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Abstract

The paper describes the first sophisticated
negation scope detection system for Twitter
sentiment analysis. The system has been
evaluated both on existing corpora from
other domains and on a corpus of English
Twitter data (tweets) annotated for nega-
tion. It produces better results than what
has been reported in other domains and
improves the performance on tweets con-
taining negation when incorporated into a
state-of-the-art Twitter sentiment analyser.

1 Introduction

Exploring public opinion on various subjects has
always been an important part of humans’ informa-
tion gathering behaviour. Where one in the past
needed to conduct surveys to learn about opinion
trends, the availability of online data expressing
sentiment has allowed for non-intrusive data min-
ing to extract this information. Over the last decade,
there has been a substantial increase in the amount
of work done in the field of sentiment analysis,
which has largely followed the available data, in
recent years shifting the field towards Twitter data,
i.e., towards Twitter sentiment analysis.

Twitter1 is a micro-blogging site that allows
users to write textual entries (‘tweets’) of up to
140 characters. The tweets are available through
Twitter’s API and represent a real-time information
stream of opinionated data. Performing language
processing on tweets presents new challenges be-
cause of their informal nature. Tweets often contain
misspellings, slang and abbreviations, and uncon-
ventional linguistic means, such as capitalization or
elongation of words to show emphasis. Addition-
ally, tweets contain special features like emoticons
and hashtags that may have analytical value.

1https://www.twitter.com

The ability to handle linguistic negation of terms
is an important aspect of sentiment classification.
The valence of a segment of text (its communicated
positive or negative attitude) can be equated to its
sentimental orientation, and valence shifters are
terms that change the sentimental orientation of
other terms. In sentiment analysis, negators often
act as valence shifters, since flipping a proposi-
tion’s truth value significantly shifts, or reverses,
the valence it conveys. Givón (1993) defines two
forms of grammatical negation: morphological,
where individual words are negated with an affix,
and syntactic, where a set of words is negated by
a word or phrase; the topic of the present paper.
Negators in syntactical negation, known as nega-
tion cues or negation signals, function as opera-
tors, with an associated affected scope of words
(Morante and Sporleder, 2012). The most common
negation cue in English is not, along with its con-
tractions, such as couldn’t or isn’t (Tottie, 1991).

Negation classifiers have been developed for
other domains with dramatic performance improve-
ments (Section 2). However, almost all state-of-the-
art Twitter sentiment analysis systems use a simple
approach of marking as negated all terms from a
negation cue to the next punctuation (Section 3).
We present this simple model as a baseline, but im-
prove on it by introducing sophisticated negation
scope detection for Twitter sentiment analysis.

Several negation-annotated corpora are available,
but none for the Twitter domain. To be able to
evaluate Twitter negation detection and to train
supervised machine learning classifiers, a corpus of
tweets was annotated with negation meta-data. The
new and existing corpora are detailed in Section 4.

Sections 5 and 6 describe the construction of two
classification systems: a Twitter negation scope
detector and a state-of-the-art sentiment analyser
incorporating the negation classifier, as well as ex-
periments conducted on the two systems. Section 7
summarizes the results and suggests future work.
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2 Negation Scope Detection, NSD

The main application area of identifying the scope
of negation, or negation scope detection (NSD),
was originally biomedical texts, such as clinical
reports and discharge summaries, but has in re-
cent times shifted towards sentiment analysis (SA).
Early solutions were typically rule-based, such as
the NegFinder (Mutalik et al., 2001) and NegEx
(Chapman et al., 2001) systems, that both heav-
ily incorporated the use of regular expressions.
NSD was the focus of a shared task at *SEM 2012
(Morante and Blanco, 2012), and in 2010 CoNLL
included a similar sub-task on detecting speculation
cues and their affected scope (Farkas et al., 2010).
Most well-performing submissions to both tasks
used supervised machine learning approaches.

Morante and Daelemans (2009) developed an
NSD system that uses meta-learning for classifica-
tion. They applied this approach to the CoNLL’10
shared task and achieved the best F1-score of all
participating teams. The tokens were first tagged
and split into chunks, and the main algorithm then
consisted of two steps: signal identification (nega-
tion cue detection) and scope identification. For the
first phase, Morante and Daelemans (2009) used
a decision tree to classify if a token is at the be-
ginning, inside or outside a negation signal. In
the second phase, a Conditional Random Fields
(CRF)-based meta-learner predicted scope classes
based on the output from three classifiers, a Sup-
port Vector Machine (SVM), a k-nearest neighbour
classifier and a CRF classifier. Zhu et al. (2010)
also worked on biomedical texts and proposed a
rule-based shallow semantic parsing solution: they
set the negation signal as the predicate, and then use
an SVM-based binary classifier to find the negated
scope by identifying the correct argument(s).

