
Proceedings of the Third International Conference on Dependency Linguistics (Depling 2015), pages 310–319,
Uppsala, Sweden, August 24–26 2015.

Does Universal Dependencies need a parsing representation? An
investigation of English

Natalia Silveira
Stanford University

Department of Linguistics
Stanford, CA

natalias@stanford.edu

Christopher Manning
Stanford University

Department of Linguistics and
Department of Computer Science

Stanford, CA
manning@stanford.edu

Abstract

This paper investigates the potential of
defining a parsing representation for En-
glish data in Universal Dependencies, a
crosslingual dependency scheme. We in-
vestigate structural transformations that
change the choices of headedness in the
dependency tree. The transformations
make auxiliaries, copulas, subordinat-
ing conjunctions and prepositions heads,
while in UD they are dependents of a
lexical head. We show experimental re-
sults for the performance of MaltParser,
a data-driven transition-based parser, on
the product of each transformation. While
some transformed representations favor
performance, inverting the transforma-
tions to obtain UD for the final product
propagates errors, in part due to the nature
of lexical-head representations. This pre-
vents the transformations from being prof-
itably used to improve parser performance
in that representation.

1 Introduction

There is a considerable amount of research sug-
gesting that the choice of syntactic representation
can have an impact on parsing performance, in
constituency (Klein and Manning, 2003; Bikel,
2004; Petrov et al., 2006; Bengoetxea and Go-
jenola, 2009) as well as dependency (Nilsson et
al., 2007; Nilsson et al., 2006; Schwartz et al.,
2012) parsing. Recently, this has led designers
of dependency representations (Marneffe et al.,
2014) to suggest the use of an alternative parsing
representation to support the performance of sta-
tistical learners.

While it is clear that, at the limit, trivializing a
linguistic representation in order to make it easier
to parse is undesirable – for example, by making

each word depend on the previous one – there cer-
tainly exists a variety of choice points in which
more than one type of design is defensible. In
the dependency tradition, semantic and syntactic
criteria have been recognized to motivate headed-
ness, and there are well-known examples of con-
flicts between those criteria (Nilsson et al., 2006).
Here we investigate four syntactic constructions
that are loci of such conflicts: verb groups, prepo-
sitional phrases, copular clauses and subordinate
clauses. The baseline representation is Univer-
sal Dependencies (Nivre et al., 2015), a multilin-
gual dependency scheme that strongly prefers lex-
ical heads. For each target construction, structural
transformations are defined that demote the lexical
head and make it dependent on a functional head.

We show experimental results for the perfor-
mance of MaltParser, a data-driven transition-
based parser, on the product of each transforma-
tion. While some transformed representations are
in fact easier to learn, error propagation when in-
verting the transformations to obtain UD prevents
them from being profitably used to improve parser
performance in that representation.

2 Related work

Schwartz et al. (2012) is a systematic study of
how representation choices in dependency anno-
tation schemes affect their learnability for pars-
ing. The choice points investigated, much like
in the current paper, relate to the issue of head-
edness. The experiments look at functional ver-
sus content heads in six constructions: (a) coordi-
nation structures (where the head can be a con-
junction or one of the conjuncts), (2) infinitives
(the verb or the marker to), (3) nominal phrases
(the determiner, if any, or the noun), (4) nominal
compounds (the first noun or the last), (5) preposi-
tional phrases (the preposition or its complement)
and (6) verb groups (the main verb, or the highest
modal, if any). Each combination of these binary

310



choices is tested with 5 different parsers, which
represent different paradigms in dependency pars-
ing.The edges in the representation are unlabeled,
unlike the common practice in NLP. The results
show a learnability bias towards a conjunct in (1),
a noun in (3), and a preposition in (5) in all the
parsers. Furthermore, a bias towards the modal
heads in (6) and towards the head-initial represen-
tation in (4) is seen with some parsers. No signifi-
cant results are found for (2).

