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Abstract

In this paper we propose a framework for
procedural text understanding. Procedural
texts are relatively clear without modality
nor dependence on viewpoints, etc. and
have many potential applications in arti-
ficial intelligence. Thus they are suitable
as the first target of natural language un-
derstanding. As our framework we ex-
tend parsing technologies to connect im-
portant concepts in a text. Our frame-
work first tokenizes the input text, a se-
quence of sentences, then recognizes im-
portant concepts like named entity recog-
nition, and finally connect them like a sen-
tence parser but dealing all the concepts in
the text at once. We tested our framework
on cooking recipe texts annotated with a
directed acyclic graph as their meaning.
We present experimental results and eval-
uate our framework.

1 Introduction

Among many sorts of texts in natural languages,
procedural texts are clear and related to the real
world. Thus they are suitable for the first target
of natural language understanding (NLU). A pro-
cedural text is a sequence of sentences describing
instructions to create an object or to change an ob-
ject into a certain state. If a computer understands
procedural texts, there are potentially tremendous
applications: an intelligent search engine for how-
to texts (Wang et al., 2008), more intelligent com-
puter vision (Ramanathan et al., 2013), a work
help system teaching the operator what to do the
next (Hashimoto et al., 2008), etc.

The general natural language processing (NLP)
tries to solve the understanding problem by a long

*This work was done when the first author was at Kyoto
University.

series of sub-problems: word identification, part-
of-speech tagging, parsing, semantic analysis, and
so on. Contrary to this design, in this paper,
we propose a concise framework of NLU focus-
ing on procedural texts. There have been a few
attempts at procedural text understanding. Mo-
mouchi (1980) tried to convert various procedu-
ral texts into so-called PT-chart on the background
of automatic programming. Hamada et al. (2000)
proposed a method for interpreting cooking in-
struction texts (recipes) to schedule two or more
recipes. Although their definition of understand-
ing was not clear and their approach was based
on domain specific heuristic rules, these pioneer
works inspired us to tackle a major problem of
NLP, text understanding.

As the meaning representation of a procedural
text we adopt a flow graph. Its vertices are im-
portant concepts consisting of word sequences de-
noting materials, tools, actions, etc. And its arcs
denote relationships among them. It has a special
vertex, root, corresponding to the final product.
The problem which we try to solve in this paper
is to convert a procedural text into the appropriate
flow graph. The input of our NLU system is the
entire text, but not a single sentence.

Our framework first segments sentences into
words (word segmentation; abbreviated to WS
hereafter). This process is only needed for some
languages without clear word boundary. Then we
identify concepts in the texts and classify them
into some categories (concept identification; ab-
breviated to CI hereafter). And finally we connect
them with labeled arcs. For the first process, WS,
we adapt an existing tool to the target domain and
achieve an enough high accuracy. The second pro-
cess, CI, can be solved by the named entity recog-
nition (NER) technique given an annotated corpus
(training data). The major difference is the defi-
nition of named entities (NE). Contrary to many
other NERs we propose a method that does not
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require part-of-speech (POS) tags. This makes
our text understanding framework simple. For
the final process we extend a graph-based pars-
ing method to deal with the entire text, a sequence
of sentences, at once. The difference from sen-
tence parsing is that the vertices are concepts but
not words and there are words not covered by any
concept functioning as clues for the structure.

As a representative of procedural texts, we se-
lected cooking recipes, because there are many
available resources not only in the NLP area but
in the computer vision (CV) area. For exam-
ple, the TACoS dataset (Regneri et al., 2013), is
a collection of short videos recording fundamen-
tal actions in cooking with descriptions written by
Amazon Mechanical Turk. Another example, the
KUSK dataset (Hashimoto et al., 2014), contains
40 videos recording entire executions (20 recipes
by two persons). The recipes in the KUSK dataset
are taken from the r-FG corpus (Mori et al., 2014),
in which each recipe text is annotated with its
“meaning.”