Wiegand et al. (2010) surveyed the effects of
NSD on SA, concluding it to be “highly relevant”.
Moilanen and Pulman (2007) built an SA sys-
tem with a sophisticated NSD mechanism focused
on syntactic composition. Potts (2011) achieved
∼12 % better accuracy with a simple model mark-
ing as negated all terms from a detected negation
cue to the next punctuation. Councill et al. (2010)
utilized the MaltParser (Nivre et al., 2007) for tok-
enization, part-of-speech-tagging, and creation of
a dependency tree to generate a feature vector for
training a CRF classifier. Tested on consumer re-
views, the classifier improved F1 scores by 29.5 %
and 11.4 % on positive resp. negative sentiments.

3 Twitter Sentiment Analysis, TSA

The typical approach to Twitter sentiment analy-
sis (TSA) is a supervised machine learning system
with three main steps: preprocessing, feature ex-
traction, and classification. Preprocessing aims to
reduce noise and consists of a variety of filters, e.g.,
to normalize user mentions by substituting them
with the tag ||T|| and URLs with ||U|| (Agarwal
et al., 2011), prefix retweets (reposts of previous
content) with “RT”, and substitute letters that occur
many times sequentially in elongated words (e.g.,
happyyyyyy) with one or two occurrences of the
letter. It was previously common to filter out hash-
tags (Selmer et al., 2013, e.g), since those when
used as intended (to categorize posts by topic) offer
little sentiment information; however, Mohammad
(2012) shows that they add sentiment by indicating
the tone of the message or the writer’s emotions.

Much recent progress in the field has been in con-
nection to the International Workshop on Semantic
Evaluation (SemEval), which since 2013 (Nakov et
al., 2013) has included shared tasks on Sentiment
Analysis in Twitter, with expression-level subtasks,
to correctly classify the overall polarity of whole
tweets. Many later systems have based their feature
matrix on the SemEval’13 top submission (Moham-
mad et al., 2013). Tang et al. (2014) define it as the
state-of-the-art feature set (‘STATE’). This set will
be further discussed in Section 6.1, but includes
most typically used features such as word and char-
acter n-grams, different types of token frequencies,
and a set of prior polarity sentiment lexica.

Most well-performing systems for TSA use a
supervised machine learning-based classifier. An
analysis of the classification algorithms used by
the ten top ranking submissions to SemEval’14
(Rosenthal et al., 2014) shows that SVM and Lo-
gistic Regression were the most popular choices.

Few state-of-the-art TSA systems address nega-
tion systematically, but rather use the simple model
described by Potts (2011), to assign a negation cue
scope over all terms to the next punctuation. So do
the top-3 SemEval’14 systems (Miura et al., 2014;
Tang et al., 2014; Günther et al., 2014) and almost
all SemEval’15 systems treating negation, includ-
ing two of the top-3 (Hagen et al., 2015; Hamdan et
al., 2015), although Rosenthal et al. (2015) mention
negation as one area the systems focused on.

If the model includes prior polarity lexica, just
inverting the sentiment polarity of negated terms is
incorrect (Kiritchenko et al., 2014): positive terms
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when negated tend to shift polarity and decrease
their intensity, while negative terms mostly stay
negative with reduced intensity. Kiritchenko et al.
(2014) thus created tweet-specific sentiment lex-
ica containing scores for terms in affirmative and
negated contexts: NRC Hashtag Sentiment Lexicon
and Sentiment140 Lexicon. The lexica added clear
performance improvements (5.83 % average F1 in-
crease over the five SemEval’14 data sets), even
though the negated contexts were simply assumed
to be from a negation cue to the next punctuation.

Plotnikova et al. (2015) created one of the better
SemEval’15 systems by using the heuristic of as-
signing a negation cue scope over the 4 next tokens,
which compares well with the 3.8 average tokens in
the negation scope for our Twitter Negation Corpus
(Table 1). Only one SemEval’15 system utilized
an alternative treatment: Cerezo-Costas and Celix-
Salgado (2015) trained a CRF-based classifier to
detect the scope of what they call “denier particles”
(i.e., negation) and “reversal verbs” (e.g., ‘avoid’,
‘prevent’), that reverse the polarity of the terms in
their scope. The system did not perform well over
all, but ranked #1 on the 2014 tweet sarcasm data.

4 Data Sets

There are negation scope corpora available for other
domains and sentiment-annotated data available
from the SemEval TSA tasks. However, perform-
ing NSD using supervised machine learning re-
quires a set of tweets annotated for negation cues
and scopes, so such a corpus was also developed.
The new and existing data sets are described below.

BioScope Corpus is a collection of bio-medical
texts annotated for speculation and negation
(Vincze et al., 2008). It consists of three sub-
corpora: medical free texts (6,383 sentences), bio-
logical full papers (2,670), and biological scientific
abstracts (11,871). The free text part differs signif-
icantly from the others in that it contains mainly
short and concise sentences. The rate of negation,
though, is even across the entire corpus: 13.6 % of
the sentences in the free texts, 12.7 % in the full pa-
pers, and 13.5 % in the abstracts contain negation.

