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Abstract

We propose to use Graph Rewriting
for parsing syntactic dependencies. We
present a system of rewriting rules dedi-
cated to French and we evaluate it by pars-
ing the SEQUOIA corpus.

1 Introduction

The most popular frameworks (TAG, CG, LFG,
HPSG) for symbolic parsing are based on the
notion of grammar. They defined a set of ini-
tial structures (often strongly linked to a lexicon)
and a set of rules to express how initial struc-
tures can combine into larger ones. In this set-
ting, parsing consists in searching for a syntac-
tic structure predicted by the grammar for an in-
put sentence. Among drawbacks of these meth-
ods, there is the fact that they may be inefficient
when large-coverage grammar are considered (the
search space grows very quickly for large sen-
tences) and that they are not easy to use in con-
texts where robust parsing is needed (grammars
describe set of correct sentences but do not give
structures to sentences that are not completely
covered by the grammar). Another problem with
grammar-based parsing is that it is a difficult task
to maintain the global consistency of the grammar.
Moreover, development of large coverage gram-
mar is known to be a time-consuming task.

On the other side, statistical methods build lan-
guage models with learning algorithm applied to
large annotated corpora. With respect to sym-
bolic methods, it is easier to build robust parser
with these methods and it is also easier to adapt
a method to a new kind of corpus or to a new
natural language. The main drawbacks are that
good results are obtained only if large and well-
annotated corpora are available. It is also dif-
ficult to improve a system: learning provides a
language model which is essentially a black box

which cannot be read by a human; external mech-
anism must be used if someone want to include
linguistic knowledge in the system.

In this paper we propose a symbolic method
which is defined in a Graph Rewriting (GR) frame-
work. The output format is dependency syntax
of natural language sentences. We propose to de-
scribe the parsing process as a sequence of atomic
transformations starting from a list of lexical units
(a tokenized sentence) to a dependency tree1 built
on the same lexical units. Each atomic transforma-
tion is described by a handcrafted rule. Then, in-
stead of defining a grammar that describes the set
of well-formed structures, we define rules which
describe linguistic contexts in which a dependency
relation can appear.

The rule system input is made of lemmatized
and POS-tagged sentences. For the experiments in
this paper, we use the SEQUOIA corpus (Candito
and Seddah, 2012) (version 6.02) as the gold stan-
dard. We experiment our system in two settings:
on gold POS-tagged text (taken from SEQUOIA

data) and on POS-tagging given by the MElt tag-
ger (Denis and Sagot, 2012).

We use the general framework of GR where
each transformation is given by two parts: first,
the conditions that control when the transforma-
tion may apply (the pattern) and second, a descrip-
tion of the way the structure should be modified.

In the system we proposed, the input format is a
tokenized sentence where each lexical unit is given
a lemma and a POS-tag; the output format is a de-
pendency structure; hence, both input and output
structure can be represented as trees. Neverthe-
less, we use GR to describe our rules. At a first
sight, it may be surprising to use such a formalism
to manipulate only trees. But, the first thing to no-
tice is that matching algorithms used in GR are di-
rect generalization of matching algorithm that can

1The output may a partial dependency trees.
2
https://gforge.inria.fr/projects/sequoiabank/
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be used in tree transformation: it means that, if
all structures and patterns happen to be trees, the
pattern matching in the GR setting will be as effi-
cient as the pattern matching in the tree rewriting
setting. A second benefit of GR is that it becomes
possible to express more information in the inter-
mediate structures. In the rule system, we use two
kinds of relation to express linear order between
lexical entities: the relation SUC links the heads
of two partial dependency structures; the relation
INIT_SUC links two successive lexical unit of the
sentence, even if they have also been integrated
in partial dependency structures. Structures with
these two kinds of relations are graphs and cannot
be represented as trees.

In a comparison with other works from the lit-
erature, we left out data-driven approaches which
are far from our proposal. In (Foth et al., 2000),
(Debusmann et al., 2004), weighted rules are used
to described valid dependency structures and the
parsing is expressed as a constraints resolution
problem. (Covington, 2000) and (Nivre, 2003)
propose rule-based processes to produce depen-
dency structures but they are presented as kind of
shift-reduce algorithm where word are treated one
by one following the reading order, rules describ-
ing how each word can be link to the current state.
Each rule only tells that a dependency from a word
to another word is acceptable.