We tested our framework on recipe texts man-
ually annotated with word boundary information,
concepts, and a flow graph. We compare a naive
application of an MST dependency parser and our
extension for flow graph estimation. We also mea-
sure the accuracy at each step with the gold input
assuming the perfect preceding steps. Finally we
evaluate the full automatic process of building a
flow graph from a raw text. Our result can be a
solid baseline for future improvement in the pro-
cedural text understanding problem.

2 Related Work

Some attempts at procedural text understand-
ing were proposed in the early 80’s (Momouchi,
1980). Then Hamada et al. (2000) proposed tree-
based representation of cooking instruction texts
(recipes) from the application point of view. These
approaches used rule-based methods, but they,
along with the current success of the machine
learning approach, inspired us to conceive that the
procedural text understanding can be a tractable
problem for the current NLP.

In our framework the procedural text under-
standing problem is decomposed into three pro-
cesses. The first process is the well-known WS.
There have been many researches reporting high
accuracies in various languages based on the
corpus-based approach (Merialdo, 1994; Neubig

et al., 2011, inter alia). The second one is CI,
which can be solved in the same way of NER
(Chinchor, 1998) with a different definition of
named entities. The accuracy of the general NER
is less than WS but is more than 90% when a large
annotated corpus is available (Sang and Meulder,
2003, inter alia). So we can say that CI can also
be solved given an annotated corpus. The only
open question is how many examples are required
to achieve a practically high accuracy. This pa-
per gives a solution to this. The third one is our
original text parsing, which outputs a flow graph
taking a text and the concepts in it as the in-
put. To solve this problem, we follow the idea
of the graph-based dependency parsing (McDon-
ald et al., 2006; McDonald et al., 2005). Depen-
dency parsing attempts to connect all the words
in an input sentence with labeled arcs to form a
rooted tree. In our method, the units are concepts
instead of words and the input is an entire text
(a sequence of sentences), not a single sentence.
The words not forming concepts (mainly function
words), are only referred to as features to estimate
the flow graph. We also add another module to
form a directed acyclic graph (DAG).

From the NLP viewpoint, the major problems
we are solving are 1) dependency parsing (Buch-
holz and Marsi, 2006) among concepts only, 2)
predicate-argument structure analysis (Taira et al.,
2010; Yoshino et al., 2013), 3) semantic pars-
ing (Wong and Mooney, 2007; Zettlemoyer and
Collins, 2005), and 4) coreference, anaphora, and
ellipsis resolution (Nielsen, 2004; Fernández et
al., 2004). For dependency parsing we resolve the
target of modifiers such as quantities, durations,
timing clauses. For predicate-argument structure
analysis, we figure out which action is applied to
what object with what tools, even if it is stated
in passive form or just by a past participle. For
semantic parsing we resolve the relationships be-
tween concepts. For coreference, anaphora, and
ellipsis resolution, our DAG constructor links an
action to another action that takes the result of the
former action or an abstract expression to a con-
crete intermediate product. Our method solves
these problems focusing on important notions at
once.

The understanding of procedural texts may al-
low a more sophisticated combination of NLP an
CV. Recently there have been some attempts at
aligning videos and natural language descriptions
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1. 両手鍋Tで油Fを熱Acする。
( In a Dutch ovenT, heatAc oilF. )
セロリFと緑玉ねぎFとニンニクFを加えAc る。
( AddAc celeryF, green onionsF, and garlicF. )
１分ほどD 炒めAc る。
( CookAc for about 1 minuteD. )

2.ブイヨンFと水FとマカロニFと胡椒Fを加えAc

て 、パスタFが 柔らかSf くなAf るまで煮Ac る。
( AddAc brothF, the waterF, macaroniF, and pepperF,
and simmerAc until the pastaF isAf tenderSf . )

3. 刻AcんだセージFをまぶAcす。
( SprinkleAc the snippedAc sageF. )

Figure 1: Examples of a procedural text and its flow graph.