SFU Review Corpus contains 400 reviews (50
each from 8 domains such as movies and consumer
products) annotated at the token level for nega-
tion and speculation by Simon Fraser University
(Konstantinova et al., 2012). In total, it consists of
17,263 sentences, with 18.1 % containing negation.

Number of tweets 4,000
Total number of tokens 61,172
Average tokens per tweet 15.3
Average tokens per sentence 10.2

Tweets containing negation 539
Total number of scopes 615
Average cues per negated tweet 1.14
Average tokens in scope 3.8

Table 1: Twitter Negation Corpus

SemEval Twitter sentiment analysis data have
been annotated using Mechanical Turk, and include
training, development and test sets, as well as out-
of-domain test sets. Due to Twitter’s privacy policy,
the data cannot be distributed directly, but is down-
loaded with a script that uses tweet IDs to match
tweets with their sentiment labels. Tweets that have
been deleted since the data sets’ creation are un-
available, and the sets grow smaller over time. The
total size of the SemEval’14 data when downloaded
by us, in November 2014, was 12,754 tweets.

Twitter Negation Corpus contains 4,000 tweets
downloaded through Twitter’s API and annotated
by two of the authors using a web application de-
veloped for this purpose. The application retrieves
a tokenized tweet from the database and displays it
as a container of HTML buttons, where each button
represents a token. The user clicks a token to mark
it as a negation cue and on corresponding tokens
to mark the scope. Inter-annotator agreement was
calculated at token and full scope level. The token
level score is the number of tokens annotators agree
on divided by the total number of tokens. It is an un-
balanced measure as tokens in affirmative contexts
greatly outnumber those in negated. Full scope
agreement entails that annotator scopes match com-
pletely. Token level agreement was 98.9 % and full
scope agreement 73.8 %. All scope conflicts were
reviewed and resolved after discussion.

Statistics for the corpus are shown in Table 1,
with figures relating to negation in the lower half.
Tottie (1991) states that the frequency of negation
in written English is 12.8 %, and the fraction of
tweets containing negation, 13.5 % (539/4000) is
quite close to that. The average number of tokens
per sentence is 10.2 and the average scope size is
3.8. For comparison, the equivalent numbers of the
full paper BioScope sub-corpus are 26.2 and 8.8
(Morante and Daelemans, 2009), which indicates
that simpler language is used in the Twitter corpus.
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aint cannot cant darent didnt
doesnt dont hadnt hardly hasnt
havent havnt isnt lack lacking
lacks neither never no nobody
none nor not nothing nowhere
mightnt mustnt neednt oughtnt shant
shouldnt wasnt without wouldnt *n’t

Table 2: Lexicon of negation cues

5 Negation Scope Detection Experiments

Two classifiers were created: one to detect the
scope of negation and one to assign sentiment. The
negation classifier was used in the feature extrac-
tion process for the sentiment classifier (Section 6).

Negation scope detection (NSD) is a binary clas-
sification problem, where each token is determined
to be either in an affirmative or a negated context.
For NSD experiments, we report precision (P), re-
call (R), F1 score, and the percentage of correctly
classified scopes (PCS): For classification tasks
where the output is a sequence, metrics that only
consider individual units regardless of their order
are often insufficient. PCS measures the accuracy
of a scope classifier: a scope is considered correctly
classified if, for a given negation cue, every token
in its associated scope has been correctly marked.

5.1 Negation Classifier Architecture
The classification algorithm consists of two steps:
negation cue detection and scope identification.
Cue detection is performed by a pattern-matching
approach with a lexicon of explicit cues adopted
from Councill et al. (2010), as shown in Table 2,
where *n’t matches all strings with the suffix n’t.
Note that this list is more extensive than the one
of Potts (2011), used in many SemEval systems.
Four cues on Potts’ list are not in Table 2 (noone,
couldnt, wont, arent), while the 17 cues in italics
are not listed by Potts. An inspection of the 37 cues
appearing in the Twitter Negation Corpus revealed
seven more cues / spelling variants included on nei-
ther list (idk, dnt, cudnt, ain, eint, neva, neeeever).

Tweets are preprocessed with the TweeboParser
dependency parser (Kong et al., 2014), that per-
forms tokenisation, part-of-speech tagging and
parsing, labeling each token with its dependency
head. A dependency-based binary CRF classifier
then for each token determines whether it is in a
negated or affirmative context. The CRF implemen-
tation by Okazaki (2007) is used, with a Python
binding created by Peng and Korobov (2014).

