
Proceedings of SocialNLP 2015@NAACL-HLT, pages 20–28,
Denver, Colorado, June 5, 2015. c©2015 Association for Computational Linguistics

A Language Detection System for Short Chats in Mobile Games

Pidong Wang Nikhil Bojja Shivasankari Kannan

Machine Zone Inc.
2225 East Bayshore Road, Suite 200

Palo Alto, CA 94303, USA

{pwang,nbojja,skannan}@machinezone.com

Abstract

Machine Translation system accuracies are of-
ten brought down due to inaccurate Language
Detection (LD) of input phrases. The Lan-
guage detection accuracy is further affected
when the inputs are short and contain ungram-
matical phrases, especially in a multilingual
mobile game setting. Chat messages in mo-
bile games are often short as they are type-
d on mobile devices and contain slang as a
common communication preference. Previous
work has shown that LD systems have a drop
in accuracy when the inputs are short mes-
sages instead of long ones. This paper targets
LD for short chat messages in mobile games.
We propose a novel LD system which inte-
grates text-based and user-based methods to
achieve significantly better performance over
current state-of-the-art LD systems.

1 Introduction

With the growth of social media, a huge amoun-
t of social media texts have become ubiquitous,
e.g., Twitter messages, Facebook updates, game chat
messages, etc. Due to their importance, Natural
Language Processing (NLP) applications have been
applied to social media texts, e.g., Liu et al. (2011)
and Ritter et al. (2011) recognized named entities
in Twitter messages, and Foster et al. (2011) in-
vestigated Part-Of-Speech tagging and parsing of
Twitter messages. As the phenomenon is prevelant
across the globe, social media texts are usually mul-
tilingual, while most of the NLP applications are
language-specific. We usually have to know the lan-
guage of a given message, in order to process the

message using appropriate NLP applications. Ac-
curacy of Language Detection (LD) is thus highly
critical for subsequent NLP applications.

LD on long messages is widely considered a
solved problem as its accuracy is often found to be
high with latest methods (Ahmed et al., 2004; Hugh-
es et al., 2006; Grothe et al., 2008). However, more
and more researchers have recently noted that LD
on short messages is very difficult. E.g, Baldwin
and Lui (2010) found LD became increasingly dif-
ficult as we reduced the length of documents, and
increased the number of languages. Carter et al.
(2013) found LD of microblogs was challenging for
state-of-the-art LD methods. Moreover, LD studies
mostly focus on Twitter messages, as Twitter pro-
vides an API for researchers to crawl public Twitter
messages, while no research is done on game chat
messages, which in itself contains language that has
quite a bit more slang than Twitter messages.

In this paper, we propose a novel LD system for
chat messages in a mobile game which has a built-
in chat translation system. The translation system
helps players speaking different languages chat with
each other. The LD system is used to detect lan-
guage of chat messages such that the chat transla-
tion system could know which language a message
should be translated from. Chat messages in mobile
games are different from other social media texts,
because it is inconvenient to type on mobile devices
leading to an increased misspelling rate, and game
chats tend to be much shorter than Twitter messages
(see Section 3). Our work is further more challeng-
ing, as we are detecting 27 languages.

Our contributions are as follows: (a) as far as we

20



know, this work is the first LD work on game chat
messages, so our work may pave the way to NLP re-
search on game chat messages which are a new kind
of social media texts; (b) our work is also the first ap-
proach to apply user language profiles to the LD of
game chat messages; (c) we have shown that LD of
game chats is very difficult and also propose a nov-
el LD system integrating both text-based and user-
based methods to achieve significantly better perfor-
mance over the current state-of-the-art LD systems.

2 Related Work

Language Detection (LD), or Language Identifica-
tion (LI), has been extensively studied in previous
work. One famous method is character n-gram-
based approach (Cavnar and Trenkle, 1994) which
was based on calculating and comparing profiles of
n-gram frequencies via “Out Of Place” (OOP) dis-
tance, a ranking-based distance. The approach first
computed a profile for each language in a multilin-
gual training set. Given a test document, the ap-
proach computed a profile that was then compared
to each language profile obtained from the training
set. The document was detected as a language which
had the smallest distance to the document’s profile.
This approach achieved a 99.8% accuracy on Usenet
newsgroup articles. One of the disadvantages of
(Cavnar and Trenkle, 1994) is that it requires the in-
put to be tokenized. Another similar approach was
done by Dunning (1994) who used byte n-grams in-
stead of character n-grams, avoiding the tokeniza-
tion problem. This approach achieved 99.9% accu-
racy on documents longer than 500 bytes.