(Naim et al., 2014; Rohrbach et al., 2013). In
these researches, the NLP part is very naive. They
just identify the nouns in the text and apply a
sequence-based alignment tool. Now the machine
translation community is shifting to the tree-based
approach to capture structural differences in two
languages. The flow graph representation enables
grounding of tuples consisting of an action and its
target objects, and also absorbs the difference in
the execution order of a procedural text and the
video recording its execution.

Although NLU is the major scientific problem
of AI, procedural text understanding is important
from the viewpoint of applications as well. For
cooking recipes for example, on which we test our
framework in this paper, we can realize a more in-
telligent search engine, summarization, or a help
system (Wang et al., 2008; Yamakata et al., 2013;
Hashimoto et al., 2008).

3 Recipe Flow Graph Corpus

As a test bed of the text parsing problem, we
adopt the recipe flow graph corpus (r-FG corpus)
(Mori et al., 2014). To our best knowledge, this
is the only corpus annotated with flow graphs that
matches with our requirements. In addition cook-
ing recipes are representative procedural texts de-
scribing very familiar activities of our daily life,
and its meaning representation has various appli-
cations. Our framework is, however, not limited to
this corpus.

3.1 r-FG Corpus

The r-FG corpus contains randomly crawled
recipes in Japanese from a famous Internet recipe

#recipes #sentences #NEs #words
200 1,303 7,268 25,446

Table 1: Corpus statistics.

site.1 The specification of the corpus is shown in
Table 1. The text part of a recipe consists of a se-
quence of steps and the steps have some sentences.
All the concepts (entities and actions) appearing
in the sentences are identified and annotated with
a concept tag.2 The text part is annotated with a
rooted DAG representing its meaning as shown in
Figure 1.

3.2 Vertices

Each vertex of a flow graph corresponds to a con-
cept represented by a word sequence in the text
and a concept type such as food, tool, action. Ta-
ble 2 lists the concept types along with the aver-
age number of occurrences per recipe. There is
one special vertex, root, corresponding to the final
dish. In the Figure 1 example, the node of “splin-
kle” is the root.

3.3 Arcs

An arc between two vertices indicates that they
have a certain relationship. An arc has a label de-
noting its relationship type. Table 3 lists the arc
types with their average frequencies per recipe.
The most interesting relationships may be coref-
erences and null-instantiated arguments. In Fig-

1http://cookpad.com (accessed on 2015 May 19)
2In the original r-FG paper (Mori et al., 2014), they call

the concepts “recipe named entities.” In this paper we use the
term “concept” to refer to them, because the recipe named
entities contain verb phrases.
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Concept tag Meaning Freq.
F Food 11.87
T Tool 3.83
D Duration 0.67
Q Quantity 0.79
Ac Action by the chef 13.83
Af Action by foods 2.04
Sf State of foods 3.02
St State of tools 0.30
Total – 36.34

Table 2: Concept tags with frequencies per recipe.

Arc label Meaning Freq.
Agent Action agent 2.15
Targ Action target 15.67
Dest Action destination 7.22
F-comp Food complement 0.65
T-comp Tool complement 1.32
F-eq Food equality 3.15
F-part-of Food part-of 2.37
F-set Food set 0.15
T-eq Tool equality 0.44
T-part-of Tool part-of 0.39
A-eq Action equality 0.53
V-tm Head of a clause for timing 1.06
other-mod Other relationships 3.54
Total – 38.62

Table 3: Arc labels with frequencies per recipe.

ure 1 for example, “macaroni” is equal to “pasta.”
According to the world knowledge, macaroni is
a sort of pasta, but in this recipe they are identi-
cal. An example of a null-instantiated argument is
the relationship between “heat” and “add.” Celery
etc. should be added not to the initial cold Dutch
oven without oil but to the hot Dutch oven with oil,
which is the implicit result of the action “heat.”

