GF: (Pred (NullDetCN (AdjCN (PastPartA begränsa_V2) (UseN gångyta_N))) (measureVP varMeasure bred_A))
Eng: a restricted walking area is [units] wide
Ref: the limited pedestrian area is [units] wide

Figure 3: Example of a GF treebank entry: Swe (source), GF (tree), Eng (GF translation), Ref (human translation).

language correct BLEU,GF Google
Finnish, CNL 48% 77 31
Finnish, robust 0% 31 20
Finnish, all 46% 73 28
German, CNL 44% 75 37
German, robust 0% 33 34
German, all 42% 73 37
Spanish, CNL 34% 76 28
Spanish, robust 0% 39 25
Spanish, all 32% 74 28

Table 1: Quality evaluation.

ously used by the customer.
The second evaluation question is the produc-

tivity of grammar writing as a translation method.
Table 2 shows the working hours and lines of GF
code spent on different languages. The “prepare”
score shows the hours spent on analysing and
preparing the data and the amount of Haskell code
written to help the task. The main result is that the
time budget was held: 200 hours were allocated
and 138 used. The high post-edit speed predicts
that system development costs are amortized as
more texts are translated. The time difference be-
tween the Spanish and other grammarians reflects
the prior GF expertise of the grammarians and also
the availability of some prior Finnish and German
translations that helped with the technical termi-
nology. Each new language amortizes the cost of
the generic parts (48 hours), due to the interlin-
gual architecture. The interlingual RGL explains
why different languages need similar amounts of
GF code.

7 Related work

Grammar-based translation is familiar from com-
pilers, where synchronous grammars (Aho and
Ullman, 1969) are a technique that has also
been applied to human languages. With its ex-
plicit interlingua (abstract syntax), GF resembles
(Rosetta, 1994), whereas most other approaches
are based on transfer, e.g. (Rayner et al., 2000;
Butt et al., 2002; Rayner et al., 2006).

The quality of the earlier GF projects using pure
CNLs is higher, with typical BLEU scores be-
tween 80 and 95 (Rautio and Koponen, 2013). But

language GE PE PES Ws/h LoC
Finnish 14 6 1200 370 1292
German 18 6 1200 300 1290
Spanish 38 8 900 160 1291
Swedish 12 - - - 1303
English 12 - - - 1284
abstract 12 - - - 1286
prepare 12 - - - 400
total 118 20 1100 160 8056

Table 2: The grammar writing and translation effort. GE =

grammar engineering (hours), PE = postediting (hours), PES

Ws (post-editing speed words per hour), Ws/h (words trans-

lated per hour of work), LoC = lines of GF/Haskell code. The

“total” for PES and Ws/h means the average of all languages.

it is interesting to note that even in those cases, the
post-editors were not fully satisfied. Thus it is not
clear if translation can be made completely auto-
matic, if dissemination quality is the goal.

8 Conclusion

How to best build a system like this? The em-
bedded CNL approach provided a good balance of
quality and robustness. The CNL parsed 95% of
the sentences, and covering the rest would have
given diminishing returns. Including more seman-
tic constructions (rather than syntactic combina-
tions) in the CNL could have given better quality.

How good is the quality? The BLEU scores
were at least 73 for all languages, which meant
easy post-editing, at least 900 words per hour.

Is this approach commercially viable? The
translation of the corpus to three languages was
made at the rate of 160 words per hour, which
includes both grammar writing and post-editing.
This is comparable to human translation, so that
we are just above the bar if only this corpus is con-
sidered. However, the high post-editing speed sug-
gests that building grammars is profitable if more
text of the same kind is translated later. More-
over, the interlingual architecture of GF enables
new languages to be added at lower costs.

7

References
Alfred V. Aho and Jeffrey D. Ullman. 1969. Syntax

directed translations and the pushdown assembler.
Journal of Computer and System Sciences, 3(1):37
– 56.

Krasimir Angelov and Peter Ljunglöf. 2014. Fast
statistical parsing with parallel multiple context-free
grammars. In EACL’14, pages 368–376.

Krasimir Angelov, Björn Bringert, and Aarne Ranta.
2014. Speech-enabled hybrid multilingual transla-
tion for mobile devices. EACL’14, pages 41–44.

Lars Borin, Markus Forsberg, and Lennart Lönngren.
2013. Saldo: a touch of yin to wordnet’s yang. Lan-
guage resources and evaluation, 47(4):1191–1211.

Miriam Butt, Helge Dyvik, Tracy Holloway King,
Hiroshi Masuichi, and Christian Rohrer. 2002.
The parallel grammar project. In Proceedings of
the 2002 workshop on Grammar engineering and
evaluation-Volume 15, pages 1–7. Association for
Computational Linguistics.

Haskell B. Curry. 1961. Some logical aspects of
grammatical structure. In Roman Jakobson, edi-
tor, Structure of Language and its Mathematical As-
pects: Proceedings of the Twelfth Symposium in Ap-
plied Mathematics, pages 56–68. American Mathe-
matical Society.

Mariana Damova, Dana Dannélls, Ramona Enache,
Maria Mateva, and Aarne Ranta. 2014. Multi-
lingual natural language interaction with semantic
web knowledge bases and linked open data. In To-
wards the Multilingual Semantic Web, pages 211–
226. Springer Berlin Heidelberg.

Brian Davis, Ramona Enache, Jeroen van Grondelle,
and Laurette Pretorius. 2012. Multilingual verbali-
sation of modular ontologies using gf and lemon. In
Tobias Kuhn and Norbert Fuchs, editors, Controlled
Natural Language, volume 7427 of LNCS/LNAI,
pages 167–184. Springer.

Grégoire Détrez and Aarne Ranta. 2012. Smart
paradigms and the predictability and complexity of
inflectional morphology. In EACL (European As-
sociation for Computational Linguistics), Avignon,
April. Association for Computational Linguistics.

Marc Dymetman, Veronika Lux, and Aarne Ranta.
2000. XML and multilingual document author-
ing: Convergent trends. In Proc. Computational
Linguistics COLING, Saarbrücken, Germany, pages
243–249. International Committee on Computa-
tional Linguistics.

Ramona Enache, Inari Listenmaa, and Prasanth Ko-
lachina. 2014. Handling non-compositionality in
multilingual CNLs. In Controlled Natural Lan-
guage - 4th International Workshop, CNL 2014,
Galway, Ireland, August 20-22, 2014. Proceedings,
volume 8625 of LNCS.

Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn.
2008. Attempto Controlled English for Knowledge
Representation. In Cristina Baroglio, Piero A. Bon-
atti, Jan Małuszyński, Massimo Marchiori, Axel
Polleres, and Sebastian Schaffert, editors, Reason-
ing Web, Fourth International Summer School 2008,
number 5224 in LNCS, pages 104–124. Springer.

Meritxell Gonzàlez, Jesús Giménez, and Lluı́s
Màrquez. 2012. A Graphical Interface for MT
Evaluation and Error Analysis. In The 50th Annual
Meeting of the Association for Computational Lin-
guistics.

Thomas Hallgren, Aarne Ranta, John Camilleri,
Grégoire Détrez, and Ramona Enache. 2012. Gram-
mar Tools and Best Practices. MOLTO Deliverable
D2.3, June.

Richard Montague. 1974. Formal Philosophy. Yale
University Press, New Haven. Collected papers
edited by Richmond Thomason.

Aarne Ranta, Ramona Enache, and Grégoire Détrez.
2012. Controlled Language for Everyday Use: the
MOLTO Phrasebook. In Tobias Kuhn and Norbert
Fuchs, editors, Controlled Natural Language, vol-
ume 7427 of LNCS/LNAI. Springer.

Aarne Ranta. 2009. The GF Resource Grammar Li-
brary. Linguistics in Language Technology, 2:1–65.

Aarne Ranta. 2011. Grammatical Framework: Pro-
gramming with Multilingual Grammars. CSLI Pub-
lications, Stanford.

Aarne Ranta. 2014. Embedded controlled languages.
In Controlled Natural Language - 4th International
Workshop, CNL 2014, Galway, Ireland, August 20-
22, 2014. Proceedings, volume 8625 of LNCS.

Jussi Rautio and Maarit Koponen. 2013. Deliverable
9.2: Molto evaluation and assessment report.

Manny Rayner, David Carter, Pierrette Bouillon, Vas-
silis Digalakis, and Mats Wirén. 2000. The Spoken
Language Translator. Cambridge University Press,
Cambridge.

Manny Rayner, Beth Ann Hockey, and Pierrette Bouil-
lon. 2006. Putting Linguistics into Speech Recogni-
tion: The Regulus Grammar Compiler. CSLI Publi-
cations.

M. T. Rosetta. 1994. Compositional Translation.
Kluwer, Dordrecht.

Jordi Saludes and Sebastian Xambó. 2011. The
gf mathematics library. In Pedro Quaresma and
Ralph-Johan Back, editors, Proceedings First Work-
shop on CTP Components for Educational Soft-
ware (THedu’11), number 79, pages 102–110. Elec-
tronic Proceedings in Theoretical Computer Sci-
ence, 02/2012.

8

Proceedings of the Grammar Engineering Across Frameworks (GEAF) Workshop, 53rd Annual Meeting of the ACL and 7th IJCNLP, pages 9–16,
Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Building an HPSG-based Indonesian Resource Grammar (INDRA)

David Moeljadi Francis Bond
Division of Linguistics and Multilingual Studies

Nanyang Technological University
Singapore

{D001,fcbond,sanghoun}@ntu.edu.sg

Sanghoun Song

Abstract

This paper presents the creation and the
initial stage development of a broad-
coverage Indonesian Resource Grammar
(INDRA) within the framework of Head
Driven Phrase Structure Grammar (HPSG)
(Pollard and Sag, 1994) and Minimal Re-
cursion Semantics (MRS) (Copestake et
al., 2005). At the present stage, INDRA
focuses on verbal constructions and sub-
categorization since they are fundamental
for argument and event structure. Verbs
in INDRA were semi-automatically ac-
quired from the English Resource Gram-
mar (ERG) (Flickinger, 2000) via Wordnet
Bahasa (Nurril Hirfana Mohamed Noor et
al., 2011; Bond et al., 2014). In the future,
INDRA will be used in the development
process of machine translation. A prelim-
inary evaluation of INDRA on the MRS
test-suite shows promising coverage.

1 Introduction to Indonesian

Indonesian (ISO 639-3: ind) is a Western Malayo-
Polynesian language of the Austronesian language
family. Within this subgroup, it belongs to the
Malayic branch with Standard Malay in Malaysia
and other Malay varieties (Lewis, 2009). It is spo-
ken mainly in the Republic of Indonesia as the
sole official and national language and as the com-
mon language for hundreds of ethnic groups living
there (Alwi et al., 2014, pp. 1-2). In Indonesia it
is spoken by around 22.8 million people as their
first language and by more than 140 million peo-
ple as their second language. The lexical similarity
is over 80% with Standard Malay (Lewis, 2009).

Morphologically, Indonesian is a mildly agglu-
tinative language, compared to Finnish or Turk-
ish where the morpheme-per-word ratio is higher
(Larasati et al., 2011). It has a rich affixation sys-

tem, including a variety of prefixes, suffixes, cir-
cumfixes, and reduplication. Most of the affixes
are derivational. Two important inflectional affixes
are the prefix meN- which marks active voice and
di- which denotes passive voice (Sneddon et al.,
2010, pp. 29, 72).

Indonesian has a strong tendency to be head-
initial (Sneddon et al., 2010, pp. 26-28). In a noun
phrase with an adjective, a demonstrative or a rel-
ative clause, the head noun precedes the adjective,
the demonstrative or the relative clause. There is
no agreement in Indonesian. In general, grammat-
ical relations are only distinguished in terms of
word order. As is often the case with Austronesian
languages of Indonesia, Indonesian has a basic
word order of SVO with a nominative-accusative
alignment pattern. Argument alternations are trig-
gered by passive and applicative constructions.

2 Background

This section introduces the background theory, as
well as an overview of the Deep Linguistic Pro-
cessing with HPSG Initiative (DELPH-IN) and the
tools to build and develop INDRA.

2.1 Frameworks

INDRA uses the theoretical framework of HPSG
(Pollard and Sag, 1994). HPSG is mono-
stratal, handling orthography, syntax, semantics
and pragmatics in a single structure (sign), mod-
eled through typed feature structures. HPSG is
unification- and constraint-based. The words and
phrases are combined according to constraints of
the lexical entries based on the type hierarchy.
INDRA uses MRS (Copestake et al., 2005) as
its semantic framework because it is adaptable
for HPSG typed-feature structure and suitable for
parsing and generation. The semantic structures in
MRS are underspecified for scope and thus suit-
able for representing ambiguous scoping.

9

There is no previous work done on Indone-
sian HPSG but much has been done using Lexi-
cal Functional Grammar (LFG) (Kaplan and Bres-
nan, 1982), e.g. Arka and Manning (2008) on ac-
tive and passive voice and Arka (2000) on con-
trol constructions. In addition, Arka (2012) and
Mistica (2013) have worked on the computational
grammar ”IndoGram” which is a part of the Par-
Gram (Sulger et al., 2013).1 However, it is not
open-source or very broad in its coverage. Fur-
ther, it does not produce MRS, so cannot be easily
incorporated into our machine translation system.
Thus, there is a need to build and develop a broad-
coverage open-source HPSG of Indonesian.

2.2 DELPH-IN

The DELPH-IN consortium (Deep Linguistic
Processing with HPSG Initiative, http://www.

delph-in.net) is a research collaboration be-
tween linguists and computer scientists which
builds and develops open source grammar, tools
for grammar development and applications using
HPSG and MRS. More than fifteen grammars have
been created and developed within DELPH-IN,
e.g. English Resource Grammar (ERG) (Copes-
take and Flickinger, 2000) and Japanese grammar
Jacy (Siegel and Bender, 2002). DELPH-IN gram-
mars define typed feature structures using Type
Description Language (TDL) (Copestake, 2002).

We make extensive use of several open-source
tools for grammar development provided by
DELPH-IN: Linguistic Knowledge Builder (LKB)
(Copestake, 2002), a grammar and lexicon de-
velopment environment for typed feature struc-
ture grammars; The LinGO Grammar Matrix
(Bender et al., 2010), a web-based question-
naire for writing new DELPH-IN grammars, pro-
viding a wide range of phenomena and ba-
sic files to make the grammars compatible with
DELPH-IN parsers and generators; Answer Con-
straint Engine (ACE) (http://sweaglesw.org/
linguistics/ace/), an efficient processor for
DELPH-IN grammars; ITSDB or [incr tsdb()]
(Oepen and Flickinger, 1998), a tool for testing,
profiling the performance of the grammar and tree-
banking; Full Forest Treebanker (FFTB) (http:
//moin.delph-in.net/FftbTop), a treebanking
tool for DELPH-IN grammars, allowing the selec-
tion of an arbitrary tree from the “full forest” with-
out enumerating all analyses in the parsing stage;

1http://iness.uib.no/iness/xle-web

and LOGON (Oepen et al., 2007), a collection of
software, grammars, and other linguistic resources
for transfer-based machine translation.

3 INDRA

This section describes some preliminary work as
well as the methodology.

3.1 Methodology

The methodology used in INDRA follows Bender
et al. (2008). We model our analysis in HPSG and
implement it by editing some TDL files after an-
alyzing a phenomenon based on reference gram-
mars and other linguistic literatures. Afterwards,
we compile the grammar and test it by parsing
sample sentences or test-suites. The grammar is
debugged and developed further if some gaps or
problems are found according to the parse results.
Afterwards, the sample sentences in test-suites
will be parsed again and treebanked. This pro-
cess goes repetitively. If problems are not found
or the debugging process has finished with a good
result, the grammar will be updated in GitHub
(https://github.com/davidmoeljadi/INDRA).

3.2 Grammar Development

INDRA was created firstly by filling in
the required sections of the online page
of LinGO Grammar Matrix questionnaire
which covers basic grammar phenomena
such as word order, tense-aspect-mode, co-
ordination, morphology, subcategorization
of nouns and verbs (http://www.delph-
in.net/matrix/customize/matrix.cgi). IN-
DRA subcategorizes nouns into three groups:
common noun, pronoun and proper name. Com-
mon nouns are subcategorized into inanimate,
non-human and human based on three main
classifiers in Indonesian: the classifier buah (lit.
fruit) for inanimate nouns, ekor (lit. tail) for
non-human animate nouns and orang (lit. person)
for human nouns (Sneddon et al., 2010, p. 139;
Alwi et al., 2014, p. 288).

Verbs are subcategorized into three groups:
intransitive which has one argument, transitive
which has two arguments and optional transitive
which has one obligatory subject argument and
one optional object argument as in Adi makan
(nasi) “Adi eats (rice)”. The verb subcategoriza-
tion here follows Alwi et al. (2014, pp. 95-98).
Besides the number of arguments, the possibil-

10

ity of passivization with morphological inflection
plays an important role in distinguishing intran-
sitives from transitives in Indonesian. Examples
[1] and [2a] show intransitive and transitive
sentences respectively.

(1) Adi tidur.
Adi sleep

“Adi sleeps.”

(2) a. Adi mengejar Budi.
Adi ACT-chase Budi

“Adi chases Budi.”

b. Budi dikejar Adi.
Budi PASS-chase Adi

“Budi is chased by Adi.”

c. Budi saya kejar.
Budi 1SG chase

“Budi is chased by me.”

In Example (2a), the verb mengejar is formed
from an active prefix meN- and the base kejar (the
initial sound k undergoes nasalization; see Section
4.2). The active prefix meN- is changed to a pas-
sive prefix di- in passive type one (Sneddon et al.,
2010, pp. 256-257) in Example (2b) and without
affix in passive type two (Sneddon et al., 2010, pp.
257-258) in Example (2c). Sneddon et al. (2010,
pp. 256-257) states that in passive type one, the ac-
tor is third person or a noun, while in passive two,
the agent is a pronoun or pronoun substitute and it
comes before the unprefixed verb.

The more detailed verb subcategorization into
other groups such as ditransitive will be mentioned
in the next subsection. The lexical items for each
noun and verb subcategory were added and the af-
fixes to support the active-passive voice were in-
cluded. However, the Matrix does not handle mor-
phology as in the nasalization process of meN- and
thus has to be manually added (see Section 4.2).

3.3 Lexical Acquisition
The lexicon is important in the robustness of the
grammar. Since inputting words or lexical entries
manually into the grammar is labor intensive and
time consuming, doing lexical acquisition semi-
automatically is vital. In order to do this, we
need good lexical resources. We attempted to ex-
tract Indonesian verbs from Wordnet Bahasa (Nur-
ril Hirfana Mohamed Noor et al., 2011; Bond et

al., 2014) and group them based on syntactic types
in the ERG, such as intransitive, transitive, and di-
transitive, using Python 3.4 and Natural Language
Toolkit (NLTK) (Bird et al., 2009). The group-
ing of verbs (verb frames) in Wordnet (Fellbaum,
1998) is employed to be the bridge between the
English and Indonesian grammar.

Each verb synset in Wordnet (also Wordnet Ba-
hasa) contains a list of sentence frames specified
by the lexicographer illustrating the types of sim-
ple sentences in which the verbs in the synset can
be used (Fellbaum, 1998). There are 35 verbal
sentence frames in Wordnet, some of them are
shown as follows with their frame numbers:

(3) 1 Something ----s
8 Somebody ----s something
21 Somebody ----s something PP

Frame 1 is a typical intransitive verbal sentence
frame, as in the book fell; frame 8 is a typical
(mono)transitive verbal sentence frame, as in he
chases his friend; and frame 21 is a typical di-
transitive verbal sentence frame, as in she put a
book on a table. A verb may have more than one
synset and each synset may have more than one
verb frame, e.g. the verb eat has six synsets with
each synset having different verb frames. Three of
the six synsets, together with their definition and
verb frames, are presented in Table 1. These verb
frames can be employed as a bridge between the
verb types (also verb lexical items) in ERG and
those in INDRA.

Synset Definition Verb frame
01168468-v Take in solid food 8 Somebody ----s

something
01166351-v Eat a meal, take a

meal
2 Somebody ----s

01157517-v Use up (resources
or materials)

11 Something ----s
something
8 Somebody ----s
something

Table 1: Three of six synsets of the verb “eat” and
their verb frames in Wordnet

Out of 354 verb types in ERG, the top eleven
most frequently used types in the corpus were cho-
sen, excluding the specific English verb types such
as be-type verbs (e.g. is, be and was), have-type
verbs, verbs with prepositions (e.g. depend on, re-
fer to and look after) and modals (e.g. would, may
and need). The chosen eleven verb types are given
in Table 2. The third, fifth and eighth type (v -
unacc le, v - le and v pp unacc le all written in

11

bold in Table 2) are regarded as the same type, i.e.
intransitive verb type, in INDRA.

Verb type Freq Examples of verbCorp Lex
v pp* dir le 7079 204 go, come, hike
v vp seq le 3921 105 want, like, try
- unacc le 3144 334 close, start, end

v np noarg3 le 2723 5 make, take, give
v - le 2666 486 arrive, occur, stand
v np-pp e le 2439 334 compare, know, relate
v pp*-cp le 2360 154 think, add, note
v pp unacc le 2307 44 rise, fall, grow
v np-pp prop le 1861 135 base, put, locate
v cp prop le 1600 80 believe, know, find
v np ntr le 1558 10 get, want, total

Table 2: The ten most frequently used ERG verb
types in the corpus

The first type contains verbs expressing move-
ment or direction with optional PP complements,
as in B crept into the room. The verbs in the second
type are subject control verbs, as in B intended to
win. The third type consists of unaccusative verbs
without complements as in The plate gleamed.
The fourth type contains verbs having two argu-
ments (monotransitive) although they have a po-
tential to be ditransitive as in B took the book. The
fifth type contains intransitive (unergative) verbs
as in B arose. The verbs in the sixth type have
obligatory NP and PP complements as in B com-
pared C with D. The verbs in the seventh type are
verbs with optional PP complements and obliga-
tory subordinate clauses as in B said to C that D
won. Unaccusative verbs with optional PP com-
plements as in The seed grew into a tree belong
to the eighth type. Ditransitive verbs with oblig-
atory NPs and PPs with state result as in B put
C on D belong to the ninth type. The tenth type
consists of verbs with optional complementizers
as in B hoped (that) C won and the eleventh type
consists of verbs with obligatory NP complements
which cannot be passivized as in B remains C.

Based on the syntactic information of each verb
type mentioned above, the corresponding verb
frames in Wordnet were manually chosen. For
example, the first type contains intransitive verbs
with optional PP; thus, the verb frames should
be Sb ----s and Sb ----s PP. The intransitive
verbs without complements should correspond to
the verb frames Sth ----s or Sb ----s, regard-
less of whether the subject is a thing or a person.
Table 3 shows the eleven verb types in ERG and
their corresponding Wordnet verb frames.

First, we checked for each verb in each verb

Verb type Verb frame

v pp* dir le 2 Sb ----s &
22 Sb ----s PP

v vp seq le 28 Sb ----s to INFINITIVE
v - unacc le 1 Sth ----s ||
v - le 2 Sb ----s
v pp unacc le

v np noarg3 le 8 Sb ----s sth ||
11 Sth ----s sth

v np-pp e le

15 Sb ----s sth to sb ||
17 Sb ----s sb with sth ||
20 Sb ----s sb PP ||
21 Sb ----s sth PP ||
31 Sb ----s sth with sth

v pp*-cp le 26 Sb ----s that CLAUSE

v np-pp prop le 20 Sb ----s sb PP ||
21 Sb ----s sth PP

v cp prop le 26 Sb ----s that CLAUSE

v np ntr le 8 Sb ----s sth ||
11 Sth ----s sth

Table 3: The eleven most frequently used ERG
verb types in the corpus and their corresponding
Wordnet verb frames (sb = somebody, sth = some-
thing, & = AND, || = OR

type in Table 2 whether it is in Wordnet or not.
If it could be found in Wordnet, the next step was
to check whether the verb includes the verb frames
mentioned in Table 3 or not. This step had to be
done in order to find out the right synset since
a verb can have many synsets but different verb
frames as shown in Table 1. After the right synset
was found, the corresponding Indonesian lemmas
or translations were checked. One synset may
have more than one Indonesian lemma or may not
have Indonesian lemmas at all.

The next important step is to check one by
one the Indonesian lemmas belonging to the same
synset and verb frames whether each can be
grouped in the same verb type or not. This man-
ual step has to be done because grouping verbs
in a particular language into types is a language-
specific work. Arka (2000) states that languages
vary with respect to their lexical stock of “syn-
onymous” verbs that may have different argument
structures, e.g. the verb know can be both intransi-
tive and transitive in Indonesian tahu and ketahui
respectively, transitive only with an obligatory NP
in Balinese2 tawang, and transitive with optional
NP in English know. Lastly, after the Indonesian
verbs were extracted and grouped into their cor-

2Balinese (ISO 639-3: ban) is a Western Malayo-
Polynesian language of the Austronesian language family. It
belongs to the Malayo-Sumbawan branch. It is mainly spo-
ken in the island of Bali in the Republic of Indonesia as a
regional language (Lewis, 2009).

12

responding verb types, a new lexicon file for IN-
DRA was made, in which the verbs are alphabeti-
cally sorted. The result is, in total, 939 Indonesian
verbs were extracted and grouped into nine verb
types as presented in Table 4. One verb may be-
long to more than one verb type.

This lexical acquisition is useful to extract lex-
ical items (semi-)automatically through linguistic
resources such as Wordnet Bahasa. The generated
lexicon can be used to improve the grammar’s cov-
erage. We plan to further extract more verbs as
well as other parts-of-speech such as nouns, ad-
jectives and adverbs.

Verb type Number of verb
v pp* dir le 76
v vp seq le 49
v - unacc le 594
v np noarg3 le 5
v np-pp e le 41
v pp*-cp le 23
v np-pp prop le 85
v cp prop le 53
v np ntr le 13
Total 939

Table 4: New verb types and the corresponding
number of verbs in INDRA

4 Analyzing Indonesian Phenomena

After creating INDRA via the Grammar Ma-
trix customization system, some additions and
changes were done to the TDL files. Pronouns,
proper names and adjectives which were formerly
added via the Grammar Matrix customization sys-
tem, were subsequently constrained so that they
cannot parse phrases such as *saya kaya “rich I”.
In addition, besides the new verb types which had
been acquired from ERG, more verb rules such as
control and raising were manually added. In total,
there are 49 lexical types/categories in the lexicon.

The next subsections discuss some phenomena,
e.g. decomposing words and morphology, ana-
lyzed and implemented in INDRA.

4.1 Decomposed Words

Following Seah and Bond (2014) who state that
pronouns can be analyzed componentially, some
words such as sini “here” can be mapped to mul-
tiple predicates, e.g. sini “here” can be thought of
as tempat ini ”this place”. The way to model this
is by defining type hierarchies for the head (e.g.
tempat “place”) and the demonstrative (e.g. ini

generic n rel

entity n rel time n rel place n rel

Figure 1: Type hierarchy for heads

quant rel

demon q rel

proximal q rel distal q rel

medial q rel remote q rel

...

Figure 2: Type hierarchy for demonstratives

“this”). Figure 1 and 2 show the type hierarchy
for heads and demonstratives respectively.

Indonesian has two demonstratives: ini “this”
and itu “that” but three locative pronouns: sini
“here (near speaker)”, situ “there (not far off)” and
sana “there (far off)” (Sneddon et al., 2010, pp.
133, 195). These can be modeled using the type
hierarchy for demonstratives. The demonstrative
itu “that” has the predicate distal q rel; the loca-
tive pronouns situ and sana has the predicate me-
dial q rel and remote q rel respectively, which are
the daughters of the predicate distal q rel. Figure
3 shows the implementation in TDL.

Figure 4 shows the MRS representation of the
decomposed word situ “there” which is preceded
by a preposition di “at”. The ARG0 in the se-
mantic head daughter di “at” is equated with the
INDEX which has the value e2. The value of
the ARG2 (x4) is coindexed with the ARG0 of
place n rel and medial q rel. The medial q rel in-
troduces RSTR which is related to the top handle
of the quantifier’s restriction (h7) and linked to the
LBL of place n rel (h7=qh5).

Decomposing words is important to get more
refined semantics. We will expand this to other
heads and demonstratives such as kini “at present”
which can be decomposed into time n rel and

situ := n+det-lex &

[STEM < "situ" >,

SYNSEM.LKEYS [KEYREL.PRED "place_n_rel",

ALTKEYREL.PRED "medial_q_rel"]].

Figure 3: Decomposed predicates of situ “there”

13

mrs

TOP 0

INDEX 2

RELS

〈

di p rel

LBL 1

ARG0 2

ARG1 3

ARG2 4

,

place n rel

LBL 5

ARG0 4

,

medial q rel

LBL 6

ARG0 4

RSTR 7

BODY 8

〉

HCONS

〈

qeq

HARG 0

LARG 1

,

qeq

HARG 7

LARG 5

〉

ICONS 〈〉

Figure 4: MRS representation of di situ (lit. “at
there”)

proximal q rel.

4.2 Morphology
As mentioned in Section 3.2, a number of nasal-
ization (sound changes) or morphology process
occur when meN- combines with bases. Table 5
shows us that a number of sound changes occur
when meN- combines with a base. A base loses
its initial consonant if the consonant is one of the
following voiceless consonants: p, t, s and k. It
retains its initial consonant otherwise. The sound
changes of every possible combination of conso-
nant clusters in Alwi et al. (2014, pp. 67-68) was
manually examined using an online Indonsian dic-
tionary (KBBI Daring) (Alwi et al., 2008). In ad-
dition, when the base consists of only one syllable,
meN- becomes menge- with no sound changes in
the base. Every possible combination of one sylla-
ble word with meN- which forms a transitive verb
in KBBI Daring was listed up. There were 44 one
syllable words in total. All 24 possible consonant
clusters and 44 one syllable words were added to
the inflectional rules in INDRA.

Moreover, besides the consonant clusters and
one syllable words, a manual extension was also
done for the exceptions. The sound p is usually
lost when combined with meN- but it is retained
when it is a derivational prefix per- as in pert-
inggi (from per- and tinggi “high”). At the present
stage, all transitive bases with per- are being listed
up and will be added in INDRA. There are also
bases such as punyai “have” and syairkan “com-
pose a poem” (Sneddon et al., 2010, pp. 16-17)
which do not undergo the common sound changes.

At the present stage, this morphology process

S

NP

Adi

VP

V

V

mengejar

NP

Budi

Figure 5: Parse tree of Adi mengejar Budi “Adi
chases Budi”

applies to all transitive verbs in INDRA with a
constraint stating that objects are obligatory. Other
verb types such as ditransitives, control and rais-
ing which can be passivized will be further in-
cluded in the inflectional rules. At present, IN-
DRA can parse the example (2a) as shown in Fig-
ure 5. The MRS representation is exactly the same
as the MRS representation for transitive sentences
(see Figure 6). The value of ARG0 of the semantic
head daughter kejar v rel is an event (e2) which
is equated with the INDEX. The value of ARG0 of
named rel “adi” (x3) and named rel “budi” (x9)
refer to the value of the ARG1 and ARG2 feature
of the semantic head daughter respectively.

We intend to cover all the exceptions in the in-
flectional rules, particularly dealing with words
having per- and to expand the rules to other verb
types such as ditransitives. Passive type one and
type two rules also need to be analyzed and imple-
mented. As Sneddon et al. (2010, pp. 256, 263-
264) pointed out, passive constructions in Indone-
sian are far more frequent than in English; an In-
donesian passive is often naturally translated into
English by an active construction. Thus, dealing
with passive constructions will increase the gram-
mar coverage. We anticipate that translating In-
donesian passive constructions into English will
be a challenge for machine translation.

5 Associated Resources

In order to make INDRA more robust, the fol-
lowing resources have been set up: Indonesian
POS Tagger (Rashel et al., 2014) with ACE’s
YY-mode for unknown word handling (http:
//moin.delph-in.net/ZhongYYMode) which can
parse sentences with unknown words and transfer
grammar for machine translation. At present, IN-
DRA can translate some simple sentences such as
the ones in example (1) and (2a) using the inen
(Indonesian-English) transfer grammar.