In Ivanova et al. (2013), the authors run a set of
experiments that provide a comparison of (1) 3 de-
pendency schemes, (2) 3 data-driven dependency
parsers and (3) 2 approaches to POS-tagging in a
parsing pipeline. The comparison that is relevant
here is (1). The dependency representations com-
pared are the basic version of Stanford Dependen-
cies (Marneffe and Manning, 2008), and two ver-
sions of the CoNLL Syntactic Dependencies (Jo-
hansson and Nugues, 2007). For all parsers and in
most experiments (which explore several pipelines
with different POS-tagging strategies), SD is eas-
ier to label (i.e., label accuracy scores are higher)
and CoNLL is easier to structure (i.e., unlabeled
attachment scores are higher). In terms of LAS,
MaltParser (Nivre et al., 2007) performs best of
the 3 parsers with SD, and MSTParser (McDonald
et al., 2006) performs best with CoNLL.

In Nilsson et al. (2006), the authors investi-
gate the effects of two types of input transfor-
mation on the performance of MaltParser. Those
two types are: structural transformations, of the
same nature of those investigated in the present
paper; and projectivization transformations, that
allow non-projective structures to be represented
in a way that can be learned by projective-only
parsing algorithms, and then transformed into the
non-projective representation at the end. Of inter-
est here are the structural transformations, which
in their work target coordinated phrases and verb
groups. The data and baseline representation come
from the Prague Dependency Treebank (PDT) ver-
sion 1.0 (Hajic et al. 2001). The PDT’s represen-
tation of coordination is so different from UD’s
that the results cannot be expected to carry over.
The verb group transformation, on the other hand,
is almost identical to the auxhead transformation
proposed here. In the PDT, auxiliary verbs never
have dependents. Other dependents of the main
verb are attached to the first verb of the verb group
if they occur anywhere before the last verb; other-

wise, they are attached to the left verb. In the re-
verse transformation, all dependents of auxiliaries
go back to the main verb. All the transformations
reported in the paper prove helpful for the parser.
In the case of verb groups, which is of particular
interest here, the labeled attachment score goes up
by 0.14% (in a test set of 126k tokens).

Following up on the previous paper, (Nilsson
et al., 2007) investigates the same transformations
applied to different datasets and under distinct
parsing algorithms, to understand if they general-
ize across languages and parsing strategies. The
representations for the different languages studied
are similar to the PDT’s representation. With re-
spect to the structural transformations, the authors
find that there are, again, small gains from convert-
ing the representations of coordination and verb
groups. However, in their experiments, graph-
based MSTParser, unlike transition-based Malt-
Parser, does not perform better on the transformed
input.

3 Background

3.1 Universal Dependencies

The baseline representation to which transforma-
tions are applied in this set of experiments is the
UD representation, which was developed to al-
low for parallel annotation across languages. It
is based on Stanford Dependencies (Marneffe and
Manning, 2008), a widely used representation for
English. In order to preserve some flexibility for
language-specific annotation, UD has a two-layer
architecture. The universal layer is common to
all languages, and it aims to capture phenomena
at a level that highlights crosslinguistic common-
alities. However, the need for parallelism with
other languages often imposes a high level of ab-
straction on the annotation, which might be un-
desirable when working in a monolingual setting.
For that reason, the representation can be extended
with language-specific relations as needed, via in-
heritance. This makes it straightforward to infor-
matively harmonize annotations across languages,
since they already use the same dependency types
at the universal level. At the same time, it allows
enough expressivity for capturing detail that may
be important for a specific language, but difficult
to port to others.

UD inherits from SD the concern with useful-
ness for relation extraction, in addition to crosslin-
guistic parallelism. Both of those motivate a

311



radical stance on headedness: lexical heads are
adopted across the board. The idea is that, because
syntax competes with morphology, grammatical
functions that are performed by function words
in one language may be performed by bound
morphemes in another. If those function words
are allowed to enter contentful relations (such as
predicate-argument relations), the structures as-
signed in the presence of such words will be very
different than the structures assigned when those
words give way to bound morphemes. This has
been the primary motivation for the most impor-
tant change from SD to UD for English, which
is the new treatment of prepositional phrases.
While in SD a functional-head representation was
adopted, with prepositions heading nouns, in UD a
lexical representation is adopted, and the comple-
ment in the prepositional phrase depends on the
preposition. This allows more parallelism with
languages in which the functions of some English
prepositions (such as of ) are performed by case
morphemes.