4 Overview of Procedural Text
Understanding

Our framework of procedural text understanding
consists of the following three processes combined
in the cascaded manner.

1. Word segmentation (WS)

2. Concept identification (CI)

3. Flow graph estimation

The input of WS is a raw sentence and the out-
put is a word sequence. For example the WS takes

the first sentence in Figure 1 without any tag as the
input as follows:

両手鍋で油を熱する。

Then WS outputs the following word sequence
separated by whitespace as the output.

両手鍋で油を熱する。

The input of CI is the word sequence, the output
of WS, and it identifies concepts, which are spans
of words without overlap annotated with its type
sequences. For the above example, the CI outputs
three concepts as follows:

両手鍋Fで油Fを熱Acする。

This part is similar to NER. Contrary to a nor-
mal NER, however, our method does not require
POS tag for the words in the input. Thus we do not
need to adapt a POS tagger to the target domain.
For English or other languages with obvious word
boundary, we can start from CI.

Now we have a text consisting of some sen-
tences with concepts identified. An example is the
left hand side of Figure 1. This is the input of the
flow graph estimation step and the output is a flow
graph as show on the right hand side of Figure 1
for example.

In the traditional NLP approach, many sub-
problems proceed after NER. Syntactic parsing
clarifies the intra-sentential relationships among
NEs, then anaphora/coreference resolution figures
out their inter-sentential relationships. Contrary,
we process the entire text at once. In the subse-
quent section, we describe the above three process
in detail.

5 Word Segmentation

Some languages such as Japanese or Chinese, have
no obvious word boundary like whitespace in En-
glish. The first step of our framework is WS. For
many European languages this process is almost
obvious and instead of WS we only need to de-
compose some special words like “isn’t” to “is” +
“not” in English or “du” to “de” + “le” in French.

For WS we adopt the pointwise method (Neu-
big et al., 2011) because of its flexibility for lan-
guage resource addition.3 This characteristics is
suitable especially for domain adaptation. Below
we explain pointwise WS briefly and our method
to improve its accuracy for user generated recipes.

3An implementation and the default model for the gen-
eral domain are available from http://www.phontron.
com/kytea/ (accessed on 2015 May 19).
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Type Feature setting
Character xi−2, xi−1, xi, xi+1, xi+2, xi+3,
n-gram xi−2xi−1, xi−1xi, xixi+1, xi+1xi+2, xi+2xi+3,

xi−2xi−1xi, xi−1xixi+1, xixi+1xi+2, xi+1xi+2xi+3

Character c(xi−2), c(xi−1), c(xi), c(xi+1), c(xi+2), c(xi+3),
type c(xi−2)c(xi−1), c(xi−1)c(xi), c(xi)c(xi+1), c(xi+1)c(xi+2), c(xi+2)c(xi+3),
n-gram c(xi−2)c(xi−1)c(xi), c(xi−1)c(xi)c(xi+1) c(xi)c(xi+1)c(xi+2), c(xi+1)c(xi+2)c(xi+3)
Dictionary d(xi−2xi−1xixi+1), d(xi−1xixi+1xi+2), d(xixi+1xi+2xi+3)

L(· · ·xi−2xi−1xi), R(xi+1xi+2xi+3 · · · )
Table 4: Features for word segmentation. The fuction c(·) maps a character into one of six character
types: symbol, alphabet, arabic, number hiragana, katakana, and kanji. The fuction d(·) returns whether
the string is in the dictionary or not. And the functions L(·) and R(·) return whether substrings of any
length on the left hand side or right hand side match with a dictionary entry.

5.1 Pointwise Method
The pointwise method formulate WS as a binary
classification problem, estimating boundary tags
bI−1

1 . Tag bi = 1 indicates that a word bound-
ary exists between characters xi and xi+1, while
bi = 0 indicates that a word boundary does not
exist. This classification problem can be solved
by tools in the standard machine learning toolbox
such as support vector machines (SVMs).