Recently, many researchers have noticed the dif-
ficulty in LD for short documents/messages. For ex-
ample, Baldwin and Lui (2010) presented a detailed
investigation of what approaches were the best in
varied conditions, and found that LD became more
and more difficult when we increased the number of
languages, reduced the size of training data and re-
duced the length of documents. Vatanen et al. (2010)
investigated a LD task where the test samples had
only 5-21 characters. The authors compared two
approaches: one was a naive Bayes classifier based
on character n-gram models, and the other was the
OOP method of Cavnar and Trenkle (1994). To im-
prove LD on short and ill-written texts, Tromp and

Pechenizkiy (2011) proposed a graph-based n-gram
approach (LIGA) which performed better than the
character n-gram approach of Cavnar and Trenkle
(1994) on Twitter messages. Based on LIGA, Vogel
and Tresner-Kirsch (2012) further proposed some
linguitistically-motivated changes to LIGA, achiev-
ing an accuracy of 99.8% on Twitter messages in
6 European languages, while the accuracy of LIG-
A was 97.9% on the same test set. Bergsma et al.
(2012) focused on LD on short, informal texts in
resource-poor languages, annotating and releasing a
large collection of Twitter messages in 9 languages
using 3 scripts: Cyrillic, Arabic and Devanagari.
The authors also presented two LD systems which
achieved very high accuracy on Twitter messages.

All the previous work focused on LD using text
features. In contrast, our work utilizes user language
profile as well, i.e., language distribution of mes-
sages sent by a user, to further improve LD on very
short messages. The most relevant work was done
by Carter et al. (2013). In order to improve LD of
Twitter messages, the authors used post-dependent
features (i.e., features from only texts) together with
several post-independent features: the language pro-
file of a blogger, the content of an attached hy-
perlink, the language profile of a tag, and the lan-
guage of the original post. However, we could not
directly apply their approach to our context, chat
messages in games which are different from Twit-
ter messages, e.g., chat messages have no hyperlink,
no tag, etc. Furthermore, game chats are often much
shorter than Twitter messages, so LD of game chats
is much more challenging (Section 3).

Another relevant line of research is on LD for
search engine queries in the context of Cross Lan-
guage Information Retrieval (CLIR), as the queries
are usually relatively short like game chats. Cey-
lan and Kim (2009) first generated a LD data set of
search engine queries extracted from click-through
logs of Yahoo! Search Engine, and then trained de-
cision tree classifiers for LD. Moreover, the authors
also experimented with a non-text feature, the lan-
guage information of the country from which a us-
er makes a search query. Gottron and Lipka (2010)
used news headlines as short, query-style texts on
which several typical LD approaches had been eval-
uated. In their experiments, the naive Bayes classi-
fier with character n-gram features performed best

21



among others. Nevertheless, search engine queries
are different from our focus, game chats, in the sense
that search queries are usually well-written word-
s/phrases, while game chats could be ill-written,
short phrases/sentences.

3 Chat Messages of Mobile Games

To better understand the differences between game
chat messages and Twitter messages, we have
crawled 2,308,264 Twitter messages using a Java
implementation1 of Twitter’s stream API2. On aver-
age, each message has 73.51 characters. On the oth-
er hand, we have obtained 745,635,448 game chat
messages from a chat log database of a Massively
Multiplayer Online Role Playing mobile Game (M-
MORPG). Each game chat message has 34.43 char-
acters on average.

From these statistics, we could see that game chat
messages are about two times shorter than Twitter
messages, despite the different language distribu-
tions of the two message sets.