14

Allomorph of meN- Initial orthography of the base Example

mem- p (L) mempakai “use”
pl, pr, ps, pt, b, bl, br, f, fl, fr, v (R) membeli “buy”

men- t (L) mentanam “plant”
tr, ts, d, dr, c, j, sl, sr, sy, sw, sp, st, sk, sm, sn, z (R) mencari “seek”

meny- s (L) menysewa “rent”

meng- k (L) mengkirim “send”
kh, kl, kr, g, gl, gr, h, q, a, i, u, e, o (R) mengganti “replace”

me- m, n, ny, ng, l, r, w, y (R) melempar “throw”
menge- (base with one syllable) mengecek ”check”

Table 5: Morphology process of meN- (L = lost, R = retained; Sneddon et al., 2010: 13-18)

mrs

TOP 0

INDEX 2

RELS

〈

named rel

LBL 4

CARG ”adi”

ARG0 3 x

,

proper q rel

LBL 6

ARG0 3

RSTR 7

BODY 8

,

kejar v rel

LBL 1

ARG0 2

ARG1 3

ARG2 9

,

named rel

LBL 10

CARG ”budi”

ARG0 9

,

proper q rel

LBL 12

ARG0 9

RSTR 13

BODY 14

〉

HCONS

〈

qeq

HARG 0

LARG 1

,

qeq

HARG 7

LARG 4

,

qeq

HARG 13

LARG 10

〉

ICONS 〈〉

Figure 6: MRS representation of Adi mengejar
Budi “Adi chases Budi”

6 Evaluation

A test-suite designed to show various semantic
phenomena for Indonesian (MRS test-suite) was
created based on the original set of 107 sentences
in English. The [incr tsdb()] tool (Oepen and
Flickinger, 1998) is employed for grammar testing
and profiling. Out of 172 sentences, INDRA can
parse 55 of them (overall coverage 32%). We got
this 32% coverage after the lexical acquisition de-
scribed in Section 3.3. Table 6 shows the coverage
before and after lexical acquisition.

As of 18 June 2015, INDRA contains 1,235
lexical items, 939 of which are verbs extracted
from ERG via Wordnet Bahasa; 6 lexical rules; 20
grammar rules; 135 features and 1,596 types. In
addition to the phenomena in the Grammar Matrix
customization system, INDRA also covers proper
names, definiteness, possessive enclitics, adverbs,
control and raising, decomposed words and mor-
phology. Phenomena which are planned to be cov-

ered in the next two years are relative clauses,
numbers, quantifiers, classifiers, copula construc-
tions, passives, topic-comment constructions, par-
ticles, interrogatives and imperatives. We estimate
that 15% of the MRS test-suite would be covered
once passives and relative clauses were added.

results / items coverage
before 52 / 172 30.2%
after 55 / 172 32.0%

Table 6: Comparison of coverage in MRS test-
suite before and after lexical acquisition

7 Summary and Future Work

The lexical acquisition has proved that by acquir-
ing more lexical items, the grammar’s coverage
can be improved. We plan to do more lexical ac-
quisition for verbs, nouns, adjectives and adverbs
in the future. At the same time, lexical types,
rules and constraints for new lexical items will be
added. Our plan in the next two years is to cover
at least 60% of Indonesian text in the Nanyang
Technological University — Multilingual Corpus
(NTU-MC) (Tan and Bond, 2012). The latest ver-
sion of INDRA is regularly backed up in GitHub.

Acknowledgments

Thanks to Michael Wayne Goodman and Dan
Flickinger for teaching us how to use GitHub and
FFTB. Thanks to Fam Rashel for helping us with
POS Tagger and to Lian Tze Lim for helping us
improve Wordnet Bahasa. This research was sup-
ported in part by the MOE Tier 2 grant That’s what
you meant: a Rich Representation for Manipula-
tion of Meaning (MOE ARC41/13).

References
Hasan Alwi, Dendy Sugono, and Sri Sukesi Adi-

wimarta. 2008. Kamus Besar Bahasa Indonesia
Dalam Jaringan (KBBI Daring). 3 edition.

15

Hasan Alwi, Soenjono Dardjowidjojo, Hans Lapoliwa,
and Anton M. Moeliono. 2014. Tata Bahasa Baku
Bahasa Indonesia. Balai Pustaka, Jakarta, 3 edition.

I Wayan Arka and C. D. Manning. 2008. Voice and
grammatical relations in Indonesian: a new perspec-
tive. In Voice and Grammatical Relations in Aus-
tronesian Languages, pages 45–69. CSLI Publica-
tions, Stanford.

I Wayan Arka. 2000. Control and argument
structure: explaining control into subject in In-
donesian. In Fourth International Symposium on
Malay/Indonesian Linguistics, Jakarta.

I Wayan Arka. 2012. Developing a deep grammar of
indonesian within the pargram framework: Theoret-
ical and implementational challenges. In 26th Pa-
cific Asia Conference on Language, Information and
Computation, pages 19–38.

Emily M Bender, Dan Flickinger, and Stephan Oepen.
2008. Grammar engineering for linguistic hypothe-
sis testing. In Proceedings of the Texas Linguistics
Society X conference: Computational linguistics for
less-studied languages, pages 16–36.

Emily M. Bender, Scott Drellishak, Antske Fokkens,
Laurie Poulson, and Safiyyah Saleem. 2010. Gram-
mar customization. In Research on Language and
Computation, pages 23–72. Springer, Netherlands.

Steven Bird, Edward Loper, and Ewan Klein.
2009. Natural Language Processing with Python.
O’Reilly Media Inc.

Francis Bond, Lian Tze Lim, Enya Kong Tang, and
Hammam Riza. 2014. The combined wordnet ba-
hasa. NUSA: Linguistic studies of languages in and
around Indonesia, 57:83–100.

Ann Copestake and Dan Flickinger. 2000. An open-
source grammar development environment and
broad-coverage English grammar using HPSG. In
Proceedings of the Second Conference on Language
Resources and Evaluation (LREC-2000), Athens.

Ann Copestake, Dan Flickinger, Carl Pollard, and
Ivan A. Sag. 2005. Minimal Recursion Semantics:
An Introduction. Research on Language and Com-
putation, 3(4):281–332.

Ann Copestake. 2002. Implementing Typed Feature
Structure Grammars. CSLI Publications, Stanford.

Christiane Fellbaum. 1998. WordNet: an electronic
lexical database. MIT Press, Cambridge.

Dan Flickinger. 2000. On Building a More Efficient
Grammar by Exploiting Types. 6(1):15–28.

Ronald Kaplan and Joan Bresnan. 1982. Lexical Func-
tional Grammar: A formal system for grammati-
cal representation. In The Mental Representation
of Grammatical Relations, pages 173–281. the MIT
Press, Cambridge.

Septina Dian Larasati, Vladislav Kuboň, and Daniel
Zeman. 2011. Indonesian Morphology Tool (Mor-
phInd): Towards an Indonesian Corpus. Springer
CCIS proceedings of the Workshop on Systems and
Frameworks for Computational Morphology, pages
119–129, August.

M. Paul Lewis. 2009. Ethnologue: Languages of the
World. SIL International, Dallas, Texas, 16 edition.

Meladel Mistica. 2013. An Investigation into De-
viant Morphology: Issues in the Implementation of
a Deep Grammar for Indonesian. PhD dissertation,
The Australian National University, Canberra.

Nurril Hirfana Mohamed Noor, Suerya Sapuan, and
Francis Bond. 2011. Creating the open Wordnet Ba-
hasa. In Proceedings of the 25th Pacific Asia Con-
ference on Language, Information and Computation
(PACLIC 25), pages 258–267, Singapore.

Stephan Oepen and Daniel Flickinger. 1998. Towards
systematic grammar profiling: Test suite technology
ten years after. 12(4):411–436.

Stephan Oepen, Erik Velldal, Jan Tore Lønning, Paul
Meurer, Victoria Rosén, and Dan Flickinger. 2007.
Towards hybrid quality-oriented machine transla-
tion: On linguistics and probabilities in MT. In
Proceedings of the 10th International Conference on
Theoretical and Methodological Issues in Machine
Translation, pages 144–153, Skövde, Sweden.

Carl Pollard and Ivan A Sag. 1994. Head-driven
phrase structure grammar. University of Chicago
Press.

Fam Rashel, Andry Luthfi, Arawinda Dinakaramani,
and Ruli Manurung. 2014. Building an Indonesian
Rule-Based Part-of-Speech Tagger. Kuching.

Yu Jie Seah and Francis Bond. 2014. Annotation of
Pronouns in a Multilingual Corpus of Mandarin Chi-
nese, English and Japanese.

Melanie Siegel and Emily M. Bender. 2002. Efficient
Deep Processing of Japanese. In Proceedings of the
3rd Workshop on Asian Language Resources and In-
ternational Standardization at the 19th International
Conference on Computational Linguistics, Taipei.

James Neil Sneddon, Alexander Adelaar, Dwi Noverini
Djenar, and Michael C. Ewing. 2010. Indonesian
Reference Grammar. Allen & Unwin, New South
Wales, 2 edition.

Sebastian Sulger, Miriam Butt, Tracy Holloway King,
Paul Meurer, Tibor Laczkó, György Rákosi, Cheikh
M Bamba Dione, Helge Dyvik, Victoria Rosén,
Koenraad De Smedt, et al. 2013. Pargrambank: The
pargram parallel treebank. In ACL (1), pages 550–
560.

Liling Tan and Francis Bond. 2012. Building and an-
notating the linguistically diverse NTU-MC (NTU-
multilingual corpus). 22(4):161–174.

16

Proceedings of the Grammar Engineering Across Frameworks (GEAF) Workshop, 53rd Annual Meeting of the ACL and 7th IJCNLP, pages 17–24,
Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

An HPSG-based Shared-Grammar for the Chinese Languages: ZHONG [|]

Zhenzhen Fan♦♠ Sanghoun Song♠
♦Institute of Systems Science, National University of Singapore

♠Division of Linguistics and Multilingual Studies, Nanyang Technological University
Singapore

zhenzhen@nus.edu.sg, {sanghoun,fcbond}@ntu.edu.sg

Francis Bond♠

Abstract

This paper introduces our attempts to
model the Chinese language using HPSG
and MRS. Chinese refers to a family
of various languages including Mandarin
Chinese, Cantonese, Min, etc. These lan-
guages share a large amount of struc-
ture, though they may differ in orthogra-
phy, lexicon, and syntax. To model these,
we are building a family of grammars:
ZHONG [

∣∣∣]. This grammar contains in-
stantiations of various Chinese languages,
sharing descriptions where possible. Cur-
rently we have prototype grammars for
Cantonese and Mandarin in both simpli-
fied and traditional script, all based on a
common core. The grammars also have
facilities for robust parsing, sentence gen-
eration, and unknown word handling.

1 Introduction

Chinese is a group of related but sometimes mu-
tually unintelligible languages that originated in
China, including Mandarin Chinese, Cantonese,
Min, etc. These languages have many grammat-
ical similarities, though their orthography, vocab-
ulary and syntax all differ from language to lan-
guage. Thus, it is advantageous to implement
a Chinese resource capable of covering both the
common parts of the grammars and the linguistic
diversity across the languages. Building an inte-
grated grammar reduces the cost for resource con-
struction and also helps the system reflect the gen-
uine nature of the Chinese languages reliably.

This paper reports on our on-going project of
building up an integrated computational grammar
for these languages (ZHONG [

∣∣∣]) within the HPSG
and MRS frameworks (Pollard and Sag, 1994;
Copestake et al., 2005). The grammar is imple-
mented using the collection of language process-

ing tools offered by the DELPH-IN (DEep Lin-
guistic Processing with HPSG - INitiative, http:
//www.delph-in.net) consortium. This gram-
mar combines a shared core for all the Chinese
languages, as well as language specific descrip-
tions. Currently we only have grammars for
Mandarin Chinese (with simplified and traditional
characters) and Cantonese, although we hope to
add Min soon.

This paper describes how the grammar has been
constructed and reports on its current capacity for
parsing and generation. The paper is structured as
follows: Section 2 offers background knowledge
of the current work. Section 3 presents how the
resource grammar works for the different Chinese
languages. After discussing the specification of
the grammar in Section 4, Section 5 conducts an
evaluation to see coverage. Section 6 concludes
this paper with an outlook for future work.

2 Background

2.1 Frameworks

The grammatical framework used for creating the
Chinese shared-grammar is Head-driven Phrase
Structure Grammar. HPSG models human lan-
guage in a monostratal way via unification of
constraints. Rules in HPSG are constructed as
feature structures, which allows constructions to
be analyzed via multiple inheritance hierarchies
modelling the fact that constructions cluster into
groups with a family resemblance that corre-
sponds to a constraint on a common supertype.

The meaning representation system our gram-
mar employs is Minimal Recursion Semantics.
MRS representations have two significant charac-
teristics. First, MRS introduces a flat represen-
tation expressing meanings by feature structures.
Second, MRS takes advantage of underspecifi-
cation for handling quantifier scopes and others,
which allows flexibility in representation.

17

2.2 DELPH-IN

DELPH-IN is an informal collaboration between
linguists and computer scientists adopting HPSG
and MRS. DELPH-IN employs a shared format
for grammatical representation based on type fea-
ture structures. The repository DELPH-IN readily
provides consists of open-source tools, computa-
tional grammars, and language resources.

The tools include grammar development en-
vironment (LKB (Copestake, 2002)), efficient
parsers/generators for language processing (PET

(Callmeier, 2000), ACE (http://sweaglesw.
org/linguistics/ace), agree (Slayden, 2012)),
dynamic treebanking tools ([incr tsdb()] (Oepen,
2001), ACE), machine translation engine (LOGON,
ACE, agree), and stochastic models to select
the most plausible interpretation. The collec-
tion of DELPH-IN grammars described in Type
Definition Language include ERG for English
(Flickinger, 2000), Jacy for Japanese (Siegel and
Bender, 2002), GG for German (Crysmann, 2003),
SRG for Spanish (Marimon, 2012), KRG for Ko-
rean (Kim et al., 2011), and others. The language
resources contain test sets parsed with DELPH-IN
grammars, such as the Redwoods Treebank in En-
glish (Oepen et al., 2004) and the Hinoki Treebank
in Japanese (Bond et al., 2006), and a set of trans-
fer rules (e.g. JaEn, (Bond et al., 2011)).

2.3 Previous Work on Chinese HPSG

2.3.1 Early Work
Early work on Chinese HPSG can be traced back
to the 1990s, typically focusing on pure linguis-
tic analysis of specific phenomena in Mandarin
Chinese, such as the Chinese reflexive ziji (Xue
et al., 1994), complement structure (Xue and
McFetridge, 1996), and Chinese NPs (Gao, 1994;
Xue and McFetridge, 1995; Ng, 1997).

Efforts towards a more comprehensive analysis
of Mandarin Chinese in the framework of HPSG
are documented in two PhD theses. The analysis
in Gao (2000) covers topic sentences, valence al-
ternations (including BA, ZAI, and other construc-
tions), hierarchical argument structures, locative
phrases, phrase structures, and resultative struc-
tures. The work of Li (2001) focuses more on
the definition of word in Chinese for the prob-
lem of ambiguity in word segmentation, as well
as two borderline problems between compound-
ing/morphology and syntax - separable verbs and
Chinese derivation and affixes.

2.3.2 Computational Grammars
In more recent work, in-depth analysis continues
to be conducted on specific phenomena in Chi-
nese HPSG, like the detailed account of Serial
Verb Constructions (SVC) (Müller and Lipenkova,
2009), reanalysis of BA structure (Lipenkova,
2011), valence alternations and marking structures
(Lipenkova, 2013), etc. However, the trend is
to extend pure linguistic analysis to implementa-
tion of the grammar as a more general computa-
tional resource. This has led to a few indepen-
dently developed HPSG grammars on Mandarin
Chinese with MRS as the semantic representation
format: ManGO (Yang, 2007), MCG (Zhang et
al., 2011), and ChinGram (Müller and Lipenkova,
2013). ChinGram was implemented in the gram-
mar development system TRALE (Meurers et al.,
2002), whereas ManGO and MCG were devel-
oped using LKB and the LinGO Grammar Matrix
customization system (Bender et al., 2010). These
grammars cover a wide variety of core linguistic
phenomena in Mandarin Chinese, but have lim-
ited lexical coverage as they typically only provide
lexical entries for the words appearing in focused
testsuites. Yu et al. (2010), on the other hand, has
explored a semi-automatic approach to developing
a Chinese HPSG parser by proposing a skeleton
design of the grammar and then learning a lexicon
from an HPSG Treebank manually converted from
the Penn Chinese Treebank 6.0 (Xue et al., 2005).

The foundation of our work is ManGO. Its test-
suite is a Mandarin Chinese version of the MRS
testsuite used by the ERG, with short example sen-
tences covering a wide range of phenomena such
as intransitive, transitive, and ditransitive verbs,
BA and BEI structures, clausal subjects/objects,
aspect markers, prepositional and adverbial ad-
juncts, possessives, classifiers, numerals and de-
terminers for noun phrases, predicative and at-
tributive adjectives, locative and temporal phrases,
nominalization, questions, imperative clauses, co-
ordinations, etc. Its lexicon contains 231 lexical
entries for 192 unique terms in 76 lexical types.

3 ZHONG [
∣∣∣]

The idea of letting different grammars share a
common core to capture cross-linguistic general-
ization has been embraced by a number of projects
as a more systematic approach for grammar de-
velopment. The LinGO Grammar Matrix system
(Bender et al., 2010) expedites the development of

18

complex grammars through grammar customiza-
tion by providing a static core grammar that han-
dles basic phrase types, semantic compositional-
ity and general infrastructure. It also provides li-
braries for cross-linguistically variable phenom-
ena, so that analyses of these can be dynamically
generated as code based on user-configured pa-
rameters. The generated grammar is then extended
usually manually by a grammar engineer. Core-
Gram (Müller, 2013) is motivated by a similar as-
sumption that grammars sharing certain properties
can be grouped into classes and thus share com-
mon files. Fokkens et al. (2012) proposes CLIMB
(Comparative Libraries of Implementations with
Matrix Basis), a methodology closely related to
the LinGO Grammar Matrix. While still shar-
ing implementation across different languages, the
emphasis of CLIMB is facilitating the exploration
and comparison of implementations of different
analyses for the same phenomenon.

There’s also existing work sharing a common
core grammar among languages within a language
family. Avgustinova and Zhang (2009) builds a
common Slavic core grammar (SlaviCore) shared
by a closed set of languages in the Slavic language
family. They further extended their work into
SlaviCLIMB (Fokkens and Avgustinova, 2013), a
dynamic grammar engineering component based
on the CLIMB methodology, to capture language
specific variations and facilitate grammar develop-
ment for individual Slavic languages.

Extending the grammar development beyond
Mandarin Chinese, ZHONG [

∣∣∣] aims to provide a
shared-grammar for Chinese and model various
varieties of Chinese in a single hierarchy. The
different Chinese grammars share some elements,
such as basic word order, and separate other ele-
ments, such as lexemes and specific grammar rules
(e.g., classifier constructions).

All grammars inherit from three common cores,
viz. zhong.tdl, zhong-lextypyes.tdl,
and zhong-letypes.tdl. Building upon the
common constraints. Mandarin and Cantonese in-
herit from cmn.tdl and yue.tdl, respectively.
The distinctions between Mandarin and Cantonese
captured so far include the expression of defi-
niteness, classifiers, sentence final particles, as-
pect hierarchy, and some vocabulary. The Man-
darin Chinese grammars are further divided into
zhs and zht depending on whether the set of
strings consists of simplified characters or tradi-

tional characters. These two further inherit from
zhs.tdl and zht.tdl, respectively. The offi-
cial webpage of ZHONG [

∣∣∣], with demo and test re-
sults, is http://moin.delph-in.net/ZhongTop,
and the entire data set can be freely downloaded
from https://github.com/delph-in/zhong.

The size of the current grammar is presented in
Table 1. ManGO, which ZHONG [

∣∣∣] stems from,
was created using the LinGO Grammar Matrix
customization system. Hence, there are many fun-
damental types shared with the Grammar Matrix’s
core (matrix.tdl).

Table 1: Size of grammar
items common cmn zhs zht yue
types 383 21 1,017 7 17
phrase rules 79 0 0 0 0
lexical rules 69 4 3 0 2
lex-entry types 89 5 0 0 9
lexicon – – 43,067 17,470 903
testsuites – – 16 1 3

4 Components

4.1 Preprocessing and Postprocessing

ZHONG [
∣∣∣] includes an unknown word handling

module based on the chart-mapping technique of
Adolphs et al. (2008). We have built a pipeline for
converting raw text into a segmented POS-based
lattice for input to the parser. The preprocess-
ing stage for handling unknown words runs with
the Stanford tools including the Chinese word seg-
menter (Tseng et al., 2005) and the Chinese Part-
Of-Speech tagger (Toutanova et al., 2003). There
are multiple different standards for segmenting
the input string in Chinese, viz. Chinese Penn
Treebank and Peking University. Between them,
we are using the former because our fundamen-
tal development corpus NTU-MC (Tan and Bond,
2012) was segmented using that standard. We
implemented a wrapper to run these tools in the
pipeline using NLTK (Bird, 2006). In addition,
the pre-processor includes some generic lexical
entry rules for handling particular string patterns,
such as numbers, dates, currency, emails, urls, etc.
These lattice-based mapping rules work with a set
of regular expressions. Building upon these two
facilities, many lexical items not registered in the
dictionary can be automatically identified and ef-
ficiently processed.

For postprocessing, we implemented a mono-
lingual transfer grammar for paraphrasing simpli-
fied Mandarin Chinese, viz. ZsZs. This converts

19

MRS outputs in the parse results into more generic
or more specific ones. Currently, this postpro-
cessor works for generating intensifying construc-
tions and classifier constructions.

4.2 Lexical Acquisition

As ManGO’s lexicon was small, our first task was
to expand the lexical coverage of Zhong quickly.
Our approach is to semi-automatically learn lexi-
cal entries from annotated corpora, starting from
the sample of Sinica Treebank (sinica, Huang et
al. (2000)) distributed with NLTK package and the
Penn Chinese Treebank (pctb, Xue et al. (2005))
for Mandarin Chinese. Our main source at the be-
ginning was sinica as it has a comprehensive set
of POS tags, especially for verb subcategorization.
Its POS tags were manually mapped to Zhong’s
lexical types after careful study. Lexical entries
for the mapped types were then created automat-
ically. The tags from pctb are more coarse. We
acquire words for the lexical types we are inter-
ested in by matching specific tree patterns against
the treebank. The work is still ongoing.

As Zhong is used for both parsing and gener-
ation, we also try to learn additional information
for the lexical entries, which is often required to
constrain the grammar from generating unwanted
sentences. For example, a list of classifiers (CL)
can be readily learned from sinica and pctb. How-
ever, since in Mandarin Chinese there is a selec-
tive association between the sortal classifiers and
the nouns, this association needs to be modeled so
that during generation, a correct classifier can be
selected for a certain noun. Our solution is to au-
tomatically build a frequency-based dictionary of
noun-CL pairs, by extracting frequency informa-
tion from a very large corpus. The corpus we used
includes the latest dump of the Chinese Wikipedia,
the second version of Chinese Gigaword (Graff
et al., 2005), and the UM-Corpus (Tian et al.,
2014). This data was cleaned, sentence delim-
ited and converted to simplified Chinese script. It
was further preprocessed using the Stanford Seg-
mentor and POS tagger. Using very restrictive
POS patterns, CL-noun pairs are extracted and fil-
tered against a list of 204 sortal-CLs provided by
Huang (Huang et al., 1997). They are then added
into a lemma-based dictionary together with their
frequency information. This lemma-based dictio-
nary is further expanded into concept-based dic-
tionary by mapping the lemmas to the concepts

in the Chinese Open Wordnet (Wang and Bond,
2013). The frequency information and possible
CLs for matched senses are propagated to upper
level through the union of CLs and respective sum
of frequencies. Generation test on a set of held-
out data reports a human validated performance of
88% on generation of classifiers using the concept-
based dictionary and 80% using the lemma-based
dictionary, whereas a baseline approach, taking 个
ge as the CL for every entry, gives 44.7%.

4.3 Configuration

ZHONG [
∣∣∣] has been built up following the premise

“parsing robustly and generating strictly” (Bond
et al., 2008). This means that even a rather infe-
licitous sentence should be parsed, but the infelic-
itous sentence should be filtered out in generation.
This different approach to parsing and generation
can be facilitated using different configurations for
compiling grammars. First, ZHONG [

∣∣∣] includes a
flag feature [STYLE style] for marking the felic-
ity of particular lexical items and constructions,
whose subtypes are strict, robust, unproductive,
etc. Second, there are different types of roots:
namely, roots.tdl, roots-robust.tdl,
and roots-strict.tdl. The first one works
for ordinary parsing and generation, the second
one works with bridging rules to fill out the chasm
between constructions, and the third one is partic-
ularly used for generation with the [STYLE strict]
flag. Third, there are different scripts to load and
compile the grammars within LKB and ACE, such
as config.tdl, config-robust.tdl, and
config-strict.tdl. The last one includes
the list of items and rules that should be ignored in
generation (generation.ignore).

For example, 去 着 ‘go DUR’ may not sound
good to Chinese native speakers, because the verb
去 tends not to co-occur with the durative aspect.
Our grammar provides a parse tree for the sen-
tence with a flag [STYLE robust] but does not gen-
erate such a sentence. To take another example,
the punctuation markers are optionally treated in
the ordinary and robust processing but obligatorily
appear in the generation output produced by the
grammar compiled by config-strict.tdl.

4.4 Grammar Enhancement

We have been enhancing the grammar with the ob-
jective to achieve coherent and consistent seman-
tics constrained by syntax. Using the sentences

20

Table 2: Grammar enhancement
what we improved what we added what we plan to do

grammar topic-comment reduplication relative clauses
clefts VV compounds nominalization
BA and BEI A-not-A questions serial verbs
NP structures particles conjunctions
classifiers fragments
argument structure interjections
adpositions honorification

engineering generation unknown word handling Wordnet incorporation
bridging rules transfer rules
test modules machine translation
full-forest treebanking

from the MRS testsuite, and supplemented by sen-
tences collected from relevant literature and real
corpus, we have improved the grammar on its han-
dling of the known structures in the MRS testsuite,
such as BA and BEI structures, NP structures, ar-
gument structures, classifiers, etc. At the same
time, we have also created analyses to cover lin-
guistically interesting phenomena new to the MRS
testsuite, including reduplication of adjectives, re-
sultative VV compounds, A-not-A questions, as
well as the handling of particles, interjections, and
fragments. Our work is summarized in Table 2.1

4.5 Full-forest Treebanking
Using the simplified Mandarin Chinese grammar
constructed thus far, we annotated two data sets by
means of the full-forest treebanking tool (Packard,
2015). The data sets include the MRS Matrix
testsuite in simplified Mandarin Chinese (http://
moin.delph-in.net/MatrixMrsTestSuite) and
the first 101 sentences in a novel (斑点带子
案, The Adventure of the Speckled Band written
by Arthur Conan Doyle, translated into Mandarin
Chinese). The first set is a standard testsuite used
in DELPH-In for testing grammars’ coverage of
simple semantic phenomena. Of the 107 sen-
tences, 102 can be parsed with the current gram-
mar. Of these, 14 outputs were rejected in the an-
notation because no parse tree licenses the desired
semantics. The second test suite was chosen be-
cause there exists a comparable annotated corpus
written in four other languages (English, Spanish,
Russian, and Korean) (Song, 2014). Because this
is a running text consisting of longer sentences,
the parse coverage is still poor: 12 out of 101. Of
these 12, 8 were rejected for inadequate seman-
tics. Annotating this running text, we learned that

1The implementation of each grammatical phenomenon
provided in Table 2 will be separately discussed in a series of
upcoming papers.

the current grammar does not properly process rel-
ative clauses and serial verb constructions. These
two phenomena are at the top of our agenda for
grammar improvement.

5 Evaluation

We measured the coverage of the current grammar
focusing on simplified Mandarin Chinese (abbre-
viated to zhs). We have two groups of test suites.
First, we use three linguistic phenomena-based
testsuites: the testsuite constructed at Free Univer-
sity of Berlin (fu-berlin, Müller and Lipenkova
(2013)), the testsuite of the Mandarin Chinese
Grammar (mcg-wxl, Zhang et al. (2011)), and the
JEC basic sentences (jec, Kawahara and Kuro-
hashi (2006)). Second, we use naturally occur-
ring texts in order to check the computational fea-
sibility of the current implementation. The cor-
pora we used include the NTU-MC (ntumc, Tan
and Bond (2012)), the Penn Chinese Treebank
(pctb, Xue et al. (2005)), and the Sinica Treebank
(sinica, Huang et al. (2000)). We used the en-
tire NTU-MC (7,460 sentences) and extracted the
first 5,000 sentences from the other two corpora.
The tools for running tests are pyDelphin (https:
//github.com/goodmami/pydelphin) and gTest
(https://github.com/goodmami/gtest). The
result of coverage testing is provided in Table 3.

The numbers in parenthesis stand for the cov-
erage of ungrammatical sentences. Note that only
the first two include ungrammatical items. Since
ungrammatical sentences had better be rejected,
the smaller number means the better performance
for those items. All the numbers in parenthesis are
smaller than 5%, which shows that our grammar
does not overgenerate very much.

When unknown word handling (unk) is facili-
tated, our current grammar provides relatively sat-
isfactory results, as indicated in the third column.

21

Table 3: Coverage of simplified Mandarin (%)
testsuite plain unk br unk+br gen end-to-end-success
fu-berlin 22.22 (3.11) 80.25 (3.12) 22.22 (4.89) 97.53 (4.97) 90.91 20.20
mcg-wxl 57.28 (3.80) 66.3 (3.78) 82.44 (5.00) 99.37 (5.00) 92.94 53.24
jec 13.33 41.16 27.04 79.34 90.10 12.01
ntumc 3.47 15.58 10.54 47.82 70.54 2.45
pctb 0.84 7.10 10.18 43.70 42.86 0.36
sinica 3.88 40.36 6.52 65.00 80.41 3.12

However, the parsing coverage is still low when
a running text is chosen for testing. Particularly,
when it comes to the pctb testsuite, the coverage
is only about 7%. There are two main reasons.
First, the sentences in the pctb testsuite are much
longer than those in the other testsuites. Second,
our current grammar has not fully modeled relative
clauses and serial verbs in Chinese, but the pctb
testsuite includes many sentences containing such
constructions. Thus, our immediate goal in gram-
mar construction is to implement the constructions
(see Table 2). When the sinica testsuite is used,
the coverage is relatively high (40.36%). This is
mainly because our lexical acquisition is mostly
based on the corpus.

Using bridging rules (br) aims to facilitate
robust parsing, which serves to minimize addi-
tional parsing costs (time and space) and max-
imize compatibility with existing platforms and
tools. Since a set of bridging rules allows any
two signs to combine into a phrase, the combina-
tion of unknown word handling and bridging rules
(unk+br) provides the highest coverage, as indi-
cated in the fifth column of Table 3. This implies
that the unk+br mode enables our grammar to be
used for training of statistical models and run-time
applications in future work.

The generation coverage (gen) is calculated as
follows: If a sentence is parsed, the MRS repre-
sentation of the parse result is chosen as the in-
put source for generation. Because the genera-
tion does not work with unknown word handling
within the present infrastructure, the input source
comes from the parse result of plain. If the gen-
eration process successfully produces one or more
surface forms at the end, the generation coverage
grows up. Notice that the generation coverage is
not necessarily 100%, because the memory space
for generation is limited (2GB in the current evalu-
ation). The held-out testsuites result in more than
90% generation coverage, and the testsuites con-
sisting of naturally occurring texts result in more
than 70% except the pctb testsuite. We believe

that these measures are good for such a young
grammar, although several challenging points re-
main. Finally, the end-to-end-success coverage
from parsing to generation is measured by mul-
tiplying the values in the second column (plain)
and the sixth column (gen).

6 Outlook

We will continue to enhance ZHONG [
∣∣∣] to handle

the linguistic phenomena needed to parse our cor-
pora (particularly, NTU-MC). Some of the tasks
on the immediate agenda are: relative clauses,
variations of nominalization, serial verb construc-
tion, conjunctions, other forms of verbal com-
pounds, and more reduplication patterns. Lexi-
cal acquisition for zht and yue will also be per-
formed to expand their lexical coverage.

We will also treebank other corpora, both as
feedback to the grammarians and as a source
of information on the distribution of phenom-
ena (essential to training parse ranking models).
As coverage increases we will exploit ZHONG [

∣∣∣]
and other DELPH-IN grammars to build machine
translation systems to and from Chinese.

Acknowledgments

We would like to express special thanks to Justin
Chunlei Yang and Dan Flickinger for their enor-
mous work on ManGO, which our current gram-
mar is based on. In addition, we received much
inspiration from Yi Zhang and Rui Wang and
their Mandarin Chinese Grammar. We are grate-
ful to Michael Wayne Goodman, Luis Mortado
da Costa, Bo Chen, Joanna Sio Ut Seong, Shan
Wang, František Kratochvı́l, Huizhen Wang, Wen-
jie Wang, Giulia Bonansinga, David Moeljadi,
Tuá̂n Anh Lê, Woodley Packard, Leslie Lee, and
Jong-Bok Kim for their help and comments. Valu-
able comments from four anonymous reviewers
are also much appreciated. Of course, we are
solely responsible for all the remaining errors and
infelicities. This research was supported in part by

22

the MOE Tier 2 grant That’s what you meant: a
Rich Representation for Manipulation of Meaning
(MOE ARC41/13).