The features are character n-grams surround-
ing the decision point i, which are substrings
of xi−2xi−1xixi+1xi+2xi+3, character type n-
grams, and whether character n-grams matches an
entry in the dictionary or not. Table 4 lists the fea-
tures.

As we can see, the pointwise WS does not refer
to the other decisions, thus we can train it from a
partially segmented sentences, in which only some
points between characters are annotated with word
boundary information.

5.2 Domain Adaptation
As the WS adaptation to recipes, we convert the r-
FG corpus into partially segmented sentences fol-
lowing (Mori and Neubig, 2014). In the corpus
only r-NEs are segmented into words. That is to
say, only both edges of the r-NEs and the inside of
the r-NEs are annotated with word boundary infor-
mation. If the r-NE in focus isホットドッグ com-
posed of two words, then the partially segmented
sentences are

ex.) 各|ホ-ッ-ト|ド-ッ-グ|に チ リ 、…,

ex.) |ホ-ッ-ト|ド-ッ-グ|を ア ル ミ…,

where the symbols “|,” “-,” and “ ” mean word
boundary, no word boundary, and no information,

Type Feature setting
Word wi−2, wi−1, wi, wi+1, wi+2,
n-gram wi−2wi−1, wi−1wi, wiwi+1, wi+1wi+2,

wi−2wi−1wi, wi−1wiwi+1, wiwi+1wi+2

Table 5: Features for concept identification.

respectively. Then we use the partially annotated
sentences which we obtained in this way as an ad-
ditional language resource to train the model.

6 Concept Identification

The second step is the concept identification. The
concept in the text parsing problem is a span of
words without overlap annotated with its type.
Thus the concept identification (CI) can be solved
in the same manner as the named entity recog-
nition (NER). NER is a sequence labeling prob-
lem and many solutions have been proposed so far
(Borthwick, 1999; Sang and Meulder, 2003, inter
alia).

The standard NER method is based on linear
chain conditional random fields (CRFs). In this
paper we use an NER which allows a partially an-
notated corpus as a training data as well as a nor-
mal fully annotated corpus (Mori et al., 2012).4 In
the training step this NER estimates the parame-
ters of a classifier based on logistic regression (Fan
et al., 2008) from sentences fully (or partially)
annotated with NEs (concepts). The features are
word n-grams surrounding the word in the focus
wi, Table 5 lists the features.

4CRFs are also trainable from a partially annotated corpus
(Tsuboi et al., 2008). Recently Sasada et al. (2015) have pro-
posed a hybrid method and reported a higher accuracy than
CRFs. We may use it for further improvement.
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At run-time, given a word sequence, the classi-
fier enumerates all possible BIO2 tags ti for each
word wi with their probabilities as follows:

PLR(ti|w−, wi, w
+),

where w− and w+ are the word sequences pre-
ceding it and following it, respectively. Then this
NER searches for the tag sequence of the high-
est probability satisfying the tag sequence con-
straints.5

7 Parsing an Entire Text

The final step is to build a flow graph. The input is
a text whose sentences are segmented into words
and all the concepts are identified. We call this
part a text parsing. As we mentioned in Section
1, text parsing deals with various language phe-
nomena at once, such as dependency, predicate-
argument structure, and anaphora/coreference.

For text parsing we extend an MST parser (Mc-
Donald et al., 2005). Since the flow graph is a la-
beled DAG, we add some labeled arcs to the MST.
Below we explain the processes one by one.

7.1 Spanning Tree Estimation
We first build a labeled spanning tree covering all
the concepts (vertices) of the input text. Let V be a
set of vertices and G be a set of possible spanning
trees on V . We assume that there exists a score
function s(u, v, l) which represents the likelihood
of making a labeled arc from u to v with label l.
Then the maximum spanning tree (MST) can be
found as follows:

Ĝ = argmax
G∈G

∑
(u,v,l)∈G

s(u, v, l).