3.2 The English Web Treebank corpus

The corpus used in all of this paper’s experi-
ments is the UD-annotated English Web Tree-
bank (EWT) corpus (Silveira et al., 2014). The
EWT consists of 254,830 word tokens (16,624
sentences) of text, and was released by the Lin-
guistic Data Consortium in 2012. The text is man-
ually annotated for sentence- and word-level tok-
enization, as well as part-of-speech tags and con-
stituency structure in the Penn Treebank scheme.
The data comprises five domains of web text: blog
posts, BBC newsgroup threads, emails from the
Enron corpus, Amazon reviews and answers from
Yahoo! answers.

This corpus was hand-annotated with depen-
dency relations following an evolving version of
Stanford Dependencies. The UD annotation was
obtained from the SD annotation, partly via au-
tomatic conversions, and partly via manual revi-
sions. The result is the first human-checked large-
scale gold standard for syntactic dependency an-
notation of English text. The first version anno-
tated with the UD representation was released in
2015 (Nivre et al., 2015)1.

1http://universaldependencies.github.io/docs/

4 Structural transformations

All the transformations studied in this paper have
the same underlying structure: they involve a con-
tent word which is a head by semantic criteria, and
a functional word which is a head by syntactic cri-
teria. They reverse those heads’ roles in relation
to each other, and in relation to the outer structure
in which they are embedded. One head is the pro-
moted head, and it stands in an appropriate rela-
tion with some element from outside the construc-
tion (e.g., dobj in the case of a noun phrase). The
other (candidate) head is the demoted head, and
it should be attached to the promoted counterpart.
So we have:

(1) a. W X Y

complement

b. W X Y
functional

In the simplest case, transformations of this
kind can be inverted with no loss, which adds in-
terest: there is no need to allow the parser to ori-
ent design decisions. The linguistic representa-
tion can be transformed for parser training, and
the parser output can go through the inverse trans-
formation for general use. (This is the approach
taken in Nilsson et al. (2006).) In other (common)
cases, however, there may be important difficul-
ties, which are discussed below. Four construc-
tions are studied here: prepositional phrases, verb
groups, copular clauses, and embedded clauses
with overt complementizers.

4.1 The casehead transformation
To illustrate in some detail, let us examine the case
of prepositional phrases. Take, for example, the
sentence in 2a. The lexical-head representation,
which UD adopts, chooses life as the promoted
head and of as the demoted head, as shown in 2b.
The functional representation, shown in 2c, swaps
those roles.

(2) a. I found the love of my life

b. the love of my life

nmod
case

c. the love of my life

nmod
pcomp

312



This is a particularly interesting example, be-
cause there already is evidence in the literature
(Schwartz et al., 2012) that making prepositions
the heads – that is, adopting the functional-head
representation – can yield better parser perfor-
mance. This will be called the casehead trans-
formation. As mentioned above, the label case
is used in UD for prepositions in prepositional
phrases; it is also used for the genitive marker ’s,
but here the transformation is not applied to that
marker. The other transformations are auxhead,
cophead and markhead. All are named after the
labels used in UD for the dependencies attaching
the function word promoted by the transformation
to its lexical head.

4.2 Other transformations
The sentence below exemplifies uses of the labels
aux, cop and mark. Each transformation generates
a different tree for this sentence.

It will be clear from the examples in this section
that, when the functional head is promoted, the
way in which the dependents of the (now demoted)
lexical head are handled can have important conse-
quences. Illustrated first are the simplest versions
of each transformation, where no dependents of
the lexical heads are moved. In 4.3, alternatives
will be discussed. In 3a is the UD representation
of a sentence that has all the target constructions
for which transformations are defined.