References
Peter Adolphs, Stephan Oepen, Ulrich Callmeier,

Berthold Crysmann, Dan Flickinger, and Bernd
Kiefer. 2008. Some Fine Points of Hybrid Natu-
ral Language Parsing. In Nicoletta Calzolari (Con-
ference Chair), Khalid Choukri, Bente Maegaard,
Joseph Mariani, Jan Odijk, Stelios Piperidis, and
Daniel Tapias, editors, Proceedings of the Sixth
International Language Resources and Evaluation,
pages 1380–1387, Marrakech, Morocco.

Tania Avgustinova and Yi Zhang. 2009. Parallel
Grammar Engineering for Slavic Languages. In
Workshop on Grammar Engineering Across Frame-
works at the ACL/IJCNLP.

Emily M. Bender, Scott Drellishak, Antske Fokkens,
Laurie Poulson, and Safiyyah Saleem. 2010. Gram-
mar Customization. Research on Language & Com-
putation, 8(1):23–72.

Steven Bird. 2006. NLTK: the Natural Language
Toolkit. In Proceedings of the COLING/ACL on In-
teractive presentation sessions, pages 69–72.

Francis Bond, Sanae Fujita, and Takaaki Tanaka. 2006.
The Hinoki Syntactic and Semantic Treebank of
Japanese. Language Resources and Evaluation,
40(3–4):253–261.

Francis Bond, Eric Nichols, Darren Scott Appling, and
Michael Paul. 2008. Improving Statistical Machine
Translation by Paraphrasing the Training Data. In
Proceedings of the International Workshop on Spo-
ken Language Translation, pages 150–157, Hawaii.

Francis Bond, Stephan Oepen, Eric Nichols, Dan
Flickinger, Erik Velldal, and Petter Haugereid.
2011. Deep Open-Source Machine Translation.
Machine Translation, 25(2):87–105.

Ulrich Callmeier. 2000. PET – a Platform for Exper-
imentation with Efficient HPSG Processing Tech-
niques. Natural Language Engineering, 6(1):99–
107.

Ann Copestake, Dan Flickinger, Carl Pollard, and
Ivan A. Sag. 2005. Minimal Recursion Semantics:
An Introduction. Research on Language & Compu-
tation, 3(4):281–332.

Ann Copestake. 2002. Implementing Typed Feature
Structure Grammars. CSLI Publications, Stanford,
CA.

Berthold Crysmann. 2003. On the Efficient Implemen-
tation of German Verb Placement in HPSG. In Pro-
ceedings of RANLP 2003, pages 112–116, Borovets,
Bulgaria.

Dan Flickinger. 2000. On Building a More Efficient
Grammar by Exploiting Types. Natural Language
Engineering, 6(1):15–28.

Antske Fokkens and Tania Avgustinova. 2013. Slav-
iCLIMB: Combining Expertise for Slavic Grammar
Development using a Metagrammar. In Workshop
on High-level Methodologies for Grammar Engi-
neering, pages 87–92.

Antske Fokkens, Tania Avgustinova, and Yi Zhang.
2012. CLIMB Grammars: Three Projects using
Metagrammar Engineering. In Proceedings of the
Eight International Conference on Language Re-
sources and Evaluation, pages 1672–1679, Istanbul.

Qian Gao. 1994. Chinese NP Structure. Linguistics,
32:475–510.

Qian Gao. 2000. Argument Structure, HPSG, and Chi-
nese grammar. Ph.D. thesis, Ohio State University.

David Graff, Ke Chen, Junbo Kong, and Kazuaki
Maeda. 2005. Chinese Gigaword Second Edi-
tion LDC2005T14. Web Download. Linguistic Data
Consortium.

Chu-Ren Huang, Keh-Jiann Chen, and Ching-Hsiung
Lai, editors. 1997. Mandarin Daily Dictionary of
Chinese Classifiers. Mandarin Daily Press, Taipei.

Chu-Ren Huang, Feng-Yi Chen, Keh-Jiann Chen,
Zhao-ming Gao, and Kuang-Yu Chen. 2000. Sinica
Treebank: Design Criteria, Annotation Guidelines,
and On-line Interface. In Proceedings of the Second
Workshop on Chinese Language Processing, pages
29–37, Hong Kong.

Daisuke Kawahara and Sadao Kurohashi. 2006.
Case Frame Compilation from the Web using High-
Performance Computing. In Proceedings of the 5th
International Conference on Language Resources
and Evaluation, pages 1344–1347, Genoa.

Jong-Bok Kim, Jaehyung Yang, Sanghoun Song, and
Francis Bond. 2011. Deep Processing of Korean
and the Development of the Korean Resource Gram-
mar. Linguistic Research, 28(3):635–672.

Wei Li. 2001. The Morpho-Syntactic Interface in
a Chinese Phrase Structure. Ph.D. thesis, Simon
Fraser University.

Janna Lipenkova. 2011. Reanalysis of Obliga-
tory Modifiers as Complements in the Chinese ba-
Construction. In Proceedings of the 18th Interna-
tional Head-driven Phrase Structure Grammar Con-
ference, Stanford: CSLI Publications.

Janna Lipenkova. 2013. Valence Alternations and
Marking Structures in a HPSG Grammar for Man-
darin Chinese. In Sixth International Joint Confer-
ence on Natural Language Processing, pages 27–35.

Montserrat Marimon. 2012. The Spanish DELPH-
IN Grammar. Language Resources and Evaluation,
47(2):371–397.

23

W Detmar Meurers, Gerald Penn, and Frank Richter.
2002. A Web-Based Instructional Platform for
Constraint-Based Grammar Formalisms and Pars-
ing. In Proceedings of the ACL-02 Workshop
on Effective Tools and Methodologies for Teaching
Natural Language Processing and Computational
Linguistics-Volume 1, pages 19–26.

Stefan Müller and Janna Lipenkova. 2009. Serial Verb
Constructions in Chinese: An HPSG Account. In
Proceedings of the 16th International Conference
on Head-Driven Phrase Structure Grammar, pages
234–254.

Stefan Müller and Janna Lipenkova. 2013. Chin-
Gram: A TRALE Implementation of an HPSG Frag-
ment of Mandarin Chinese. In Proceedings of the
27th Pacific Asia Conference on Language, Infor-
mation, and Computation (PACLIC 27), pages 240–
249, Taipei, Taiwan. Department of English, Na-
tional Chengchi University.

Stefan Müller. 2013. The CoreGram Project: Theoret-
ical Linguistics, Theory Development and Verifica-
tion. Ms. Freie Universität Berlin.

Say Kiat Ng. 1997. A Double-Specifier Account of
Chinese NPs Using Head-Driven Phrase Structure
Grammar. MSc Thesis, Department of Linguistics,
University of Edinburgh.

Stephan Oepen, Dan Flickinger, Kristina Toutanova,
and Christoper D. Manning. 2004. LinGO Red-
woods: A Rich and Dynamic Treebank for HPSG.
Research on Language & Computation, 2(4):575–
596.

Stephan Oepen. 2001. [incr tsdb()] — Competence
and Performance Laboratory. User Manual. Techni-
cal report, Computational Linguistics, Saarland Uni-
versity.

Woodley Packard. 2015. Full Forest Treebanking.
Master’s thesis, University of Washington.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. The University of
Chicago Press, Chicago, IL.

Melanie Siegel and Emily M. Bender. 2002. Efficient
Deep Processing of Japanese. In Proceedings of the
3rd Workshop on Asian Language Resources and In-
ternational Standardization, pages 1–8, Taipei.

Glenn C. Slayden. 2012. Array TFS Storage for Uni-
fication Grammars. Master’s thesis, University of
Washington.

Sanghoun Song. 2014. A Grammar Library for Infor-
mation Structure. Ph.D. thesis, University of Wash-
ington.

Liling Tan and Francis Bond. 2012. Building and An-
notating the Linguistically Diverse NTU-MC (NTU-
Multilingual Corpus). International Journal of
Asian Language Processing, 22(4):161–174.

Liang Tian, Derek F. Wong, Lidia S. Chao, Paulo
Quaresma, Francisco Oliveira, and Lu Yi. 2014.
UM-Corpus: A Large English-Chinese Parallel Cor-
pus for Statistical Machine Translation. In Proceed-
ings of the Ninth International Conference on Lan-
guage Resources and Evaluation (LREC-2014). Eu-
ropean Language Resources Association (ELRA).

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich Part-
of-Speech Tagging with a Cyclic Dependency Net-
work. In Proceedings of the 2003 Conference
of the North American Chapter of the Association
for Computational Linguistics on Human Language
Technology-Volume 1, pages 173–180.

Huihsin Tseng, Pichuan Chang, Galen Andrew, Daniel
Jurafsky, and Christopher Manning. 2005. A Con-
ditional Random Field Word Segmenter. In Pro-
ceedings of the Fourth SIGHAN Workshop on Chi-
nese Language Processing, pages 169–171.

Shan Wang and Francis Bond. 2013. Building the
Chinese Open Wordnet (COW): Starting from Core
Synsets. In Proceedings of the 11th Workshop on
Asian Language Resources, a Workshop at IJCNLP-
2013, pages 10–18, Nagoya.

Ping Xue and Paul McFetridge. 1995. DP Struc-
ture, HPSG and the Chinese NP. In Proceedings of
the 14th Annual Conference of Canadian Linguistics
Association.

Ping Xue and Paul McFetridge. 1996. Complement
Structure in Chinese. In Proceedings of the 32nd
Annual Meeting of the Chicago Lingusitic Society
(CLS ’96), Chicago, IL.

Ping Xue, Carl Pollard, and Ivan A Sag. 1994. A
New Perspective on Chinese ziji. In the Proceedings
of the Thirteenth West Coast Conference on Formal
Linguistics.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Marta
Palmer. 2005. The Penn Chinese TreeBank: Phrase
Structure Annotation of a Large Corpus. Natural
Language Engineering, 11(02):207–238.

Chunlei Yang. 2007. Expert Systems for Pragmatic In-
terpretations of ziji and Quantified Noun Phrases in
HPSG. Ph.D. thesis, Shanghai International Studies
University.

Kun Yu, Yusuke Miyao, Xiangli Wang, Takuya
Matsuzaki, and Junichi Tsujii. 2010. Semi-
automatically Developing Chinese HPSG Grammar
from the Penn Chinese Treebank for Deep Parsing.
In Proceedings of the 23rd International Conference
on Computational Linguistics, pages 1417–1425.

Yi Zhang, Rui Wang, and Yu Chen. 2011. Engineer-
ing a Deep HPSG for Mandarin Chinese. In Pro-
ceedings of the 9th Workshop On Asian Language
Resources, Chiang Mai.

24

Proceedings of the Grammar Engineering Across Frameworks (GEAF) Workshop, 53rd Annual Meeting of the ACL and 7th IJCNLP, pages 25–32,
Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Parsing Chinese with a Generalized Categorial Grammar

Manjuan Duan William Schuler
Department of Linguistics
The Ohio State University

{duan,schuler}@ling.osu.edu

Abstract

Categorial grammars are attractive be-
cause they have a clear account of un-
bounded dependencies. This accounting
is especially important in Mandarin Chi-
nese which makes extensive usage of un-
bounded dependencies. However, parsers
trained on existing categorial grammar an-
notations (Tse and Curran, 2010) extracted
from the Penn Chinese Treebank (Xue et
al., 2005) are not as accurate as those
trained on the original treebank, possibly
because enforcing a small set of infer-
ence rules in these grammars leads to large
sets of categories, which cause sparse data
problems. This work reannotates the Penn
Chinese Treebank into a generalized cat-
egorial grammar which uses a larger rule
set and a substantially smaller category set
while retaining the capacity to model un-
bounded dependencies. Experimental re-
sults show a statistically significant im-
provement in parsing accuracy with this
categorial grammar.

1 Introduction

Categorial grammar annotations are attractive be-
cause they have a transparent syntactic-semantic
interface and provide a natural account of traces
(Rimell et al., 2009; Nguyen et al., 2012). This
is especially important in parsing Chinese, which
generates 1.5 times as many traces as English
and makes heavy use of unbounded dependen-
cies (Kummerfeld et al., 2013). Unfortunately,
the accuracy of parsers trained on existing cate-
gorial grammar reannotations (Chinese CCGbank;
Tse and Curran, 2010) of the Penn Chinese Tree-
bank (Xue et al., 2005) is much lower than that
of parsers trained on the original Treebank (Tse
and Curran, 2012). This may be because previous

attempts used Combinatory Categorial Grammar
(CCG; Steedman, 2000; Steedman, 2012), which
is strongly lexicalized (Karttunen, 1989), using a
small set of language-independent rules and con-
sequently a large set of language-dependent cate-
gories. This strong lexicalization may contribute
to sparse data problems.

This work reannotates the Penn Chinese Tree-
bank into a ‘moderately lexicalized’ generalized
categorial grammar, similar to that defined for En-
glish by Nguyen et al (2012), which uses a larger
set of language-specific inference rules and a sub-
stantially smaller category set. Experimental re-
sults show a statistically significant gain in parsing
accuracy from this moderately lexicalized gram-
mar over parsing with a strongly lexicalized CCG.

2 Grammar Framework

A generalized categorial grammar (GCG; Bach,
1981; Nguyen et al., 2012)1 is a tuple
〈P,O,R,W,M〉 (Oehrle, 1994) consisting of a set
P of primitive category types, a set O of type-
constructing operators, a set R of inference rules, a
set W of vocabulary items, and a mapping M from
vocabulary items to complex category types. A set
of complex category types C may then be defined
as: P ⊂C; C×O×C ⊂C; nothing else is in C.

The mapping M in a GCG defines a category
type c and a constraint function g encoded by each
lexeme w ∈ W, using the notation w 7→ c : g. En-
coded constraints are expressed using dependency
functions,2 labeled with dependency types or argu-
ment position numbers: f0, f1, f2, etc. For exam-
ple, a constraint function g may consist of a sin-
gle ‘0’-labeled dependency to a constant ‘people’:

1Nguyen et al (2012) notate the ‘//’ and ‘\\’ operators of
Bach (1981) as -g and -h, mnemonic for ‘gap’ and ‘heavy
shift’.

2Dependencies shown here can be interpreted as a
shorthand for distributed representations of sentence mean-
ings compatible with cognitive computational neuroscientific
models of episodic memory (Schuler and Wheeler, 2014).

25

λx (f0 x)=people.

3 Chinese Syntax in GCG

Chinese is typically an SVO language, but it also
has several SOV constructions, such as the focus
constructions triggered by lian ‘even,’ or the ba
construction, where the affected patient is moved
to the preverbal position. Most adverbial modi-
fiers are pre-verbal and most nominal modifiers,
including relative clauses, are pre-nominal.

The set of primitive category types for Man-
darin Chinese, P, P ⊂ C, contains the following
primitive categories, generally labeled with the
part of speech of the head of the category:

V: verb-headed clause
N: noun-headed phrase or clause
D: de-clause
C: cardinal number
Q: quantificational phrase
A: adjectival phrase or nominal modifier
R: adverbial phrase or verbal modifier
B: verbal complement of ba
E: verbal complement of bei

The set of type-constructing operators O for
Mandarin Chinese includes -a and -b operators
for unsatisfied requirements of preceding or suc-
ceeding arguments, -c and -d operators for unsatis-
fied requirements of preceding or succeeding con-
juncts, and a -g operator for unsatisfied require-
ments of gap categories.3 A GCG category con-
sists of a primitive category followed by one or
more unsatisfied dependencies, each consisting of
an operator followed by another category.

The set of inference rules R is described below.

3.1 Argument composition

The basic operation of most categorial grammars
is argument composition. However, unlike most
categorial grammars, the GCG described in this
paper defines composition rules to explicitly en-
code dependencies between lexical items. Specif-
ically, inference rules for argument composition
are defined as follows, where c ∈C, p ∈ P and each
ϕ ∈ {-a, -b}×C:

c:g pϕ1..n-1-ac:h⇒ pϕ1..n-1:λx g (fn x)∧ (h x) (Aa)

pϕ1..n-1-bc:g c:h⇒ pϕ1..n-1:λx (g x)∧h (fn x) (Ab)

3Following (Nguyen et al., 2012), directional operators
such as forward and backward slashes (‘\’ and ‘/’) are not
used because some operators, such as gap operators in tough
constructions, are undirected.

The first composition rule Aa stipulates that
when a predicate h of category pϕ1..n-1-ac takes
a preceding argument g of category c as its n-th
argument, the syntactic dependency that g is h’s
n-th argument is added. The second composition
rule Ab is an argument composition rule taking a
succeeding argument.

3.2 Modifier composition

Inference rules for modifier composition apply
preceding or succeeding modifiers of category
p-bd to modificands of category c, where p ∈
{A,R}, d ∈ {N,V}:
p-bd:g c:h⇒ c:λx∃y (gy)∧ (h x)∧ (f1 y)=x (Ma)

c:g p-bd:h⇒ c:λx∃y (g x)∧ (hy)∧ (f1 y)=x (Mb)

The modifier composition rules Ma and Mb estab-
lish a ‘1’-labeled dependency from the modifier to
the modificand. With argument and modifier com-
position rules, we can derive the Chinese sentence
shown in (1).

(1) ‘Shanghai, in the aspect of finance, develops fast.’

上海

Shanghai
N

在
at

R-bV-bN

金融

finance
N

方面
aspect
N-aN

Ab
N

Aa
R-bV

发展

develop
V-aN

迅速

fast
R-bV

Mb
V-aN

Ma
V-aN

Aa
V

The separate modifier composition rules in
GCG make it possible to reuse modifier categories
across different contexts. For example, in (1), 在
金融方面 ‘in the aspect of finance’ is an adver-
bial modifier, having the category R-bV. It has
the same category when the phrase is a sentential
modifier as shown in (2). Consequently,在 ‘at’ in
both (1) and (2) has the same category R-bV-bN,
which means it takes a succeeding nominal argu-
ment to become an adverbial modifier.

(2) ‘In the aspect of finance, Shanghai develops fast.’

在
at

R-bV-bN

金融

finance
N

方面
aspect
N-aN

Ab
N

Aa
R-bV

上海

Shanghai
N

发展

develop
V-aN

迅速

fast
R-bV

Mb
V-aN

Aa
V

Mb
V

In contrast, since CCG enforces a restricted set
of inference rules, it needs to provide two differ-
ent categories, (S\NP)/(S\NP)/NP and S/S/NP
for 在 in (1) and (2). In total, Chinese CCGbank

26

has 91 different categories for在, since the prepo-
sitional phrase headed by 在 can modify con-
stituents of various syntactic categories. In con-
trast, Chinese GCG annotations only have 9 dif-
ferent categories for在.

Another example of differing lexicalization is
the category of the tense aspect 了 in Chinese,
which can either occur immediately after a verb or
after the whole verb phrase to indicate past tense.
Although generalized backward crossed composi-
tion (Steedman, 2000) helps aspect/tense particles
in Chinese usually retain their canonical category
(S\NP)\(S\NP), there are still 59 different cate-
gories for了 in Chinese CCGbank (Tse and Cur-
ran, 2010), and most of them are semantically in-
distinguishable.

3.3 Nominal and quantificational expressions
Mandarin Chinese does not have determiners such
as ‘the’ or ‘a’ in English, so there is no empiri-
cal motivation to distinguish NP and N categories.
However, classifiers or measure words, glossed as
‘M’ in (3), are obligatory when a noun is quanti-
fied by a number. This unit of measure is needed
for quantification of nouns because the lack of
number morphology in Chinese makes all nouns
behave as mass nouns (Allan, 1977; Borer, 2005).

(3) ‘three people’
三

three
C

个

M
Q-bN-aC

AaQ-bN

人

people
N

AbQ

We propose a separate category Q for quantifica-
tional expressions because they can be predicative,
as in (4), which makes them different from com-
mon nouns. A zero-head rule Z, where c,d,e ∈ C,
converts the Q category to V-aN to make the quan-
tificational expression predicative.

e:g⇒ c-ad:λx (f0 x)=pred∧g (f2 x) (Z)

(4) ‘He is three.’

他

he
N

三
three

C

岁

years old
Q-aC

AaQ
ZV-aN

了

ASP
R-bV MbV-aN AaV

Classifiers like年 ‘years,’岁 ‘years-old’ and天
‘day’ already contain the nominal information, so
they do not require nominal arguments like other

classifiers. Classifiers of this type have a differ-
ent category ‘Q-aC’ to reflect this combinational
difference. By doing so, the numbers receive the
same category C in both 三天 ‘three days,’ and
三个人 ‘three people.’ However, in both Chinese
Treebank and CCGbank, the category ‘M’ is used
for both types of classifiers, which results in num-
bers like 三 ‘three’ having the category QP/M in
‘three days’ and the category (NP/NP)/M in ‘three
people’ in Chinese CCGbank. This is not de-
sirable because it expends training examples on
an artificial distinction between the numbers 三
‘three’ in each of these expressions, which are se-
mantically the same.

3.4 Topicalization
Topicalization in Mandarin can involve either
movement of a topicalized constituent or not. The
topicalization which involves movement is similar
to that of English, in which the object is usually
moved to the sentence initial position and a gap is
left behind, as shown in (5).4

(5) ‘The rice, I ate.’

饭

rice
N

我

I
N

吃了
ate

V-aN-bN GaV-aN-gN
AcV-gN

FaV
The non-movement topicalization occurs much
more frequently in Mandarin, in which the subject
of the sentence usually has an ‘association’ rela-
tion to the topic, as shown in (6).

(6) ‘Of him, the appetite is good.’

他

he
N

胃口

appetite
N GcN-gN

很好

good
V-aN

AcV-gN
FaV

The referent of the subject in the non-movement
topicalization needs to be further specified by the
topic. Although topics are seen to be associated
with other constituents of the sentence, especially
in colloquial expressions, only associations with
subjects are observed in the Treebank data. There-
fore in our analysis of this type of topicaliza-
tion, the subject undergoes a unary type conver-
sion from N to N-gN to introduce a gap, which is

4The verb吃 and the tense particle了 are separate tokens,
shown together here to simplify the derivation. We apply the
same simplification to很好 in following examples.

27

later discharged by the topic to capture the ‘asso-
ciation’ relation between the subject and the topic.

Inference rules for gap composition are:

pϕ1..n-1oc⇒ pϕ1..n-1-gc:λvx (g x)∧ (fn x)=v (Ga)

c:g⇒ c-gd:λvx (g x)∧ (f1 v)=x (Gb)

N:g⇒ N-gN:λvx (g x)∧∃e (de-assoe xv) (Gc)

where p ∈ P, o ∈ {-a, -b}, c ∈ C, d ∈ {A-bN,R-bV}
and ϕ ∈ {-a, -b} ×C. Rule Ga hypothesizes a gap
as a preceding or succeeding argument, rule Gb
hypothesizes a nominal or adverbial modifier gap
and rule Gc hypothesizes a gap which is associated
with the subject in topicalization.

Non-local arguments, each consisting of a non-
local operator and argument category ψ ∈ {-g}×C,
are then propagated to consequents from all pos-
sible combinations of antecedents. For d:g e:h⇒
c:(f gh) ∈ {Aa–b, Ma–b}:
dψ1..m:g eψm+1..n:h⇒

cψ1..n:λv1..n f (gv1..m) (hvm+1..n) (Ac–d, Mc–d)

Rules Ac–d and Mc–d stipulate non-local prop-
agation through argument and modifier composi-
tion.

Inference rules for filler attachment apply
gapped clauses to topicalized phrases as fillers.
For c ∈C, and p ∈ P:

p:g c-gp:h⇒ c:λx∃y (gy)∧ (hy x) (Fa)

In contrast, Tse and Curran (2010) analyze the
topic in non-movement topicalization as a senten-
tial modifier, which gives 他 ‘he’ in (6) the cate-
gory S/S, serving as a sentential modifier for the
sentence 胃口很好 ‘appetite is good.’ This anal-
ysis conflates sentential adverbial modifiers such
as ‘today’ with topics such as ‘he’ in (6), yielding
incorrect dependencies and expending probability
mass on ungrammatical derivations (e.g.with top-
ics conjoined with adverbs).

3.5 Relative and appositive clauses
In Mandarin relative clauses, the particle 的 ‘de’
takes a preceding clause containing a gap to form a
relative clause modifying a succeeding noun. The
modified noun is the filler of the gap in the relative
clause. The inference rules for relative clauses ap-
ply the gapped de-clause to the modificand as a
filler. For c ∈C:

D-gc:g N:h⇒ N:λx (h x)∧∃y (g xy) (R)

A GCG analysis of a relative clause with an ob-
ject gap is shown in (7).

(7) ‘fish that cats eat’

猫
cat
N

吃
eat

V-aN-bN GaV-aN-gN
AcV-gN

的

de
D-aV

AcD-gN

鱼

fish
N

RN

Our analysis of topicalization in (6) makes it easy
to account for a relative clause which relativizes
a topic. In (6) for example, relativizing the topic
他 ‘he’ yields a nominal phrase containing a non-
restrictive relative clause 胃口很好的他, ‘he
whose appetite is good.’ A GCG analysis of this
nominal phrase is shown in (8).

(8) ‘he whose appetite is very good’
胃口

appetite
N GcN-gN

很好

very-good
V-aN

AcV-gN

的

de
D-aV

AcD-gN

他

he
N

RN

Appositive clauses in Mandarin Chinese are
formed with the same的 ‘de’ particle used in rel-
ative clauses. However, unlike relative clauses,
appositive clauses do not involve any gap con-
stituent. In this GCG analysis of appositive
clauses, 的 ‘de’ receives the same category as it
does in relative clauses. But the noun which takes
an appositive clause as complement has the cate-
gory N-aD to take a preceeding de-clause to fur-
ther specify the content of the noun. An appositive
clause in this grammar is shown in (9).

(9) ‘the idea that high tech cannot be reached’
高科技

high tech
N

高不可攀

cannot-be-reached
V-aN AaV

的

de
D-aV AaD

想法

idea
N-aD AaN

In the analyses described above, relative clauses
with different types of gaps are differentiated, and
relative clauses in general receive different analy-
ses than appositive clauses. In the analysis of Tse
and Curran (2010), a relative clause can only have
either a subject or object gap in Chinese. Rela-
tive clauses that relativize topics receive the same
categories as appositive clauses. This analysis
blurs the distributional difference between certain
types of relative clauses and appositive clauses,
decreasing PCFG estimates of both types of rel-
ative clauses given the same (conflated) category.

28

(a)

被

Bei
V-aN-b(E-aN-gN)-bN

T
V-aN-b(E-aN-gN)

誉为

titled-as
B-aN-aN-bN

中国国酒

Chinese-national-liquor
N

Ab
B-aN-aN

T
E-aN-bN

Ga
E-aN-gN

Fc
V-aN

Ga
V-gN

的

de
D-aV

Aa
D-gN

茅台酒

Maotaijiu
N

R
N

历史

history
N

Gc
N-gN

悠久

long
V-aN

Ac
V-gN

Fa
V

(b)

被 誉为 中国国酒 的 茅台酒 de-asso 历史 悠久
‘bei’ ‘titled-as’ ‘Chinese national liquor’ ‘de’ ‘Maotaijiu’ ε ‘history’ ‘long’

2
3

21

1

2 1 1

Figure 1: GCG derivation:“Maotaijiu, which is titled as the Chinese national liquor, has a long history”
(a) and its associated dependencies (b)

3.6 Ba and bei constructions

Ba constructions in Mandarin Chinese require the
affected patients of certain verbs to occur before
the verb, instead of after the verb. For example,
鱼 ‘fish’ in (10) is the object of 吃 ‘eat’ and it
occurs before the verb ‘eat.’ In the Penn Tree-
bank,把 ba takes a clause as argument. Therefore,
鱼吃了 ‘fish ate’ in (10) is analyzed as a clausal
complement of ba. This analysis makes ‘fish’ the
subject of the verb ‘eat,’ instead of the object.
Consequently, for example, Stanford dependen-
cies extracted from Treebank annotations of this
sentence have both ‘nsubj (吃‘eat,’ 猫‘cat’)’ and
‘nsubj (吃‘eat,’鱼‘fish’),’ which is not correct.

(10) ‘the cat ate the fish’

猫
cat
N

把

ba
V-aN-b(B-aN)

鱼

fish
N

吃了
ate

V-aN-bN TB-aN-aN AaB-aN
AbV-aN AaV

In our analysis, we propose that the particle ba
takes a ba-verb as its complement. Ba-verbs are
derived from transitive verbs with the type conver-
sion rule given below.5

5This rule is constrained by fact that the function g is pre-
served, and its usage is constrained by parsing probabilities
for particular categories. Following Featherston (2005) and
Crocker and Keller (2005), the model described in this pa-
per assumes that grammaticality judgements are gradient and
determined by probabilities of compositional inferences oc-
curring in the experience of a particular language user.

c:g⇒ d:g (T)

Using the type conversion rule T, we change a
transitive verb V-aN-bN to B-aN-aN to capture
the fact that the verb that occurs within a ba con-
struction takes a preceeding second argument.

The particle 把 ba is assigned the category V-
aN-b(B-aN), with coindexation between the ref-
erent of its subject (f1 x) and the referent of the
subject of its complement (f1 (f2 x)).

把 ‘ba’ 7→ V-aN-b(B-aN):λx (f0 x)=ba

∧ (f1 x)=(f1 (f2 x))

Usually, the affected patient is the direct object
of a transitive verb, as shown in (10), but there
are cases where some verbs can only occur in ba
constructions or bei constructions. These types of
verbs are ba-verbs to begin with and do not need to
be changed from transitive verbs. They are given
the general category B-aN-aN-bN. Many resulta-
tive verbs (VRD, in treebank annotation) have this
category. An example is given in (11).

(11) ‘We built Chongming into a port.’

我们
we
N

把

ba
V-aN-b(B-aN)

崇明

Chongming
N

建成

build-into
B-aN-aN-bN

港口
port
N AbB-aN-aN AaB-aN

AbV-aN AaV

Mandarin Chinese uses the particle 被 bei to
construct passive sentences. In bei constructions,

29

the patient argument of a verb, usually the sec-
ond argument of a transitive verb or a ba-verb, is
moved to the subject position of the clause. We
propose the particle 被 bei takes a bei-verb as its
complement. Bei-verbs, which are of the category
E-aN-gN, are derived from E-aN-bN by introduc-
ing a gap by rule Ga. E-aN-bN is derived by the
type conversion rule T from V-aN-bN or B-aN-
aN, transitive verbs or ba-verbs. Here is the lexi-
cal entry we propose for the bei particle.

被 ‘bei’ 7→ V-aN-b(E-aN-gN)-bN:

λx (f0 x)=bei∧ (f3 x)=(f1 (f2 x))

The lexical entry of 被 bei stipulates that the
first argument of bei is the subject of its second ar-
gument, the VP complement, E-aN-gN. Since the
agent in the passive voice construction is optional
(as it is in passive voice in English), the category
of the bei particle can have a type change from
V-aN-b(E-aN-gN)-bN to V-aN-b(E-aN-gN). The
inference rule (Fc) is proposed for the composi-
tion of gap dependencies contained within suc-
ceeding arguments, where p ∈ P, ϕ ∈ {-a, -b}×C,
and ψ ∈ {-g}×C.

pϕ1...n−1-b(dψ):g dψ:h

⇒ pϕ:λx h (f1 x) (fn x) ∧g x (Fc)

Using rule Fc, the first argument of the bei particle
becomes the filler of the gap in the bei verb. This
rule also supports an analysis of tough construc-
tions in Chinese.

An example bei-construction which contains a
transitive verb is shown in (12).

(12) ‘The fish was eaten by the cat.’

鱼

fish
N

被

bei
V-aN-b(E-aN-gN)-bN

猫
cat
N

AbV-aN-b(E-aN-gN)

吃了
ate

V-aN-bN TE-aN-bN GaE-aN-gN
FcV-aN AaV

The Penn Treebank uses the category ‘LB’ for
the bei particle where the optional agent argument
occurs, and ‘SB’ for the bei particle where it is
elided. Tse and Curran (2010) follow the Treebank
annotation, proposing two different categories for
the bei particle. For example the CCG category for
‘LB’ is (S\NPy)/(S\NPx/NPy)/NPx, in which a
coindexation scheme is used to ensure that the sub-
ject of bei is coindexed with the object of its verbal
complement. The ba particle, with the category

(S\NPy)/(S\NPy/NPx)/NPx, is different from bei
only in the coindexing scheme. However, if the
passivized verb is not a transitive verb, such as誉
为 ‘titled-as’ in Figure 1, it is hard to infer what
the coindexing scheme should be like in the CCG
analysis.