We solve this problem using the Chu-Liu-
Edmonds algorithm (Chu and Liu, 1965; Ed-
monds, 1967). We define the score function
s(u, v, l) as a probability6:

s(u, v, l) =
exp{Θ · f(u, v, l)}∑

(x,r)∈(V \{u})×L

exp{Θ · f(u, x, r)}
.

Here L is the arc label set (See Table 3), Θ is
a vector of weight parameters and f(u, v, l) is a

5For example, the tag sequence F-I T-I is invalid.
6This is the probability of a directed arc with label l from

a fixed vertex u, but not a probability over all the directed
arcs. We have tried the latter scoring function but the result
was worse than the former scoring function which we report
in this paper.

1: G←Maximum spanning tree of V .
2: A← Sequence of arcs that can be added to G

without violating the acyclic condition.
3: Sort A in the descending order of the value of

the score function s.
4: n← 1
5: for (u, v) ∈ A do
6: if G ∪ {(u, v)} is acyclic and p(n) <

s(u, v) then
7: G← G ∪ {(u, v)}
8: n← n + 1
9: end if

10: end for
11: return G

Figure 2: Algorithm of DAG estimation

function that maps a labeled arc into a feature vec-
tor. The score function s(u, v, l) computes the
probability of making a labeled arc from u to v
with label l referring to their word sequences, con-
cept tags, surrounding words in the original recipe
text, and label l. A detailed description is given in
Subsection 7.3.

We use a log-linear model (Berger et al., 1996)
in order to train the weight parameters Θ. Let
{(Vt, ut, vt, lt)}Tt=1 denote a set of T training in-
stances, where Vt is a set of the vertices and
(ut, vt, lt) is a gold standard arc with label l in the
t-th training instance. Given these training exam-
ples, weight parameters are estimated so that they
maximize the following likelihood:

T∑
t=1

log
exp(Θ · f(ut, vt, lt)∑

(x,r)∈(Vt\{ut})×L

exp(Θ · f(ut, x, r))
−1

2
‖Θ‖2.

Because our flow graph is not a tree but a DAG,
there can be more than one arcs outgoing from
a single vertex. In other words it may contain
two arcs, (u, v, l) and (u, v′, l′), which share the
same start vertex u. In these cases, we add both
(V, u, v, l) and (V, u, v′, l′) to the training data.

7.2 Arc Addition
Given the labeled MST G, we add some labeled

arcs to form a flow graph of a labeled DAG with a
root. Our algorithm for adding arcs is described in
Figure 2.

The most important point is to choose the best
arcs one by one among those which do not cre-
ate cycles and add them to the MST. In Figure 2
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s(v, w, l) is the same score function used in the
MST estimation and p(n) is a function that gives
a penalty when the n-th additional arc is added to
G. Thus the arc of the highest s is added if the s
value is larger than the penalty p(n).

We adopt an exponentially increasing function
as the penalty function p(n) with parameters λ and
ξ as follows7:

p(n) =
ξ

λe−λn
.

The denominator on the right-hand side is an expo-
nential distribution with parameter λ. The numer-
ator ξ is a scale parameter. At the training step we
first estimate λ which minimizes the square error
between the training-data distribution of the num-
ber of arcs added to the tree and the exponential
distribution. Then we choose ξ which maximizes
the F-measure on the held-out data, a small portion
of training data, as we do in the deleted interpola-
tion method (Jelinek, 1985).

7.3 Features

The feature function outputs a high dimensional
feature vector that represents a characteristic of a
labeled arc (u, v, l).

We extract features from labeled arcs (u, v, l)
by two processes: first we extract features from the
arc and input recipe text and then we concatenate
the label l to each feature we extract. First the
following features are extracted from the input arc
(u, v) and the recipe text:

F1: The number of concepts existing between u
and v with sign, which is +1 if u is left to v
and -1 otherwise,

F2: Whether u and v are in the same sentence,

F3: Whether u and v are in the same step,

F4: Word sequences, pronunciation and concept
tags of each u and v,8

F5: Three preceding words and three following
words for both u and v,

F6: concept tag of u ∧ concept tag of v,
7The reason is that, in small training data, the relation-

ship between the number of additional arcs and the number
of the flow graph matched with an exponentially decreasing
function well.