(3) a. We knew that you would be in town today

ccomp

case

cop

aux

mark

nsubj

nmod:tmod

The label cop is used for the verb be in copular
clauses. In relation to other dependency schemes,
UD makes an unusual choice here, inherited from
SD: instead of attaching the subject and other
clausal dependents to the copular verb, and mak-
ing the predicate itself a dependent of that verb,
the representation takes the nonverbal predicate as
the head and attaches the verb and clausal depen-
dents to it. In the present example, the predicate
is a prepositional phrase, but since those are also
represented with lexical heads, the head of the en-
tire copular clause is the noun town. In terms
of crosslinguistic adequacy, it pays off, since this
structure creates a parallel between English and

languages where no copular verbs are used for this
type of predication. Note that even the auxiliary
is attached to the predicate rather than the copu-
lar verb. The simple cophead transformation, in
which none of the dependents of the lexical head
are moved to the functional head with its promo-
tion, yields the tree in 4a.

(4) a. We knew that you would be in town today

ccomp

case

pred

aux

mark

nsubj

nmod:tmod

In English, the label aux is used to attach
modals and traditional auxiliaries. In the case of
auxiliary be, the label auxpass is used, to encode
voice information directly in the dependency tree.
These dependents are always attached to the pred-
icate, which is why here the head of would is town.
The simple auxhead transformation results in the
tree depicted in 5a.

(5) a. We knew that you would be in town today

ccomp

case

cop
vcomp

mark

nsubj

nmod:tmod

The label mark is used for subordinating con-
junctions in embedded clauses, and additionally
for the infinitive marker to. It is always attached
to the predicate, much like aux. The simple mark
transformation is illustrated in 6a.

(6) a. We knew that you would be in town today

ccomp

case

cop
aux

clause

nsubj

nmod:tmod

Note that in all cases, the labels used for the
demoted head in the transformations are not part
of the UD label set. The auxhead transformation
is also used for auxpass dependencies; in those
cases, the complement is called vcomppass. This
is to avoid making the transformed representation
artificially easier by eliminating the voice distinc-
tion.

313



4.3 Handling of dependents in
transformations

The examples of simplified transformations given
above make it apparent that transformations can
introduce undesired nonprojectivity, and may
sometimes result in representations that are lin-
guistically objectionable. Both of those are rea-
sons why it may be desirable to move the depen-
dents of the lexical head when it is demoted. But
exactly which dependents to move is an important
question, due to the fact that modifier attachment
in a dependency representation can be inevitably
ambiguous, as shown below.

In UD, all the nodes in dependency graphs are
words, and therefore all edges must be relations
between words. However, syntactic relations can
occur not only between words, but between con-
stituents, at different levels. In UD, modifiers of
constituents are indistinguishable from modifiers
of the constituents head.

This has an important consequence for the dis-
tinction between functional-head and lexical-head
representations. In the light of a theory of syntax
in the style of Minimalist Grammar, one may ar-
gue that no two constituents share the same func-
tional head. However, it is clear that the same lex-
ical item can be the lexical head of multiple con-
stituents that contain one another. Consider the
example in 7a.

(7) a. She was just a little girl at the time
amod

nsubj

Here girl has dependents on two levels: as a
nominal head, it has an adjectival dependent, lit-
tle. As a nominal predicate, which is the lexical
head of a copular clause, it has a subject depen-
dent, ’she’. The entire clause and the noun phrase
which constitutes its main predicate share a lexi-
cal head in UD. Because modifiers at both levels
will be attached to that shared lexical head, it is
not possible to determine from the structure alone
what constituent is being modified by a dependent.

These distinctions are often very subtle and ir-
relevant for practical applications; but UD’s rad-
ical adoption of lexical heads creates some cases
where the distinctions are clear and very meaning-
ful. Perhaps the clearest case is that of copulas
with nominal predicates. In UD, we have trees like
8a and 8b.

(8) a. She was just a little girl at the time

nmod

b. She was just a little girl with red hair

nmod

In 8a, the prepositional phrase is a modifier of
the predicate. In a constituent representation, its
parent would not be the NP/DP node. But in 8b,
clearly the modifier is in the nominal domain. In
UD, the head is the noun girl, because it is both the
head of the nominal constituent, and the head of
the clausal constituent (since it is the lexical head
of the copula).

If these were clausal modifiers, UD would of-
fer an opportunity for disambiguation in the type
system: clausal dependents of a noun are typed
acl (see 9b), but clausal dependents of a predicate
are typed advcl (as in 9a). Prepositional phrases,
nonetheless, are uniformly labeled nmod.