Feature Description

Word lower-case token string
POS part-of-speech tag of the token
DRight distance to nearest negation cue to the right
DLeft distance to nearest negation cue to the left
DepD number of edges to nearest negation cue
Dep1POS POS tag of the 1st order dependency head
Dep1D number of edges to nearest negation cue

from the 1st order dependency head
Dep2POS POS tag of the 2nd order dependency head
Dep2D number of edges to nearest negation cue

from the 2nd order dependency head

Table 3: Negation classifier feature set

The classifier is a Twitter-tailored version of the
system described by Councill et al. (2010) with
one change: the dependency distance from each
token to the closest negation cue has been added
to the feature set, which is shown in Table 3. The
distances (DRight and DLeft) are the minimun lin-
ear token-wise distances, i.e., the number of tokens
from one token to another. Dependency distance
(DepD) is calculated as the minimum number of
edges that must be traversed in a dependency tree
to move from one token, to another. The classifier
takes a parameter, max distance, that specifies the
maximum distance to be considered (all longer dis-
tances are treated as being equivalent). This applies
to both linear distance and dependency distance.

5.2 Negation Cue Detection
The created Conditional Random Fields negation
classifier was evaluated on the Twitter Negation
Corpus. The data set was split into two subsets: a
development set and an evaluation set. The develop-
ment set consists of 3,000 tweets and the evaluation
set of 1,000 tweets. To ensure more reliable train-
ing and testing, given the heavy label imbalance of
the corpus, the split was stratified, with the same
ratio of tweets containing negation in both subsets.

The actual negation cues in the annotated train-
ing data are used when training the classifier, but
a lexicon-based cue detection approach is taken
during classification. When applied to the Twitter
Negation Corpus, the cue detector achieved a pre-
cision of 0.873 with a recall of 0.976, and hence
an F1 score of 0.922. In comparison, Morante
and Daelemans (2009) use a list of negation cues
extracted from their training data and thus have
perfect cue detection precision, but recall varying
from 0.957 (full papers) to 0.987 (abstracts) on the
three BioScope sub-corpora.
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Data NSD model P R F1 PCS

Te
st

Sophisticated 0.972 0.923 0.853 64.5
Gold standard 0.841 0.956 0.895 66.3
Simple 0.591 0.962 0.733 43.1

Train Sophisticated 0.849 0.891 0.868 66.3

Table 4: Negation classifier performance

Inspection of the cue detection output reveals
that the classifier mainly struggles with the sepa-
ration of words used both as negators and excla-
mations. By far the most significant of these is no,
with 35 of its 90 occurrences in the corpus being as
a non-cue; often it occurs as a determiner function-
ing as a negator (e.g., “there were no letters this
morning”), but it may occur as an exclamation (e.g.,
“No, I’m not ready yet” and “No! Don’t touch it”).

Despite the high recall, cue outliers such as
dnt neva, or cudnt could potentially be detected
by using word-clusters. We expanded the lexi-
con of negation cues to contain the whole set of
Tweet NLP word clusters created by Owoputi et al.
(2013) for each lexical item. Recall was slightly
increased, to 0.992, but precision suffered a dra-
matic decrease to 0.535, since the clusters are too
inclusive. More finely-grained word clusters could
possibly increase recall without hurting precision.

5.3 NSD Classifier Performance
To determine the optimal parameter values, a 7-
fold stratified cross validation grid search was per-
formed on the development set over the L1 and
L2 CRF penalty coefficients, C1 and C2 with a
parameter space of {10−4, 10−3, 10−2, 0.1, 1, 10},
in addition to max distance (see Section 5.1) with
a [5, 10] parameter space. The identified optimal
setting was C1=0.1, C2=1,max distance=7.

The performance of the sophisticated negation
scope classifier with the parameter set selected
through grid search was evaluated on the held-out
test data. The classifier was also tested on the same
evaluation set with gold standard cue detection
(i.e., with perfect negation signal identification).

To establish a baseline for negation scope detec-
tion on the Twitter Negation Corpus, we also im-
plemented the simple model described in Section 2
and used by almost all SemEval TSA systems han-
dling negation: When a negation cue is detected,
all terms from the cue to the next punctuation are
considered negated. Note though, that by using an
extended cue dictionary, our simple baseline poten-
tially slightly improves on state-of-the-art models.

Data Classifier P R F1 PCS

SFU Sophisticated 0.668 0.874 0.757 43.5

B
io

Sc
op

e
fu

ll CRF 0.808 0.708 0.755 53.7
MetaLearn 0.722 0.697 0.709 41.0
Sophisticated 0.660 0.610 0.634 42.6
Simple 0.583 0.688 0.631 43.7
SSP 0.582 0.563 0.572 64.0

Table 5: Out-of-domain NSD performance

Results from the test run on the evaluation data,
and the test on the evaluation set with gold stan-
dard cue detection are shown in Table 4, together
with the simple baseline, as well as a 7-fold cross
validation on the development set.

The classifier achieves very good results. The
run on the evaluation set produces an F1 score of
0.853, which is considerably higher than the base-
line. It also outperforms Councill et al. (2010) who
achieved an F1 score of 0.800 when applying a
similar system to their customer review corpus.

5.4 Out-of-Domain Performance
Although the negation classifier is a Twitter-
tailored implementation of the system described
by Councill et al. (2010) with minor modifications
the use of a different CRF implementation, POS-
tagger and dependency parser may lead to consid-
erable performance differences. To explore the
out-of-domain capacity of the classifier, it was eval-
uated on the SFU Review corpus and the biological
full paper part of BioScope, as that sub-corpus has
proved to be difficult for negation identification.