More close to our work is the proposal
of (Oflazer, 2003) which defines a set of rules
that are used iteratively until a fixpoint is reached
and the rules application do not necessarily fol-
low the reading order of the sentence. However,
in (Oflazer, 2003) rules are encoded as regular ex-
pressions and are less flexible than a GR rule can
be. To our knowledge, our proposal is the first use
of the Graph Rewriting framework for symbolic
dependency parsing.

In Section 2, we describe more precisely the GR
framework used in the paper. In Section 3, the
GR system considered is detailed. We finally give
experimental results in Section 4.

2 Graph Rewriting

Unfortunately, there is no canonical formal GR
definition. In this experiment, we use the GR def-
inition which is implemented in the GREW soft-
ware3. Rules are defined by two parts: a pattern
and a set of commands. GREW was used for in-

3
http://grew.loria.fr
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Figure 1: An example of application for the rule
subject_noun

stance in (Bonfante et al., 2011) to build a seman-
tic annotation of a French Treebank.

The reader can refer to the GREW documenta-
tion for a complete description of the GR frame-
work and of the syntax of the rules with GREW.
We give here a simple example of rule and of its
application; more elaborated rules are shown in
the next section. The code below is a simplified
version of a rule for the subject relation.

1 rule subject_noun {
2 match {
3 S [cat=N|PRO];
4 V [cat=V, m=ind|subj];
5 e1:S -[SUC]-> V;
6 P []; e2:P -[SUC]-> S;
7 }
8 without { V -[suj]-> * }
9 without { S [lemma="que"|"dont"] }

10 commands {
11 del_edge e1;
12 del_edge e2;
13 add_edge V -[suj]-> S;
14 add_edge P -[SUC]-> V;
15 }
16 }

Different parts of rule are as follows. One
match part (lines 2 to 7) describes the subgraph
that must be found: here, the subgraph contains
3 nodes S, V and P linked by two relations SUC
(lines 5 and 6). Any number of without parts
describe negative application patterns; if any of
these negative patterns is found, the rule applica-
tion is blocked. For instance (line 8), if there is al-
ready a suj dependency starting from V, the rule
does not apply (it prevents from putting two sub-
jects for the same verb). Finally, a commands
part describes how the graph is transformed by the
rule application, in the example: add a suj re-
lation from the V node to the S node and update
the SUC relations (the verb is now the successor
of the P node). On a very simple sentence Jean
mange une pomme. (John eats an apple.), the two
dependency structures of Figure 1 show respec-
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tively the structure before (with identifiaction of
matched nodes S, V and P) and after the rule ap-
plication. With GREW, it is also possible to mod-
ify feature structures in the commands part: add
a new feature, modify or remove an existing fea-
ture. The rule above uses some lexical information
in the second without part. As some rules make
a strong usage of lexical information, it is possible
to parametrize rules by external lexicons with the
lex_rule keyword. For instance, in the rule be-
low, a relation obj in added (line 18) only if the
verb lemma (line 7) is one on the lemmas given
in the lexical file verb_with_obj_noun.lp
(line 3). This file contains a list of more than 3,000
French transitive verbs.

1 lex_rule verb_object_noun
2 ( feature $lemma;
3 file "verb_with_obj_noun.lp"
4 ) {
5 match {
6 OBJ [cat=N|PRO];
7 V [cat=V, lemma=$lemma, m=ind|subj];
8 POST [];
9 e1: V -[SUC]-> OBJ;

10 e2: OBJ -[SUC]-> POST;
11 V -[suj]-> *
12 }
13 without ...
14 without ...
15 commands {
16 del_edge e1;
17 del_edge e2;
18 add_edge V -[obj]-> OBJ;
19 add_edge V -[SUC]-> POST;
20 }
21 }

When the number of rules increases, some con-
straint should be put on the order in which the
rules can be used. In this respect, a last feature,
which is essential in the GREW usage, is the orga-
nization of rules into subsets called modules. The
whole rewriting process is controlled by a total or-
der on modules that are applied one after another;
inside a module, no ordering is given and any rule
may be apply anywhere in the graph.