(9) a. She was just a little girl when I met her parents

advcl

b. She was just a little girl who loved to read

acl

The ambiguity of the representation on this
point is a consequence of the choice of represent-
ing lexical heads. Attachment would be distinct
if heads were functional, because then the clausal
constituent and the nominal constituent would
each have its own distinct head. The functional-
head representation would give us the two distinct
structures in 10a and 10b.

(10) a. She was just a little girl at the time

nmod

b. She was just a little girl with red hair

nmod

This poses a problem in the context of struc-
tural transformations, because, in converting from
an ambiguous representation to a non-ambiguous
one (lexical-head to functional-head, in this case),
it is not necessarily simple, or possible, to resolve
the ambiguity in order to obtain the correct pars-
ing representation. (The same issue arises with co-
ordinated constituents in Nilsson et al. (2006).)

314



More generally, this highlights the fact that it may
be harmful to blindly reattach the dependents of a
lexical head to a functional head in a transforma-
tion, and careful handling of dependents may be
necessary.

In an attempt to address these difficulties, 3 ver-
sions of each transformation were tested. It should
be noted that dependents which are known to at-
tach to heads rather than constituents are never
moved – these are mwe, compound, goeswith,
name and foreign. In the simple version, which
has been illustrated above, none of the dependents
of the lexical head are moved when the functional
head is promoted. In the full version, all depen-
dents of the lexical head are moved, except those
which are known to modify nouns exclusively (in
UD, these are amod, acl, appos, det, case, num-
mod). In the partial version, which is design to
minimize nonprojectivity, all dependents of the
lexical head which occur to the left of the func-
tional head are moved when that head is promoted,
and all other dependents are left attached to the
lexical head. So now for each Xhead transforma-
tion, we have Xheads, Xheadf and Xheadp. To
provide a comparison with copheads, which was
shown in 4a, copheadf and copheadp are illus-
trated in 11a and 11b, respectively.

(11) a. We knew that you would be in town today

ccomp

case

pred
aux

mark

nsubj nmod:tmod

b. We knew that you would be in town today

ccomp

case

predaux

mark

nsubj
nmod:tmod

Note that, in copheadf , ’today’ is moved and
becomes a dependent of be, the promoted head; in
contrast, in copheadp, that dependent remains at-
tached to the lexical head town, since it does not
occur to the left of the promoted head. If the sen-
tence was We knew that today you would be in
town, the two transformations would have identi-
cal results.

5 Experiments

The experiments in this paper fit the following
template: a version of the training and develop-

ment data from the EWT corpus was used to op-
timize a MaltParser model. Then that model was
used to parse the test set (of 25k tokens) and eval-
uated on the gold standard. In the 12 experiments
where the training data had undergone a trans-
formation, the output of the parser was converted
back into the original UD representation with the
inverse transformation, so that it could be com-
pared to the actual gold standard.

An important concern with this type of experi-
ment is that the default feature sets for the algo-
rithms may be implicitly biased towards a particu-
lar type of representation. Therefore, it was crucial
to explore different hyperparameters and feature
sets. This was done in two steps. The MaltParser
model was obtained via an optimization heuristic:
MaltOptimizer (Ballesteros and Nivre, 2012) was
used on the different versions of the training set
to obtain models optimized for the different trans-
formation. This generates 13 models: one for the
baseline, and one for each of the three versions
of the four transformations. In a second step, all
13 representations of the dev set data were parsed
with all the 13 models that MaltOptimizer pro-
duced in the previous step. Note that MaltOpti-
mizer did not use the dev set. The model that per-
formed best on the dev set for each transforma-
tion was chosen. Interestingly, it came out that the
best-performing model for a representation was
never the one recommended by MaltOptimizer for
that representation. For all the representations, the
models that effectively performed best on the dev
set consistently used the stackproj algorithm, cou-
pled with different pseudo-projectivization strate-
gies. Throughout this procedure, the metric being
maximized was the labeled attachment score (ex-
cluding punctuation), which seems to be the cru-
cial measure of performance for most client appli-
cations.