Table 5 shows the 5-fold cross-validated perfor-
mance of the sophisticated negation scope identifier
on both corpora, as well as the simple baseline on
Bioscope together with the results reported on the
same data for the approaches described in Section 2.
‘CRF’ denotes the CRF-based system from Coun-
cill et al. (2010), ‘MetaLearn’ the meta-learner of
Morante and Daelemans (2009), and ‘SSP’ the shal-
low semantic parsing solution by Zhu et al. (2010).

As can be seen, the twitter-trained sophisticated
negation classifier performs reasonably well on the
SFU Review Corpus, but struggles when applied to
BioScope, as expected. It is outperformed in terms
of F1 score by Councill et al. (2010) and Morante
and Daelemans (2009), but reaches a slightly better
PCS than the latter system. The modest F1 score
is likely caused by the use of upstream preprocess-
ing tools tailored towards Twitter language, which
differs significantly from that of biomedical texts.
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Notably, the simple model is a strong baseline,
which actually outperforms the shallow parser on
F1 score and the meta-learner on percentage of
correctly classified scopes (PCS).

6 An NSD-enhanced Sentiment Classifier

The Twitter sentiment analysis includes three steps:
preprocessing, feature extraction, and either train-
ing the classifier or classifying samples. A Support
Vector Machine classifier is used as it is a state-of-
the-art learning algorithm proven effective on text
categorization tasks, and robust on large feature
spaces. We employ the SVM implementation SVC
from Scikit-learn (Pedregosa et al., 2011),
which is based on libsvm (Chang and Lin, 2011).

6.1 Sentiment Classifier Architecture
The preprocessing step substitutes newline and
tab characters with spaces, user mentions
with the string “@someuser”, and URLs with
“http://someurl” using a slightly modified regu-
lar expression by @stephenhay,2 matching URLs
starting with protocol specifiers or only “www”.

The feature extraction step elicitates characteris-
tics based on the STATE set, as shown in Table 6;
the top four features are affected by linguistic nega-
tion, the rest are not. There are two term frequency-
inverse document frequency (TF-IDF) vectorizers,
for word n-grams (1 ≤ n ≤ 4) and for character
n-grams (3≤n≤5). Both ignore common English
stop words, convert all characters to lower case,
and select the 1,000 features with highest TF-IDF
scores. Tokens in a negation scope are appended
the string _NEG. The negated tokens feature is sim-
ply a count of the tokens in a negated context.

The NRC Hashtag Sentiment Lexicon and Sen-
timent140 Lexicon (Kiritchenko et al., 2014) con-
tain sentiment scores for words in negated contexts.
For lookups, the first negated word in a negation
scope is appended with _NEGFIRST, and the rest
with _NEG. The sentiment lexica feature vectors
are adopted from Kiritchenko et al. (2014) and con-
tain the number of tokens with score(w) 6= 0, the
total score, the maximal score, and the score of the
last token in the tweet. We also use The MPQA Sub-
jectivity Lexicon (Wilson et al., 2005), Bing Liu’s
Opinion Lexicon (Ding et al., 2008), and the NRC
Emotion Lexicon (Mohammad and Turney, 2010),
assigning scores of +/−2 for strong and +/−1
for weak degrees of sentiment. The resulting four

2mathiasbynens.be/demo/url-regex

Feature Description

Word n-grams contiguous token sequences
Char n-grams contiguous character sequences
Negated tokens number of negated tokens
Sentiment lexica feature set for each lexicon

Clusters tokens from ‘1000 word clusters’
POS part-of-speech tag frequency
All caps upper-case tokens
Elongated tokens with repeated characters
Emoticons positive and negative emoticons
Punctuation punctuation mark sequences
Hashtags number of hashtags

Table 6: Sentiment classifier STATE feature set

feature vectors contain the sum of positive and neg-
ative scores for tokens in affirmative and negated
contexts, equivalently to Kiritchenko et al. (2014).

Instead of adding only the presence of words
from each of the 1000 clusters from CMU’s Tweet
NLP tool3 in the clusters feature, as Kiritchenko
et al. (2014) did, we count occurrences for each
cluster and represent them with a feature. Input to
the POS feature is obtained from the Twitter part-
of-speech tagger (Owoputi et al., 2013). The emoti-
cons feature is the number of happy and sad emoti-
cons, and whether a tweet’s last token is happy or
a sad. The all-caps, elongated (tokens with char-
acters repeated more than two times), punctuation
(exclamation or question marks), and hashtag fea-
tures are straight-forward counts of the number of
tokens of each type. All the matrices from the
different parts of the feature extraction are concate-
nated column-wise into the final feature matrix, and
scaled in order to be suitable as input to a classifier.