Figure 1 shows a GCG derivation of a sentence
from the Chinese Treebank. We use this sentence
to illustrate how topicalization, passive voice, and
relative clauses are analyzed in the GCG frame-
work and what kind of dependencies we can ex-
tract from GCG derivations.

4 Experiments

We use a set of reannotation rules similar to those
described by Nguyen et al. (2012) to reannotate
the Penn Chinese Treebank into GCG trees. These
reannotation rules work within a perl script that
traverses each bracketed sentence in the Penn Chi-
nese Treebank by selecting each pair of match-
ing brackets from the top of the tree to the bot-
tom, then running a sed-like pattern substitution
rule on each selection. With around 200 annota-
tion rules, we currently fully annotate 71% of sen-
tences (18,505 sentences out of 26,062) from the
Penn Chinese Treebank 5 and 6.

In order to evaluate the Chinese GCG annota-
tions in terms of parsing accuracy, we compare
the parsing performance of a latent-variable parser
trained on Chinese GCG annotations with that of
the same parser trained on Chinese CCG annota-
tions. The Chinese CCGbank is obtained by con-
verting the Penn Chinese Treebank into CCG an-
notations according to Tse and Curran (2012).6

We divided the fully annotated sentences in both
grammars into training, development and test sec-
tions according to the section divisions suggested
by Tse and Curran (2012). In order to have a
better understanding of how the parsing perfor-
mance changes with the size of the training data,
we trained the Chinese CCG parser on both the
full training set (ccg.full) and the same training
set used for training the Chinese GCG parser
(ccg.same). The detailed section divisions are
shown in Table 1.

For the two CCG parsers, ccg.full and ccg.same,
we use the Petrov and Klein (2007) latent variable
PCFG trainer, with 5 split-merge cycles, which
is the best setting indicated by Tse and Curran
(2012). As with CCG, we ran the Petrov et al.

6https://github.com/jogloran/cnccgbank

30

Model Train Dev Test
ccg.full 22680 689 1986
ccg.same 13677 689 1986
gcg 13677 689 1986

Table 1: Train/Dev/Test Split

R P F tag
ccg.same 78.64 78.96 78.80 85.62
ccg.full 80.69 81.13 80.91 87.24
gcg 82.70 83.86 83.28 93.65

Table 2: Parsing results on the development set

(2006) latent-variable PCFG trainer on the GCG-
reannotated training corpus. The PCFG trainer
was used ‘off the shelf’ and run with its default pa-
rameters, only varying the number of split-merge
iterations on the development section. We found 5
split-merge iterations yielded the best parsing per-
formance in the development section.

Tables 2 and 3 show the parsing performance of
the parsers on the development and test sets. The
parsing results show that a larger training set is
beneficial to the parsing performance of the Chi-
nese CCG parer; the parsing performance of the
CCG parser trained on the full training set per-
forms consistently better than the parser trained on
71% of the training set. The GCG parser, trained
on 71% of the training set, seems to parse rea-
sonably well even compared with the CCG parser
trained on the full training set. It is worth noting
that the GCG parser is much higher in tagging ac-
curacy than the CCG parser, which supports our
hypothesis that the CCG parser might suffer from
sparse data problems.

However, direct comparison of the parsing per-
formance of these two parsers is not fair because
these two grammars define different categories and
different tree structures. In order to ensure a fair
comparison between these grammars, it is neces-
sary to have them produce exactly the same tar-
get representation. In this experiment, we test
the parsing performance of these two grammars
on a common test set of sentences to which the
two grammars assign the same tree structure when
syntactic labels and unary branches are removed,
see Figure 2. We found 984 sentences in the test
set which have exactly the same unlabeled binary
structures (Figure 2c) in both grammars.

Table 4 shows the parsing results (F1) on parses
with both syntactic category labels and unary
branches removed (NoUnary+NoLab). After re-

R P F tag
ccg.same 78.39 78.55 78.47 85.02
ccg.full 79.77 79.93 79.85 86.33
gcg 82.19 83.07 82.63 93.66

Table 3: Parsing results on the test set

% Err. Reduct. vs. p-value vs.
F1 ccg.same ccg.full ccg.same ccg.full

ccg.same 88.76 – – – –
ccg.full 89.39 – – – –
gcg 90.07 11.65 6.409 0.0007 0.04

Table 4: Parsing results, error reduction ratios and
significance testing results on the common test set
of NoUnary+NoLab trees.

moving unary branches, the parses have exclu-
sively binary tree structures and have identical re-
sults for precision, recall and F1 in parsing eval-
uations. Since both grammars predict exactly the
same binary tree structures with exactly the same
(‘X’) categories, significance testing is performed
on these predictions using bootstrap resampling.

Results in Table 4 show that the parsing per-
formance of the Petrov and Klein (2007) parser
trained on the GCG-reannotated corpus is more
accurate with strong significance (p < 0.001) than
the same parser trained on the CCG-reannotated
corpus of the same size. We observe a significant
improvement (p < 0.05) of the GCG parser over
the CCG parser trained on the full training set.

We believe that the Chinese CCG parser suffers
from data sparsity effects. Excluding those words
which are only associated with one preterminal
category, the lexical-categorial confusion rate is
3.45 for the Chinese CCG annotations and 2.59
for the Chinese GCG annotations, which is also
reflected in the large gap (more than 5 points) be-
tween their tagging accuracy. Enforcing a small
set of language-independent inference rules in the
Chinese CCG-annotations might have some for-
mal appeal, but it leads to a large set of syntac-
tic categories, many of which, such as nominal or
adverbial modifiers, are syntactically or semanti-
cally indistinguishable. Since the GCG described
in this paper uses a larger set of inference rules
and consequently fewer category labels, it suffers
fewer sparse data effects.

5 Conclusion and discussion

This paper has described a generalized catego-
rial grammar for Mandarin Chinese, reannotated

31

V

V-aN

E-aN-gN

E-aN-bN

V-aN-bN

吃了
‘eat-LE’

V-aN-b(E-aN-gN)

N

猫
‘cat’

V-aN-b(E-aN-gN)-bN

被
bei

N

鱼
‘fish’

(a) A full tree

V

V-aN

E-aN-gN

吃了
‘eat-LE’

V-aN-b(E-aN-gN)

N

猫
‘cat’

V-aN-b(E-aN-gN)-bN

被
bei

N

鱼
‘fish’

(b) A NoUnary Tree

X

X

X

吃了
‘eat-LE’

X

X

猫
‘cat’

X

被
bei

X

鱼
‘fish’

(c) A NoUnary+Nolab Tree

Figure 2: Constructing common test set

from the Penn Chinese Treebank. Unlike previous
efforts using strongly lexicalized CCG (Tse and
Curran, 2010), the reannotated corpus described
in this paper adopts a policy of moderate lexical-
ization, allowing both inference rules and lexical
categories to be language-specific. This modera-
tion offers considerable representational freedom,
particularly in modeling Chinese ba-, bei-, and de-
constructions, which make substantial use of un-
bounded dependencies. Experimental results ap-
pear to show that, while there may be some for-
mal appeal to a small universal set of language-
independent combinators (Steedman, 2000; Steed-
man, 2002; Steedman, 2012), the large category
set resulting from it might impose an empirical
cost for parsing tasks.

The reannotation rules are available at
http://www.sourceforge.net/projects/

modelblocks.

References
Keith Allan. 1977. Classfiers. Language, 53:285–311.

Emmon Bach. 1981. Discontinuous constituents in gener-
alized categorial grammars. Proceedings of the Annual
Meeting of the Northeast Linguistic Society (NELS), 11:1–
12.

Hagit Borer. 2005. Structure sense. Oxford.

Matthew W. Crocker and Frank Keller. 2005. Probabilis-
tic grammars as models of gradience in language process-
ing. In Gisbert Fanselow, Caroline Féry, Ralph Vogel, and
Matthias Schlesewsky, editors, GRADIENCE IN GRAM-
MAR: GENERATIVE PERSPECTIVES. University Press.

Sam Featherston. 2005. Universals and grammatical-
ity: wh-constraints in German and English. Linguistics,
43(4):667–711.

Lauri Karttunen. 1989. Radical lexicalism. In M. R.
Baltin and A. S. Kroch, editors, Alternative Conceptions
of Phrase Structure, pages 43–65. University of Chicago
Press, Chicago.

Jonathan K. Kummerfeld, Daniel Tse, James R. Curran, and
Dan Klein. 2013. An empirical examination of challenges
in chinese parsing. In Proceedings of ACL’13, pages 98–
103, Sofia, Bulgaria.

Luan Nguyen, Marten van Schijndel, and William Schuler.
2012. Accurate unbounded dependency recovery using
generalized categorial grammars. In Proceedings of COL-
ING ’12, pages 2125–2140, Mumbai, India.

Richard T. Oehrle. 1994. Term-labeled categorial type sys-
tems. Linguistics and Philosophy, 17(6):633–678.

Slav Petrov and Dan Klein. 2007. Improved inference for un-
lexicalized parsing. In Proceedings of NAACL HLT 2007,
pages 404–411, Rochester, New York, April. Association
for Computational Linguistics.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein.
2006. Learning accurate, compact, and interpretable tree
annotation. In Proceedings of COLING/ACL’06.

Laura Rimell, Stephen Clark, and Mark Steedman. 2009.
Unbounded dependency recovery for parser evaluation. In
Proceedings of EMNLP 2009, volume 2, pages 813–821.

William Schuler and Adam Wheeler. 2014. Cognitive com-
positional semantics using continuation dependencies. In
Third Joint Conference on Lexical and Computational Se-
mantics (*SEM’14).

Mark Steedman. 2000. The syntactic process. MIT
Press/Bradford Books, Cambridge, MA.

Mark Steedman. 2002. Plans, affordances, and combinatory
grammar. Linguistics and Philosophy, 25.

Mark Steedman. 2012. Taking Scope - The Natural Seman-
tics of Quantifiers. MIT Press.

Daniel Tse and James R. Curran. 2010. Chinese CCGbank:
extracting CCG derivations from the penn chinese tree-
bank. In Proceedings of COLING ’10, pages 1083–1091.

Daniel Tse and James R. Curran. 2012. The Challenges
of Parsing Chinese with Combinatory Categorial Gram-
mar. In Proceedings of NAACL-HLT ’12, pages 295–304,
Montréal, Canada.

Nianwen Xue, Fei Xian, Fu-Dong Chiou, and Martha Palmer.
2005. The Penn Chinese Treebank: Phrase Structure an-
notation of a large corpus. Natural Language Engineer-
ing, 11:207–238.

32

Proceedings of the Grammar Engineering Across Frameworks (GEAF) Workshop, 53rd Annual Meeting of the ACL and 7th IJCNLP, pages 33–40,
Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Orthography Engineering in Grammatical Framework

Krasimir Angelov
University of Gothenburg

krasimir@chalmers.se

Abstract

Orthography is an integral part of lan-
guage but in grammar engineering it is of-
ten ignored, simplified or just delegated to
external tools. We present new extensions
to Grammatical Framework, which allow
one and the same formalism to describe
both orthography, syntax and morphology.
These extensions are also easily generaliz-
able to other formalisms.

1 Introduction

Orthography is often assumed to be something
simple that is easily delegated to pre- or post-
processors. The real grammar engineering starts
only after the tokenization.

Unfortunately if this is mostly true for English,
it is more complicated in other languages. For
instance, most Germanic languages tend to build
compound nouns composed of one or more simple
nouns. Furthermore German requires that nouns
should start with a capital letter unless if the noun
is in the second part of a compound. Handling
compounds requires a separate compound split-
ter (Koehn and Knight, 2003) for parsing and
proper generator in linearization. The capitaliza-
tion is usually ignored in parsing but must be re-
covered for generation (Lita et al., 2003; Chelba
and Acero, 2004).

Agglutinative languages tend to build long
words by adding more and more suffixes which
blurs the borderline between word and morpheme.
In that case the words themselves need to be
parsed since it is not possible to enumerate all
word forms in a finite lexicon. The extreme case
is in languages that does not separate words with
spaces at all. This is usually solved by using a
preprocessor that finds a lattice of possible word
segmentations which are later parsed (Chappelier
et al., 1999; Hall, 2005).

Finally, in many languages there are lexical
units that are phonetically dependent on the con-
text. A typical example is the indefinite article
a/an in English which is different depending on
the next word in the sentence. Similarly the def-
inite article la/l in French depends on the next
word, except that the correct resolution also re-
quires knowledge of a syntactic context which is
available only in the grammar.

Because of all these complications, delegating
the orthography to an external tool has many en-
gineering disadvantages. To start with, a new tool
has to be developed for every language. The tool
moreover should partly encode knowledge that is
already in the grammar. For instance for com-
pound splitting the tool should have access to the
lexicon of the grammar. When an application
is ported from one platform to another then the
grammar itself is usually stored in a portable for-
mat and only the grammar interpreter needs to
be ported. However if external pre- and post-
processors are used then they have to be ported
as well. Everything is a lot simpler if the orthog-
raphy is encoded in a portable way as part of the
grammar itself.

We present extensions to the Grammatical
Framework (GF; Ranta 2011) which allow ortho-
graphic conventions to be encoded as an integral
part of the grammar. This possess the following
challenges.

First of all GF is a reversible formalism. One
and the same grammar is used for both parsing
and generation. In parsing we want grammars that
are robust and permissible as long as this does not
produce incorrect analyses. On the other hand in
generation we want to produce text of the best pos-
sible shape. This means for instance that accepting
a German noun that is not capitalized can be desir-
able but generating a text where the nouns are not
capitalized should be avoided.

GF is by design a multilingual formalism. A

33

single grammar typically contains modules for
several different languages. The modules are
linked together through a Logical Framework1

(Harper et al., 1993) which serves as a language
independent abstract syntax. In this multilingual
setting, having different pre- or post-processors
for the different languages will defeat the purpose
of having a single multilingual grammar.

GF grammars are distributed in a portable for-
mat (Angelov et al., 2010) which can be de-
ployed in different environments ranging from
web servers and desktop translation systems to
mobile devices. The virtual machine for GF (An-
gelov, 2011) is also developed as a platform in-
dependent software. By adding the orthographic
extensions to the framework itself, we automat-
ically make more GF applications portable since
they will not be dependent on external tools.

The grammarian in GF writes a grammar by
using a high-level functional programming lan-
guage reminiscent of Haskell and ML. However,
if we abstract away from the high-level features,
the backbone of the framework (Ljunglöf, 2004)
is equivalent to a Parallel Multiple Context-Free
Grammar (PMCFG; Seki et al. 1991). The latter
subsumes other popular formalisms such as TAG
(Joshi and Schabes, 1997) and CCG (Steedman,
2000) but contains only some of the possible RCG
grammars (Boullier, 1998). The full logical frame-
work embedded in GF in principle makes GF as
expressive as HPSG (Pollard and Sag, 1994) and
other unification grammars, but we often find this
extra level of complexity unnecessary and we stick
with the backbone of the framework.

The extensions that we present are mostly
framework independent and they can be added
even to simple context-free grammars. Because
of that and to make it easier to relate the exten-
sions to other formalisms we will use context-free
grammars for the rest of the paper. The actual im-
plementation is in the PMCFG engine behind GF.

There are four groups of extensions that we
present in four sections:

• BIND, SOFT_BIND and SOFT_SPACE in
Section 2

• CAPIT and ALL_CAPIT in Section 3

• pre in Section 4

1The name Grammatical Framework (GF) itself is the
analogy of the general Logical Framework in Harper et al.

• nonExist in Section 5

All of these extensions were frequently requested
by different people in the GF community. They
are now available as primitive operations of type
string (Str) and are exported from the standard
module Prelude. The only exception is pre,
which is a complex programming language con-
struction. In a public application the extensions
were first extensively used in the offline mobile
translator for twelve languages developed in An-
gelov et al. (2014).

2 Controlling the Spaces

The first problem is to decide whether and when
to put spaces between words. Like all formalisms,
GF describes a language as a set of strings over
a finite set of terminal symbols. This is problem-
atic in agglutinative languages and languages with
compound words since their vocabulary is theoret-
ically infinite.

The solution is to redefine what is considered
a word in the language. For instance, a Swedish
grammar should treat compound words such as
datavetenskap ‘computer science’ as two separate
words data and vetenskap, which, following the
orthographic convention in Swedish, are written
without space in between. The grammar encodes
that the two words are bound together by inserting
a special token called BIND. This can be exempli-
fied with a rule like:

fun CompoundN : N -> N -> N
lin CompoundN n1 n2 =

n1 ++ BIND ++ n2

Where CompoundN combines the two nouns re-
ferred by the two variables n1 and n2 into a single
compound noun. Obviously a realistic rule will be
more complicated but the example captures the es-
sense. The operator ++ specifies that we combine
words together to build a phrase. We put the nouns
one after another but we also insert BIND to indi-
cate that there is no space in-between. The result
from:

CompoundN data_N vetenskap_N

is the compound datavetenskap. In contrast if
we had missed the BIND, we would generate
data vetenskap which is not the correct Swedish
spelling. Both the types of the arguments as well
as the type of the result is noun (N), which allows
for compounds with multiple components with al-
ternative associativities.

34

0 1 . . .∞ 0 . . .∞
0 BIND ∗ SOFT_BIND
1 ∗ SOFT_SPACE

Table 1: Tokens for controlling the spacing. The
column shows how many spaces the parser will
accept and the row shows how many spaces are
put by the generator. Inconsistent combinations
are marked with ∗.

The same mechanism makes it possible to
model agglutinative languages. There we use a fi-
nite lexicon of words but we are free to add suf-
fixes syntactically. The suffixes are attached by
using BIND which prevents the insertion of un-
necessary spaces. This has been used extensively
in Finnish where the lexicon is composed of stems
and suffixes while the words are composed syn-
tactically. To a lesser extend the same technique
is also applied in Estonian (Listenmaa and Kalju-
rand, 2014) and Maltese (Camilleri, 2013).
BIND is useful even in English. For example

the grammars for all languages including English
must parse numerals in order to recognize whether
the numerals require singular or plural noun, i.e.
“1 apple” but “2 apples”. When we have numerals
with more than one digit then the grammar must
use BIND to glue individual digits together.

A related issue is that in many languages the
punctuation signs are glued to the previous word
(or the next word for opening parenthesis). Here
we could use BIND as well but this means that the
parser would reject sentences where the punctua-
tion is separated. Usually we do not want this and
for that purpose we also introduced SOFT_BIND.
In generation, BIND and SOFT_BIND are identi-
cal, but in parsing, the latter allows optional spaces
between the surrounding words.

For completeness we also added SOFT_SPACE
– a token which in generation mode leaves space
between the surrounding words but in parsing al-
lows the space to be omitted. The three spac-
ing tokens are summarized in Table 1. The rows
show how many spaces are inserted in generation
and the columns how many spaces are accepted in
parsing. Two of the combinations are inconsistent
since this would generate sentences that are im-
possible to parse. One combination corresponds
to the default case where ++ is used alone and
the rest of the combinations are represented with
a special token.

It should be obvious by now how BIND can
be implemented in the natural language genera-
tor. When we see BIND then we just glue the next
word to the previous one. The implementation in
the parser is not so obvious. We use a parsing algo-
rithm (Angelov, 2009) which is a variant of Earley
(1968) but is generalised to PMCFG.

Earley’s algorithm maintains items like:

[ji A→ α • β] (1)

which encode the fact that the rule A → αβ has
been partly recognized between positions i and j
in the input sentence. The difference in a parser
which can handle bindings is that positions i and j
must be measured in number of characters rather
than number of words. Now if the parser encoun-
ters an item like:

[ii N→ • ”data” BIND ”vetenskap”] (2)

and the current word is datavetenskap then it gen-
erates a new item:

[i+4
i N→ ”data” • BIND ”vetenskap”] (3)

The items in the original Earley algorithm are
grouped in sets with exactly one set for every po-
sition between two words. In our implementation
there could be from zero to two sets for every char-
acter position. Typically there is one set for every
position that corresponds to a space between two
words, i.e. exactly like in the original algorithm.
However, item 3 for example will force a new set
to be generated for the position between data and
vetenskap. This state is marked in a special
way since there is no space at that position. The
only tokens that make it possible to exit from this
state are BIND, SOFT_BIND and SOFT_SPACE.
This is exactly what will happen with item 3 which
will lead to the item:

[i+4
i N→ ”data” BIND • ”vetenskap”] (4)

The new item ends at the same position but now
it will be put in a new state which is not marked
as special and this will make it possible to accept
vetenskap as a next token.

Exactly the same modification to the Earley al-
gorithm is also applicable to the PMCFG parser
which is the basis of the implementation in GF.
Note that unlike Chappelier et al. (1999) and Hall
(2005), we do not need a lattice to represent the
ambiguous word segmentation. The ambiguity is

35

naturally represented as different alternatives in
the parse chart. However, the advantage of the lat-
tice is that a word is segmented only if all parts are
possible parts of the lexicon. In contrast the naive
implementation of a parser with BIND would seg-
ment out a prefix even if the rest of the word is not
a possible word. This is easily resolved by using
limited lookahead in the parser.

3 Controlling the Capitalization

Compounds in German require both gluing words
together as well as altering the capitalization. For
example from the nouns Aktion and Plan we
build Aktionsplan where the second noun is lower-
cased. This means that for every noun we need
one form where the first letter is capitalized, and
another where it is not. The same applies also
to verbs since all verbs can be nominalized. For
example from laufen ‘walk’ we get das Laufen
‘walking’ which requires capitalization.

Instead of storing each word form twice in
the lexicon, it is advantageous to have a way to
dynamically control the capitalization. We can
achieve this by introducing one more special to-
ken which we call CAPIT. The effect of CAPIT
is that it causes the next word in the sentence to
be rendered with initial upper case letter. We store
the words in the lexicon in lower case, but by in-
serting CAPIT in the right places in the grammar
we guarantee the right capitalization.

In a very simplified form, it could be written
like this:

fun UseN : N -> CN
lin UseN n = CAPIT ++ n

Here UseN is a function which converts a noun
into a common noun. Just like with CompoundN,
here, we ignore case, agreement and other irrele-
vant grammatical features. The noun can be a sim-
ple noun as well as a compound (composed by us-
ing CompoundN), and it is always in lower-case.
We add CAPIT in front of it to alter the capitaliza-
tion.

Altering the capitalization is the behaviour of
CAPIT in generation mode. In parsing we would
like to have robust processing, even if the input
sentence does not have the correct capitalization.
By default the GF parser is case sensitive but by
adding in the top module of the corresponding lan-
guage the declaration:

flags
case_sensitive=off;

we can instruct the parser to lower-case the input
before parsing. If all words in the grammar are
lower-cased too, the parsing becomes case insen-
sitive. This demands also that the parser must sim-
ply ignore CAPIT. In an Earley style parser, this
corresponds to adding the rule:

[ji A→ α • CAPIT β]

[ji A→ α CAPIT • β]
(5)

i.e. every time when we encounter an item with a
dot before CAPIT we are simply allowed to move
the dot to the next position.

The requirement that all words in the grammar
must be lower-cased contradicts the already es-
tablished convention for defining lexical entries in
German. An entry is defined by applying a smart
paradigm function (Détrez and Ranta, 2012) to
one or more word forms:

mkN "Junge" "Jungen" masculine

Here the forms are expected to be the lexico-
graphic forms used in the traditional paper dictio-
naries. Since the tradition is to use the capitalized
forms, the same convention was adopted in the GF
grammar as well. The conflict was easily resolved
by changing the definition of the paradigm func-
tion mkN. Because it is computed at compile time,
it has more freedom and it internally lower-cases
the forms listed in the definition.

German was the primary motivation for adding
CAPIT, but the robustness with respect to the cap-
italization is another aspect which is also useful in
other languages. One prototypical use is the capi-
talization of the first word in a sentence. Another
example is English which has a number of words
(compass directions, country adjectives, etc.) that
by convention are spelled with upper case. In all
those examples if they are encoded with CAPIT
then parsing succeeds even if the capitalization is
wrong.

The requirement that all lexical entries in the
grammar must be in lower-case means that we
need special treatment for acronyms which are
typically written with capital letters. Using
CAPIT would be enough, if we split those into a
sequence of letters glued with BIND. For example
IT (information technology) can be encoded as:

CAPIT ++ "i" ++
BIND ++ CAPIT ++ "t"

The same trick works even for mixed case combi-
nations like the word LaTeX. However, using the

36

trick requires a tedious and verbose encoding. It
is acceptable for rare combinations like LaTeX,
but we want a more compact solution for the nor-
mal acronyms. For that purpose we also added
ALL_CAPIT. The behaviour of ALL_CAPIT is
that it capitalizes all letters in the next ortho-
graphic word instead of only the first one. It
is important to emphasize that ALL_CAPIT ap-
plies to the next orthographic word and not to
the next grammatical word. This means that if
ALL_CAPIT is followed by a sequence of words
glued with BIND or SOFT_BIND then the whole
sequence will be capitalized.

Finally we should note that the robustness in the
parser also introduces additional spurious ambigu-
ities. For instance the acronym IT becomes indis-
tinguishable from the pronoun it. There should be
a soft preference for the pronoun, if the word is
spelled with lower-case, and alternatively in the
other direction if the word is upper-cased. This
is easy to implement in a parser which computes
weights for alternative analyses. In that case addi-
tional weight must be added to every analysis that
needs Rule 5 and where the next word in the sen-
tence has the wrong capitalization.

4 Phonetic Dependencies

It is quite common to have words in the language
whose exact form depends on the next word. Typ-
ical examples are the indefinite article a/an in En-
glish, the definite articles le/l’, la/l’ in French,
and the prepositions s/sǎs and v/vǎv in Bulgarian.
Keeping track of the form of the next word in the
grammar is tedious and error-prone. It is much
easier to delay the choice until we know all words
in the sentence. At that phase it is easy to check
the next word.

We do this by using the pre token2. Its general
syntax is:

pre {default;
form1 / prefixes1;
...
formN / prefixesN}

Here we start with the default form which applies
if there is no more specific variant. After the de-
fault are the specific cases. Every case is a word
form followed by slash and a list of prefixes. If the

2Strictly speaking pre is not a new addition to GF, but
its operational behaviour was never precisely defined. It also
interacts with the orthographic extensions, so it deserves at-
tention in the current paper.

next word after pre starts with one of the prefixes
in the list then the final sentence will contain the
corresponding word form. In case of ambiguity
the first matching alternative is selected.

Both the default and each of the specific forms
are arbitrary expressions. They could for instance
consist of multiple orthographic words, or they
could include other special tokens such as BIND.
The definite article in French is a good example:

pre {"la"; "l’" ++ BIND / voyelle}

If the next word starts with a vowel then the article
la should be contracted to l’ and the contraction
should be attached to the next word. We specify
this by using the expression voyelle which is
defined as the list of all vowels in French. l’ is
followed by BIND to indicate that there is no space
before the next word. The default is la without
BIND since it is spelled as a separate word.

The above gives the false impression that con-
traction in French is fully implemented. Unfortu-
nately this is not exactly the case. The problem
is that the aspirated h in French does not allow
contraction while the non-aspirated h demands it.
Unfortunately it is not possible to find whether
h is aspirated by just looking at the prefix of the
word. For this we need to know the whole word.
There is a similar problem in English where in or-
der to choose a/an we need to know whether the
next word is pronounced with initial vowel. Un-
fortunately this is not always possible to infer from
the orthographic prefix of the word. For that rea-
son the implementation for phonetic dependencies
in English and French is only approximate in the
current grammars. In contrast, the prepositions
s/sǎs and v/vǎv in Bulgarian are always reliably
detected since the orthography and the phonetics
in Bulgarian match very well. A better imple-
mentation for English and French would require
a grammar that models in parallel both the orthog-
raphy and the phonetics of the language. In that
case pre should refer to the phonetic form of the
next word rather than to the orthographic form.

French has one more feature which illustrates
why orthography should not be implemented out-
side of the grammar. The problem is that the defi-
nite article le in combination with the preposition
de is contracted to du, i.e.:

Le livre du garçon
instead of:

Le livre de le garçon
At the same time le is also the pronoun it which

37

does not allow the same contraction here:
Il m’a dit de le faire

This is easy to implement in the grammar by using
the syntactic context, but it is difficult to resolve
in a post processor working only with the surface
form of the final sentence.
pre is also used in the generation of punctua-

tion. The problem is that in many languages non-
restrictive relative clauses are separated from the
rest of the sentence with commas before and after
the clause. However, the closing comma should be
used only if there is no other punctuation mark and
if the comma is not the last word in the sentence.
The right way to encode this is:

pre {"";
"" / punct;
SOFT_BIND ++ "," / ""}

Here the first special case uses the expression
punct which lists all punctuation symbols. This
means that if the word after the comma is punctu-
ation, then we just generate the empty string. The
second case uses empty string as a prefix for filter-
ing. By definition, an empty prefix matches only
if there is at least one word after pre. Obviously
the empty string is a valid prefix for every possible
word. But, if there is no following word then only
the default form is applicable. We used the empty
string as the default since this is what we want to
generate if we are at the end of the sentence. Fi-
nally, the use of SOFT_BIND in the expression
ensures that comma is glued to the preceding word
in the sentence.

In generation mode, we always propagate the
pre until we know all words in the sentence and
then we replace it with the correct alternative. In
parsing we decided that we want to accept all al-
ternatives regardless of whether they agree with
the constraints. Usually this does not lead to false
ambiguities and accepting more alternatives only
makes the parser more robust.

5 Degenerate Inflection Tables

Another issue, that is not really related to orthog-
raphy, but is also easily solved by adding special
kinds of tokens in the grammar, is when a word
has missing inflection form. The problem is that
every lexical entry in GF is not a single word but
an inflection table with all possible forms. The
grammarian defines the entry by applying a smart
paradigm function, which is computed to an in-
flection table. For example if we define:

lin apple_N = mkN "apple"

the result will be something similar to:

lin apple_N =
table {Sg => "apple";

Pl => "apples"}

This representation fails for degenerate words
that miss one or more forms. For that purpose we
introduced the token nonExist. It can be used in
any place where a word should be put but the ac-
tual language does not have the appropriate form.

In generation mode, nonExist behaves like
an exception. Any attempt to linearise a sen-
tence which contains nonExist will fail com-
pletely and no output will be generated. Ideally
the grammarian should avoid exceptional situa-
tions and write grammars that always produce sen-
sible output. At least this should be the goal for
expressions generated from the intended start cat-
egory, i.e. for sentences. Avoiding the exceptions
is usually possible by using parameters to control
the possible choices in the grammar. nonExist
is still useful as an explicit marker for impossible
combinations in nested categories, i.e. categories
that are not used as start categories. If hiding all
exceptions in the grammar is not possible then at
least by using nonExist the user gets a chance
to handle the situation by rephrasing the request.
nonExist interacts in an interesting way with

variants in the grammar. GF provides the bar (|)
operator for listing alternative linearisations. For
example a | b is an expression which lists the
two expressions a and b as two different alterna-
tives. The API to the GF runtime provides meth-
ods for computing all possible alternatives for one
and the same expression. In that case if one of the
alternatives includes nonExist then it is simply
filtered out. Using variants in combination with
nonExist is yet another way to hide exceptions.

In parsing mode nonExist is implemented by
simply stating that items like this:

[ji A→ α • nonExist β]

should not lead to any further derivations. A
hacked-up version of nonExist can be imple-
mented by defining it as a special word which is
usually not used in the target language. In this
way we can hope that the special word will never
appear in an actual sentence and this will give
us the intended behaviour. However, this is first
of all inelegant and second it will become visi-
ble from some of the API calls. For example GF

38

is commonly used for designing controlled lan-
guages where the parser is used inside authoring
tools to assist the user in writing valid phrases in
the language. In that case using the hack will cause
the special token to show up in the suggestions
from the authoring tool. Instead we implemented
nonExist as a parser internal operation which is
always invisible from the API calls.

6 Conclusion and Future Work

We presented a number of extensions in GF that
make it easier to model orthographic phenomena
without the need to use external pre- and post-
processors. Keeping all the grammatical knowl-
edge in a single framework is a definite engineer-
ing advantage that gave us knowledge sharing and
portability. All of the extensions were extensively
tested in practice as part of the translation system
demonstrated in Angelov et al. (2014).

In the design we assumed two conflicting re-
quirements: high-precision in generation and ro-
bustness in parsing. This sounds like a logical
choice for most applications. It is possible, how-
ever, that for some applications, a more strict
parser will be desirable, too. For example in an
application for checking the correctness of a sen-
tence we may want to be more strict. There are two
ways in which this can be achieved. First of all it
is always possible to use the robust parser for pars-
ing the original input. After that the analysis can
be fed back to the generator which will produce
the canonical linearisation. The input can be com-
pared with the canonical linearisation to identify
potential problems. Another more involved solu-
tion is that we can extend the parser to keep record
of all cases where some constraint has been vio-
lated. In that way after the parsing is finished, the
user could consult the list of cases.