Each Xhead transformation targets a different
construction, and the frequency of those in the
data varies. Additionally, the three versions of the
transformations change the data to different ex-
tents. To give a measure of these differences, Ta-
ble 1 shows the percentage of tokens in the training
data that are changed by a transformation, for all
12 transformations.

These counts make it clear that, in the case of
casehead and markhead, there is little difference
between the partial and simple transformations.
This is because in the case of these transforma-

315



full partial simple
auxhead 21.15% 13.62% 08.37%
casehead 21.83% 19.17% 18.37%
cophead 11.62% 08.33% 04.94%
markhead 15.75% 08.04% 07.83%

Table 1: Percentage of tokens changed with rela-
tion to the gold standard by each transformation.

full partial simple
auxhead 05.80% 05.49% 41.55%
casehead 06.51% 06.22% 31.57%
cophead 05.84% 05.13% 07.52%
markhead 09.71% 05.14% 10.41%
baseline 05.13%

Table 2: Percentage of non-projective dependen-
cies per version of the data.

tions, the lexical head is unlikely (in English) to
have dependents which occur to the left of the
functional head.

The transformations are also very different in
terms of how much non-projectivity they intro-
duce. Table 2 shows how that proportion changes
with each transformation, which helps understand
their performance.

The labeled attachment scores of the best-
performing models for each representation on the
test set are given in Table 3. These results were ob-
tained by comparing the output of parsers trained
on transformed representation to a transformed
version of the gold-standard test set. These scores
will be referred to as the within-representation
performance. Statistical significance was assessed
using Dan Bikel’s parsing evaluation comparator2,
at the 0.05 significance level.

Our interest here is not to guide the design of
2http://pauillac.inria.fr/ seddah/compare.pl

full partial simple
auxhead 84.71% 85.21%* 84.59%
casehead 84.46% 85.31%* 85.11%*
cophead 85.11%* 85.31%* 84.49%
markhead 84.29%* 84.94% 85.10%*
baseline 84.69%

Table 3: Labeled accuracy scores for within-
representation evaluations. The scores marked
with * have a significant difference from the base-
line.

full partial simple
auxhead 84.37% 84.84% 84.43%
casehead 84.13%* 84.91% 84.86%
cophead 84.28%* 84.53% 84.03%*
markhead 84.27%* 84.89% 85.00%
baseline 84.69%

Table 4: Labeled accuracy scores for evaluations
on UD. The scores marked with * have a signifi-
cant difference from the baseline.

a new representation, but rather to find strategies
that will improve parser performance for the exist-
ing UD representation. For this reason, we also
present results on the actual UD representation.
These results are obtained by transforming the out-
put of a parser with the inverse of the transforma-
tion applied to the training data, and comparing
that to the actual gold standard annotation. The
labeled accuracy scores are in Table 4.

6 Discussion

These results show that, in the case of UD, tree
transformations do not seem to improve parser
performance if the output needs to be converted
back to UD. There are no significant positive
results in Table 4, and in fact a few of the
transformations have a significant negative impact
on the score. Interestingly, this holds even for
some representations which have better within-
representation performance than the baseline.

In terms of within-representation perfor-
mance, the most successful transformations were
copheadp and caseheadp. The copheadp trans-
formation makes the representation of copular
clauses more parallel to that of other clauses in
UD: it moves dependents from a nonverbal predi-
cate to a copular verb (excluding those with labels
that apply exclusively to noun modifiers or head-
level modifiers). With this transformation, verbs
are uniformly viewed as the heads of clauses,
making the representation more predictable.
The effect of this transformation is particularly
notable because it is the one that affects the
fewest tokens, as shown in Table 1. The results
on caseheadp shown in Table 3 are consistent
with Schwartz et al. (2012). This transformation
shortens dependency lengths, which benefits the
transition-based parser. Dependency edges with
length < 5 constitute 81.93% of the total in the
caseheadp data, and 81.73% in the caseheads

316



data. These numbers are up from 80.35% in the
baseline.