The classifier step declares which classifier to
use, along with its default parameters. It is passed
the resulting feature matrix from the feature ex-
traction, with which it creates the decision space
if training, or classifies samples if predicting. Us-
ing the negation scope classifier with the param-
eters identified in Section 5.3, a grid search was
performed over the entire Twitter2013-train data
set using stratified 10-fold cross validation to find
the C and γ parameters for the SVM classifier. A
preliminary coarse search showed the radial ba-
sis function (RBF) kernel to yield the best results,
although most state-of-the-art sentiment classifica-
tion systems use a linear kernel.

A finer parameter space was then examined. The
surface plots in Figure 1 display the effects of theC

3http://www.ark.cs.cmu.edu/TweetNLP/
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Figure 1: SVM grid search F1 scores for γ and C

and γ parameters on the classifier’s F1 score. The
combination of parameters that scored best was
C = 10 and γ ≈ 5.6 ∗ 10−6, marked by circles.
Increasing C beyond 10 gives no notable change in
F1 score. The combination of a small γ and higher
values of C means that the classifier is quite gener-
alized, and that increasing C (regularizing further)
makes no difference. It also suggests that the data
is noisy, requiring a great deal of generalization.

In order to allow a user to query Twitter for a
search phrase on live data, the classifier is wrapped
in a web application using the Django web frame-
work.4 The resulting tweet hits are classified using
a pre-trained classifier, and presented to the user
indicating their sentiment polarities. The total dis-
tribution of polarity is also displayed as a graph to
give the user an impression of the overall opinion.

6.2 Sentiment Classifier Performance
The SVM was trained on the Twitter2013-train set
using the parameters identified through grid search,
and tested on the Twitter2014-test and Twitter2013-
test sets, scoring as in Table 7. Sentiment classi-
fication is here treated as a three-class task, with
the labels positive, negative, and objective/neutral.
In addition to precision, recall, and F1 for each
class, we report the macro-average of each met-
ric across all classes. Macro-averaging disregards
class imbalance and is calculated by taking the av-
erage of the classification metric outputs for each
label, equally weighting each label, regardless of
its number of samples. The last column of the table
shows the support: the number of samples for each
label in the test set.

As can be seen in the table, the classifier per-
formed worst on negative samples. Figure 2 dis-
plays the confusion matrices for the Twitter2013-
test set (the Twitter2014 matrices look similar). If
there were perfect correlation between true and pre-
dicted labels, the diagonals would be completely
red. However, the confusion matrices show (clearer
in the normalized version) that the classifier is quite
biased towards the neutral label (illustrated with ),

4https://djangoproject.com

Label P R F1 Support

Twitter2014-test
positive 0.863 0.589 0.700 805
neutral 0.568 0.872 0.688 572
negative 0.717 0.487 0.580 156
avg / total 0.738 0.684 0.684 1533

Twitter2013-test
positive 0.851 0.581 0.691 1273
neutral 0.627 0.898 0.739 1369
negative 0.711 0.426 0.533 467
avg / total 0.731 0.697 0.688 3109

Table 7: Sentiment classifier performance
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Figure 2: Sentiment classifier confusion matrices

as can be seen from the warm colours in the and
true label cells of the predicted label column,

in particular misclassifying negative samples. This
is likely an effect of the imbalanced training set,
where neutral samples greatly outnumber negative.

6.3 TSA Feature Ablation Study
The results of an ablation study of the TSA clas-
sifier are shown in Table 8, where the all rows
(n-grams/counts) refer to removing all features in
that group. Most apparently, the sentiment lexica
feature has the greatest impact on classifier per-
formance, especially on the Twitter2013-test set.
This may be since the most important lexica (Senti-
ment140 and NRC Hashtag Sentiment) were cre-
ated at the same time as the Twitter2013 data, and
could be more accurate on the language used then.

The character n-gram feature slightly damages
performance on the Twitter2014-test set, although
making a positive contribution on the Twitter2013
data. This is most likely caused by noise in the data,
but the feature could be sensitive to certain details
that appeared after the Twitter2013 data collection.

The majority of the count features do not impose
considerable changes in performance, although the
all-caps feature decreases performance on both
test data sets, most likely only introducing noise.
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Features
Twitter test

2014 2013

All 0.684 0.688
n-

gr
am

s − word n-grams 0.672 0.674
− char n-grams 0.688 0.676
− all n-grams 0.664 0.667

− sentiment lexica 0.665 0.657

fr
eq

ue
nc

y
co

un
tf

ea
tu

re
s − clusters 0.666 0.677

− POS 0.684 0.685
− all caps 0.685 0.689
− elongated 0.682 0.687
− emoticons 0.681 0.688
− punctuation 0.682 0.688
− hashtag 0.684 0.688
− negation 0.684 0.688
− all counts 0.665 0.671

Table 8: Sentiment classifier ablation (F1 scores)

However, the Tweet NLP clusters feature has a
large impact, as anticipated. Tweets contain many
misspellings and unusual abbreviations and expres-
sions, and the purpose of this feature is to make
generalizations by counting the occurrences of clus-
ters that include similar words.