4 Methods

In this section, we will first describe how we make
a multilingual data set for LD based on a chat log
database of a mobile game. We then present a nov-
el approach to LD for game chat messages. Gener-
ally, our approach has two steps: the first step us-
es an alphabet-based LD method, and the second
step uses a linear model (Fan et al., 2008) to in-
tegrate 3 methods together: a byte n-gram-based
method (Lui and Baldwin, 2012), a dictionary-based
method, and a method based on user language pro-
files. The alphabet-based LD method will be intro-
duced, followed by the 3 methods. We then present
our approach by explaining how we integrate the 4
methods together.

4.1 Game Chat Data Collection

In this subsection, we will describe how we make a
multilingual data set of game chat messages, based
on a chat log database of a mobile game. All the data
are encoded in UTF-8.

1http://twitter4j.org/en/code-examples.
html#streaming

2https://dev.twitter.com/streaming/
overview

Generally, a chat log database of a mobile game
is accessible. The database contains many fields for
a message. Among the fields, related ones to our
work are the string of a message, a unique identifier
for each user (user id) for the message sender, and
the language of the last keyboard used to enter the
message. What we want to make is a data set con-
taining many chat messages, for each of which we
need its true language and user id.

An important question to answer at this stage is
whether we could rely on the keyboard language to
find the true language for a message. The answer is
no. There are two main reasons for this. The first
one is that users might use a keyboard to input a
message in a language which is different from the
language of the keyboard, e.g., a French user might
use English keyboard to input a French message to
avoid the delay caused by changing keyboards. The
other reason is that users tend to use special key-
boards on mobile devices, e.g., a user could input an
English message with an English keyboard and then
an Emoji3 with an Emoji keyboard, in which case
the log database only records the last keyboard, i.e.,
the Emoji keyboard.

Motivated by Ceylan and Kim (2009) who gener-
ated a LD data set of search engine queries extracted
from click-through logs of Yahoo! Search Engine,
we could also use the chat log database to make a
LD data set. More specifically, we first sample our
chat log database to get a raw data set containing
messages written using different keyboards accord-
ing to the keyboard language field. For each mes-
sage in the raw data set, the LD API of the Microsoft
Translator4 is used to detect the language of the mes-
sage. If the detected language matches the keyboard
language field, we consider the message as a valid
message in the final LD data set.

4.2 ALPHA: Alphabet-Based LD
The most straight-forward way to do LD is to count
the number of characters of each language, given a
message, then picking the language with the highest
number of characters. We call this method alphabet-
based language detection whose algorithm is shown
in Algorithm 1. We use a third-party library which

3http://en.wikipedia.org/wiki/Emoji
4http://msdn.microsoft.com/en-us/

library/ff512411.aspx

22



could return all the characters used by a given lan-
guage.

Algorithm 1 Alphabet-Based Language Detection
INPUT: a raw message M whose length is N
RETURN: the detected language for M
1: initialize a map char2langList which maps a character to a list of

languages;
2: initialize a map lang2count which maps a language to the count of

characters of the language in M;
3: for i← 0 to N-1 do
4: for each lang in char2langList[M[i]] do
5: lang2count[lang]← lang2count[lang] + 1;
6: return the language in lang2count with the highest count;

This method is effective when distinguishing lan-
guages written in different scripts, e.g., Chinese and
English. However, it is not good at distinguishing
languages using similar scripts, e.g., languages us-
ing the Latin script. Thus, to achieve a good per-
formance, this method should be used together with
other methods, e.g., we could use this method to
detect languages using almost separate scripts, e.g.,
Thai, Chinese, Japanese, Korean, etc. and then use
other methods to detect other languages. Please note
that here “almost separate scripts” depends on the
target language set we want to detect, e.g., if the set
contains Russian and Ukrainian both of which use
the Cyrillic script, we’d better not use the alphabet-
based LD method to detect Russian or Ukraini-
an, while if the set only contains Russian without
Ukrainian, we could detect Russian with the method.

Another issue with this method is the situation
that multiple languages have the same highest coun-
t. Our solution is to set a priority list of languages
according to the language frequencies in the game
and language-specific knowledge, and we choose
the first language in the list with the highest count
of characters as the detected language.