6.1 Inverting transformations
An obvious trend in these results is that attach-
ment scores consistently decrease when the out-
put of a parser trained on transformed input is in-
verted back to UD. On perfectly annotated data,
there is no distortion: for all 12 operations pro-
posed here, using the inverse transformation on a
transformed gold standard reverts all the changes
and gives back the original data. However, parser
errors are not always handled well by transfor-
mations. The reason for this is that the different
representations yielded in these operations reflect
attachment decisions differently. The differences
can skew the evaluation results.

All transformations target constructions includ-
ing 2 crucial edges, as seen before: one between
the promoted head and the demoted head, and an-
other – the attachment edge – coming from the
outside of the construction to the promoted head.
In functional-head representations, the attachment
edge can be correct even if the lexical head is
wrongly identified, as in 12a, which is an actual
parser error on the copheadf -transformed data.
The inverted version is shown in 12b.

(12) a. It is a terrorist organization plain and simple

nsubj

nmod:npmod

scomp

b. It is a terrorist organization plain and simple

nsubj
cop

nmod:npmod

When this tree is converted back to the lexical-
head representation, the attachment edge, which in
this case is simply root, is moved to the wrongly-
identified lexical head. While in 12a the root of the
sentence was identified correctly, in the inverted
version it is wrong; one error in the functional-
head representation turns into two in its lexical-
head counterpart.

Another issue that arises in inverting transfor-
mations is that, when dependents are moved from
the functional head to the lexical head, errors may
be amplified. This is also seen here. The phrase
plain and simple was wrongly identified as a pred-
icate. With the inversion of the transformation, the

subject of the sentence, which was correct in 12a,
is moved and made a dependent of the false pred-
icate. This type of error propagation is the reason
why the simple transformations have the smallest
differences between the score on the transformed
gold standard and the score on the inverted parsed
output.

Even when the parser does correctly identify
the lexical head as a dependent of the functional
head, another source of complications is that it
may identify additional “lexical heads” (i.e., de-
pendents with the label reserved for the lexical
head, such as pred in the case of cophead). In
this implementation, we do not use any heuristics
to try to identify if one of the candidates is the ac-
tual lexical head, and which. This can also lead
to errors, as now the inverse transformation may
erroneously move dependents.

As a counterpoint, one should note that invert-
ing the transformations to obtain a lexical-head
representation is also, in a way, forgiving: there
are no distinctions between attachment to the func-
tional or to the lexical head, because the inversion
moves all dependents of the functional head to the
lexical head. This eliminates a plausible source
of errors – and some linguistic information, mak-
ing UD the poorer representation here. Neverthe-
less, errors of this types seem to be outnumbered
by others that are introduced or amplified by in-
verting these transformations.

These problems help explain why the results re-
ported here, with respect to prepositional phrases
and verb groups, and suggest different directions
than those reported in Schwartz et al. (2012): in
that paper, the results of different parsers are eval-
uated against different versions of the gold stan-
dard. Here, since the main concern is the design
of a parsing representation that is meant simply as
an intermediary step, all output has to be evalu-
ated against the same gold standard. This creates
an opportunity for losses that did not exist in the
experiments of Schwartz et al. (2012).

7 Conclusion

Although there have been cases in the literature
in which small gains in performance were ob-
tained from invertible structural transformations
on dependency trees, similar transformations do
not seem to yield any significant gain for UD in
English. This occurs despite the fact that these
tree operations can result in performance improve-

317



ments, as is evident from the within-representation
scores of some of the transformed datasets. Nev-
ertheless, because of the nature of lexical- and
functional-head representations, the inversion of
the transformations on the parser output can and
does amplify errors. Due to these difficulties, it
is not immediately possible to exploit structures
transformations for the benefit of UD.

We believe that other styles of tree transfor-
mations may yield gains for parser performance
on UD; specifically, ones designed in the style of
the node-merging and -splitting that has been used
in constituency parsing since Klein and Manning
(2003). That investigation is left for future work.