There is one more issue for which we have not
made a firm decision yet. We have already men-
tioned several times the ++ operator which puts
two phrases together. The framework has also an
operator + which is similar but does not insert a
space between the phrases. Its behaviour is similar
to the combination ++ BIND ++ except that it is
computed at compile time rather than at runtime.
Currently its primary use is to compute new in-
flection forms in the definitions for different mor-
phological operations. In principle, we could ex-
tend its use to a runtime operator which will fur-
ther fuse the boundary between grammatical and

orthographic words. Whether or not this is a good
design decision is still not clear to us. In any case
extending the domain of + would not make the use
of BIND obsolete since BIND can also interact in
a non trivial way with pre as in the French ex-
ample. There are also similar examples in Catalan
and Maltese.

Acknowledgement

Thanks to Aarne Ranta and the annonymous re-
viewers for their useful comments on the earlier
draft of the paper. Swedish Research Council
(Vetenskapsrådet) has supported this work under
grant number 2012-4506.

References
Krasimir Angelov, Björn Bringert, and Aarne Ranta.

2010. PGF: A Portable Run-Time Format for Type-
Theoretical Grammars. Journal of Logic, Language
and Information, 19:201–228.

Krasimir Angelov, Aarne Ranta, and Björn Bringert.
2014. Speech-enabled hybrid multilingual transla-
tion for mobile devices. In European Chapter of the
Association for Computational Linguistics, Gothen-
burg.

Krasimir Angelov. 2009. Incremental parsing with
parallel multiple context-free grammars. In Euro-
pean Chapter of the Association for Computational
Linguistics.

Krasimir Angelov. 2011. The Mechanics of the Gram-
matical Framework. Ph.D. thesis, Chalmers Univer-
sity of Technology.

Pierre Boullier. 1998. A proposal for a natural lan-
guage processing syntactic backbone. Technical Re-
port 3342, INRIA.

John J. Camilleri. 2013. A Computational Gram-
mar and Lexicon for Maltese. Master’s thesis,
Chalmers University of Technology, Gothenburg,
Sweden, September.

J.-C. Chappelier, M. Rajman, R. Arages, and A. Rozen-
knop. 1999. Lattice parsing for speech recognition.
In In Proceedings of 6me, pages 95–104.

Ciprian Chelba and Alex Acero, 2004. Proceedings
of the 2004 Conference on Empirical Methods in
Natural Language Processing, chapter Adaptation
of Maximum Entropy Capitalizer: Little Data Can
Help a Lo.

Grégoire Détrez and Aarne Ranta. 2012. Smart
paradigms and the predictability and complexity of
inflectional morphology. In Proceedings of the 13th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, EACL ’12,

39

pages 645–653, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Jay Clark Earley. 1968. An Efficient Context-free Pars-
ing Algorithm. Ph.D. thesis, Carnegie Mellon Uni-
versity, Pittsburgh, PA, USA. AAI6907901.

Keith B. Hall. 2005. Best-first Word-lattice Pars-
ing: Techniques for Integrated Syntactic Language
Modeling. Ph.D. thesis, Providence, RI, USA.
AAI3174615.

Robert Harper, Furio Honsell, and Gordon Plotkin.
1993. A framework for defining logics. J. ACM,
40:143–184, January.

Aravind Joshi and Yves Schabes. 1997. Tree-
adjoining grammars. In Grzegorz Rozenberg and
Arto Salomaa, editors, Handbook of Formal Lan-
guages. Vol 3: Beyond Words, chapter 2, pages 69–
123. Springer-Verlag, Berlin/Heidelberg/New York.

Philipp Koehn and Kevin Knight. 2003. Empirical
methods for compound splitting. In Proceedings
of the Tenth Conference on European Chapter of
the Association for Computational Linguistics - Vol-
ume 1, EACL ’03, pages 187–193, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Inari Listenmaa and Kaarel Kaljurand. 2014. Com-
putational estonian grammar in grammatical frame-
work. In Proceedings of LREC 2014, pages 13–18.

Lucian Vlad Lita, Abe Ittycheriah, Salim Roukos, and
Nanda Kambhatla. 2003. truecasing. In Proceed-
ings of the 41st Annual Meeting on Association for
Computational Linguistics - Volume 1, ACL ’03,
pages 152–159, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Peter Ljunglöf. 2004. Expressivity and Complexity of
the Grammatical Framework. Ph.D. thesis, Depart-
ment of Computer Science, Gothenburg University
and Chalmers University of Technology, November.

Carl Jess Pollard and Ivan A. Sag. 1994. Head-driven
phrase structure grammar. Studies in contemporary
linguistics. Center for the study of language and in-
formation Chicago (Ill.) London, Stanford (Calif.).

Aarne Ranta. 2011. Grammatical Framework: Pro-
gramming with Multilingual Grammars. CSLI Pub-
lications, Stanford. ISBN-10: 1-57586-626-9 (Pa-
per), 1-57586-627-7 (Cloth).

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii,
and Tadao Kasami. 1991. On multiple context-
free grammars. Theoretical Computer Science,
88(2):191–229, October.

Mark Steedman. 2000. The syntactic process. MIT
Press, Cambridge, MA, USA.

40

Proceedings of the Grammar Engineering Across Frameworks (GEAF) Workshop, 53rd Annual Meeting of the ACL and 7th IJCNLP, pages 41–48,
Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

A Cloud-Based Editor for Multilingual Grammars

Thomas Hallgren Ramona Enache Aarne Ranta
Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
hallgren@chalmers.se ramona.enache@chalmers.se aarne@chalmers.se

Abstract

Writing deep linguistic grammars has
been considered a highly specialized skill,
requiring the use of tools with steep learn-
ing curves and complex installation proce-
dures. As the use of statistical methods
has increased, new generations of compu-
tational linguists are getting less and less
prepared for grammar writing tasks. In
an aim to provide a better learning expe-
rience for grammar writers, we present a
grammar engineering tool that resides in
the cloud. It has been used in several tu-
torial courses and self-studies, and it al-
lows absolute beginners to write their first
grammars and parse examples in 10 min-
utes. The cloud-based grammar engineer-
ing tool is built on top of GF (Grammatical
Framework), a grammar formalism that
has an explicit tecto/phenogrammar dis-
tinction, is based on ideas from type theory
and functional programming and comes
equipped with a grammar library support-
ing 30 languages.

1 Introduction

Writing deep linguistic grammars has been con-
sidered a highly specialized skill. As the use of
statistical methods has increased, new generations
of computational linguists are getting less and less
prepared for grammar writing tasks. A part of
the problem is the steep learning curve in tools:
systems like LKB (Copestake, 2002) and XLE
(Xerox Linguistic Environment) are designed for
professional linguists. Getting started with their
use requires substantial training, and installing the
tools requires large and unfamiliar software pack-
ages, in addition to a firm knowledge of operating
system command-line tools.

GF (Ranta, 2004) is a more recent grammar for-
malism, born so to say in the middle of the statis-

tical era. GF shares the ambition of the “classi-
cal” formalisms to enable deep linguistic descrip-
tions, which it wants to support with some new
ideas: type theory, functional programming, and
an explicit tecto/phenogrammar distinction. How-
ever, GF was also meant to be a formalism for
“ordinary” programmers without linguistic train-
ing. Thus the majority of the currently 30 lan-
guages included in the GF Resource Grammar Li-
brary (Ranta, 2009a) are in fact written by students
and scholars in computer science, who find the
GF style of programming familiar from other con-
texts, in particular compiler construction (Appel,
1998).

However, the GF approach has a “nerdy”
flavour to it, in particular requiring coping with
command line tools, text editors, and Haskell li-
braries. Some programmers are helped by the
Eclipse plug-in (Camilleri, 2012), but installing
both GF and Eclipse on a personal computer can
be a daunting task for many.

The present paper describes an attempt to elim-
inate all trouble with software installation from
linguistic grammar writing. We describe a gram-
mar engineering tool that resides in the cloud and
can be used in ordinary web browsers. The tool
supports writing grammars in the cloud, compil-
ing them to executable parsers and translation sys-
tems, and finally running and testing them in the
cloud. Thus an entire grammar project can be
written and used without installing any specific
software. The project can also be published and
shared, so that many users can work on the same
grammars (although not simultaneously yet in the
current version).

The cloud-based GF editor has been used on
several tutorial courses and self-studies. It enables
absolute beginners to write their first grammar and
parse examples in 10 minutes. It scales up to most
of the grammars described in the GF book (Ranta,
2011), although it has some limitations, in partic-

41

abstract Foods = {

flags startcat = Comment;

cat Comment; Kind; Item; Quality;

fun Pred : Item -> Quality -> Comment;

This, That : Kind -> Item;

Bread, Fish, Wine : Kind;

Very : Quality -> Quality;
Bad, Good : Quality;
Cold, Warm : Quality;

}

Figure 1: Abstract syntax Food.gf.

ular a simplified module system, which makes it
unpractical for larger tasks. But students who have
got the first experience of grammar writing with-
out the overhead of installation troubles are more
likely to proceed to the full-scale systems when
they feel the need for it.

1.1 Grammar development with GF

Writing a multilingual grammar in GF consists
of writing (1) an abstract syntax that captures the
meanings of interest and (2) a number of concrete
syntaxes that map the meanings of the abstract
syntax to concrete representations in the natural
(or formal) languages relevant to the application.

Traditionally, GF grammars are created in a text
editor. For example, to create a grammar for com-
ments about food, the grammar author would cre-
ate an abstract syntax file Food.gf (Figure 1) and
perhaps a concrete syntax file FoodsGer.gf for
German (Figure 2). But text editors know very
little (if anything) about the syntax of GF gram-
mars, and thus provide little guidance for novice
GF users. Instead, to be able to write grammars
like the one above, users have to rely on sepa-
rately available documentation (manuals, tutorials
and books) for guidance.

For testing, grammars can be loaded in the GF
shell. For example, by loading FoodsGer.gf, the
user can check that the German sentence dieses
Brot ist sehr gut can be parsed and represented as
Pred (This Bread) (Very Good) in the abstract
syntax.

GF grammar source files can also be compiled
to Portable Grammar Format files (Angelov et al.,
2010) that can be used with the GF run-time li-
brary to include natural language processing in ap-

concrete FoodsGer of Foods =

open SyntaxGer, LexiconGer in {

lincat Comment = Utt;
Kind = CN;
Item = NP;
Quality = AP;

lin
Pred item qual = mkUtt(mkCl item qual);
This kind = mkNP this_Det kind;
That kind = mkNP that_Det kind;
Bread = mkCN bread_N;
Fish = mkCN fish_N;
Wine = mkCN wine_N;
Very quality = mkAP very_AdA quality;
Bad = mkAP bad_A;
Good = mkAP good_A;
Cold = mkAP cold_A;
Warm = mkAP warm_A;

}

Figure 2: Concrete syntax FoodGer.gf.

plications. The key operations provided by the
run-time library are parsing, generation, and (by
combining the former two) translation. The GF
run-time library is also available as a web service,
which can be used to create interactive natural
language web applications (Bringert et al., 2009;
Ranta et al., 2010). Examples can be seen in Fig-
ures 6 and 7.

While applications based on GF grammars
could be made available online by using the GF
web service, until now the grammars themselves
had to be created with offline tools that the gram-
mar developer had to download and install on
his/her own computer. With the cloud-based editor
presented here, the grammars can also be created
online.

1.2 Outline

In section 2 we describe the cloud-based grammar
editor introduced above. In section 3 we describe
a new technique for example-based grammar writ-
ing that we are adding support for in the cloud-
based editor. This makes it possible for a user with
minimal knowledge of GF grammar construction
to add new languages to a multilingual grammar
by translating automatically generated examples
in one of the existing languages to the new lan-
guage. In section 4 we present some implemen-
tation details and in sections 5 and 6 we describe
related and future work.

42

Figure 3: GF online editor for simple multilingual grammars

2 The GF online grammar editor

As the name suggests, the GF online editor for
simple multilingual grammars is available online
(Hallgren, 2013), so all that is needed to use the
editor is a device with a reasonably modern web
browser. Even smartphones and tablets can be
used. To help novice grammar authors, the editor
provides some guidance, e.g. by showing a skele-
ton grammar file and hinting how the parts should
be filled in. When a new part is added to the gram-
mar, it is immediately checked for errors.

Figure 3 illustrates what the editor looks like.
Editing operations are accessed by clicking on
editing symbols embedded in the grammar dis-
play: +, x and % to add, delete and edit items.
These are revealed when hovering over items. On
touch devices, hovering is in some cases simulated
by tapping, but there is also a button to ”Enable
editing on touch devices” that reveals all editing
symbols.

The current version of the editor supports a
small but useful subset of the GF grammar nota-
tion. Grammars consist of one module for the ab-
stract syntax, and a number of modules for con-
crete syntaxes. Proper error checking is done on
the fly for abstract syntax, but not (yet) for con-
crete syntax.

Grammars can import modules from the Re-
source Grammar Library (Ranta, 2009a), freeing
the grammar author from dealing directly with the
linguistic complexities of natural languages, such
as inflection and agreement.

2.1 Abstract syntax

The definition of an abstract syntax consists of

• a list of inherited abstract syntaxes,
• a list of category names, C1 ; ... ; Cn,
• a list of functions, Funi : Ci1 → ...→ Cin

• and the designation of a start category.

This is somewhat restricted compared to the full
GF grammar formalism, e.g. dependent types are
not supported.

Available editing operations include:

• Inherited abstract syntaxes can be added and
removed.
• Categories can be added, removed and re-

named. When renaming a category, occur-
rences of it in function types will be updated
accordingly.
• Functions can be added, removed, renamed

and edited. Concrete syntaxes are updated to
reflect changes.
• Functions can be reordered using drag-and-

drop.

The editor checks the abstract syntax for correct-
ness as it is entered. Syntactically incorrect func-
tion definitions are rejected. Semantic errors such
as duplicated definitions or references to unde-
fined categories, are highlighted. This is enough
to ensure that a grammar that is accepted by the
editor will also be accepted by the GF grammar
compiler.

43

Figure 4: Adding a new concrete syntax

2.2 Concrete syntax

When adding a new concrete syntax to a gram-
mar, the editor shows a list of supported natural
languages and the user just picks one. See Fig-
ure 4. The name of the new module is filled in
automatically based on naming conventions, e.g.
FoodsEng if abstract syntax is called Foods and
we are adding a translation to English. The body
of the new concrete syntax can be created by copy-
ing and modifying an existing concrete syntax, or
by starting with a skeleton based on the abstract
syntax.

The key components of a concrete syntax are
linearization types for the categories and lin-
earizations for the functions in the abstract syn-
tax. The editor automatically provides correct left-
hand sides for these, since they are determined by
the abstract syntax, while the right-hand sides can
be edited freely.

The editor allows a concrete syntax to open
some of the relevant Resource Grammar Library
modules. A list of suitable library modules is
shown, e.g., SyntaxEng and LexiconEng in
a concrete syntax for English, so the user does not
need to know their names by heart. See Figure 5.

The editor also supports definitions of param-
eter types and auxiliary operations, but usually it
is enough to rely on the types and operations pro-
vided by the Resource Grammar Library.

The editor checks all user editable parts of the
concrete syntax for syntactic correctness as they
are entered. Duplicated definitions of parameter
types or operations are highlighted. Checks for
other semantic errors are delayed until the gram-

Figure 5: Opening modules from the Resource
Grammar Library

Figure 6: Testing grammars in the Minibar

mar is compiled.

2.3 Compiling and testing grammars
When pressing the Compile button, the grammar
is uploaded to the server and compiled with GF,
and any errors not detected by the editor will be
reported. Error-free grammars can be tested by
clicking on the the Minibar button, which is a
web-based translation tool, and the Quiz button,
which is a web-based language training tool (Abo-
lahrar, 2011). See Figures 6 and 7.

2.4 Grammars in the cloud
While grammars created in the editor are stored
locally in the device by the browser, it is also pos-
sible to store grammars in the cloud. Each device
is initially assigned to its own unique cloud and
has its own set of grammars, but it is also possible
to merge clouds and share a common set of gram-
mars between multiple devices.

Users can also choose to “publish” a grammar.
A copy of the grammar is then added to a list of

44

Figure 7: Testing grammars in the Translation
Quiz

grammars visible to all users of the cloud-based
grammar editor.

3 Example-based grammar writing

The example-based grammar writing mechanism
is aimed at helping users who build concrete gram-
mars using the resource grammar for the given
language. The resource library provides over
300 functions for building grammatical constructs
such as predication, complementation, etc (Ranta,
2009b). Using the resource library is advanta-
geous on one hand, because it alleviates the dif-
ficulty of reimplementing language-specific fea-
tures every time when writing a grammar for the
language, but on the other hand it assumes a work-
ing knowledge of the resource library, which could
lead to a larger overall effort. We aim at freeing
users from this burden by making it possible for
them to write function linearizations by giving ex-
ample of their usage. In the current scenario, we
assume that a large lexicon covering the words that
could be used in the grammar is available already.
We will use the resource grammar enhanced with
the larger dictionary for parsing the examples from
the user in order to infer the right linearization
form.

Since the functions from the grammar could
take arguments, in order to give an example for
the usage of a certain function, we need to have
one example for each of its arguments in order to
get more precise information about the behavior

Figure 8: Example-based grammar construction

of the function. For this reason, only the function
for which all arguments can be found among the
already implemented functions, are highlighted as
available for the example-based method.

In order to clarify the usage of a certain func-
tion, its context is made explicit by embedding
the function into a tree returning the start category,
like in Figure 8 where ”this fish” is used to make
phrases like ”this fish is delicious”. Since certain
parts of the phrase are not relevant for the task,
they are underspecified by using ”?” instead. In
case that the grammar returns more than one parse
tree, the results are ranked in the descending or-
der of their probability (defined in the correspond-
ing resource grammar or defined by the user), and
the first tree from which the arguments can be ab-
stracted is chosen as the linearization tree.

The technique has been used as an experimental
way for developing a tourist phrasebook grammar
in GF for 4 languages (Ranta et al., 2011), but no
tool support was available at that time. The pos-
itive results obtained were a strong motivation to
make the method available to end users as part of
a GF grammar writing system.

The example-based grammar writing system is
still work in progress and the basic prototype cur-
rently available will be further developed and im-
proved. It is possible to use it already for 5 lan-
guages where a large dictionary is available in GF
(English, Swedish, Finnish, Bulgarian, French).

45

4 Implementation

The implementation of the cloud-based editor con-
sists of a client-side part and a server-side part.

The client-side part is written directly in
JavaScript. In total, roughly 6350 lines of
JavaScript (180KB) is loaded by the browser when
opening the editor. This divides roughly into 2800
lines written specifically for the editor, 2600 lines
of code for other components (the minibar) and
750 lines of supporting library code.

All server-side code is written in Haskell. This
includes the GF grammar compiler, the PGF run-
time library and the PGF web service (Bringert et
al., 2009). We created a new GF cloud service
API (Hallgren, 2014) to support the editor. It in-
cludes functionality for grammar syntax checking,
grammar upload, grammar compilation and access
to the GF shell. It’s implemented as 500 lines of
Haskell code.

To support example-based grammar writing, we
added 200 lines of client-side JavaScript code and
680 lines of Haskell code in the server.

5 Related work

GF is a grammar formalism comparable in expres-
sive power to HPSG (Pollard and Sag, 1994) and
LFG (Bresnan, 1982), but different due to the dis-
tinction between the abstract and concrete dimen-
sion of a grammar, along with the possibility to
share the abstract syntax which makes translation
between any pair of languages possible. In the
same way, the GF resource library could be com-
pared to two other multilingual resources based on
the above-mentioned formalisms: LinGO Gram-
mar Matrix (Bender et al., 2002) for HPSG and
ParGram (Butt et al., 2002) for LFG.

Since the task of developing a multilingual
grammar within such a grammar formalism poses
specific challenges, each system comes equipped
with its own IDE/editor that aids the grammar
development process. LinGO Grammar Matrix
has a grammar-customization system (Bender et
al., 2010) and ParGram has XLFG, a customized
IDE (Clément, 2009). While XLFG allows storing
and editing grammars, it is only available for En-
glish and French. The customization system from
LinGO Grammar Matrix allows specifying lin-
guistic features of certain grammar constructions
in the shape of a questionnaire and it is mainly
used for developing new language resources for
the Matrix library. The further use of the resources

is supported by a parser, sentence generator and fa-
cilities for profiling and regression testing (Oepen
and Flickinger, 1998).

In addition to the cloud-based IDE, GF also has
a desktop IDE, implemented as an Eclipse plugin
(Camilleri, 2012).

6 Future work

The GF grammar editor described here already
supports a useful subset of the GF grammar no-
tation. Some of the guidance and error checking
is done in the editor on the client side (resulting
in well integrated user friendly error indications),
some is delegated to the server (resulting in less
user friendly error messages). We do not expect to
create a full implementation of GF that runs in the
web browser.

If we want to support the full-fledged GF gram-
mar formalism, the easy way out would be to
duplicate a typical desktop development environ-
ment in the browser, i.e. create an environment
with a text editor and command line tools, or per-
haps a more integrated Eclipse-like environment.
But we would prefer to create something that is
more interactive and provides more guidance for
novice users, so we are thinking of an interactive
development environment in the style of proof as-
sistants based on type theory, such as Alfa (Hall-
gren, 2004) and Agda (Norell, 2007). However,
being a batch compiler, GF does currently not pro-
vide an API that makes it easy to create this kind
of development environment. If a GF server with
an appropriate API becomes available, it should
be possible to extend the editor to support a larger
fragment of GF, to provide more user guidance,
more user friendly error reporting, and in general
make more of the functionality in the existing GF
tools accessible directly from the online editor.

More work is needed on the grammar cloud
storage service. In particular, it is currently not
suitable for multiple users developing a grammar
in collaboration. This could be done by interfacing
with a online collaboration tool (like GitHub), or
by allowing concurrent access to shared grammars
and propagating edits to all users in real-time (like
in Google Docs).

Combining the cloud-based grammar editor
with other cloud-based tools opens up possibilities
for new applications, such as a tourist phrasebook
that can be extended by the user with a new topic
of interest, or a language training tool (like the one

46

in Figure 7) that instructors or students can cus-
tomize for training or testing a particular vocab-
ulary or particular grammatical forms. It should
be possible to make this kind of customizations in
minutes, without installing any software.

Future work on the example-based method in-
cludes combining it with traditional grammar writ-
ing and the possibility to develop more languages
in parallel and use one as an example for the other.
Moreover, since currently the method works for
the case when the linearization type is a category
from the resource library (noun phrase, sentence,
etc.), one could also extend the algorithm in or-
der to handle record types comprising more such
syntactic categories. Last but not least, we aim
at covering languages for which large dictionaries
are not available by making the method robust to
unknown words that could be later implemented
by the user.

References
Elnaz Abolahrar. 2011. Multilingual Grammar-Based

Language Training: Computational Methods and
Tools. Master’s thesis, Chalmers University of
Technology.

Krasimir Angelov, Björn Bringert, and Aarne Ranta.
2010. PGF: A Portable Run-time Format for Type-
theoretical Grammars. Journal of Logic, Language
and Information, 19:201–228. 10.1007/s10849-
009-9112-y.

Andrew W. Appel. 1998. Modern Compiler Imple-
mentation in ML. Cambridge University Press.

Emily M. Bender, Dan Flickinger, and Stephan Oepen.
2002. The grammar matrix: an open-source starter-
kit for the rapid development of cross-linguistically
consistent broad-coverage precision grammars. In
COLING-02 on Grammar engineering and evalua-
tion, pages 1–7, Morristown, NJ, USA. Association
for Computational Linguistics.

Emily M. Bender, Scott Drellishak, Antske Fokkens,
Laurie Poulson, and Safiyyah Saleem. 2010. Gram-
mar Customization. Research on Language & Com-
putation, 8(1):23–72. 10.1007/s11168-010-9070-1.

Joan Bresnan. 1982. The Mental Representation of
Grammatical Relations. MIT Press.

Björn Bringert, Krasimir Angelov, and Aarne Ranta.
2009. Grammatical framework web service. In
Proceedings of the Demonstrations Session at EACL
2009, pages 9–12, Athens, Greece, April. Associa-
tion for Computational Linguistics.

Miriam Butt, Helge Dyvik, Tracy Holloway King, Hi-
roshi Masuichi, and Christian Rohrer. 2002. The

Parallel Grammar project. In COLING-02 on Gram-
mar engineering and evaluation, pages 1–7, Morris-
town, NJ, USA. Association for Computational Lin-
guistics.

John J. Camilleri. 2012. An IDE for the Grammatical
Framework. Gothenburg, Sweden, June.

Lionel Clément. 2009. XLFG5 Documenta-
tion. https://signes.bordeaux.inria.
fr/xlfg5/doc/en/, October.

Ann Copestake. 2002. Implementing typed feature
structure grammars, volume 110. CSLI publica-
tions Stanford.

Thomas Hallgren. 2004. Home Page of the
Proof Editor Alfa. www.cse.chalmers.se/
˜hallgren/Alfa/.

Thomas Hallgren. 2013. GF online editor for sim-
ple multilingual grammars. http://cloud.
grammaticalframework.org/gfse/.

Thomas Hallgren. 2014. GF Cloud Service API.
http://cloud.grammaticalframework.
org/gf-cloud-api.html.

Ulf Norell. 2007. Towards a practical programming
language based on dependent type theory. Ph.D.
thesis, Department of Computer Science and En-
gineering, Chalmers University of Technology, SE-
412 96 Göteborg, Sweden, September.

Stephan Oepen and Daniel P. Flickinger. 1998. To-
wards Systematic Grammar Profiling Test Suite
Technology Ten Years After. Special Issue on Eval-
uation), 411, 12:411–436.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. University of Chicago
Press.

Aarne Ranta, Krasimir Angelov, and Thomas Hall-
gren. 2010. Tools for multilingual grammar-based
translation on the web. In Proceedings of the ACL
2010 System Demonstrations, pages 66–71, Upp-
sala, Sweden, July. Association for Computational
Linguistics.

Aarne Ranta, Ramona Enache, and Grégoire Détrez.
2011. Controlled Language for Everyday Use: the
MOLTO Phrasebook. Proceeding of the 2nd Work-
shop on Controlled Natural Languages (CNL 2010).

Aarne Ranta. 2004. Grammatical Framework: A
Type-Theoretical Grammar Formalism. The Jour-
nal of Functional Programming, 14(2):145–189.

Aarne Ranta. 2009a. The GF resource grammar li-
brary. Linguistic Issues in Language Technology,
2(2).

Aarne Ranta. 2009b. Grammars as Software Li-
braries. In Yves Bertot, Gérard Huet, Jean-Jacques.
Lévy, and Gordon Plotkin, editors, From Seman-
tics to Computer Science. Essays in Honour of

47

Gilles Kahn, pages 281–308. Cambridge Univer-
sity Press. http://www.cse.chalmers.se/
˜aarne/articles/libraries-kahn.pdf.

Aarne Ranta. 2011. Grammatical Framework: Pro-
gramming with Multilingual Grammars. CSLI Pub-
lications, Stanford. ISBN-10: 1-57586-626-9 (Pa-
per), 1-57586-627-7 (Cloth).

48

Proceedings of the Grammar Engineering Across Frameworks (GEAF) Workshop, 53rd Annual Meeting of the ACL and 7th IJCNLP, pages 49–56,
Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Formalising the Swedish Constructicon in Grammatical Framework

Normunds Gruzitis1 Dana Dannélls2 Benjamin Lyngfelt2 Aarne Ranta1

1Department of Computer Science and Engineering
2Department of Swedish
University of Gothenburg

1{name.surname}@cse.gu.se, 2{name.surname}@svenska.gu.se

Abstract

This paper presents a semi-automatic ap-
proach to acquire a computational con-
struction grammar from the semi-formal
Swedish Constructicon. The implemen-
tation is based on the resource grammar
library provided by Grammatical Frame-
work and can be seen as an extension to
the existing Swedish resource grammar.
An important consequence of this work is
that it generates feedback, explicit and im-
plicit, on how to improve the annotation
consistency and adequacy of the original
construction resource.

1 Introduction

Constructicon is a collection of conventionalized
pairings of form and meaning (or function), typ-
ically based on principles of Construction Gram-
mar (Goldberg, 2013).

The formalisation and implementation of a wide
coverage construction grammar is a highly rele-
vant task. From the linguistic point of view, it
leads to new insights on the interaction between
the lexicon and the grammar, as well as it al-
lows for testing the linguistic descriptions of con-
structions. From the language technology point of
view, the account of constructions facilitates lan-
guage processing in both monolingual and multi-
lingual settings, e.g. in information extraction and
machine translation.

Several approaches to Construction Grammar
have been proposed. Remarkable examples in-
clude Sign-Based Construction Grammar (Boas
and Sag, 2012) that uses Head-Driven Phrase
Structure Grammar (Pollard and Sag, 1994) as the
underlying formalism, Fluid Construction Gram-
mar (Steels, 2013) and Embodied Construction
Grammar (Bergen and Chang, 2013).

While the previous work has been mainly fo-
cused on English, our work is currently focused on

Swedish. However, the main difference is that we
test Grammatical Framework, GF (Ranta, 2004),
as a formalism and a toolkit for implementing
computational construction grammars. GF pro-
vides a built-in support for multilingual grammars,
which has a great potential for implementing, uni-
fying and interlinking constructions of different
languages, which, in turn, would be particularly
beneficial for the use in machine translation and
second-language learning.

In this paper we describe a methodology on how
to systematically formalise the semi-formal rep-
resentation of the Swedish Constructicon in GF,
showing that a GF construction grammar can be,
to a large extent, acquired automatically. A side
result of our work is that it has also helps to im-
prove the original construction resource.

2 Background

2.1 Swedish Constructicon (SweCcn)

SweCcn1 is a comparatively large open database
of Swedish constructions – partially schematic
multi-word units having both fixed and variable
parts (Lyngfelt et al., 2012). It particularly ad-
dresses constructions of relevance for second-
language learning, but also covers argument struc-
ture constructions, which concern matters of tran-
sitivity, voice, and event structure. Construction
descriptions are manually derived from corpus ex-
amples, and some of the examples are manually
annotated and added to each SweCcn entry. A
simplified example of how a construction is de-
scribed in SweCcn is given in Table 1.

Construction elements (CE) are either internal
or external. The internal CEs are a part of the
construction while the external CEs are a part of
the valency of the construction. In the structure
sketches, the internal CEs are bounded by brack-
ets. CEs are described in more detail by attribute-

1http://spraakbanken.gu.se/eng/sweccn

49

Name REFLEXIV RESULTATIV

Category VP
Frame CAUSATION

Defintion [Someone/something]NP performs/under-
goes [an action]Activity that leads (or is
supposed to lead) the [actor/theme]Pn,
expressed by reflexive, to [a state]Result.

Structure NP [V Pnrefl AP]
Internal Activity: {cat=V, role=Activity}

Pn: {cat=Pnrefl, role=Actor|Theme}
Result: {cat=AP, role=Result}

External NP: {cat=NP, role=Actor|Theme}
Example PeterNP [äterActivity sigPn mättResult]

Table 1: A simplified description of the Swedish
construction REFLEXIV RESULTATIV. The exam-
ple literally translates as ‘Peter eats himself full’.

value matrices that specify their syntactic and se-
mantic features.

Fixed CEs are represented by lexical units
(LU), and they refer to entries in SALDO, the
Swedish Associative Thesaurus (Borin et al.,
2013), which is the core lexicon of a large
macro-resource for Swedish, developed within the
Swedish FrameNet++ project (Borin et al., 2010).

Many constructions have a referential meaning,
more specifically, they are frame-bearing and are
thus linked to FrameNet frames. There is also an
ongoing work to link, when possible, the SweCcn
constructions with constructions in Berkeley Con-
structicon (Bäckström et al., 2014) as well as other
constructicons, notably the one for Brazilian Por-
tuguese (Torrent et al., 2014).

It should be noted that a central part of con-
struction descriptions in SweCcn is the free text
definitions. For example, the construction RE-
FLEXIV RESULTATIV roughly means ‘become AP
by V-ing’. Hence, äta sig mätt ‘eat himself full’
and skrika sig hes ‘shouting himself hoarse’ are
instances of the construction, whereas känna sig
trött ‘feel himself tired’ and skratta sig lycklig
‘laugh himself lucky’ are not. The difference is
captured by the free text definition, but not by the
formal features, therefore it unfortunately gets lost
in the automatic translation to GF.