Moreover in a general GR setting, the process
may be non-confluent. Even if a total ordering is
provided between modules, an arbitrary number of
structures can be produced inside a module. In this
work, we restrict ourself to deterministic GR, this
means that we focus on the set of dependency re-
lation that can be produced in a deterministic way.
We can imagine many cases where non-confluent
rewriting system can be used: for instance, PP-
attachment is known to be a task that cannot be
decided only with syntactic information. We leave
as future work the development of non-confluent
system and the problem of ranking in case of non-
deterministic process.

3 FRDEP-PARSE: a System of Graph
Rewriting Rules for Dependency
Parsing

3.1 Input and Output Formats
FRDEP-PARSE takes a French sentence annotated
with POS-tags and lemmas as input and returns a
dependency syntax annotation for the same sen-
tence as output. Let us describe the input and the
output more precisely.

The input sentence is a sequence of tokens.
Each token is equipped with a set of features:

• phon: the phonological form of the token;

• lemma: the lemma of the token;

• pos: the value of which is one of the 28 tags
defined in the annotation guide of the French
TreeBank4;

• position: an integer indicating the posi-
tion of the token in the sequence (this fea-
ture is used to express linear order between
tokens).

At the beginning of the process, the 28 POS-
tags are interpreted in terms of 13 grammatical
categories (feature cat) and some other features.
For instance, the 6 POS-tags V, VINF, VIMP, VS,
VPP, VPR are all interpreted by feature cat=V
and a m feature recording the mood (respectively
indicative, infinitive, imperative, subjunctive, past
participle and present participle).

Initially, the only relations between tokens are
SUC relations of immediate succession between
adjacent tokens.

The parsing output is the sentence annotated
with syntactic dependencies according to the
tagset used in SEQUOIA. The annotation may be
partial. Figure 2 shows an example of syntactic
annotation obtained with FRDEP-PARSE.

3.2 A CKY Basic Architecture
The basic form for the rewriting rules of FRDEP-
PARSE aims at the implementation of a CKY-like
algorithm in the dependency syntax framework.
The dependency tree of a sentence is built bottom-
up step by step. When two partial trees T1 and T2

have their terminal yields which are adjacent, a de-
pendency may be added between the roots w1 and
w2 of the two trees.

4
http://alpage.inria.fr/statgram/frdep/

Publications/FTB-GuideDepSurface.pdf
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Figure 2: A non-projective result of syntactic annotation with FRDEP-PARSE.

To express adjacency between two yields, SUC
is used with a larger meaning: if there is a SUC
relation from a token w1 to a token w2, it means
that w1 and w2 are roots of intermediate depen-
dency trees, the yield of the first tree immediately
preceding the yield of the second tree.

(Eisner, 1996) already proposed a CKY-like al-
gorithm for parsing with dependencies, but he dif-
fers from our proposal on two points: he uses a sta-
tistical approach and to link two dependency trees,
he takes only their roots into account and ignores
information coming from deeper nodes.

The use of GREW for implementing the CKY
algorithm in a strict manner has no point, but the
Graph Rewriting approach allows to enrich the al-
gorithm in various directions. One of them is to
add internal and external constraints on the T1 and
T2 trees.

Here is an example of constraints introduced by
a rule of FRDEP-PARSE.

1 lex_rule verb_right-modif_adv
2 (feature $lem; file "quant_adv.lp") {
3 match {
4 %positive constraint on T1
5 V [cat=V];
6
7 %positive constraints on T2
8 ADV[cat=ADV];
9 POST [ ];

10 e1: ADV -[SUC]-> POST
11
12 % adjacency between T1 and T2
13 e2: V -[SUC]-> ADV
14 }
15
16 % negative constraints on T1
17 without { ADV[pos=ADVWH] }
18
19 %negative constraints on T2
20 without { POST[cat=V,m=pastp] }
21 without {
22 ADV[lemma=$lem];
23 POST[cat=P,lemma="de"]
24 }
25
26 commands{
27 del_edge e1;
28 del_edge e2;
29 add_edge V -[mod]-> ADV;
30 add_edge V -[SUC]-> POST
31 }
32 }

The rule above is a lexical rule in which the pa-
rameter $lem represents the lemma of an adverb
coming from the quant_adv.lp file gathering

adverbs of quantity. It says that any adverb ADV,
the yield of which immediately follows the yield
of a verb V, is a modifier of the verb V. It includes
three negative constraints:

• An internal constraint: ADV must be different
from an interrogative adverb. For instance,
in the sentence Pierre demande combien ça
coûte (Pierre asks how much it is), combien is
not a modifier of demande but a complement
of coûte.