References
Miguel Ballesteros and Joakim Nivre. 2012. Malt-

Optimizer: An Optimization Tool for MaltParser.
In Proceedings of the Demonstrations at the 13th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, EACL ’12,
pages 58–62, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Kepa Bengoetxea and Koldo Gojenola. 2009. Explor-
ing Treebank Transformations in Dependency Pars-
ing. In Proceedings of the International Conference
RANLP-2009, pages 33–38, Borovets, Bulgaria. As-
sociation for Computational Linguistics.

Daniel M. Bikel. 2004. Intricacies of collins’ parsing
model. Comput. Linguist., 30(4):479–511, Decem-
ber.

Angelina Ivanova, Stephan Oepen, and Lilja vrelid.
2013. Survey on parsing three dependency repre-
sentations for English. 51st Annual Meeting of the
Association for Computational Linguistics Proceed-
ings of the Student Research Workshop, pages 31–
37.

Richard Johansson and Pierre Nugues. 2007. Ex-
tended constituent-to-dependency conversion for
English. In Joakim Nivre, Heiki-Jaan Kalep, Kadri
Muischnek, and Mare Koit, editors, NODALIDA
2007 Proceedings, pages 105–112, Tartu, Estonia.
University of Tartu.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate Unlexicalized Parsing. In Proceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics - Volume 1, ACL ’03, pages 423–
430, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Marie-Catherine Marneffe and Christopher D. Man-
ning. 2008. The Stanford Typed Dependencies
Representation. Coling 2008: Proceedings of the
workshop on Cross-Framework and Cross-Domain
Parser Evaluation, pages 1–8.

Marie-Catherine de Marneffe, Timothy Dozat, Na-
talia Silveira, Katri Haverinen, Filip Ginter, Joakim
Nivre, and Christopher D. Manning. 2014. Uni-
versal Stanford dependencies: A cross-linguistic ty-
pology. Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC-2014).

Ryan McDonald, Kevin Lerman, and Fernando Pereira.
2006. Multilingual dependency analysis with a two-
stage discriminative parser. In Proceedings of the
Tenth Conference on Computational Natural Lan-
guage Learning, CoNLL-X ’06, pages 216–220,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Jens Nilsson, Joakim Nivre, and Johan Hall. 2006.
Graph Transformations in Data-driven Dependency
Parsing. In Proceedings of the 21st International
Conference on Computational Linguistics and the
44th Annual Meeting of the Association for Com-
putational Linguistics, ACL-44, pages 257–264,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Jens Nilsson, Joakim Nivre, and Johan Hall. 2007.
Generalizing Tree Transformations for Inductive
Dependency Parsing. Proceedings of the 45th An-
nual Meeting of the Association of Computational
Linguistics, pages 968–975.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Glsen Eryigit, Sandra Kbler, Svetoslav
Marinov, and Erwin Marsi. 2007. MaltParser:
A language-independent system for data-driven de-
pendency parsing. Natural Language Engineering,
13(02):95–135.

Joakim Nivre, Cristina Bosco, Jinho Choi, Marie-
Catherine de Marneffe, Timothy Dozat, Richárd
Farkas, Jennifer Foster, Filip Ginter, Yoav Gold-
berg, Jan Hajič, Jenna Kanerva, Veronika Laippala,
Alessandro Lenci, Teresa Lynn, Christopher Man-
ning, Ryan McDonald, Anna Missilä, Simonetta
Montemagni, Slav Petrov, Sampo Pyysalo, Natalia
Silveira, Maria Simi, Aaron Smith, Reut Tsarfaty,
Veronika Vincze, and Daniel Zeman. 2015. Univer-
sal dependencies 1.0.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning Accurate, Compact, and
Interpretable Tree Annotation. In Proceedings of
the 21st International Conference on Computational
Linguistics and the 44th Annual Meeting of the As-
sociation for Computational Linguistics, ACL-44,
pages 433–440, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Roy Schwartz, Omri Abend, and Ari Rappoport. 2012.
Learnability-based syntactic annotation design. In
COLING, volume 24, pages 2405–2422.

Natalia Silveira, Timothy Dozat, Marie-Catherine de
Marneffe, Samuel Bowman, Miriam Connor, John
Bauer, and Christopher D. Manning. 2014. A Gold

318



Standard Dependency Corpus for English. In Pro-
ceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC-2014).

319