In this experiment, we use a recent version of
SweCcn (a snapshot taken on June 9, 2015) which
contains 374 entries describing constructions of
different grammatical categories such as VP, NP
and S (see Table 2).

Category Total Ratio FrameNet
VP 105 28% 77
NP 85 23% 54
S 77 21% 50
PP 26 7% 22
AdvP 23 6% 19
XP 16 4% 4
AP 14 4% 13
other 28 7% 19

Table 2: The number of constructions in SweCcn.
The category XP represents any phrase type. The
column FrameNet shows the number of construc-
tions linked to the Swedish FrameNet.

2.2 Grammatical Framework (GF)

GF (Ranta, 2004) is a grammar formalism char-
acterized by its two-level approach to natural lan-
guage representation. One level, the abstract syn-
tax, accounts for the language-independent as-
pects, and the other level, the concrete syntax,
accounts for the language-specific aspects. The
same abstract syntax can be equipped with many
concrete syntaxes – reversible mappings from ab-
stract syntax trees to records (feature structures)
and strings – making the grammar multilingual.

Most importantly, GF provides a general-
purpose resource grammar library, RGL (Ranta,
2009), for currently 30 languages, all implement-
ing the same abstract syntax.

In order to hide the low-level details, RGL
has a high-level interface that provides construc-
tors like mkCl: NP -> VP -> Cl for building a
clause from a NP and a VP.2 The resource gram-
mars take care of agreement and word order.

One of the most developed languages in RGL,
in terms of syntactic and lexical coverage, is
Swedish. Its resource grammar also includes over
100,000 lexical entries from SALDO.3

3 Preprocessing of SweCcn

In the current experiment, we consider only the
105 constructions of type VP (verb phrase) from
which we exclude 9 whose status is ‘suggestion’.
Descriptions of the suggested constructions are
too immature to be processed. Currently we also

2http://www.grammaticalframework.org/lib/doc/
synopsis.html

3http://www.grammaticalframework.org/lib/src/
swedish/DictSwe.gf

50

do not include the 16 XP constructions which are
relevant to any phrase type, including VP.

We have chosen to begin with VP constructions
because they are dominating in SweCcn, and they
have the most complex internal structure – if our
approach can handle these constructions then it
should also be applicable for the rest.

According to the SweCcn annotation manual,4

constructions are described at two levels of detail:

1. A flat structure sketch that lists the formal el-
ements in the construction (see Structure in
Table 1). Each CE is represented in terms
of grammatical category (either word class or
phrase type), LU or just word form. The list
of CEs follows the expected word order. A
structure sketch may specify alternative real-
isation patterns of the same construction.

2. A set of feature matrices, one per CE (see
Internal and External in Table 1), that spec-
ify additional morphosyntactic constraints
which may be omitted in the more general
sketch for the sake of simplicity to a human
reader. Additionally, the feature matrices of-
ten specify the semantic roles and grammat-
ical functions, but we do not take this infor-
mation into account in the current work.
The word order is encoded only by the struc-
ture sketches; it is not reflected by the cor-
responding feature matrices as they can be
potentially reused by alternative patterns of
the same construction. Because the linking
between the sketches and matrices is not ex-
plicit, and the implicit links (matching cate-
gories, LUs etc.) are not unique in general,
the automatic mapping can be ambiguous. In
practice, however, it happens rarely.

Constructions may have optional CEs, alterna-
tive types of CEs or alternative LUs, and even al-
ternative word order. In the structure sketches, op-
tional CEs are delimited by parentheses, and alter-
native types/LUs are separated by a bar:

[V av1 Pnrefl (NP)]

[behöva1 NP1 till1 NP2|VP]

[snacka1|prata1|tala1 NPindef]

[N|Adj+städa1]
4https://svn.spraakdata.gu.se/sb/fnplusplus/

pub/constructicon/manual/sweccnmanual.pdf

Note that the variable CEs (represented by
grammatical categories) may have indices denot-
ing difference, formal identity (repetition), co-
reference, etc. In the case of a lexical construction
that represents a compound word, its internal CEs
are delimited by the plus sign indicating the con-
catenation. Suffixation is indicated by the hyphen.

The automatic preprocessing of SweCcn entries
consists of four steps:

1. Normalization of the structure sketches and
attribute values in the feature matrices.
SweCcn entries have been annotated manu-
ally, therefore inconsistently used spaces, in-
consistently used delimiters of alternative CE
types as well as inconsistent representation of
auxiliary or function CEs (e.g. sig1 vs. Pnrefl
vs. refl) is common.

2. In case of optional CEs and alternative
types of CEs, there are formally several
constructions compressed in one. The
original structures are rewritten so that
for each combination there is a sepa-
rate alternative structure. For instance,
[V av1 Pnrefl (NP)] is rewritten to
[V av1 Pnrefl NP] | [V av1 Pnrefl].
This however does not apply to alternative
LUs. If a CE is represented by a fixed set of
LUs, we assume that they are interchange-
able (synonymous). Otherwise they should
be either split into alternative constructions
(separate entries), or the CE should be made
more general.5

3. The rewritten structure sketches are enriched
with additional morphosyntactic information
from the feature matrices, so that a complete
description is at hand. The mapping of CEs
between the two layers of annotation is based
on values of the grammatical category and
LU attributes in the feature matrices (see Ta-
ble 1). Although such mapping in general is
based on a partial comparison as well as it can
be ambiguous, it has not led to incorrect re-
sults in the selected dataset,6 because we do
not consider the semantic roles.

5If a list of non-interchangeable but frame-evoking LUs is
replaced by a general grammatical category, the set of possi-
ble target words is still implicitly restricted by the FrameNet
frame which is evoked by the whole construction.

6Provided that the specifications are consistent across the
two layers.

51

4. The grammatical categories used in SweCcn
are converted to GF RGL categories. In spe-
cific cases, the conversion may lead into a
more general or more specific description as
well as it may include the morphosyntactic
tags and may depend on CEs in the con-
text. For instance, categories Adv, AdvP
and PP are all generalized to Adv while the
specification NPindef is elaborated in three
alternative substructures: [aSg Det CN] |
[aPl Det CN] | CN, where aSg Det is a
function representing the indefinite arti-
cle and requiring the singular agreement,
aPl Det requires the plural agreement, and
CN is a category that represents common
nouns (including modifiers, except determin-
ers). This requires a subsequent rewriting of
the whole construction as described in Step 2.
Few categories are not converted at this step;
their conversion is postponed to the genera-
tion of the GF grammar. For instance, Pc
(participle) and PcP (participle phrase) are
not converted to V and VP respectively, as
they have to be treated differently in the
concrete syntax: PcP is a VP that is fur-
ther converted to AP or Adv as illustrated
by FÅ RESULTATIV.AGENTIV in Sections 4.1
and 4.2.

Out of the 96 VP constructions that were pro-
cessed, only 43 turned out to be consistent in the
first attempt. For more than a half of constructions,
various inconsistencies were detected and reported
to SweCcn developers for manual inspection and
correction. After several iterations, the number of
consistent VP constructions increased to 93. The
remaining 3 are different corner cases that are ac-
tually consistent but are not yet supported by the
preprocessor and are thus skipped.

The following is a list of representative VP con-
structions with their original and rewritten struc-
ture descriptions that we use in Section 4 to illus-
trate the automatic generation of the GF grammar:

BEHÖVA NÅGOT TILL NÅGOT:
behöva mat till festen ‘need food to the party’
behöva1 NP1 till1 NP2|VP→
behövaV NP1 tillPrep NP2

| behövaV NP tillPrep VP

FÅ RESULTATIV.AGENTIV:
få gräsmattan klippt ‘get the lawn trimmed’
få0 NP PcP → fåV NP PcPperf

GÖRA SIG ADVP:
gör sig bra ‘does himself well’
göra1 Pnrefl AdvP → göraV reflPron Adv

SNACKA NP:
prata skolminnen ‘talk school memories’
snacka1|prata1|tala1 NPindef →
snacka|prata|talaV aSg Det CN

| snacka|prata|talaV aPl Det CN

| snacka|prata|talaV CN

VERBA AV SIG.TRANSITIV:
ta av mig skorna ‘take off myself shoes’
V av1 Pnrefl (NP)→
V avPrep reflPron NP | V avPrep reflPron

X-STÄDA:
storstäda ‘bigclean’
N|Adj+städa1 → N + städaV | A + städaV

Note that we ignore the SALDO sense identi-
fiers. We ignore the external CEs in the current ap-
proach as well, as they should be attached to con-
structions by the general syntactic rules already
provided by GF RGL. It is satisfactory also from
the future translation point of view, as the transla-
tion of external CEs should be compositional.

4 Generation of a GF Grammar

The rewritten structural descriptions of construc-
tions, as described in Section 3, provide sufficient
information to generate both the abstract and the
concrete syntax of a SweCcn-based construction
grammar, an extension to the Swedish GF resource
grammar.7

4.1 Abstract Syntax

The generation of the abstract syntax is rather
straight forward. Each construction is represented
by one or more functions depending on how many
alternative structure descriptions are produced in
the preprocessing steps. The name of a function
corresponds to the name of the construction suf-
fixed by an index if there is more than one function
per construction. For the current input data, the 93
VP constructions resulted in 127 functions. The
maximum and average numbers are respectively 6
and 1.4 functions per construction.8

7https://github.com/GrammaticalFramework/
gf-contrib/tree/master/SweCcn

8The max number is produced by SNACKA NP.EMFAS:
[snacka1|prata1 (AP) NPindef].

52

Each function takes one or more arguments that
correspond to the variable CEs of the respective
alternative construction description. In the rewrit-
ten structure descriptions, the variable CEs can be
formally distinguished from fixed CEs (LUs and
structural words) by the first letter of each CE: the
variable CEs always start with an upper case letter
while the fixed CEs start with a lower case letter.
The fixed CEs are not represented by the abstract
syntax. The variable CEs are represented only by
their grammatical categories; other morphosyntac-
tic constraints (if any) are handled by the concrete
syntax.

Constructions listed at the end of Section 3 are
represented by the following abstract functions:

behöva något till något1: NP -> NP -> VP

behöva något till något2: NP -> VP -> VP

få resultativ agentiv: NP -> VP -> VP

göra sig AdvP: Adv -> VP

snacka NP1: CN -> VP

snacka NP2: CN -> VP

snacka NP3: CN -> VP

verba av sig transitiv1: V -> NP -> VP

verba av sig transitiv2: V -> VP

x städa1: N -> VP

x städa2: A -> VP

4.2 Concrete Syntax
As our initial investigation unveiled, many con-
structions can be implemented in GF by system-
atically applying the high-level RGL constructors.
For instance, behöva något till något1 can be
implemented as shown in Figure 1 by first mak-
ing a two-place verb (V2) from the V element and
then combining it with the first NP element into a
VP. The preposition can be combined with the sec-
ond NP element into a prepositional phrase (Adv)
which can then be attached to the VP. The ques-
tion is how to make such constructor applications
systematically given the various construction de-
scriptions.

Essentially, this is a parsing problem itself. We
can look at CEs as words in the construction de-
scription language for which we need a grammar
to combine the lists of CEs into trees of RGL con-
structors and their arguments.

In order to address this issue, we have de-
fined an auxiliary GF grammar to generate the

behöva_något_till_något1 np1 np2 =
mkVP
(mkVP (mkV2 (mkV "behöver")) np1)

(mkAdv (mkPrep "till") np2)

Figure 1: The expected implementation for the
function behöva något till något1.

implementation of functions in the GF construc-
tion grammar. To keep the code-generating gram-
mar simple, it accepts only the categories of CEs,
some additional constraints and certain structural
words. The preprocessed construction descrip-
tions are generalized before parsing; LUs are in-
serted back in a post-processing step. For in-
stance, behövaV NP1 tillPrep NP2 is generalised
to {V} NP {Prep} NP, where the curly brack-
ets indicate fixed CEs. Fragments of the code-
generating grammar related to this structure are
listed in Figure 2 and Figure 3.

fun mkV2: V -> V2

fun mkVP__V2_NP: V2 -> NP -> VP
fun mkVP__VP_Adv: VP -> Adv -> VP

fun mkAdv: Prep -> NP -> Adv

fun _mkV_: V

fun _mkPrep_: Prep

fun _NP_: NP

Figure 2: A simplified fragment of the abstract
syntax of the auxiliary code-generating grammar.

According to the auxiliary grammar, the parse
tree for “{V} NP {Prep} NP” is

mkVP__VP_Adv
(mkVP__V2_NP (mkV2 _mkV_) _NP_)
(mkAdv _mkPrep_ _NP_)

which corresponds to the expected implementa-
tion as shown in Figure 1 after the post-processing
is done. The post-processing involves three steps:

1. Remove all suffixes delimited by the dou-
ble underscore. The suffixes are used just to
make the function names unique in the auxil-
iary grammar.

2. Sequentially replace all placeholders of the
fixed CEs, annotated as mkX , by the actual
lexical constructors. In case of verbs, con-
structors (inflectional paradigms) specified in

53

param Voice = Act | Pass

lincat

V, V2 = Voice => Str
VP, NP, Adv, Prep = Str

lin

mkV2 v = \\voice => v ! voice

mkVP__V2_NP v2 np = v2 ! Act ++ np
mkVP__VP_Adv vp adv = vp ++ adv

mkAdv prep np = prep ++ np

mkV = table {
Act => "{V}"
Pass => "{Vpass}"}

mkPrep = "{Prep}"
NP = "NP"

Figure 3: A simplified fragment of the concrete
syntax of the auxiliary code-generating grammar.

the GF implementation of SALDO (see Sec-
tion 2.2) are reused.

3. Sequentially replace all placeholders of the
variable CEs, annotated as X , by the actual
variable names, e.g. replace the first NP by
np1 and the second NP by np2.

Note that the auxiliary code-generating gram-
mar, in general, is ambiguous – it can return sev-
eral alternative code skeletons for a given CE list.
However, it should hold that all alternatives accept
and linearise the same strings. Our heuristics is
to take the shortest implementation, which is sup-
ported by the intuition that the shortest ones corre-
late with the simplest ones.

If we consider the alternative realization of
BEHÖVA NÅGOT TILL NÅGOT represented by the
function behöva något till något2 , the pars-
ing with the auxiliary grammar fails at the element
VP. Indeed, there is no straightforward constructor
provided by RGL that would combine a Prep with
a VP or an Adv (as the in-order-to-VP should be
first converted to Adv). Thus, a lower level means
have to be applied to implement this function.

The implementation generated for the rest of
functions listed in Section 4.1 is given below (in
a slightly simplified form):

få_resultativ_agentiv np vp = mkVP
(mkV2A (mkV "få"))
np (PresPartAP vp)

göra_sig_AdvP adv = mkVP
(mkVP (reflV (mkV "göra"))) adv

snacka_NP1 cn = mkVP

(mkV2 (mkV ("snacka"|"prata"|..)))
(mkNP aSg_Det cn)

snacka_NP2 cn = mkVP

(mkV2 (mkV ("snacka"|"prata"|..)))
(mkNP aPl_Det cn)

snacka_NP3 cn = mkVP

(mkV2 (mkV ("snacka"|"prata"|..)))
(mkNP cn)

verba_av_sig_transitiv1 v np = mkVP
(mkV2 (reflV
(partV v (toStr (mkPrep "av")))))

np

verba_av_sig_transitiv2 v = mkVP
(reflV
(partV v (toStr (mkPrep "av"))))

x_städa1 n = mkVP
(prefixV (toStr n) (mkV "städar"))

x_städa2 a = mkVP
(prefixV (toStr a) (mkV "städar"))

As it was already mentioned, for some functions
the implementation has to be based not only on
the high-level language-independent interface of
RGL but also on low-level language-specific pa-
rameters. To keep the GF code generation flexible
and functional, we have defined some helper func-
tions (in the construction grammar) that wrap the
low-level code and make it reusable. For instance,
the helper function toStr takes a preposition, ad-
jective or noun and returns its base form as a plain
string which can then be passed, for instance, to
the RGL function partV to make a particle verb, or
to another helper function prefixV to make a com-
pound verb.

As for LUs, note that they are implemented, in
general, as free alternatives, which means that any
of them will be accepted while parsing but the first
one will always be used for the linearisation.

In the result, given the 127 functions in the ab-
stract syntax, we have automatically generated the
implementation for 98 functions (77%). At least
one function is implemented for 73 out of 93 con-
structions (78%).

5 Analysis of the Initial Results

We conducted two evaluations, manual and auto-
matic, to determine whether the automatically im-
plemented functions can successfully parse the re-
spective Swedish constructions and whether they

54

Functions Examples
Exemplified

functions
Implemented 51 57 24
Pending 13 16 6
Total 64 73 30

Table 3: Statistics of the manually compiled test
corpus: the number of examples belonging to the
implemented and pending concrete functions in
the generated construction grammar, and the num-
ber of functions having at least one test example.

can cope with different linguistic phenomena. The
manual evaluation was based on a subset of se-
lected VP constructions and selected examples
from the annotated sentences in SweCcn. The
automatic evaluation was based on the whole
SweCcn dataset of all VP constructions.

For the manual evaluation, we complied a small
test corpus containing 73 annotated examples, of
which 57 turned out to have a corresponding con-
crete function in the construction grammar. Ta-
ble 3 summarizes the total number of examples
that belong to any of the implemented functions
and the total number of examples that belong to
the functions whose implementation is pending, as
well as the number of functions that have at least
one test example. In the manually compiled cor-
pus, only about half of the functions have at least
one test example, and for those that have, there are
two examples on average.

Out of the 57 examples that have a correspond-
ing concrete function, 53 examples were success-
fully parsed yielding a coverage of 93%. It is
important to mention that the relatively high cov-
erage is achieved partially because we replaced
all the compounds and proper names which were
missing in the lexicon (17 words in total). The re-
maining 7% are examples for which no parse tree
was returned. A closer look at those cases unveils
that the parser mostly failed because of: (i) annota-
tion errors in the SweCcn database, for instance, a
feature matrix constrains the singular form of a NP
although the plural form exists among the anno-
tated examples; (ii) ill-formed sentences (with re-
spect to the grammar), often containing coordinat-
ing conjunctions, for instance, jag och min sambo
ska till våra vänner ‘me and my partner shall to
our friends’ – the parser expects a verb such as gå
‘go’ after ska ‘shall’.

Errors grounded in the manual annotation of the

Functions Examples
Exemplified

functions
Implemented 98 224 65
Pending 29 40 11
Total 127 264 76

Table 4: Statistics of the automatically acquired
test corpus. Compare to Table 3.

SweCcn entries were reported to SweCcn devel-
opers and are already partially corrected. Errors
grounded in the automatic grammar generation re-
quire a closer analysis of how these constructions
can be systematically implemented using lower
level means of RGL.

For the automatic evaluation, we implemented a
script which pre-processes the annotated SweCcn
sentences belonging to the VP constructions and
parses each example using the generated GF gram-
mar. Several heuristics on how to insert the sub-
ject to make a proper clause before it is parsed are
applied. Heuristics mainly concern the tense and
type of the verb given a construction with which
it should be parsed. Table 4 summarizes the auto-
matically acquired test corpus.

Out of the 224 examples for which the corre-
sponding concrete function is implemented, 157
were successfully parsed, yielding a coverage of
70%. An investigation of the examples that failed
to parse unveils that these examples: (i) con-
tain multi-word compounds; (ii) are more than
10 words long, containing irrelevant phrases and
punctuations that fall outside the construction;
(iii) contain complex syntactic structures that in-
volve coordination and subordination.

Our analysis shows that many of the failures
lead to false negative evaluation results. To avoid
these and to allow for a more adequate evalua-
tion, there are several complementary options we
have to consider. First, the grammatical cate-
gories could be included in the annotated exam-
ples, but it depends on the SweCcn developers.
Second, we could prepare a treebank, at least one
abstract tree for each function, to allow for the op-
posite testing – to check if the functions gener-
ate correct linearizations. Third, we could manu-
ally derive a larger post-edited test corpus from the
SweCcn dataset of annotated examples. For func-
tions having no test example, we might exploit
the GF’s built-in support for generating random
trees. The linearizations could then be presented

55

to SweCcn developers for examination and con-
sideration of whether an example should be added
to the database.

When it comes to the lexicon, the coverage of
lexical units is very high. Most of the words the
parser fails with are proper names and compounds.
These could be extracted from the SweCcn corpus
and added to the lexicon if access to the grammat-
ical categories is available.

6 Conclusions and Future Work

We have taken a functional view to acquire a com-
putational construction grammar in Grammatical
Framework from the semi-formal representation
of the Swedish Constructicon. We have presented
an approach to detect and correct inconsistencies
and errors in the original resource of construc-
tions. We were able to improve the quality of the
resource and thereby increase its value for the use
in language technology applications.

Following the proposed approach, the imple-
mentation of a construction grammar can be au-
tomatically generated for nearly 80% of the con-
structions (functions) achieving a 70–90% accu-
racy, and there is clear space for improvement.
However, it is still an open question how far we
should advance the automation in order to keep it
cost effective; the rest can be implemented or post-
edited manually. So far we have avoided any man-
ual intervention in the generated grammar because
SweCcn is being actively improved and extended
in parallel to our work, and this would complicate
the synchronisation of changes.

Regarding future work, a rather short-term goal
is to extend the grammar generator to cover the
other major types of constructions as well. This
would primarily require the extension of the aux-
iliary code generating grammar. Among the long-
term goals is to take this approach from the mono-
lingual construction grammar to a multilingual
one. This would require not only taking the links
to FrameNet into account but also adapting the
processing and generation pipeline to the con-
structicons of other languages. This also relates
to our previous research on implementing a multi-
lingual FrameNet-based grammar in GF (Dannélls
and Gruzitis, 2014). The GF construction gram-
mar and FrameNet grammar approaches are com-
plementary to each other, at least with regard to
constructions with a referential meaning, and an
integration of them would be mutually beneficial.

Acknowledgements

This work was supported by Swedish Research
Council under Grant No. 2012-5746 (Reliable
Multilingual Digital Communication) and by the
Centre for Language Technology in Gothenburg.

References
Linnéa Bäckström, Benjamin Lyngfelt, and Emma

Sköldberg. 2014. Towards interlingual construc-
ticography. On correspondence between constructi-
con resources for English and Swedish. Frames,
constructions and computation. Special issue of
Constructions and Frames, 6(1).

Benjamin K. Bergen and Nancy Chang. 2013. Embod-
ied Construction Grammar. In The Oxford Hand-
book of Construction Grammar.

Hans C. Boas and Ivan A. Sag, editors. 2012. Sign-
based Construction Grammar. CSLI Publications.

Lars Borin, Dana Dannélls, Markus Forsberg, Maria
Toporowska Gronostaj, and Dimitrios Kokkinakis.
2010. The past meets the present in Swedish
FrameNet++. In Proceedings of EURALEX.

Lars Borin, Markus Forsberg, and Lennart Lönngren.
2013. SALDO: a touch of yin to WordNet’s yang.
Language Resources and Evaluation, 47(4).

Dana Dannélls and Normunds Gruzitis. 2014. Extract-
ing a bilingual semantic grammar from FrameNet-
annotated corpora. In Proceedings of LREC.

Adele E. Goldberg. 2013. Constructionist approaches.
In The Oxford Handbook of Construction Grammar.

Benjamin Lyngfelt, Lars Borin, Markus Forsberg, Ju-
lia Prentice, Rudolf Rydstedt, Emma Sköldberg, and
Sofia Tingsell. 2012. Adding a constructicon to the
Swedish resource network of Språkbanken. In Pro-
ceedings of KONVENS.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. University of Chicago
Press.

Aarne Ranta. 2004. Grammatical Framework, a type-
theoretical grammar formalism. Journal of Func-
tional Programming, 14(2).

Aarne Ranta. 2009. The GF Resource Grammar Li-
brary. LiLT, 2(2).

Luc Steels. 2013. Fluid Construction Grammar. In
The Oxford Handbook of Construction Grammar.

Tiago Timponi Torrent, Ludmila Meireles Lage,
Thais Fernandes Sampaio, Tatiane da Silva Tavares,
and Ely Edison da Silva Matos. 2014. Revisiting
border conflicts between FrameNet and Construc-
tion Grammar. Constructions and Frames, 6(1).

56

Proceedings of the Grammar Engineering Across Frameworks (GEAF) Workshop, 53rd Annual Meeting of the ACL and 7th IJCNLP, pages 57–64,
Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Representing Honorifics via Individual Constraints

Sanghoun Song
Division of Linguistics and Multilingual Studies

Nanyang Technological University
Singapore

sanghoun@ntu.edu.sg

Abstract

Within the context of grammar engineer-
ing, modelling honorifics has been re-
garded as one of the components for im-
proving machine translation and anaphora
resolution. Using the HPSG and MRS
framework, this paper provides a compu-
tational model of honorifics. The present
study incorporates the honorific informa-
tion into the meaning representation sys-
tem via Individual Constraints with an eye
toward semantics-based processing.

1 Introduction

Honorific forms express the speaker’s social atti-
tude to others and also indicate the social ranks of
the participants in the discourse and the intimacy.
Because honorifics are crucial for using the lan-
guage in a socially correct way, they have been
studied in computational linguistics as well as the-
ories of grammar. Particularly, using the hon-
orific information improves anaphora resolution,
and helps machine translation systems provide
more natural-seeming output sentences (Mima et
al., 1997; Siegel, 2000; Nariyama et al., 2005).

This paper provides a way of modelling hon-
orifics within the formalism of grammar-based
language processing. Building upon Head-driven
Phrase Structure Grammar (Pollard and Sag,
1994, HPSG) and Minimal Recursion Semantics
(Copestake et al., 2005, MRS), the present study
suggests using Individual CONStraints (hence-
forth, ICONS) for representing honorifics from the
perspective of multilingual processing.

This paper is structured as follows: Section 2
presents some background knowledge of the cur-
rent study. Section 3 proposes using Individual
Constraints for modelling the honorific system.
Building upon the specification, Section 4 shows
how honorific expressions can be translated across

different honorific types of languages. Section 5
reports a small experiment to see if the current
model contributes to semantics-based processing.

2 Background

2.1 Forms of Expressing Honorifics
A cross-linguistic survey reveals that there are
three ways of expressing honorifics (Agha, 1994;
Ide, 2005): (i) pronouns, (ii) inflection, and (iii)
suppletives. Different languages use a different
range of honorific systems, but it appears that there
exists a hierarchy in the system of honorification,
as presented in Table 1. Note that some languages
(e.g. English) use no honorific forms.

Table 1: Honorification hierarchy
no forms < pronouns <inflection< suppletives
English, ...

Chinese, German, ...
Javanese, Hindi, ...

Japanese, Korean, ...

The most widespread linguistic phenomenon re-
garding honorific expressions can be found in the
taxonomy of personal pronouns. In many lan-
guages, personal pronouns (particularly, second
pronouns) are dualized, viz. ordinary (a.k.a. in-
formal) forms and honorific (a.k.a. formal) forms.
For example, Chinese employs two second per-
sonal pronouns: 你 nı̌ and您 nı́n. Both sentences
provided in (1) convey a meaning like “What is
your name?” in English.

(1) a. 你/您
nı̌/nı́n
2.SG

叫
jiào
be.called

什么
shénme
what

名字
mı́ngzi
name

？
?
PU

b. #你/您
nı̌/nı́n
2.SG

贵
guı̀
noble

姓
xı̀ng
last.name

？
?
PU [cmn]

(1a) is a plain way to ask someone’s name, in
which both pronouns can be felicitously used. In
contrast, (1b) is a way of asking in a courteous
manner, in which the use of你 nı̌ is inappropriate.

57

That is to say, the predicate in (1b) 贵姓 guı̀xı̀ng
is a marked expression in terms of honorification.

Some languages employ a more complicated
honorific system. In Japanese, Korean, Javanese,
Hindi, and some other languages, the inflectional
paradigm is conditioned by the honorific rela-
tions between dialogue participants (Siegel, 2000;
Ohtake and Yamamoto, 2001; Kim and Sells,
2007). For instance, in Japanese and Korean, if
the subject is in the honorific form, the predicate
is preferred to be in the honorific form, as exem-
plified in (2). Note that先生 sensei ‘teacher’ is an
honorific word, and the verbal form o+STEM+ni
naru is used to signify honor to the subject.

(2) 先生
sensei
teacher

は
wa
TOP

本
hon
book

を
o
ACC

お読み
o-yomi
HON-read

になり
ni nari
become

ました
mashi-ta
HON-PST

‘The teacher read a book.’ [jpn] (Dalrymple, 2001, p.
18)

Other elements can also be marked with respect
to honorification. When non-subjects (e.g. ob-
jects and obliques) are honored, the canonical ver-
bal form in Japanese is o+STEM+suru. When the
speaker wants to express an honor to the hearer in
Japanese, a verbal ending masu is used as shown
in the last word of (2). On the other hand, the
nominal inflectional system is also influenced by
honorifics, as exemplified in (3).

(3) a. お元気
o-genki
HON-good.health

です
desu
COP

か
ka
QUES

‘How are you (honored)?’

b. 私
watashi
1.SG

は
wa
TOP

元気
genki
good.health

です
desu
COP

‘I am fine.’ [jpn]

In (3a), the addressee is presumed to be an hon-
ored person, and thereby the prefix o- canonically
co-occurs with genki ‘good.health’. In contrast,
(3b) explains the speaker’s own status, and thereby
the honorific marker o- does not appear.

Some languages, such as Korean and Japanese,
make ample use of suppletive forms of honori-
fication. For example, Japanese has three verbs
for ‘eat’: 食べる taberu (neutral), 召し上がる
meshiagaru ‘(An honoree) eats’, and頂く itadaku
‘(An honorer) eats’. These suppletive forms can
often be used with the inflectional forms men-
tioned before; for example, お-召し上がり-に
なる o-meshiagari-ni naru ‘(Someone highly re-
spected) eats’ (Nariyama et al., 2005, p. 93-94).

Therefore, a single expression can involve all three
types of honorification, as shown in (4).

(4) 책을
chayk-ul
book-ACC

드리셨습니다.
tuli-si-ess-supni-ta
give(HON)-HON-PST-HON-DECL

‘(An honoree) gave a book (to another honoree).’
(The hearer is also an honoree.) [kor]

The verb in (4) contains three honorific forms for
the object, the subject, and the addressee. The lex-
eme 드리- tuli- is a suppletive counterpart of 주-
cwu- ‘give’. This verb implies the receiver is re-
spectable. The second one is the suffix -si-, which
indicates the subject is an honoree. The third one
is the ending suffix -supni-, which indicates that
the speaker expresses a respect to the hearer.

There are also nominal suppletive forms. The
different lexical items that denote the same refer-
ent sometimes indicate the relative degree of fa-
miliarity to the referent. For example, kinship
terms in Japanese vary depending on the relation-
ship between the speaker and the referent: When
talking about the speaker’s own grandfather with
others in a modest attitude,祖父 sofu is normally
used. When either denoting the other’s grandfa-
ther or calling the speaker’s grandfather friendly
and informally, お爺さん o-jii-san is normally
used. This contrast shows that o-jii-san lexically
involves an honorific information, whereas sofu is
neutral. On the other hand, because o-jii-san can
be used to denote both the other’s grandfather and
the speaker’s own grandfather, the honorific infor-
mation has to be flexibly represented so as to cover
the two potential relations.

In addition to the forms discussed hitherto,
some particular constructions, such as passives
and interrogatives, can serve to express honorifi-
cation. However, the meaning is just pragmati-
cally conveyed in this case. Such a construction
is not a necessary condition but a sufficient con-
dition for expressing honorifics. Not all passive
sentences in Japanese necessarily involve an hon-
orific relation. In contrast, if the o+STEM+ni naru
form in Japanese is used, then the subject is pre-
sumed to be an honoree. Since the current work is
exclusively concerned with honorific forms, these
constructions are out of the scope of this paper.

2.2 Motivations

Honorifics have often been regarded as agreement
phenomena just as the subject-predicate agree-
ment in many European languages (Boeckx, 2006;

58

Kim et al., 2006). However, there is an opposing
view to this (Choe, 2004; Bobaljik and Yatsushiro,
2006; Kim and Sells, 2007). One counterexample
is provided in (5).

(5) 김선생님이
Kim-sensayng-nim-i
Kim-teacher-HON-NOM

오(시)었다
o-(si)-ess-ta
come-(HON)-PST-DECL

‘Teacher Kim came.’ [kor] (Choe, 2004, p. 546)

The subject of (5) contains an honorific form 님
nim, but the predicate optionally takes the hon-
orific marker시 -si- though the verb with the hon-
orific marker sounds more natural. Along this line,
the current study does not constrain honorification
as a way of agreement.