• An external constraint: POST that immedi-
ately follows ADV is not a past participle be-
cause in this case, ADV depends on the past
participle POST. For instance, in the sen-
tence Pierre a beaucoup travaillé (Pierre has
worked a lot), beaucoup is not a modifier of
the auxiliary a but of the past participle tra-
vaillé.

• A mixed constraint: ADV is not an adverb
of quantity followed with the preposition de.
For instance, in the sentence Pierre connaît
beaucoup de personnes (Pierre knows a lot
of persons), beaucoup is not a modifier of
connaît but of personnes at the opposite to
the sentence Pierre travaille beaucoup la nuit
(Pierre works a lot in the night).

The following example highlights the expres-
sivity of the graph rewriting approach, which al-
lows the representation of constraints on deep lev-
els in the T1 and T2 trees .

1 lex_rule impers_verb_obj_de_inf
2 (feature $lem;
3 file "il_verb_with_obj_de_inf.lp"){
4 match {
5 %positive constraints on T1
6 V[cat=V,lemma=$lem];
7 IL[phon="il"|"Il"];
8 V -[suj]-> IL;
9

10 %positive constraints on T2
11 PREP[cat=P,lemma="de"];
12 OBJP[cat=V,m=inf];
13 PREP -[obj.p]-> OBJP;
14 POST[];
15 e1: PREP -[SUC]-> POST;
16
17 % adjacency between T1 and T2
18 e2: V -[SUC]-> PREP;
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19 }
20
21 % negative constraints on T1
22 without{SE[pos=CLR]; V -> SE}
23
24 commands{
25 del_edge e1;
26 del_edge e2;
27 add_edge V -[obj]-> PREP;
28 add_edge V -[SUC]-> POST
29 }
30 }

The rule above realizes the direct object of an
impersonal verb, when this object is an infinitive
introduced with the preposition de. The rule is lex-
ical because it verifies that the verb is able to enter
such a construction. The parameter of the rule is
the lemma $lem of the verb.

A positive constraint on T1 says that the verb
V must have a subject il and a positive constraint
on T2 says that the tree is made of PREP de, a
preposition introducing an infinitive OBJP.

Such constraints cannot be expressed with the
classical CKY algorithm in a constituency ap-
proach, where constraints are limited to the exter-
nal constituents of partial syntactic trees.

3.3 Non Projective and Disambiguation
Rules

If all rules of FRDEP-PARSE had the form de-
scribed above, the dependency structure resulting
from their application would be projective. There-
fore, we should be not able to represent some phe-
nomena from the French grammar, which are es-
sentially non-projective, and are present in the SE-
QUOIA corpus.

In FRDEP-PARSE, non-projectivity is intro-
duced in two ways:

• in iterative modules, some rules link partial
dependency trees with non-projective depen-
dencies;

• specific rules are added in final modules with
the aim of moving dependencies from pro-
visional positions with provisional labels in
order to obtain non-projective dependencies
with definitive labels.

There are other final modules used for disam-
biguation. Indeed, at some intermediate steps of
the parsing process, there is no sufficient informa-
tion for deciding between several dependency la-
bels. We could divide the search path into several
paths. The repetition of such choice points would
entail the time explosion of the parsing process. In

this situation, we keep a unique search path by la-
belling the concerned dependencies with disjunc-
tion of elementary functions. At the end of pars-
ing, the ambiguity is solved with specific rules us-
ing the information accumulated during the pars-
ing process.