6.4 Effect of Negation Scope Detection
Table 9 shows the effects of performing negation
scope detection on several variations of the sen-
timent classification system and data sets. The
first six rows give results from experiments using
the Twitter2013-training and Twitter2014-test sets,
and the remaining rows results when using only
a subset of the data: tweets that contain negation,
as determined by our NSD system. The rows are
grouped into four segments, where each segment
shows scores for a classifier using either no, simple
or sophisticated negation scope detection. The seg-
ments represent different feature sets, either using
all features or only the features that are directly
affected by negation: word and character n-grams,
sentiment lexica, and negation counts.

In every case, taking negation into account us-
ing either the simple or the sophisticated method
improves the F1 score considerably. Using all the
data, the sophisticated solution scores marginally
better than the simple one, but it improves more
clearly upon the simple method on the negated part
of the data, with F1 improvements ranging from
4.5 % to 6.1 % (i.e., from 0.029 to 0.039 F1 score).

Features NSD method P R F1

All tweets (training and test sets)

al
l

No 0.730 0.659 0.653
Simple 0.738 0.676 0.675
Sophisticated 0.738 0.684 0.684

ne
ga

tio
n No 0.705 0.618 0.601

Simple 0.728 0.663 0.662
Sophisticated 0.729 0.667 0.665

Only tweets containing negation

al
l

No 0.598 0.599 0.585
Simple 0.653 0.654 0.644
Sophisticated 0.675 0.682 0.673

ne
ga

tio
n No 0.609 0.604 0.586

Simple 0.648 0.654 0.633
Sophisticated 0.681 0.696 0.672

Table 9: Sentiment classification results

7 Conclusion and Future Work

The paper has introduced a sophisticated approach
to negation scope detection (NSD) for Twitter sen-
timent analysis. The system consists of two parts:
a negation cue detector and a negation scope clas-
sifier. The cue detector uses a lexicon lookup that
yields high recall, but modest precision. However,
the negation scope classifier still produces better
results than observed in other domains: an F1 score
of 0.853 with 64.5 % correctly classified scopes, in-
dicating that the Conditional Random Fields-based
scope classifier is able to identify the trend of cer-
tain dictionary cues being misclassified.

A sentiment classifier for Twitter data was also
developed, incorporating several features that ben-
efit from negation scope detection. The results
confirm that taking negation into account in gen-
eral improves sentiment classification performance
significantly, and that using a sophisticated NSD
system slightly improves the performance further.

The negation cue variation in the Twitter data
was quite low, but due to part-of-speech ambiguity
it was for some tokens unclear whether or not they
functioned as a negation signal. A more intricate
cue detector could in the future aim to resolve this.

The study builds on current state-of-the-art Twit-
ter sentiment analysis features, but other fea-
tures could tentatively make better use of well-
performing negation scope detection. The negated
contexts underlying the utilized sentiment lexica
are, for example, based on a simple NSD model, so
might be improved by more elaborate solutions.

106



References
Apoorv Agarwal, Boyi Xie, Ilia Vovsha, Owen Rambow, and

Rebecca Passonneau. 2011. Sentiment analysis of Twitter
data. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Lan-
guage Technologies, pages 30–38, Portland, Oregon, June.
ACL. Workshop on Languages in Social Media.

Héctor Cerezo-Costas and Diego Celix-Salgado. 2015.
Gradiant-analytics: Training polarity shifters with CRFs
for message level polarity detection. In Proceedings of the
9th International Workshop on Semantic Evaluation, pages
539–544, Denver, Colorado, June. ACL.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A
library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2(3):27:1–27:27,
April.

Wendy W. Chapman, Will Bridewell, Paul Hanbury, Gregory F.
Cooper, and Bruce G. Buchanan. 2001. A simple al-
gorithm for identifying negated findings and diseases in
discharge summaries. Journal of Biomedical Informatics,
34(5):301–310, October.

Isaac G. Councill, Ryan McDonald, and Leonid Velikovich.
2010. What’s great and what’s not: learning to classify
the scope of negation for improved sentiment analysis. In
Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics, pages 51–59, Uppsala, Swe-
den, July. ACL. Workshop on Negation and Speculation in
Natural Language Processing.

Xiaowen Ding, Bing Liu, and Philip S. Yu. 2008. A holistic
lexicon-based approach to opinion mining. In Proceed-
ings of the 2008 International Conference on Web Search
and Data Mining, pages 231–240, Stanford, California,
February. ACM.

Richárd Farkas, Veronika Vincze, György Móra, János Csirik,
and György Szarvas. 2010. The CoNLL-2010 shared
task: Learning to detect hedges and their scope in natural
language text. In Proceedings of the 14th Conference on
Computational Natural Language Learning, pages 1–12,
Uppsala, Sweden, July. ACL.