There are also a couple of reasons for not fol-
lowing honorification-as-agreement. These rea-
sons make it necessary to model honorifics as flex-
ibly as possible.

First, honorification is a matter of tendency
rather than restriction. Notice that tendency and
restriction are not on a par with each other in gram-
mar engineering. Corpus data provide more than a
few cases in which a mismatch of honorific forms
happens, as exemplified in (5). Grammar engi-
neering systems must work robustly for even less
frequent items if the forms appear in naturally oc-
curring texts and unless they critically violate the
principle of human language.

Second, honorification is a matter of accept-
ability rather than grammaticality. Acceptabil-
ity is primarily concerned with appropriateness,
whereas grammaticality confirms the linguistic
rules mostly provided by linguists. Thus, accept-
ability distinguishes not grammatical and ungram-
matical sentences, but felicitous and infelicitous
ones. In a similar vein, Zaenen et al. (2004) argue
that animacy is mainly relevant to acceptability:
For instance, the choice between the Saxon gene-
tive and the of -genetive in English is sensitive to
animacy, but the difference has more to do with
felicity. The same goes for honorification. The
choice of honorific forms leads to a difference in
acceptability which forms a continuous spectrum.

3 Individual Constraints on Honorifics

Minimal Recursion Semantics is the formalism
employed to compute semantic compositionality
in the present work. In addition, the current work
employs ICONS (Individual CONStraints) in or-
der to incorporate discourse-related phenomena
into semantic representation of human language

sentences. The representation method used in the
present study (i.e. MRS+ICONS) has to do with
not only semantic information incrementally gath-
ered up to the parse tree, but also other compo-
nents required to be accessed in the process of
cross-lingual processing. MRS+ICONS enables
us to model several discourse-related items within
an intrasentential system (i.e. sentence-based pro-
cessing). Notice that there exist several discourse-
related items that can be at least partially resolved
without seeing adjacent sentences. This can be
conceptualized in the format of Dependency MRS
(Copestake, 2009), as exemplified in (6).

(6) a. John
x1

likes himself.
x2 [x1 eq x2]

b. John
x1

likes him.
x2 [x1 neq x2]

Himself in (6a) equals the subject John, while him
in (6b) does not. The notation in the bracket in
each example indicates the relationship between
two individuals: equal and non-equal. That is to
say, anaphora can be partially identified within an
intrasentential domain via such a binary relation.
There are some other phenomena that require con-
textual information in theory but can be partially
resolved in practice in a way similar to (6), and
honorification is one of them.

The current work represents honorifics as a bi-
nary relation between two individual elements. A
set of honorific information is stored into a bag of
constraints, and the value is only partially speci-
fied unless there is a clue to identify the honorific
relation within the intrasentential context.

3.1 Comparision to Previous Approaches
On the one hand, MRS+ICONS makes honori-
fication (basically a pragmatic information) vis-
ible in semantic representation with an eye to-
ward semantics-based language processing. In
the previous HPSG-based studies, honorifics are
treated as a typed feature structure under CTXT
(ConTeXT). This local structure includes C-
INDICES whose components are SPEAKER and
ADDRESSEE (Siegel, 2000; Kim et al., 2006). In
the LFG-based studies, honorification is regarded
as an F-structure, given that it is one of the reliable
tests to diagnose subjecthood (Dalrymple, 2001).
Outside the scope of grammar-based deep process-
ing, several studies make use of shallow process-
ing techniques, such as POS-based pattern match-
ing rules and regular expressions, for paraphras-

59

ing honorific expressions (Ohtake and Yamamoto,
2001, among others). In sum, no previous ap-
proach represents honorifics into a (near) logical
form. In the semantics-based processing, all com-
ponents that have a part in transfer and generation
must be accessed in semantic representation.

On the other hand, the current model provides
computational flexibility for handling honorifica-
tion. Many previous studies on honorification em-
ploy a syntactic and/or semantic feature [HON
bool] (Kim et al., 2006, among others). However,
this feature is sometimes misleading for computa-
tional processing of honorifics for three reasons.
First, there exist more than a few mismatches
between honorific forms in real texts written in
Korean and Japanese (i.e. no honorification-as-
agreement (Choe, 2004)). [HON bool] is too re-
strictive to analyze rather infelicitous but accept-
able honorific expressions (§2.2). For example,
the two types of second personal pronouns in Chi-
nese are interchangeable in many cases as pro-
vided in (1a), and the use of the informal pro-
noun你 nı̌ in (1b) merely results in infelicity (not
ungrammaticality). The current work deals with
honorifics grounded upon the premise “parsing ro-
bustly, generating strictly” (Bond et al., 2008). All
potential honorific forms can be parsed robustly
and flexibly, but the generation outputs are made
strictly and felicitously. Second, [HON bool] can-
not fully reflect the fact that honorifics are some-
times ambiguous and the specific meaning can be
incrementally resolved up to the parse tree (Kim
and Sells, 2007). For example, お爺さん o-jii-
san ‘elderly man’ in Japanese can be used either
informally or formally, and the choice between
them depends on syntactic configuration. The cur-
rent work makes use of a type hierarchy to con-
strain honorifics (see Figure 1), which manipulates
the potential ambiguity and identifies the mean-
ing throughout unification of structures. Third,
the Boolean feature is too crude to place different
types of constraints on subjects, objects, and ad-
dressee. For instance, the verb of (4) (in Korean)
includes three HON glosses, and they have differ-
ent honorific relations. MRS+ICONS represents
honorifics as a binary relation amongst individu-
als, such as speaker, hearer, and referents.

3.2 Fundamentals
MRS+ICONS is structured as shown in (7). The
value type is icons whose components are IARG1
and IARG2. Since ICONS stands for a binary re-

lation between two individuals, their value type is
individual (a supertype of event and ref-ind).
(7)

mrs+icons

HOOK

hook

GTOP handle

LTOP handle

INDEX individual

XARG individual

ICONS-KEY icons

SPEAKER-KEY ref-ind

HEARER-KEY ref-ind

RELS diff-list

HCONS diff-list

ICONS

〈

! ...,

icons

IARG1 individual

IARG2 individual

,... !

〉

On the other hand, the HOOK structure, which
keeps track of the features that need to be
externally visible upon semantic composition,
has three additional attributes, viz. ICONS-KEY,
SPEAKER-KEY, and HEARER-KEY. These fea-
tures function like a pointer in the compositional
construction of the semantic structure. They are
required to mark the constituent analyzed as the
speaker or the hearer of an utterance and deliver
the information up to the parse tree. In particu-
lar, first and second personal pronouns specify this
value as their own index (§3.4).

CTXT (under local) includes C-INDICES just
as Jacy does (Siegel, 2000), but the names are dif-
ferent as presented in the following AVM. Note
that the counterpart of “speaker” must be “hearer”,
and that of “addressee” must be “addressor”. The
value type is ref-ind, because the speaker and the
hearer are also referential individuals.

(8)

local

CAT cat

CONT mrs

CTXT

ACTIVATED bool

PRESUP diff-list

C-INDICES

[

SPEAKER ref-ind

HEARER ref-ind

]

The values of SPEAKER and HEARER re-
main underspecified until an utterance is estab-
lished. The typed feature structure of utterance
is presented in (9), in which SPEAKER-KEY
and HEARER-KEY under CONT (i.e. mrs) are
co-indexed with SPEAKER and HEARER un-
der CTXT. Unless the SPEKER-KEY and the
HEARER-KEY are assigned a specific value dur-
ing the construction of the parse tree, the values
are still left underspecified. If the value is not
specified until an utterance is built up, that means
that the speaker and the hearer cannot be identified
within the intrasentential domain.

60

(9)

utterance

UTTERED +

CONT

[

SPEAKER-KEY 1

HEARER-KEY 2

]

CTXT

[

SPEAKER 1

HEARER 2

]

ARGS

〈

H

sat-or-frag

UTTERED −

INDEX 3

〉

ICONS

〈

addressor

IARG1 1

IARG2 3

,

addressee

IARG1 2

IARG2 3

〉

The utterance rule syntactically forms a non-
branching root node, whose daughter is either
a saturated sentence or a fragment (sat-or-frag).
This pseudo phrase structure rule introduces two
elements into the ICONS list, as shown at the
bottom of (9). They are valued as addressor
(i.e. speaker) and addressee (i.e. hearer). These
ICONS elements play the key role to make dia-
logue participants visible in semantic representa-
tion. Their IARG1s are respectively co-indexed
with SPEAKER and HEARER (i.e. 1 and 2),
and the IARG2 are commonly co-indexed with the
semantic head’s INDEX of the utterance (i.e. 3).
The main reason why they have a relation to the
semantic head is that it is necessary to resolve the
speaker/hearer scope in quotations. For example,
(10) contains two different discourse frames, viz.
inner frame and outer frame.

(10) “You have been cruelly used,” said Holmes.

The two different frames may have different
speakers and different hearers. For instance, the
speaker in the inner frame of (10) is Holmes, while
that in the outer frame is the narrator of the story.
In other words, (10) includes two different utter-
ances, and each introduces its own addressee and
addressor elements into the ICONS list (i.e. four
ICONS elements, in total).

3.3 Type Hierarchy

Going into the details, the type hierarchy of icons
for honorification is sketched out in Figure 1.

icons

dialogue ... rank

addressor addressee higher-or-int lower-or-int

higher int lower

Figure 1: Type hierarchy of icons

Regarding honorification, icons includes two im-
mediate subtypes: namely, dialogue and rank. The
former branches out into addressor and addressee,
and the latter includes two levels of subtypes.
Higher-or-int indicates that one individual is so-
cially higher than the other or intimate to the other.
Recall that お爺さん o-jii-san in Japanese can
be canonically used when the referent is higher
than the speaker (formal) or intimate to the speaker
(less formal). The word itself has the [ICONS-
KEY higher-or-int] feature, which can be further
constrained by the value that the predicate assigns
to the word. Honorification is normally relevant
to which is “higher” than which, but the linguis-
tic forms can sometimes be altered when talking
to someone in the lower position. For instance,
Korean employs six levels of imperative inflec-
tions conditioned by the relationship between the
speaker and the hearer. Lower-or-int and lower
work for this case. Finally, note that int inherits
from both higher-or-int and lower-or-int.

3.4 Specifications

First, pronouns are specified with respect to the
speaker and the hearer, as shown in (11).

(11)

pr-1sg

STEM

〈

“我”

〉

HOOK

[

INDEX 1

S-KEY 1

]

ICONS

〈

! !

〉

pr-2sg-hon

STEM

〈

“您”

〉

HOOK

INDEX 1

S-KEY 2

H-KEY 1

ICONS

〈

!

higher

IARG1 1

IARG2 2

!

〉

The first personal pronoun has a co-index be-
tween its own INDEX and SPEAKER-KEY, and
the ICONS list is empty because it does not con-
tribute to honorification by itself. Likewise, the
second personal pronouns link their INDEX to
HEARER-KEY. If the pronoun is honorific, one
ICONS element is introduced. Otherwise (e.g.你
nı̌), the ICONS list is empty. The ICONS element
of the right AVM indicates that the hearer 1 is
higher than the speaker 2 .

Second, several inflectional rules introduce an
ICONS element as exemplified in (12) for the
subject-honorific form and the addressee-honorific
form in Japanese. The left AVM’s ICONS element
represents that the subject 1 is higher than the
speaker 3 . Likewise, the right AVM’s ICONS el-
ement specifies the relation between the hearer 2

and the speaker 1 .

61

(12)

ninaru

STEM

〈

“に”, “なる”

〉

SUBJ

〈[

INDEX 1

I-KEY 2

]〉

S-KEY 3

ICONS

〈

! 2

higher

IARG1 1

IARG2 3

!

〉

masu

STEM

〈

“ます”

〉

S-KEY 1

H-KEY 2

ICONS

〈

!

higher

IARG1 2

IARG2 1

!

〉

Third, the suppletive forms themselves do not
introduce an ICONS element, but the ICONS-
KEY is specified in order to place a partial con-
strain on polarity. This pointer value functions
similarly to [HON bool], but operates more flex-
ibly (§3.1). They are instantiated in (13). Note
thatお休み oyasumi is a suppletive counterpart of
寝る neru ‘sleep’ in Japanese.

(13) a.

sofu

STEM

〈

“祖父”

〉

ICONS

〈

! !

〉

neru

STEM

〈

“寝る”

〉

ICONS

〈

! !

〉

b.

ojiisan

STEM

〈

“お爺さん”

〉

I-KEY higher-or-int

ICONS

〈

! !

〉

oyasumi

STEM

〈

“お休み”

〉

I-KEY higher

ICONS

〈

! !

〉

While the neutral forms provided in (13a) are un-
derspecified, the honorific forms in (13b) place a
constraint on ICONS-KEY. Notably,お爺さん o-
jii-san ‘elderly man’ in Japanese assigns higher-
or-int to the ICNOS-KEY covering the ambiguity.

3.5 Sample Representation
The example sentence is illustrated in (14). Note
that the nominative markerが ga and the two ver-
bal ending forms are semantically empty.

(14) お爺さん

o-jiisan
HON-elderly.man

が

ga
NOM

お休み

o-yasumi
HON-sleep

になり

ni nari
become

ます

masu
HON

‘The elderly man is sleeping.’ (to an honoree) [jpn]

Therefore, only underlined elements are left in the
semantic representation as shown in (15a). In ad-
dition, there are two invisible elements as pro-
vided in (15b), such as the speaker and the hearer.
Recall that MRS+ICONS includes these invisible
referential individuals into the semantics. These
four individuals have four relations as presented
in (15c), and they are added into the ICONS list.

(15) a. ojiisan
x1

oyasumi
e2

b. speaker: x3, hearer: x4

c. [x3 addressor e2] (utterance)
[x4 addressee e2] (utterance)

[x4 higher x3] (ます masu)
[x1 higher x3] (になる ni naru)

Each relation given in (15c) is in the format
as [α X β], which is read as “α has an X rela-
tion to β”. For instance, [x1 higher x3] means
that x1 (i.e. the subject) is higher than x3 (i.e. the
speaker). The first two relations are introduced
when the utterance is built up (see (9)). The last
two relations came from the verbal ending forms
(see (12)). The MRS representation for (14) is pro-
vided in (16), in which IARG1 and IARG2 respec-
tively correspond to α and β in the [α X β] format.

(16)

INDEX 2

RELS

〈

udef q rel

LBL 4

ARG0 3

RSTR 5

BODY 6

,

ojiisan n 1 rel

LBL 7

ARG0 3

,

oyasumi s 2 rel

LBL 1

ARG0 2

ARG1 3

〉

HCONS

〈

qeq

HARG 5

LARG 7

〉

ICONS

〈

addressor

IARG1 8

IARG2 2

,

addressee

IARG1 9

IARG2 2

,

higher

IARG1 9

IARG2 8

,

higher

IARG1 3

IARG2 8

〉

The traditional representation (16) can be con-
verted into a dependency graph for ease of expo-
sition. In (17), , and - tentatively stand for the
dialogue participants.

(17)

, ojiisan oyasumi -

SPEAKER elderly.man sleep HEARER

addressor addressee

higher ARG1

higher

The solid line in (17) means that the relation is
specified in the RELS list. The dotted line stands
for the ICONS element. The relational value is
labelled on the arrow, and the direction of the ar-
row indicates which individual is co-indexed with
which IARG. For instance, the arrow from ojiisan
to , means the same as [x1 higher x3] presented
in (15c) and the last ICONS element of (16).

4 Translating Honorifics

With respect to translating honorific expressions
across languages, there are different types of trans-
lation strategies. Notice that paraphrasing is re-
garded as a specific type of translation (i.e. mono-
lingual translation) in the current study, given that
it is also carried out via the same procedure con-
sisting of parsing, (transfer), and generation.

62

First, if both the source language and the target
language have a complex honorific system (e.g.
Japanese→Japanese), all ICONS elements gath-
ered in the parsing stage persist in the transfer and
generation stage. The four sentences in Japanese
provided in (18) convey a meaning like “Did
you/someone sleep?” in English, but the prefer-
ence in the choice hinges on the social relation.
The felicity condition is presented in Table 2.

Table 2: Choice of (18a-d)
higher subject plain subject

higher hearer (18a) (18b)
plain hearer (18c) (18d)

(18) a. お休み
o-yasumi
HON-sleep

になり
ni nari
become

まし
mashi
HON

た
ta
PST

か
ka
QUES

？
?
PU

b. 寝
ne
sleep

まし
mashi
HON

た
ta
PST

か
ka
QUES

？
?
PU

c. お休み
o-yasumi
HON-sleep

になっ
ni nat
become

た
ta
PST

？
?
PU

d. 寝
ne
sleep

た
ta
PST

？
?
PU [jpn]

The monolingual translation (i.e. paraphrasing) is
carried out as follows: First, if a suppletive form
is used (e.g. oyasumi), the corresponding form
in the generation output should be the same be-
cause the suppletive form is more informative and
specific than the neutral form. If suppletives are
converted into neutrals, loss of information hap-
pens. Notice that the suppletive forms normally
have different PRED names as shown earlier in
(15-17). For this reason, (18a-b) and (18c-d) are
not interchangeable. Second, if there is an el-
ement in the ICONS list of the input MRS, the
element persists in the output MRS in order not
to lose a piece of information. In other words, a
completely underspecified output for each ICONS
element is not allowed in generation. For in-
stance, both (18a) and (18c) use oyasumi (supple-
tive), but (18a) cannot be paraphrased into (18c)
because (18a) has one more honorific relation in
the ICONS list (i.e. ni naru). The same goes for
(18b) and (18d): Since masu in (18b) makes the
sentence more informative than (18d), (18b) can-
not be paraphrased into (18d). Third, the opposite
direction is acceptable. Even if a constituent intro-
duces no ICONS element, the output can include
an honorific constituent. For instance, (18c) can
be paraphrased into (18a), and (18d) can be para-
phrased into (18b). Translating from a less infor-

mative form to a more informative form is plausi-
ble because there is no discarded information.

Second, if the source language has rich
honorifics, and the target language places an
honorific constraint on only pronouns (e.g.
Japanese→Chinese), the ICONS elements are se-
lectively transferred: The element not linked to
pronouns are filtered out. In the opposite direc-
tion, the underspecified ICONS element in the in-
put MRS can be resolved in the output as dis-
cussed above. For instance, the subject and the
hearer in (19) is the honorific second pronoun 您
nı́n in Chinese. (19) cannot be translated into (18c-
d) in which masu does not show up (see (12)). In
contrast, all sentences given in (18) can be trans-
lated into (19) without loss of information. Recall
that the current model analyzes the neutral form as
underspecified (not [HON −]).

(19) 您
nı́n
2.SG(HON)

睡
shuı̀
sleep

了
le
PERF

吗
ma
QUES

？
?
PU [cmn]

Third, if the source language employs rich hon-
orification and the target language has no hon-
orific form (e.g. English), the transfer system turns
off ICONS. For example, (18a-d) are commonly
translated into “Did you sleep?” in English. The
other direction (e.g. English→Japanese) raises no
problem because all underspecified elements are
restored on the target language’s side.

5 Experiment

In order to verify whether the current model works
for semantics-based processing, one experiment
was conducted with ACE (http://sweaglesw.
org/linguistics/ace). The HPSG used for this
experiment is the Jacy (Siegel and Bender, 2002).
The basic analysis for honorific expressions in
Japanese discussed in this paper was implemented.
The testset was the first 4,500 sentences in the
Tanaka corpus (Tanaka, 2001). Using these re-
sources, paraphrasing in Japanese (i.e. monolin-
gual translation) was carried out with the 5-best
option for parsing and 512MB memory capac-
ity. After paraphrasing was completed, the two
results (i.e. without or with ICONS) were com-
pared, as provided in Table 3. The comparison
was made with respect to (A) the average output
numbers, (B) the number of the items with end-to-
end-success, and (C) the number of the items with
exact-match-output out of (B).

63

Table 3: Evaluation
(A, #) (B, %) (C, %)

plain ICONS plain ICONS plain ICONS
132.67 280.98 50.38 45.40 59.64 67.89

Table 3 presents that the current model aids in pro-
ducing more precise outputs, as indicated in (C):
The translation accuracy grows by 8.25%. The
number of outputs (A) also grows because all po-
tential forms of expressing honorifics are gener-
ated without loss of information: All ambiguous
interpretations are generated as long as the in-
formation is provided in the semantic representa-
tion. The end-to-end-success rate (B) decreases,
but it is mainly due to the memory limitation,
not the model itself: If the size of generated out-
puts exceeds the given value of memory limitation
(512MB in the current experiment), all the out-
puts are ignored in comparison. If a bigger value
is chosen, this rate also increases though it takes
much longer time to yield the outputs.

Acknowledgments

I am very grateful to Francis Bond, Jae-Woong
Choe, Yasunari Harada, Jong-Bok Kim, Michael
Wayne Goodman, David Moeljadi, and Zhenzhen
Fan for their help and comments. This research
was supported in part by the MOE Tier 2 grant
That’s what you meant: a Rich Representation for
Manipulation of Meaning (MOE ARC41/13).

References
Asif Agha. 1994. Honorification. Annual Review of

Anthropology, pages 277–302.

Jonathan David Bobaljik and Kazuko Yatsushiro.
2006. Problems with Honorification-as-Agreement
in Japanese: A Reply to Boeckx & Niinuma. Natu-
ral Language & Linguistic Theory, 24(2):355–384.

Cedric Boeckx. 2006. Honorification as Agreement.
Natural Language & Linguistic Theory, 24(2):385–
398.

Francis Bond, Eric Nichols, Darren Scott Appling, and
Michael Paul. 2008. Improving Statistical Machine
Translation by Paraphrasing the Training Data. In
Proceedings of the International Workshop on Spo-
ken Language Translation, pages 150–157, Hawaii.

Jae-Woong Choe. 2004. Obligatory Honorification
and the Honorific Feature. Studies in Generative
Grammar, 14(4):545–559.

Ann Copestake, Dan Flickinger, Carl Pollard, and
Ivan A. Sag. 2005. Minimal Recursion Semantics:
An Introduction. Research on Language & Compu-
tation, 3(4):281–332.

Ann Copestake. 2009. Slacker Semantics: Why Su-
perficiality, Dependency and Avoidance of Commit-
ment can be the Right Way to Go. In Proceedings of
the 12th Conference of the European Chapter of the
ACL (EACL 2009), pages 1–9, Athens.

Mary Dalrymple. 2001. Lexical Functional Grammar.
Academic Press, New York.

Sachiko Ide. 2005. How and Why Honorifics can
Signify Dignity and Elegance. In Robin Tolmach
Lakoff and Sachiko Ide, editors, Broadening the
Horizon of Linguistic Politeness, pages 45–64. John
Benjamins Publishing.

Jong-Bok Kim and Peter Sells. 2007. Korean Honori-
fication: a Kind of Expressive Meaning. Journal of
East Asian Linguistics, 16(4):303–336.

Jong-Bok Kim, Peter Sells, and Jaehyung Yang. 2006.
Parsing Korean Honorification Phenomena in a
Typed Feature Structure Grammar. In Luc Lamon-
tagne and Mario Marchand, editors, Advances in Ar-
tificial Intelligence, pages 254–265. Springer.

Hideki Mima, Osamu Furuse, and Hitoshi Iida. 1997.
A Situation-based Approach to Spoken Dialog
Translation Between Different Social Roles. In
Seventh International Conference on Theoretical
and Methodological Issues in Machine Translation:
TMI-97, pages 176–183, Santa-Fe.

Shigeko Nariyama, Hiromi Nakaiwa, and Melanie
Siegel. 2005. Annotating Honorifics Denoting So-
cial Ranking of Referents. In Proceedings of the
6th International Workshop on Linguistically Inter-
preted Corpora (LINC-05), pages 91–100, Jeju.

Kiyonori Ohtake and Kazuhide Yamamoto. 2001.
Paraphrasing Honorifics. In Workshop Proceedings
of Automatic Paraphrasing: Theories and Applica-
tions, pages 13–20, Jeju.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. The University of
Chicago Press, Chicago, IL.

Melanie Siegel and Emily M. Bender. 2002. Efficient
Deep Processing of Japanese. In Proceedings of the
3rd Workshop on Asian Language Resources and In-
ternational Standardization, pages 1–8, Taipei.

Melanie Siegel. 2000. Japanese Honorification in an
HPSG Framework. In Proceedings of the 14th Pa-
cific Asia Conference on Language, Information and
Computation, page 289–300, Tokyo.

Yasuhito Tanaka. 2001. Compilation of a Multilin-
gual Corpus. In Proceedings of the PACLING, pages
265–268, Kyushu.

Annie Zaenen, Jean Carletta, Gregory Garretson,
Joan Bresnan, Andrew Koontz-Garboden, Tatiana
Nikitina, M Catherine O’Connor, and Tom Wasow.
2004. Animacy Encoding in English: why and how.
In Proceedings of the 2004 ACL Workshop on Dis-
course Annotation, pages 118–125, Stroudsburg.

64

Proceedings of the Grammar Engineering Across Frameworks (GEAF) Workshop, 53rd Annual Meeting of the ACL and 7th IJCNLP, pages 65–72,
Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Resumption and Extraction in an Implemented HPSG of Hausa

Berthold Crysmann
CNRS, Laboratoire de linguistique formelle (UMR 7110)

Université Paris Diderot (Paris 7),
Case 7031, 5 rue Thomas, F-75205 Paris cedex 13

crysmann@linguist.univ-paris-diderot.fr

Abstract
In this paper, we describe the treatment
of extraction in HaG, an emerging compu-
tational grammar of Hausa, concentrating
on the intricate patterns of interaction be-
tween resumptive and gap strategies. We
shall argue with Tuller (1986) that Hausa
resumption (both overt and covert) opens
up the possibility for relativisation only to
escape well-attested extraction islands in
the language. As suggested by the mutual
compatibility of gaps and resumptives in
ATB extraction, however, we shall conclude
that both strategies must be regarded as un-
bounded dependencies (UDCs) to be mod-
elled via the ♱♪♟♱♦ feature in HPSG. We
shall discuss how the treatment of UDCs
has been generalised, in HaG, to permit
more than one simultaneous ♱♪♟♱♦ depen-
dency, and focus in particular on how the
distinction between true gaps and resump-
tive ♱♪♟♱♦ elements can be exploited to ad-
dress efficiency issues.

1 Resumptives and gaps in Hausa
extraction

Like many other languages, Hausa makes use of
extraction in a variety of constructions, including
relative clause formation, matrix and embedded
wh-questions, and focus fronting. Alongside gap
strategies, familiar from English, Hausa also em-
ploys resumption, marking the extraction site with
a pronominal.
(1) wā̀

who
ka
2.♫.♡♫♮♪

àuri
marry

’ya
daughter.♤

*(-r
-of.♤-3.♱.♫

-sà) ?

‘Whose daughter did you marry?’ (Jaggar, 2001)
(2) sàndā

stick
sukà
3♮.♡♮♪

dṑkē
beat

shì
3♱.♢♭

dà
with

*(ita)
3♱.♤

‘It was a stick they beat him with.’ (Jaggar, 2001)

The distribution of gaps and resumptives partly
overlap: while in some contexts only a resump-
tive strategy is possible, e.g. with possessors of

nouns (1), or with complements of non-locative
prepositions (2), extraction of core arguments (di-
rect/indirect objects) in general permits both strate-
gies, with a clear preference for zero expression in
the case of direct objects (Newman, 2000; Jaggar,
2001) for short extraction.

(3) mutā̀nên
men

dà
♰♣♪

sukà
3.♮.♡♮♪

ƙi
refuse

sayar
sell

musù
to.them

/
/
wà ∅
to

dà
with

àbinci
food

sukà
3.♮.♡♮♪

fìta
left

‘the men they refused to sell food to left.’ (Jaggar,
2001, p. 534)

As stated by Crysmann (2012), the preference
for direct object gaps, however, is much reduced in
slightly more complex cases, involving, e.g. Across-
The-Board (ATB) extraction or long-distance rel-
ativisation (see the discussion below), making re-
sumption a natural, if not the only option. As shown
in (4), an overt resumptive is retained in the second
conjunct.

(4) [àbōkī-n-ā]i
friend-♪-1.♱.♥♣♬

dà
♰♣♪

[[na
1.♱.♡♮♪

zìyartā̀ ∅i]
visit

àmmā
but

[bàn
1.♱.♬♣♥.♡♮♪

sā̀mē
find

shìi
3.♱.♫.♢♭

à
at
gidā
home

ba]]
♬♣♥

‘my friend that I visited but did not find at home’ (New-
man, 2000, p. 539)

Example (4) further illustrates that extraction
from coordinate structures in Hausa appears to treat
resumptives on a par with gaps, as far as the ATB
constraint is concerned. Another important obser-
vation relates to the possibility of ATB extraction to
target different grammatical functions in both con-
junct, as illustrated in (5).

(5) mùtumìni
man

dà
♰♣♪

na
1.♱.♡♮♪

bā
give

shìi
3.♱.♫.♢♭

aro-n
lending-♪

bàrgō-nā
blanket-♪.1.♱.♥

àmmā
but

duk dà
in spite of

hakà
that

∅i
∅
yakḕ
3.♱.♫.♡♭♬♲

jîn
feel-♪

sanyī
cold

‘the man whom I lent my blanket but who still felt cold’
(Newman, 2000, p. 540)

65

A central property of Hausa resumption is that
it permits long distance relativisation out of extrac-
tion islands: these include relative clauses, embed-
ded wh-clauses, subject clauses, and complement
clauses of non-bridge verbs (see Tuller (1986) for
the full set of data). We illustrate here on the ba-
sis of embedded relative clauses: as shown below,
relativisation of an indirect (6) or human direct ob-
ject (7) out of relatives is fine, provided there is a
resumptive in situ.
(6) Gā̀

here.is
tābōbîn j
cigarettes

dà
♰♣♪

Àli
Ali

ya
3.♱.♫.♡♮♪

san
know

mùtumìni
man

dà
♰♣♪
∅i zâi
3.♱.♫.♤♳♲

yī
do

musù j
to.them

/
/
*wà ∅ j
to ∅

kwālī
box

‘Here are the cigarettes that Ali knows theman that will
make a box for.’ (Tuller, 1986, p. 84; tone added)

(7) Gā̀
here.is

mùtumìn j
man

dà
♰♣♪

ka
2.♱.♫.♡♮♪

ga
see

yārinyàri
girl

dà
♰♣♪
∅i

ta
3.♱.♤.♡♮♪

san
know

shì j
him

/
/
*sanī
know

∅ j

‘Here’s the man that you saw the girl that knows him.’
(Tuller, 1986, p. 85; tone added)

The grammar of extraction in Hausa heavily in-
teracts with argument drop: as discussed by Tuller
(1986), Hausa allows pro drop not only with sub-
jects, but also with non-human direct objects, which
receive a specific, i.e. non-generic interpretation
(Jaggar, 2001). Subject properties are identified by
agreement marking on the discrete TAM markers.
(8) a. Kā

2.♱.♫.♡♮♪
ga
see

littāfì-n
book-of

Mūsa?
Musa

‘Did you see Musa’s book?’
b. Ī,

Yes
nā
1.♱.♡♮♪

gan
see

shì.
3.♱.♫

/ Ī,
Yes

nā
1.♱.♡♮♪

ganī
see

‘Yes, I saw it.’ (Tuller, 1986, p. 61; tone added)
(9) a. Kā

2.♱.♫.♡♮♪
ga
see

ƙanè-n
brother-of

Mūsa?
Musa

‘Did you see Musa’s brother?’
b. Ī,

Yes
nā
1.♱.♡♮♪

gan
see

shì.
3.♱.♫

/ *Ī,
Yes

nā
1.♱.♡♮♪

ganī
see

‘Yes, I saw him.’ (Tuller, 1986, p. 62; tone
added)

As discovered by Tuller (1986), the possibility
for relativisation to escape what are otherwise ex-
traction islands in the language extends from overt
resumptives to zero pronominals. I.e., she observes
that non-human direct objects, which can be freely
pro-dropped, do permit long relativisation out of is-
lands even without an overt resumptive, whereas di-
rect objects with human reference do so only if re-
alised overtly by a direct object pronominal affix.
(10) mùtumìni

man
dà
♰♣♪

ka
2.♱.♫.♡♮♪

san
know

littāfìn j
book

[dà
♰♣♪
∅i

ya
3.♱.♫.♡♮♪

rubū̀tā
write

∅ j]

‘the man that you know the book (he) wrote’ (Tuller,
1986, p. 81)

(11) littāfìni
book

dà
♰♣♪

ka
2.♱.♫.♡♮♪

san
know

mùtumìn j
man

[dà
♰♣♪
∅ j

ya
3.♱.♫.♡♮♪

rubū̀tā
write

∅i]

‘the book that you know themanwhowrote (it)’ (Tuller,
1986, p. 81)

The very same can be shown to hold for wh is-
lands: again, relativisation out of wh clauses is pos-
sible for subjects, and for non-human direct objects,
even without an overt resumptive.
(12) mùtumìni

man
dà
♰♣♪

ka
2.♱.♫.♡♮♪

san
know

[mḕ j
what

∅i ya
3.♱.♫.♡♮♪

rubū̀tā
write

∅ j]

‘the man that you know what (he) wrote’ (Tuller,
1986, p. 80)

(13) littāfìni
book

dà
♰♣♪

ka
2.♱.♫.♡♮♪

san
know

[wā̀ j
who

∅ j ya
3.♱.♫.♡♮♪

rubū̀tā
write

∅i]

‘the book that you know who wrote (it)’ (Tuller, 1986,
p. 80)

The converse, however, is not true: wh phrases
never extract out of either relative or embedded wh
clauses, regardless of the presence of overt or covert
resumptives. Examples (14) and (15) illustrates this
for subjects and non-human direct objects, whereas
(17) provides evidence that resumption (here with
an oblique) does not improve acceptability.
(14) * wànè

which
mùtûmi

man
ka
2.♱.♫.♡♮♪

bā
give

nì
me

littāfìn j
book

dà
♰♣♪
∅i

ya
3.♱.♫.♡♮♪

rubū̀tā
write

∅ j

‘Which man did you give me the book that wrote’
(Tuller, 1986, p. 81; tone added)

(15) * wànè
which

littāfī̀j
book

ka
2.♱.♫.♡♮♪

san
know

wā̀i
who
∅i ya
3.♱.♫.♡♮♪

rubū̀tā
write

∅ j

‘which book do you know who wrote’ (Tuller,
1986, p. 80; tone added)

(16) wā̀ j
who

ka
2.♱.♫.♡♮♪

yi
do

màganā̀
talking

dà
with

shī j
3.♱.♫

‘Who did you talk with?’ (Tuller, 1986, p. 158)
(17) * wā̀ j

who
ka
2.♱.♫.♡♮♪

san
know

mā̀târi
woman

[dà
♰♣♪
∅i ta
3.♱.♤.♡♮♪

yi
do

màganā̀
talking

dà
with

shī j]
3.♱.♫

‘Who do you know the woman that talked to him’
(Tuller, 1986, p. 159)

The most complex case of long-distance relativi-
sation cited in the literature involves triply embed-
ded relatives, with all three extraction sites con-
tained within the inner-most sub-clause.