The following rule illustrates both functions:
label disambiguation and expression of non-
projectivity. It applies to Sentence [ann-
odis.er_00026] from the SEQUOIA corpus, more
specifically to the part le ruban qui en marque
symboliquement l’entrée (the ribbon, which sym-
bolically marks the entry of it). Figure 1 shows the
syntactic annotation produced by FRDEP-PARSE.
The clitic pronoun en represents a complement of
entrée. It is modelled with a dependency dep
crossing the object dependency mod.rel from
the noun ruban to the verb marque. The rule pro-
ducing non-projectivity is the following:

1 lex_rule obj_dep_en
2 (feature $lem ;
3 file "verb_with_obj_deobj.lp") {
4 match{
5 CLIT[pos=CLO, phon="en"];
6 V[cat=V];
7 iobj_rel: V -[DE_OBJ-OBJ]-> CLIT
8 OBJ[cat=N];
9 V -[obj]-> OBJ

10 }
11 without { V [lemma=$lem] }
12 commands {
13 del_edge iobj_rel;
14 add_edge OBJ -[dep]-> CLIT
15 }
16 }

Initially, CLIT en depends on the verb V, which
it cliticizes in an ambiguous relation de_obj (in-
direct object introduced with the preposition de)
or obj (direct object). When the verb V has found
a direct object OBJ, the source of the dependency
for CLIT en is transferred from the verb to the ob-
ject and its label becomes dep.

The lexicalization of the rule concerns the neg-
ative constraint. It aims at verifying that V is not a
verb simultaneously taking a direct object and an
indirect object introduced with de. In this case, en
would be the de_obj complement of the verb V.

3.4 Modules for Controlling the Parsing
Process

If we put all rewriting rules of FRDEP-PARSE in
a unique bag with the same priority, the system is
untractable because of the ambiguity, which will
entail an time explosion of the parsing process.
But GREW offers the possibility of grouping rules
by modules and ordering the modules.

We use this possibility for controlling the pars-
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Figure 3: The annotation of a sentence after running the initial modules and at the end of parsing.

ing process. The rewriting rules model particular
grammatical rules of the language (French in our
case) and they are grouped by modules according
to their linguistic proximity. We distinguish three
classes of modules with respect to their position
in the parsing process: initial modules, iterative
modules and final modules.

3.4.1 Initial modules
Initial modules are carried out at the beginning of
parsing. They have two different functions. Some
modules, which are related to the specific annota-
tion format, are used to prepare the actual syntactic
annotation.

Other modules have a linguistic function: they
realize close dependencies to verbs, nouns, adjec-
tives and adverbs. They realize them with a great
determinism, and thus they can be very well fore-
seen. They link verbs with their auxiliaries and
clitics, nouns with their determiner and left adjec-
tives. Finally, they make specific adverbs modi-
fiers of verbs, adjectives or other adverbs.

Figure 3 shows an example of annotation step
produced with FRDEP-PARSE on a part of Sen-
tence [frwiki_50.1000_00854] from the SEQUOIA

corpus. The first annotation is produced by the
application of the initial modules. The module
verb_aux realizes the dependencies aux.tps
and aux.pass of the respective verbs pu and re-
tracés. The module noun_dep realizes the depen-
dencies det and mod for the noun F but also the
dependency det for the noun versements.

3.4.2 Iterative modules
Iterative modules realize arguments of verbs, ad-
jectives, nouns and adverbs, as well as their mod-
ifiers that can be put more or less far from them.
They are called iterative because they can be re-

peated several times, which is made necessary by
the CKY form of the syntactic composition in-
duced by the form of rules and the recursivity of
the syntactic composition for natural languages.

In the bottom part of Figure 3, the suj, obj
and mod.rel dependencies of the second anno-
tation are realized by iterative modules. In par-
ticular, the subject module is used twice: first, it
realizes the subject qui of pu; second, it realizes
the subject versements of avoisineraient. With a
CKY strategy, both dependencies cannot be real-
ized in the same application of the module sub-
ject because versements must be composed with
the relative clause that modifies it, before being
composed with the verb avoisineraient.

There is a specific coord module, which is ded-
icated to coordination. It is also iterative be-
cause coordination may be performed at more or
less deep levels of syntax: word, noun phrase,
clause. . .