8The pronunciations are automatically estimated based on
the method described in (Mori and Neubig, 2011).

Method Precision Recall F-measure
Baseline 65.1 61.5 63.2
Proposed 73.5 69.1 71.2

Table 6: Accuracies of the baseline and proposed
methods.

F7: concept tag of u ∧ concept tag of v ∧whether
u and v are in the same sentence,

F8: concept tag of u ∧ concept tag of v ∧whether
Ac exists between u and v ∧ whether a func-
tion word exists between u and v,

F9: concept tag of u ∧ concept tag of v ∧ function
words between u and v.

Here the symbol ∧ indicates the combination of
individual features.

Next we simply concatenate the label l with
each feature to construct feature vectors of labeled
arcs. For example, we extracts a feature “concept
tag of u ∧ concept tag of v.” Then, this type of
feature becomes “l ∧ concept tag of u ∧ concept
tag of v.” by concatenating the label l. The same
concatenation of a label is done on the other fea-
tures.

So-called higher order features which refer to
the neighboring vertices in the DAG are common
in work on dependency parsing (McDonald et al.,
2006; Koo and Collins, 2010), but we do not use
these kinds of features because we only have 200
recipes annotated with DAGs9. This number is
much smaller than roughly 40,000 sentences of the
Wall Street Journal which are commonly used to
train dependency parsers (Marcus et al., 1994).

8 Evaluation

We evaluated our framework on the r-FG corpus
described in Table 1. We executed 10-fold cross
validation for more reliable results.

DAG estimation accuracy is measured by the
F-measure of labeled arcs, which is the harmonic
mean of precision and recall. Let Nsys, Nref , and
Nint be the number of the estimated arcs, the gold
standard arcs, and their intersection, respectively.
Then precision = Nint/Nsys, recall = Nint/Nref ,
and F-measure = 2Nint/(Nref + Nsys).

9Mori et al. (2014) state that it took about one our to an-
notate one recipe with word boundaries, concept tags, and a
flow graph. It is much more coslty than syntactic annotation.
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Task Input F-meas.
WS Raw texts 98.6
CI Gold WS results 90.7
Flow graph estimaiton Gold WS/CI results 72.1
WS + CI + flow graph estimaiton Raw texts 51.6

Table 7: F-measure of each task and the overall task.

8.1 Flow Graph Estimation
As the first evaluation, we compared the simple
application of the MST parser and our extension.
We assumed the gold WS and CI results.

8.1.1 Settings of Flow Graph Estimation
We compared two methods in the following way.
Baseline A naive method for the text parsing is a

simple application of MST parser (McDon-
ald et al., 2005) to a concept sequence input.
An MST parser takes a sequence of words an-
notated with POSs and outputs a labeled tree
connecting all the words. Thus our baseline
for flow graph estimation takes a sequence of
concepts (pairs of a word sequence and a con-
cept type) as the input. The output of an MST
parser is a tree, but not a DAG. So we add
our arc addition module for a fair compari-
son. As the implementation, we modified a
Japanese dependency parser (Flannery et al.,
2012) that uses the logistic regression as the
scoring function.

Proposed This combines the spanning tree es-
timation (Subsection 7.1) and the arc addi-
tion (Subsection 7.2) in the cascaded manner.
Different from the Baseline, this method re-
ferred to words not included in concepts such
as function words as the features .

Table 6 shows the accuracies of the baseline
method and our MST extension. We can see that
there is a significant difference in accuracy be-
tween Baseline and Proposed. The major differ-
ence between these two methods is whether or not
they refer to the words not covered by the con-
cepts in the original texts, such as in F5 for ex-
ample. These words are mainly function words.
Therefore we can say that the function words are,
as we know intuitively, important for the relation-
ships among the concepts.