4.3 LANGID: Byte N-Gram-Based LD

Our LD system uses a byte n-gram-based LD ap-
proach (Lui and Baldwin, 2012). This approach es-
sentially uses a naive Bayes classifier with byte n-
gram features.

Lui and Baldwin (2012) have released an off-the-
shelf LD tool written in Python as an implementa-
tion of the approach. We have rewritten the tool in
C++ to get a higher processing speed. A pre-trained
model is released with the tool, and was trained on a

large amount of multilingual texts from various do-
mains (Lui and Baldwin, 2011) in 97 languages. The
tool also provides a way to limit the number of lan-
guages to a subset of the 97 languages, to achieve a
higher accuracy and speed. Given an input, the tool
has an API to normalize confidence scores for each
language to probability values.

4.4 DICT: Dictionary-Based LD

Assuming words in an input message are space-
delimited, we could count the number of words in
each language, then picking the language with the
highest number of words as the detected language.
We call this method dictionary-based language de-
tection whose algorithm is shown in Algorithm 2.

Algorithm 2 Dictionary-Based Language Detection
INPUT: a raw message M
RETURN: the detected language for M
1: tokenize M into a sequence of words WORDS whose length is N,

ignoring punctuation;
2: initialize a map word2langList which maps a word to a list of lan-

guages;
3: initialize a map lang2count which maps a language to the count of

words of the language in WORDS;
4: for i← 0 to N-1 do
5: for each lang in word2langList[WORDS[i]] do
6: lang2count[lang]← lang2count[lang] + 1;
7: return the language in lang2count with the highest count;

The advantage of this method is that it works
well on short messages, even if the input message
is only one word, while its disadvantage is from it-
s assumption, i.e., the words of the input message
should be space-delimited, which limits the applica-
bility of this method. For example, without knowing
an input message is Chinese, the input message can-
not be tokenized into words properly, while knowing
the language of the input message is just the job of
LD. Furthermore, as we are dealing with game chat
messages, users could use informal words, e.g., “u”
instead of “you”, “gtg” instead of “got to go”, etc.
which also pose difficulties for the dictionaries used
in this method. To overcome this problem, e.g., we
could use methods like (Liu et al., 2012) to extend
our dictionaries to include informal words and slang
terms. Another issue with the method is that multi-
ple languages could have the same word, e.g., for a
message containing only one word which occurs in
two languages, we could also set a language priority
list to solve this problem as in Section 4.2.

23



4.5 PROFILE: User Language Profile

As can be seen from Section 3, game chat messages
are often very short. LD methods relying on only
text-based features would perform poorly on game
chats. In this subsection, we will introduce a novel
method to LD of game chat messages: user language
profiles. A language profile for a user is a vector of
real numbers each of which represents the probabil-
ity of sending a message in a particular language.
The size of the vector is the same for all the users,
i.e., the number of languages supported by the game,
though most users only speak one or two languages.
In order to build the language profiles, ideally, we
should have many human annotators to annotate all
the chat messages sent in the game, but it is imprac-
tical. We thus have to choose an automatic LD sys-
tem to detect the language of each message sent by
a user. As a result, we obtain a vector of the count of
messages written in each language. We then normal-
ize the counts into probabilities, getting a vector of
probabilities as the language profile for the user. The
LANGID system (Section 4.3) is used here to build
language profiles. Of course, the LD system might
make errors, especially on short messages. How-
ever, the experimental results (Section 5.3) confirm
this way of building language profiles is effective.

For a new user, the probabilities in the language
profile are all 0, meaning we do not know what lan-
guage the new user will use. If we use PROFILE in-
dividually, the first language in its language priority
list is chosen.

4.6 COMB: Combined System

In this subsection, we will show how we integrate
all the methods mentioned in this section together to
make a high-performance LD system for chat mes-
sages sent in mobile games.

Work Flow: According to the characteristics of
the methods mentioned in this section, our system
has two phases: Phase 1 uses the ALPHA LD (Sec-
tion 4.2) to detect languages using “separate” script-
s; Phase 2 uses a linear model to combine the byte
n-gram-based method (Section 4.3), the dictionary-
based method (Section 4.4) and the user language
profile (Section 4.5) together to detect the rest of lan-
guages in the target language set. The work flow of
the combined LD system is presented in Figure 1.

languages 
using separate 

scripts?

return LibLinear 
result

Yes

No

(MESSAGE, USER_ID)

return 
ALPHA 
result

LANGID

ALPHA

DICT

PROFILE

LibLinear combination 
of LANGID, DICT and 

PROFILE

Figure 1: Work flow of the combined LD system.