3.4.3 Final modules
Final modules are carried out at the end of parsing.
There are three classes of final modules.

In the order of their execution, the first class
includes modules that realize disambiguation
and transformation of projective trees into non-
projective trees (see Subsection 3.3).

Then, a second class includes modules that aim
at closing the dependency structure of the sen-
tence in two ways: adding default dependencies
between non-connected partial trees and removing
relations that are not syntactic dependencies but
that were used by FRDEP-PARSE in intermediate
steps.

Finally, a last class of modules transforms the
annotation in a format conform to the annota-
tion scheme of SEQUOIA. The reason is that our
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linguistic choices of annotation differ from those
made for annotating SEQUOIA on some points.

First, we aim at simplifying the system of
rewriting rules with a more uniform representation
of dependencies. For instance, all contractions be-
tween a preposition and a determiner (for instance
à le is contracted in au) are decomposed, so that
rules related to determiners or prepositions can ap-
ply to these cases in the same way as in the stan-
dard cases.

Second, for some phenomena, there are good
arguments for two different interpretations and we
have made another choice than SEQUOIA. For in-
stance, we consider that the head of a coordination
is the conjunction of coordination. The main argu-
ment is that it allows the modifiers or arguments
of a coordination to be distinguished from those
of the first conjunct, which is not possible if we
choose the head of the first conjunct as the head of
the coordination.

3.5 Relaxing the CKY strategy
The goal of grouping rewriting rules by modules
and ordering these ones, is the efficiency of pars-
ing. The challenge is to keep accuracy at the same
time. For this, we can play with two factors:

• the delimitation of modules (between two ex-
tremes, all rules in one module and one sepa-
rate module for each rule),

• the order between modules, taking into ac-
count that iterative modules can be repeated
as many times as needed,

If we constrain all iterative rules to respect the
form described in Subsection 3.2, which induces a
CKY strategy of parsing, we cannot obtain some
needed dependency structures: for most iterative
modules, the constraints imposed by the French
grammar are contradictory.

Let us take again Example 1 to illustrate
this contradiction. The first dependency obj
from coupé to ruban must be realized after the
dependency mod.rel, which entails the or-
der head_verb_obj / head_noun_modrel be-
tween the corresponding modules. At the op-
posite, the second dependency obj from mar-
que to entrée must be realized before the de-
pendency mod.rel, which entails the order
head_noun_modrel / head_verb_obj .

The contradiction cannot be solved by iteration
of the module head_verb_obj because both de-

pendencies will be realized at the first pass through
the module.

We choose to relax the CKY strategy, which
allows to link two partial dependency trees only
by their roots. From empirical considerations, we
propose new rules in the following form: if the
yield of a partial dependency tree T1 immediately
precedes the yield of another partial dependency
tree T2, the rule tries to realize a dependency be-
tween the rightmost token wr1 of the T1 yield with
the root of T2.

This new kind of rules aims at implementing
a strategy of parsing that gives priority to clos-
est dependencies, contrary to the rules implement-
ing a CKY-like strategy aiming at linking heads
of dependency trees. We call the first rules close
linking rules and the second ones head linking
rules. The corresponding modules are respec-
tively called close linking modules and head link-
ing modules.

As for the head linking rules, the adjacency be-
tween T1 and T2 in a close linking rule is ex-
pressed with a SUC relation between their roots r1

and r2. The difference is that an INIT_SUC rela-
tion expresses the immediate succession between
wr1 and the left border wl2 of the T2 yield. The
token wl2 is linked to r2 by an explicit chain of de-
pendencies, which may reduce to the empty chain.
The rule introduces a dependency from wr1 to r2.

Let us illustrate this new kind of rules with Ex-
ample 1. Using only head linking rules, we ob-
tain the annotation shown on Figure 4. We fail
to link the word ruban with the head marque of
the relative clause because the concerned module
head_noun_modrel, the function of which is to
realize mod.rel dependencies, comes after the
module head_verb_obj realizing the dependency
obj from coupé to ruban.