8.2 Text Parsing on a Raw Text
We also executed the text parsing taking a raw text
as the input. For this problem, we combine WS,

CI, and flow graph estimation (Proposed) in the
cascaded manner.

The performance measurement is F-measure.
Different from the first experiment, the unit is a
triplet (〈ws, cs〉, 〈we, ce〉, l). Here, ws and cs are
the word sequence of the out-going vertex of the
arc and its concept type, respectively. we and ce

are those of its in-coming vertex. And l is its label.
A triplet is correct if and only if all these elements
match with those of an arc in the manually anno-
tated data.

8.2.1 Settings of Word Segmentation and
Concept Identification

We built an automatic word segmenter and an au-
tomatic concept identifier in the following way.

WS: The word segmenter (see Section 5) is
trained on the following corpora.

1. Balanced Corpus of Contemporary
Written Japanese (Maekawa, 2008)
containing fully segmented 53,899
sentences from newspaper articles,
books, magazines, whitepapers, Web
logs, and Web QAs.

2. The partially segmented sentences de-
rived from 208 recipes in the r-FG cor-
pus and additional 208 recipes anno-
tated with concept types. In the exper-
iment, we excluded the test part in 10-
fold cross validation. Thus we built 10
models in total.

3. Partially annotated 1,651 sentences
crawled from another recipe Web site10.

CI: The concept identifier (see Section 6) is
trained on the corpus 2. used in the WS train-
ing in the same way. Thus we built 10 models
in total for 10-fold cross validation11.

10http://park.ajinomoto.co.jp/ accessed on
2014/May/21.

11We made this concept identifier with the model
trained on 416 recipes publicly available from
http://plata.ar.media.kyoto-u.ac.jp/
data/recipe/home-e.html.
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8.2.2 Results
Table 7 shows the accuracies of WS, CI, and flow
graph estimation on the gold results of the preced-
ing task and that of the combination of three tasks
starting from a raw text to a flow graph.

As we see in the table, the flow graph estimation
task is the most difficult and has a large room for
improvement. The accuracy of WS without adap-
tation was about 95% and our adaptation tech-
nique raised it to about 99% which is as high as
in the general domain case. The accuracy of CI,
trained on less than 3,000 sentences, is as high as
the general NER whose accuracy is about 90% by
a model trained on about 10,000 sentences. This is
still lower than WS accuracy, so the concept iden-
tifier is also a target of improvement.

From Table 7, the accuracy of the cascade com-
bination of three tasks (WS + CI + flow graph
estimation) is 51.6. This value is lower than the
simple multiplication result that assumes the inde-
pendence among the tasks 57.2 = (0.9861.27 ×
0.907)2 × 0.721× 100, where 1.27 is the average
word length of the concepts. This indicates that
it is worth trying to investigate joint methods for
WS, CI, and flow graph estimation.

9 Conclusion

In this paper, we proposed a framework of pro-
cedural text understanding consisting of the three
processes. The first process is the well-known
word identification. The second one is concept
identification, which can be solved in the same
way of named entity recognition with different
definition of named entities. The third one is our
original text parsing, which estimates a flow graph
taking a text and the concepts in it as the input.

We tested our framework on recipe texts man-
ually annotated with a flow graph. The results
showed that our method outperforms a naive ap-
plication of an MST dependency parser. Thus we
can say that the simple application of dependency
parsing to flow graph estimation does not work
well, and that it is important to focus on not only
concepts but also words surrounding them. Finally
we evaluated the full automatic process of build-
ing a flow graph from a raw text. Our result can
be a solid baseline for future improvement in the
procedural text understanding problem.

Our method is applicable to various procedural
texts allowing us to realize more intelligent search
engine for how-to texts, more sophisticated sym-

bol grounding by combining NLP and CV, etc.
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