Talmy Givón. 1993. English grammar: A function-based
introduction. John Benjamins, Amsterdam, The Nether-
lands.

Tobias Günther, Jean Vancoppenolle, and Richard Johansson.
2014. RTRGO: Enhancing the GU-MLT-LT system for
sentiment analysis of short messages. In Proceedings of
the 8th International Workshop on Semantic Evaluation,
pages 497–502, Dublin, Ireland, August. ACL.

Matthias Hagen, Martin Potthast, Michael Büchner, and
Benno Stein. 2015. Webis: An ensemble for Twitter sen-
timent detection. In Proceedings of the 9th International
Workshop on Semantic Evaluation, pages 582–589, Denver,
Colorado, June. ACL.

Hussam Hamdan, Patrice Bellot, and Frederic Bechet. 2015.
Lsislif: Feature extraction and label weighting for senti-
ment analysis in Twitter. In Proceedings of the 9th Interna-
tional Workshop on Semantic Evaluation, pages 568–573,
Denver, Colorado, June. ACL.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M. Mohammad.
2014. Sentiment analysis of short informal texts. Journal
of Artificial Intelligence Research, 50:723–762, August.

Lingpeng Kong, Nathan Schneider, Swabha Swayamdipta,
Archna Bhatia, Chris Dyer, and Noah A. Smith. 2014. A
dependency parser for tweets. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language
Processing, pages 1001–1012, Doha, Qatar, October. ACL.

Natalia Konstantinova, Sheila C.M. de Sousa, Noa P. Cruz,
Manuel J. Maña, Maite Taboada, and Ruslan Mitkov. 2012.
A review corpus annotated for negation, speculation and
their scope. In Proceedings of the 8th International Con-
ference on Language Resources and Evaluation, pages
3190–3195, Istanbul, Turkey, May. ELRA.

Yasuhide Miura, Shigeyuki Sakaki, Keigo Hattori, and
Tomoko Ohkuma. 2014. TeamX: A sentiment analyzer
with enhanced lexicon mapping and weighting scheme for
unbalanced data. In Proceedings of the 8th International
Workshop on Semantic Evaluation, pages 628–632, Dublin,
Ireland, August. ACL.

Saif Mohammad and Peter Turney. 2010. Emotions evoked
by common words and phrases: Using Mechanical Turk
to create an emotion lexicon. In Proceedings of the 2010
Human Language Technology Conference of the North
American Chapter of the Association for Computational
Linguistics, pages 26–34, Los Angeles, California, June.
ACL. Workshop on Computational Approaches to Analy-
sis and Generation of Emotion in Text.

Saif Mohammad, Svetlana Kiritchenko, and Xiaodan Zhu.
2013. NRC-Canada: Building the state-of-the-art in sen-
timent analysis of tweets. In Second Joint Conference on
Lexical and Computational Semantics (*SEM), Volume 2:
Proceedings of the 7th International Workshop on Semantic
Evaluation, SemEval ’13, pages 321–327, Atlanta, Georgia,
June. ACL.

Saif Mohammad. 2012. #Emotional tweets. In First
Joint Conference on Lexical and Computational Semantics
(*SEM), Volume 2: Proceedings of the 6th International
Workshop on Semantic Evaluation, pages 246–255, Mon-
tréal, Canada, June. ACL.

Karo Moilanen and Stephen Pulman. 2007. Sentiment com-
position. In Proceedings of the 6th International Confer-
ence on Recent Advances in Natural Language Processing,
pages 378–382, Borovets, Bulgaria, September.

Roser Morante and Eduardo Blanco. 2012. * SEM 2012
shared task: Resolving the scope and focus of negation. In
First Joint Conference on Lexical and Computational Se-
mantics (*SEM), Volume 2: Proceedings of the 6th Interna-
tional Workshop on Semantic Evaluation, pages 265–274,
Montréal, Canada, June. ACL.

Roser Morante and Walter Daelemans. 2009. A metalearning
approach to processing the scope of negation. In Proceed-
ings of the 13th Conference on Computational Natural
Language Learning, pages 21–29, Boulder, Colorado, June.
ACL.

Roser Morante and Caroline Sporleder. 2012. Modality and
negation: An introduction to the special issue. Computa-
tional Linguistics, 38(2):223–260.

Pradeep G. Mutalik, Aniruddha Deshpande, and Prakash M.
Nadkarni. 2001. Use of general-purpose negation detec-
tion to augment concept indexing of medical documents:
A quantitative study using the UMLS. Journal of the
American Medical Informatics Association, 8(6):598–609,
November.

107



Preslav Nakov, Zornitsa Kozareva, Sara Rosenthal, Veselin
Stoyanov, Alan Ritter, and Theresa Wilson. 2013.
SemEval-2013 Task 2: Sentiment analysis in Twitter. In
Second Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 2: Proceedings of the 7th Inter-
national Workshop on Semantic Evaluation, SemEval ’13,
pages 312–320, Atlanta, Georgia, June. ACL.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev,
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