To solve the problem, we introduce the follow-
ing close linking rule:

1 rule close-noun_modrel_verb {
2 match {
3 % positive constraints on T1
4 PRE [];
5 N [cat=N|PRO];
6
7 % positive constraints on T2
8 PROREL [pos=PROREL];
9 V [cat=V, m=ind|subj];

10 POST [];
11 V -> PROREL;
12 e2: V -[SUC]-> POST;
13
14 %adjacency between T1 and T2
15 e1: PRE -[SUC]-> V;
16
17 % N rightmost token in T1 yield
18 N -[INIT_SUC]-> PROREL
19 }
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Après
cat=P

lemma=après
pos=P

avoir
cat=V

lemma=avoir
m=inf

pos=VINF

coupé
cat=V

initm=pastp
lemma=couper

m=inf
pos=VPP

le
cat=D

lemma=le
pos=DET

ruban
cat=N
det=y

lemma=ruban
pos=NC
s=c

qui
cat=PRO
det=y

lemma=qui
pos=PROREL

s=rel

en
cat=CL
det=y

lemma=en
pos=CLO
s=obj

marque
cat=V

lemma=marquer
m=ind
pos=V

symboliquement
cat=ADV

lemma=symboliquement
pos=ADV

l'
cat=D

lemma=le
pos=DET

entrée
cat=N
det=y

lemma=entrée
pos=NC

aux.tps det mod det

obj.p obj

suj

obj

dep

INIT_SUC INIT_SUCINIT_SUCINIT_SUC INIT_SUCINIT_SUC INIT_SUCINIT_SUC INIT_SUCINIT_SUC

SUC

Figure 4: The annotation of the phrase from Figure 1 with the CKY strategy

20
21 % PROREL leftmost token in T2 yield
22 without {
23 DEP []; V -> DEP;
24 DEP.position < PROREL.position
25 }
26 without { V -> N}
27
28 commands {
29 del_edge e1;
30 del_edge e2;
31 add_edge N -[mod.rel]-> V;
32 add_edge PRE -[SUC]-> POST;
33 }
34 }

The rule links a noun N with the head verb V of
a relative clause in a mod.rel dependency, ex-
pressing the modification of the noun by the rela-
tive clause.

The token PRE is a node of T1, without any spe-
cific features. N is also a node of T1 but the re-
lationship between PRE and T1 is not specified.
Some constraints will be added further to make
PRE the root of T1 and N the rightmost token of
its yield. The tree T2 is made of the verb V gov-
erning a relative pronoun PROREL.

Any rule from an initial or iterative module pre-
serves the following property for the SUC relation:
the two tokens linked by the relation are roots and
they have adjacent yields. This entails that PRE
and V are roots of respectively T1 and T2 and their
yields are adjacent.

As the initial and iterative modules preserve
projectivity, the negative constraints express that
PROREL is the leftmost token wl2 of the T2 yield.

Since the relation INIT_SUC expresses the ad-
jacency of two tokens, therefore PROREL is the
immediate successor of N. As PROREL is the left-
most token of the T2 yield and the T1 yield im-
mediately precedes the T2 yield, it entails that the
rightmost token wr1 of the T1 yield is N.

The rewriting commands link the head V of the
relative clause with its antecedent N in a mod.rel
relation and they update the SUC relations.

As the experimental results shows it in the
next section, both head linking and close link-
ing strategies capture most configurations of syn-

tactic dependencies but they fail to parse such
phrases as the following one extracted from [fr-
wiki_50.1000_00464]: des listings de comptes de
la chambre de compensation luxembourgeoise. If
we ignore agreement constraints, the head link-
ing strategy leads to binding of the adjective lux-
embourgeoise with the head listings of the depen-
dency tree of des listings de comptes de la cham-
bre de compensation. With the close linking strat-
egy, binding is realized with the closest leaf com-
pensation. Both solutions are wrong because lux-
embourgeoise is a modifier of chambre. We need
a more flexible strategy to cover all different cases
of linking between two partial dependency trees.

4 Experimental results

The gold standard data used for evaluation is SE-
QUOIA version 6.0, which contains 3,099 French
sentences taken from various sources (newspa-
per, medical texts, Europarl and Wikipedia). The
full corpus was divided in two homogeneous sub-
corpora (DEV-SEQUOIA and TEST-SEQUOIA) of
the same size. We used the DEV-SEQUOIA cor-
pus to develop and to improve the rule system; the
final evaluation reported below being done on the
other part TEST-SEQUOIA.