66

(18) ? gā̀
here.is

mā̀târi
woman

dà
♰♣♪

ka
2♱.♫.♡♮♪

bā
give

nì
me

littāfìn j
book

dà
♰♣♪

mā̀làmai
teachers

sukà
3♮.♡♮♪

san
know

mùtumìnk
man

dà
♰♣♪
∅i ta
3♱.♤.♡♮♪

rubū̀tā
write

wà
for
∅k ∅ j

‘Here’s the woman that you gave me the book the
teachers know the man she wrote it for.’ (Tuller,
1986, p. 84; tone added)

To summarise the empirical data, relativisation in
Hausa is insensitive to extraction islands, provided
the presence of a resumptive pronoun at the extrac-
tion site. Other types of extraction, like wh or fo-
cus fronting, do not exhibit this property, regard-
less of the presence of resumptives. As suggested
by extraction from coordinate structures, however,
resumptives are fully compatible with gaps, as far
as the ATB constraint is concerned. We therefore
conclude that both processes should be considered
unbounded dependency constructions (UDCs), yet
the specific constraints on locality and on the use of
gaps vs. resumptives should be associated with prop-
erties of the elements at the top or the bottom of the
dependency: i.e. the difference between a single rel-
ative marker merely mediating coreference with the
antecedent noun vs. a full displaced constituent, as
well as the nature of the governing head at the ex-
traction site, i.e. verbs vs. prepositions.

1.1 Previous approaches
The first extensive formal study of Hausa extraction
and resumption certainly is Tuller’s (1986) doctoral
dissertation on the language. Using a GB frame-
work she suggests to account for the difference
between island-insensitive resumptive relativisation
and wh extraction bymeans of a distinction between
base-generation and binding of a pronominal for rel-
ativisation vs. Ā movement for wh-extraction. Re-
sumptives found in wh extraction as complements
of obliques or possessors of nouns, by contrast, are
treated as instances of phonetic trace (Koopman,
1984). The multitude of analytic devices (both base
generation and movement with phonetic trace) for
what appears to be a single phenomenon (resump-
tion) has been criticised in Crysmann (2012).
Within HPSG, one of the first studies are the

works of Nathan Vaillette on resumption in He-
brew (2001a) and Irish (2001b), proposing two
separate features for gap and resumptive extrac-
tions. This separation has been criticised re-
peatedly in the HPSG literature, including Tagh-
vaipour (2004; Taghvaipour (2005b; Taghvaipour
(2005a), (Alotaibi and Borsley, 2013), and (Crys-
mann, 2012), mainly based on the known compati-
bility of gaps and resumptives in ATB extraction.

More specifically, Crysmann (2012) argues, on
the basis of the Hausa data, for the compatibility
between the two types of extractions. He shows fur-
ther that no HPSG treatment available at the time
was capable to capture the differences with respect
to extraction islands. He suggests that both types
of unbounded dependencies should be regarded as
♱♪♟♱♦ dependencies, distinguishing gap and resump-
tive dependencies in terms of the properties of the
♱♪♟♱♦ elements. More precisely, he argues that gaps
require sharing of entire ♪♭♡♟♪ values, whereas shar-
ing of ♧♬♢♣♶ values is sufficient for resumptives (see
Borsley (2010; Alotaibi and Borsley (2013) for a
similar proposal). Since the description of resump-
tives subsumes that of gaps, the ATB facts are read-
ily explained. The differences in locality, however,
are due to constraints imposed at the retrieval site:
while wh and focus fronting require full sharing of
their ♪♭♡♟♪ values, relatives merely require index
sharing. If retrieval sites are transparent to indices,
but not to full local values, the empirical pattern can
be explained with a single mechanism.
A previous implementation of resumption in

HaG has treated these elements essentially like gaps,
including the restriction of ♱♪♟♱♦ to contain at most
one element at any time. In this paper, we shall ex-
plore how the empirically and theoretically more de-
sirable approach advanced in Crysmann (2012) can
be put to use in a computational grammar of the
language.

2 Implementation in LKB & friends
The implementation in HaG follows quite closely
the theoretical proposal made in Crysmann (2012).
Thus, both gap and resumptive dependencies are
represented on ♱♪♟♱♦, HPSG’s feature for extrac-
tion, distinguishing them for the purposes of island
effects in terms of the elements rather than by virtue
of a distinct unbounded dependency.

2.1 The Grammar Matrix
The LinGO Grammar Matrix (Bender et al., 2002)
is a starter kit for the development of HPSG gram-
mars running on the LKB (Copestake, 2002), Pet
(Callmeier, 2000) and Ace (by Woodley Packard
(Crysmann and Packard, 2012)) platforms. Gram-
mars running on these platforms use a conjunctive
subset of TDL (Krieger, 1996) as their descrip-
tion language and Minimal Recursion Semantics
(Copestake et al., 2005) for meaning representation.
The Grammar Matrix not only makes for fast boot-
strapping of new grammars, it also ensures a high de-
gree of parallelism, owing to a carefully worked out
constraint set on meaning construction combined

67

with a type hierarchy of rule types, suitable for a
wider range of syntactic constructions.
The Matrix has been distilled to a great extent

from the LinGO ERG (Copestake and Flickinger,
2000). As for extraction, both the ERG and the
Matrix are highly faithful to the theory of un-
bounded dependencies advanced by Sag (1997) and
Ginzburg and Sag (2001): thus, passing of non-local
features (most notably ♱♪♟♱♦) proceeds in a head-
driven fashion, with heads amalgamating the ♬♭♬-
♪♭♡♟♪ values of their arguments.

(19) ♱♪♟♱♦ amalgamation
♱♷♬♱♣♫

[
♬♪♭♡

[
♱♪ 1 ∪ ... ∪ n

]]
♟♰♥-♱♲

⟨[
♬♪♭♡

[
♱♪ 1
]]
, ...
[
♬♪♭♡

[
♱♪ n
]]⟩

In the ERG and the Matrix, amalgamation is bro-
ken down into four constraints depending on the ar-
ity of the argument structure list, one of which any
lexical head will inherit from. Owing to the absence
of sets (and set union) in the underlying formalism,
set-valued features are represented by means of dif-
ference lists (Clocksin and Mellish, 1981) instead,1
instead, as shown in the example for two-element
argument structure lists in (20).

(20)

0-diff-list
♪♧♱♲ 1

♪♟♱♲ 1

1-diff-list

♪♧♱♲
♤♧♰♱♲

[]
♰♣♱♲ 1

♪♟♱♲ 1

basic-two-arg

♱♷♬♱♣♫

♬♪♭♡
♱♪ ♪♧♱♲ 1

♪♟♱♲ 3

♟♰♥-♱♲
⟨♪♧♱♲ 1

♪♟♱♲ 2

, ♪♧♱♲ 2

♪♟♱♲ 3

⟩

Among the lexical amalgamation types, there is

already one definition in the Matrix specifically
aimed at resumptive pronouns, i.e. the possibility to
launch a non-local dependency that does not corre-
spond to an argument. However, this constraint will
only ever be suitable for free pronouns, not bound
ones, as we find in Hausa, since the type constraint
is defined on the level of the lexical entry. Further-
more, resumption is still treated as entirely identical
to gap-type extraction.
Besides thesemore technical issues, there is, how-

ever, a more fundamental difference between the
1Difference lists permit list concatenation by means of uni-

fication: essentially, such lists maintain a pointer (♪♟♱♲) to the
open end of the list. We shall use exclamation marks to distin-
guish these from ordinary lists, as is the convention in DELPH-
IN grammars (Copestake, 2002, cf.).

treatment of ♱♪♟♱♦ dependencies in the theoreti-
cal HPSG literature and its implementation in the
ERG and the Matrix: while Pollard and Sag (1994)
clearly argue that more than one element can be in
♱♪♟♱♦ at the same time, the ERG and the Matrix
both limit the length of the ♱♪♟♱♦ list to at most
one, thereby ruling out the combination of strong
and weak UDCs witnessed in (21). The reason be-
hind this restriction is most certainly related to pro-
cessing efficiency.

(21) [A violin this well crafted]1 even [the most
difficult sonata]2 will be easy to play _2 on
_e1 ? (Pollard and Sag, 1994, 169)

While for English, cases ofmultiple simultaneous
♱♪♟♱♦ dependencies can possibly be marginalised
without jeopardising overall coverage on natural lan-
guage data, this is certainly not the case in a variety
of other languages, including multiple wh-fronting
in Slavic, or long-distance relativisation in Hausa.
Thus, a more systematic solution is called for that
we shall develop in the following section.

2.2 Multiple SLASH dependencies
Since HaG is based on the Grammar Matrix, the
current general approach to extraction is already
head-driven, in accordance with the current consen-
sus amongst HPSG scholars. Since restrictions on
the size of ♱♪♟♱♦ are imposed on introduction and
retrieval, we can concentrate on these two critical
points in our discussion of extraction in HaG.

2.2.1 Launching
With the exception of adjunct extraction,2 gaps in
HaG are introduced by means of unary lexical rules
suppressing a valency corresponding to an argument
introduced into ♱♪♟♱♦, essentially following Pollard
and Sag (1994), Sag (1997), Ginzburg and Sag
(2001), as well as common practice in the ERG and
theMatrix. In addition, a unary phrase structure rule
permits launching of adjunct extractions.
As for resumptives, the current implementation

maintains two sets of lexical rules, one for bound
pronominals and one for bound resumptives, as well
as two sets of lexical entries for pronominals and re-
sumptives. Making systematic use of the type hier-
archy of rules and lexical types, shared properties
of resumptive and non-resumptive uses, including
autosegmental morphophonological properties, are
abstracted out into common supertypes. Most cru-
cially, in the true pronominal case, a semantic rela-
tion is inserted into the MRS ♰♣♪♱ list and the ♱♪♟♱♦

2See Levine (2003) for arguments to distinguish adjunct
and complement extraction in English along the syntax/lexicon
divide.

68

value is restricted to be empty, whereas in the re-
sumptive case, the ♰♣♪♱ list is empty, but ♱♪♟♱♦ con-
tains an element the referential index of which is
shared with that of the resumptive. Owing to the
absence of internal disjunction from the underlying
feature formalism (rules and lexical entries are in
disjunctive normal form), specification of separate
rules and entries for both uses turned out to be un-
avoidable.3 In order to keep the number of disjunc-
tive specifications to an absolute minimum, we have
therefore generalised the existing 3 sets of morpho-
logical rules for pronominal affixation (objective,
genitive, dative), capturing the difference in shape
by reference to the segmental make-up of the base,
rather than in terms of the syntactic category of the
base, enabling us to collapse all three sets into one.
This move was greatly facilitated by the fact that
nouns and verbs, as well as the applicative marker
wà independently undergo characteristic inflection
for the type of argument realisation of their first
complement (Crysmann, 2005), distinguishing inter
alia realisation by a pronominal affix: e.g., pronomi-
nal affixes from the genitive set are always preceded
by the gender differentiated linker -n/-r (cf. exam-
ple (1)), a segment that is crucially absent in final
positions of all verbs taking pronominal affixes from
the direct object set. To account for differences in
tonal specification (genitive set is low, whereas ob-
jective set alternates), we generalised our previous
treatment of “polar” tone with objective pronouns,
representing the tonal specification of the pronomi-
nal affix as a floating tone of the base. In fact,
Following Crysmann (2012), the main difference

between gap and resumptive ♱♪♟♱♦ values is that
the former require reentrancy with a full local value,
whereas the latter are underspecified in this respect:
minimally, they only require identity of ♧♬♢♣♶. Elab-
orating on the hierarchy of synsem proposed in Sag
(1997), we have complemented the gap subtype of
synsem with a type for resumptives and abstracted
out shared minimal requirements into a common su-
per type.

(22)
gap-or-res

♪♭♡
[
♡♭♬♲.♦♭♭♩.♧♬♢♣♶ 1

]
♬♪♭♡

[
♱♪
⟨
!
[
♡♭♬♲.♦♭♭♩.♧♬♢♣♶ 1

]
!
⟩]

gap
♪♭♡ 1 full-local

♬♪♭♡
[
♱♪
⟨
! 1 !

⟩]

resump♬♪♭♡

[
♱♪
⟨
! light-local !

⟩]
3Underspecification techniques using list types do not pro-

vide a solution either, since we need to use difference lists for
which this abstraction is only available to a limited extent.

(23) [
local
♡♭♬♲ mrs

]
[
full-local
♡♟♲ cat

] light-local

Using the types just introduced, extraction and
resumption rules are the defined as follows:

(24) Complement extraction
♱♱
♪♭♡ [♡♟♲ [♴♟♪ [♡♭♫♮♱ l

]]]
♢♲♰
♱♱
♪♭♡ ♡♟♲ [♴♟♪ [♡♭♫♮♱ ⟨gap | l

⟩]]

(25) Resumption

♱♱
♪♭♡ [♡♟♲ [♴♟♪ [♡♭♫♮♱ l

]]]
♢♲♰
♱♱
♪♭♡ ♡♟♲ [♴♟♪ [♡♭♫♮♱ ⟨gap-or-res | l

⟩]]

Both rules perform a valence reduction, but do

so imposing constraints of different strength on the
locally suppressed complement. Since elements of
the ♡♭♫♮♱ valence list are reentrant with ♟♰♥-♱♲, the
restriction towards ♱♪♟♱♦ will be picked up correctly
by ♱♪♟♱♦ amalgamation. For resumption, the gram-
mar distinguishes variants for null realisation (sub-
ject and non-human direct object) and pronominal
affixation.
On the basis of the distinction between full-local

and light-local values, we have furthermore defined
typed list constraints that permit to restrict what
kind of dependencies can be active simultaneously.
As we have seen above, only relativisation can es-
cape wh-islands in Hausa, provided the dependency
involves a resumptive. Furthermore, relative clause
formation, in contrast to wh-extraction and focus
fronting, does not permit pied-piping. Thus, mul-
tiple simultaneous ♱♪♟♱♦ dependencies can involve
at most one single gap type dependency at any node.
Most importantly, this state of affairs enables us to
ensure termination in the light of adjunct extraction
which involves true gaps: whenever a true gap is in-
serted into ♱♪♟♱♦, the remainder of the ♱♪♟♱♦ list is
constrained to consist entirely of elements of type
light-local. Complement extraction lexical rules are
constrained in a similar fashion.

2.2.2 Retrieval
Given that ♱♪♟♱♦ values may contain multiple ele-
ments, retrieval at the top of the dependency marks
a more clear departure from common practice in the
Grammar Matrix: in essence, we need to search the
♱♪♟♱♦ list for a suitable element to be bound off, and

69

pass on any light-local elements to be retrieved fur-
ther up the tree.
The grammar has exactly two constructions

where retrieval can take place, the first one being a
classical filler-head construction to be used for bind-
ing wh and focus-fronted fillers, both of which al-
low pied-piping. As for relatives, we follow Borsley
and assume that Hausa relative “pronouns” are ac-
tually (inflected) relative complementisers that take
the clause containing a gap or resumptive as its com-
plement. This assumption not only takes care of
the impossibility of pied-piping in relative clauses,
but it also captures nicely the similarity of the un-
inflected relative complementiser dà to its homony-
mous non-relative counterpart. What is common to
both constructions is that they define a non-empty
♲♭-♠♧♬♢ value (cf. Pollard and Sag (1994)).4 In
filler-head structures, the ♱♪♟♱♦ dependency to be
retrieved is constrained to be of type full-local by
virtue of structure sharing with the filler’s ♪♭♡♟♪
value, whereas no such constraint is imposed by the
relative complementiser which only requires a refer-
ential index.

(26)

filler-head-rule

♱♱.♬♪♭♡

♲-♠

♤♧♪♪
⟨
l
⟩

♱♪ s

♱♪

⟨
! !
⟩

♤♧♪♪♣♰-♢♲♰

[
♱♱
[
♪♭♡ l

]]
♦♢-♢♲♰

[
♱♱
[
♬♪♭♡

[
♱♪ s

]]]

(27)

rel-complementiser-lex

♱♱

♬♪♭♡

♲-♠

♤♧♪♪

⟨[
♡♭♬♲

[
♦♭♭♩

[
♧♬♢♣♶ i

]]]⟩
♱♪ s

♰♣♪
⟨
! i ref-index !

⟩

♱♪
⟨
! !
⟩

♟♰♥-♱♲

⟨
S
[
♬♪♭♡

[
♱♪ s

]⟩]

Two unary retrieval rules then take care of bind-

ing the filler to an appropriate percolated ♱♪♟♱♦ ele-
ment and to pass on any elements of type light-local.

4All lexical entries other than the relative complementiser
require their entire ♲♭-♠♧♬♢ value to be empty (i.e. both ♲♭-
♠♧♬♢.♤♧♪♪ and ♲♭-♠♧♬♢.♱♪♟♱♦). Furthermore, we constrain the
type head-nexus-phrase (Sag, 1997) as well as standard unary
phrase structure rules to effect structure sharing of ♲♭-♠♧♬♢ be-
tween the mother and the (head) daughter. Similarly, elements
on ♟♰♥-♱♲ are equally restricted to have empty ♲♭-♠♧♬♢ features.
As a net effect, no other syntactic rule can interfere in the mid-
dle of retrieval.

(28)

bind-filler-rule

♱♱

♪♭♡ 0

♬♪♭♡

♲-♠

♤♧♪♪
⟨ ⟩

♱♪
⟨
! l !
⟩

♱♪ s

♯♳♣ q

♰♣♪ r

♟♰♥♱
⟨

♱♱

♪♭♡ 0

♬♪♭♡

♲-♠

♤♧♪♪

⟨
f

⟩
♱♪

⟨
! f | l !

⟩

♱♪ s

♯♳♣ q

♰♣♪ r

⟩

(29)

find-filler-rule

♱♱

♪♭♡ 0

♬♪♭♡

♲-♠
♤♧♪♪ f

♱♪ l

♱♪

⟨
! 1 light-local | s !

⟩
♯♳♣ q

♰♣♪ r

♟♰♥♱
⟨

♱♱

♪♭♡ 0

♬♪♭♡

♲-♠

♤♧♪♪ f

♱♪
⟨
! 1 | l !

⟩
♱♪ s

♯♳♣ q

♰♣♪ r

⟩

While the bind-filler-rule performs the actual in-

stantiation and retrieval of the unbounded depen-
dency, the find-filler-rule merely iterates over the
original ♱♪♟♱♦ difference list and puts back one by
one the original elements, constrained to light-local.
In essence, these rules jointly ensure the island re-
striction towards non-resumptive ♱♪♟♱♦ dependen-
cies: since extraction out of relative and wh islands
is restricted to relativisation footed by a resump-
tive, the constraints on light-local for further per-
colation after the first retrieval of a ♱♪♟♱♦ element
accounts for the ungrammaticality of, e.g. (14) and
(15), while still permitting relativisation out of rela-
tives, as witnessed in (18).5

5One might wonder why we insist on full perusal of ♱♪(♟♱♦),
even after a filler has been found, instead of merely constrain-
ing the remainder of the list using the aforementioned list types.
First, this recursion does not add any complexity factor beyond
the possibility of that introduced by considering alternative in-
stantiations for the filler. Second, recreating the ♱♪♟♱♦ list re-
cursively step by step from the unretrieved elements enables us
to get rid of any latent constraints on the open end of the list
regarding local type: once we have retrieved a full-local depen-
dency, we want to be able to add new gap dependencies further

70

2.2.3 ATB extraction
The underspecification approach to resumptives, i.e.
their compatibility with both light-local and full-
local, already ensures the compatibility between
true gaps and resumption in ATB extraction from
coordinated structures. Furthermore, given the am-
biguity of pronominals between resumptive and true
pronoun uses, identity requirements will only have
to hold for those pronominals that actually enter in
a non-local dependency.
To this end, we restrict coordinating construc-

tions to enforce identity of entire ♱♪♟♱♦ lists, as
shown in (30).

(30)

s-binary-coord

♱♷♬♱♣♫
[
♬♪♭♡

[
♱♪ s

]]
♪♡♭♬♨-♢♲♰

[
♱♷♬♱♣♫

[
♬♪♭♡

[
♱♪ s
]]]

♰♡♭♬♨-♢♲♰
[
♱♷♬♱♣♫

[
♬♪♭♡

[
♱♪ s
]]]

A complicating factor, however, comes in ow-

ing to the use of lists, instead of sets, imposed by
the underlying formalism. As detailed in Newman
(2000), ATB extraction may target different gram-
matical functions in both conjuncts. Since Hausa
also permits multiple relativisation from the same
clause (Tuller, 1986), we expect multiple ATB rela-
tivisation to be possible also with reversal of gram-
matical functions, as illustrated by the (constructed)
example in (31).
(31) gā̀

there.is
mùtûm
man.♫

dà
♰♣♪

kukà
you.♮♪.♡♮♪

san
know

mā̀târ
woman.♢♣♤.♤

dà
♰♣♪

yakḕ
3.♱.♫.♡♭♬♲

sôn
like.♴♬.of

-tà
-3.♱.♤

àmmā
but

takḕ
3.♱.♤.♡♭♬♲

ƙîn
hate.♴♬.of

-sà
-3.♱.♫

‘Here’s the man that you know the woman who he likes
but (who) hates him.’

In order to allow for this possibility, we com-
plement the standard coordination schema sketched
above with an alternative one that has the first ele-
ments of the right conjunct reversed.
For efficiency reasons, I am currently limiting

myself to permutation of the first two ♱♪♟♱♦ ele-
ments. This decision, however, is supported by
the observation that triple relativisation in itself is
already considered marked to some extent: see
Tuller’s question mark on the relevant example in
(18). While these data clearly contrast with the un-
acceptability of island violations, I seriously doubt
that their marked acceptability will improve when
combined with ATB extraction from non-parallel
up the tree, independently of whether this new ♱♪♟♱♦ element
will be prepended or appended to our current ♱♪♟♱♦ list.

conjuncts, thereby further increasing complexity.
Thus, until we have evidence to the contrary, I shall
refrain, for the time being, from full permutation of
♱♪♟♱♦ lists greater than 2, assuming parallelism of
dependencies except for the first two elements.

3 Conclusion
We have argued in this paper that Hausa extrac-
tion militates for an extension of current practice
in HPSG grammar implementation to permit mul-
tiple simultaneous ♱♪♟♱♦ dependencies. Based on
the theoretical proposal by Crysmann (2012), we
have provided an implementation of the Hausa ex-
traction facts. In essence, we have generalised the
constraints on ♱♪♟♱♦ to permit multiple members at
any time, but have systematically exploited the dis-
tinction between light and full local values to con-
strain multiple extraction to involve at most on gap
simultaneously. This not only correctly captures the
island constraints in Hausa, but it also provides a
straightforward means to ensure efficiency, includ-
ing termination of adjunct extraction. Furthermore,
to keep disjunctive specifications of pronominal and
resumptive uses to a minimum, we have developed
a more generalised treatment of pronominal affixa-
tion in the language, collapsing morphological rules
for genitive accusative and dative pronominal af-
fixes. In future work, we shall explore how the
systematic ambiguity between resumptive and non-
resumptive uses of pronominals may be captured
without disjunctive specification at all, in order to
provide a complete answer to McCloskey’s (2002)
generalisation.

Acknowledgements
Work on HaG is partially supported by the French
National Research Agency (ANR) as part of the
“Investissements d’Avenir” programme (reference:
ANR-10-LABX-0083), project ResHau [re:’zo:] of
the Laboratoire d’excéllence “Empirical Founda-
tions of Linguistics”.

References
Mansour Alotaibi and Robert D. Borsley. 2013. Gaps
and resumptive pronouns in Modern Standard Arabic.
In Stefan Müller, editor, Proceedings of the 20th Inter-
national Conference on Head-Driven Phrase Structure
Grammar, Freie Universität Berlin, pages 6–26.

Emily M. Bender, Dan Flickinger, and Stephan Oepen.
2002. The grammar matrix: An open-source starter-
kit for the rapid development of cross-linguistically
consistent broad-coverage precision grammar. In
John Carroll, Nelleke Oostdijk, and Richard Sutcliffe,

71

editors, Proceedings of theWorkshop on Grammar En-
gineering and Evaluation at the 19th International Con-
ference on Computational Linguistics, pages 8–14.

Robert D Borsley. 2010. An HPSG approach to Welsh
unbounded dependencies. In Stefan Müller, editor,
Proceedings of the 17th International Conference on
Head-Driven Phrase Structure Grammar, Université
Paris Diderot, Paris 7, France, pages 80–100, Stan-
ford, CA. CSLI Publications.

Ulrich Callmeier. 2000. PET — a platform for experi-
mentation with efficient HPSG processing techniques.
Journal of Natural Language Engineering, 6(1):99–
108.

William F. Clocksin and Christopher S. Mellish. 1981.
Programming in Prolog. Springer, Heidelberg.

Ann Copestake and Dan Flickinger. 2000. An open-
source grammar development environment and broad-
coverage English grammar using HPSG. In Proceed-
ings of the Second conference on Language Resources
and Evaluation (LREC-2000), Athens.

Ann Copestake, Dan Flickinger, Carl Pollard, and Ivan
Sag. 2005. Minimal recursion semantics: an in-
troduction. Research on Language and Computation,
3(4):281–332.

Ann Copestake. 2002. Implementing Typed Feature
Structure Grammars. CSLI Publications, Stanford.

Berthold Crysmann and Woodley Packard. 2012. To-
wards efficient HPSG generation for German, a non-
configurational language. In Proceedings of the 24th
International Conference on Computational Linguistics
(COLING 2012), pages 695–710, Mumbai, India.

Berthold Crysmann. 2005. An inflectional approach to
Hausa final vowel shortening. In Geert Booij and Jaap
van Marle, editors, Yearbook of Morphology 2004,
pages 73–112. Kluwer.

Berthold Crysmann. 2012. Resumption and island-hood
in Hausa. In Philippe de Groote andMark-Jan Neder-
hof, editors, Formal Grammar. 15th and 16th Inter-
national Conference on Formal Grammar, FG 2010
Copenhagen, Denmark, August 2010, FG 2011 Lubl-
jana, Slovenia, August 2011, volume 7395 of Lecture
Notes in Computer Science, pages 50–65. Springer.

Jonathan Ginzburg and Ivan Sag. 2001. Interrogative
Investigations: the Form, Meaning and Use of English
Interrogatives. CSLI publications, Stanford.

Philip Jaggar. 2001. Hausa. John Benjamins, Amster-
dam.

Hilda Koopman. 1984. The Syntax of Verbs. From Verb
Movement Rules in the Kru Languages to Universal
Grammar. Foris, Dordrecht.

Hans-Ulrich Krieger. 1996. TDL — A Type Descrip-
tion Language for Constraint-Based Grammars, vol-
ume 2 of Saarbrücken Dissertations in Computational
Linguistics and Language Technology. DFKI GmbH,
Saarbrücken.

Robert D. Levine. 2003. Adjunct valents: cumula-
tive scoping adverbial constructions and impossible
descriptions. In Jongbok Kim and Stephen Wechsler,
editors, The Proceedings of the 9th International Con-
ference on Head-Driven Phrase Structure Grammar,
pages 209–232, Stanford. CSLI Publications.

James McCloskey. 2002. Resumptives, succes-
sive cyclicity, and the locality of operations. In
Samuel David Epstein and T. Daniel Seely, editors,
Derivation and Explanation in theMinimalist Program,
pages 184–226. Blackwell, Oxford.

Paul Newman. 2000. The Hausa Language. An Ency-
clopedic Reference Grammar. Yale University Press,
New Haven, CT.

Carl Pollard and Ivan Sag. 1994. Head–Driven Phrase
Structure Grammar. CSLI and University of Chicago
Press, Stanford.

Ivan Sag. 1997. English relative clause constructions.
Journal of Linguistics, 33(2):431–484.

Mehran Taghvaipour. 2004. An HPSG analysis of Per-
sian relative clauses. In StefanMüller, editor, Proceed-
ings of the HPSG-2004 Conference, Center for Com-
putational Linguistics, Katholieke Universiteit Leuven,
pages 274–293. CSLI Publications, Stanford.

Mehran Taghvaipour. 2005a. Persian Relative Clauses in
Head-driven Phrase Structure Grammar. Ph.D. thesis,
University of Essex.

Mehran A Taghvaipour. 2005b. Persian free rela-
tives. In Stefan Müller, editor, The Proceedings of the
12th International Conference on Head-Driven Phrase
Structure Grammar, Department of Informatics, Uni-
versity of Lisbon, pages 364–374, Stanford. CSLI Pub-
lications.

Laurice A. Tuller. 1986. Bijective Relations in Univer-
sal Grammar and the Syntax of Hausa. Ph.D. thesis,
UCLA, Ann Arbor.

Nathan Vaillette. 2001a. Hebrew relative clauses in
HPSG. In Dan Flickinger and Andreas Kathol, ed-
itors, The Proceedings of the 7th International Con-
ference on Head-Driven Phrase Structure Grammar,
pages 305–324, Stanford. CSLI Publications.

Nathan Vaillette. 2001b. Irish gaps and resumptive
pronouns in HPSG. In Frank Van Eynde, Dorothee
Beermann, and Lars Hellan, editors, The Proceedings
of the 8th International Conference on Head-Driven
Phrase Structure Grammar, pages 284–299, Stanford.
CSLI Publications.

72

Author Index

Angelov, Krasimir, 33

Bond, Francis, 9, 17

Crysmann, Berthold, 65

Dannells, Dana, 49
Duan, Manjuan, 25

Enache, Ramona, 41

Fan, Zhenzhen, 17

Gruzitis, Normunds, 49

Hallgren, Thomas, 41

Lyngfelt, Benjamin, 49

Moeljadi, David, 9

Ranta, Aarne, 1, 41, 49

Schuler, William, 25
Song, Sanghoun, 9, 17, 57

Unger, Christina, 1

Vidal Hussey, Daniel, 1

73

	Program
	Grammar Engineering for a Customer: a Case Study with Five Languages
	Building an HPSG-based Indonesian Resource Grammar (INDRA)
	An HPSG-based Shared-Grammar for the Chinese Languages: ZHONG [|
	Parsing Chinese with a Generalized Categorial Grammar
	Orthography Engineering in Grammatical Framework
	A Cloud-Based Editor for Multilingual Grammars
	Formalising the Swedish Constructicon in Grammatical Framework
	Representing Honorifics via Individual Constraints
	Resumption and Extraction in an Implemented HPSG of Hausa