The input of our rule-based system FRDEP-
PARSE are sentences which are tokenized, lemma-
tized and tagged with the refined system of 28 pos
labels defined in (Candito et al., 2011). In order
to evaluate the FRDEP-PARSE rule system alone,
we have made a first experiment (called GOLD-
POS) where the input data are taken from the gold
corpus: we consider the tokenization, lemmatiza-
tion and enriched POS of SEQUOIA version 6.0
as input. The second experiment tries to evaluate
our proposal in a more realistic setting where no
gold tagging is available. In this second case, we
first use a French tagger to build the input of out
system from the raw test. Our tests are based on
MElt (Denis and Sagot, 2012), so we call this sec-
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ond experiment MELT-POS.
In SEQUOIA, there is no clear rules in the anno-

tation guide which explain how punctuation sign
should be linked to the rest of the sentence; hence,
the punctuation is not annotated in a consistent
way. Here, we report scores on the Corpus TEST-
SEQUOIA without taking into account the relation
punctuation; nevertheless, comma used as a co-
ordination in enumeration are annotated with re-
lation coord and dep.coord and so there are
included in the evaluation. In this context, the
LAS (Labelled Attachment Score) corresponds to
what is usually called the recall (i.e. the propor-
tion of relations in the reference corpus which are
correctly predicted by the system). The objective
of FRDEP-PARSE is not to build complete depen-
dency parse and when it is not sensible to com-
pute a relation with a deterministic rewrite rule,
only partial dependency structures are returned
and some lexical units are left unattached. This
explain why the precision (i.e. the proportion of
relations predicted by the system which are cor-
rect) is much higher than the recall.

LAS(recall) prec. F-measure
GOLD 80.61% 89.21% 84.69%
MELT 76.04% 85.96% 80.69%

Figure 5: Experimental results

The TEST-SEQUOIA corpus contains 1,550 sen-
tences and 33,662 lexical units. This corpus is
parsed in 51.9 seconds (with a 2.4GHz Intel Core
i7) and 32,035 relations are produced; this corre-
sponds to a mean of 617 relations produced per
second.

We provide below some comparison with other
dependency parsers evaluated on French.

The talismane parser (Urieli, 2013) is a statis-
tical parsed where some rules based on linguistic
knowledge can be used to guide the parser. For
the same reason we gave above about punctuation,
Talismane is evaluated on the set of dependencies
different from the punctuation. On a corpus sim-
ilar to the one we used, the LAS (labelled attach-
ment score) ranges from 86% to 88%.

In (Villemonte De La Clergerie, 2014), some
experiments on the SEQUOIA corpus are also re-
ported. Again, results are given without taking
into account the punctuation. Different combina-
tion of parsers are tested on different sub-corpora;
the LAS scores obtained range from 83.53% to

88.94%.
The scores we obtain with FRDEP-PARSE are

significantly lower than the two other systems but
we still consider them as very encouraging. In-
deed, the FRDEP-PARSE system was written in
a few weeks and is the first attempt to write of a
set of graph rewriting rules for dependency pars-
ing. Moreover, we make two very strong restric-
tions on our system: we consider only determin-
istic application of rules and we do not use any
statistical information. Relaxing these restrictions
is far from being an easy task. If we consider non-
deterministic uses of Graph Rewriting in the gen-
eral setting, we will necessarily have to deal with
exponential number of solutions. It will be needed
to use statistical information to guide the graph
rewriting process and to avoid exponential explo-
sion. This challenge is part of the future work to
do in this area.

5 Conclusion

In this paper, we have presented a first attempt
to build a dependency parser in the framework of
Graph Rewriting. Despite severe restrictions on
the rule system, we obtain a LAS-score of 80%
if the POS-tagging is taken from the Gold stan-
dard corpus and 76% if we use MElt as the POS-
tagger. These results are lower than state-of-the-
art approaches based on combination of statisti-
cal and symbolic dependency parsing but we think
that there are many possible ways of improvement
from this first attempt; for instance, using non-
deterministic graph rewriting rules together with
a selection system based on statistical information
taken from a parsed corpus is one of the future plan
for improving our system.
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