LibLinear: A linear model is used to combine
the three methods which are respectively presented
in Section 4.3, 4.4, and 4.5. More precisely, we use
the linear support vector machines in LibLinear (Fan
et al., 2008) as the linear model. LibLinear is an
open source library which is very efficient for large-
scale linear classification. We have also tried the
SVM model with linear kernel in LibSVM (Chang
and Lin, 2011) instead of LibLinear, but LibSVM is
much slower than LibLinear with similar accuracies.
We thus choose LibLinear finally.

E.g., if the game language set is {Chinese, En-
glish, French, Thai}, in Phase 1, the ALPHA method
detects the 4 languages. If the result is in {Chinese,
Thai}, we stop and return the result. Otherwise, En-
glish and French are detected in Phase 2. The input
feature vector of LibLinear is a concatenation of the
normalized output vectors from LANGID, DICT, and
PROFILE. Each of the output vectors has 2 real num-
bers indicating the probability of being English or
French. The output vector of DICT may be shorter
than that of the other two, when DICT is not appli-
cable to some languages, e.g., a lack of dictionaries,
or words which are not space-delimited.

5 Experiments

5.1 Evaluation Corpora
As far as we know, most previous LD work on short
messages (Tromp and Pechenizkiy, 2011; Vogel and
Tresner-Kirsch, 2012) focused on Twitter messages,
and no previous work explored LD for game chat
messages. We thus create a LD data set contain-
ing multilingual chat messages sent in mobile games
with the method described in Section 4.1.

We first create a data set containing chat messages

24



Languages Data set statistics (#lines / #characters)
TRAIN LEN1 LEN2 LEN3 LEN4 FULL

Arabic 17153 / 444779 634 / 2834 984 / 8845 1000 / 13164 1000 / 16667 1000 / 25796
Catalan 8585 / 207730 452 / 2096 838 / 6968 918 / 11196 980 / 16143 1000 / 24190
Chinese 10705 / 110612 695 / 1379 992 / 3784 1000 / 5334 1000 / 6526 1000 / 10620
Czech 7612 / 259388 645 / 3059 965 / 8544 998 / 13336 1000 / 17347 1000 / 33426
Danish 11031 / 554513 367 / 1690 804 / 6992 969 / 12619 996 / 17397 1000 / 50660
Dutch 1201 / 52307 457 / 2206 891 / 8027 985 / 13576 997 / 18768 1000 / 44200

English 68035 / 3134196 473 / 2171 876 / 7736 985 / 13471 998 / 18692 1000 / 46310
Finnish 4003 / 151253 631 / 3286 949 / 9713 981 / 15171 996 / 20196 1000 / 36283
French 27555 / 1197251 416 / 1875 853 / 7024 982 / 12233 998 / 17021 1000 / 43362
German 10978 / 448484 509 / 2441 950 / 8681 997 / 14052 999 / 19214 1000 / 41333
Greek 18234 / 801094 517 / 2845 956 / 9498 999 / 14454 1000 / 18665 1000 / 43668

Hebrew 18553 / 512033 492 / 2115 911 / 7614 996 / 12363 1000 / 15945 1000 / 28842
Hungarian 6876 / 236017 634 / 3285 965 / 9503 997 / 14357 1000 / 18590 1000 / 32241
Indonesian 10285 / 380596 664 / 3309 987 / 9548 1000 / 14902 1000 / 19735 1000 / 35899

Italian 5528 / 256781 539 / 2790 958 / 9066 996 / 14509 998 / 19801 1000 / 46734
Japanese 12531 / 249595 718 / 1414 923 / 3563 976 / 5407 988 / 6938 1000 / 19193
Korean 16546 / 285583 615 / 1180 948 / 3518 986 / 5446 999 / 7152 1000 / 17464
Malay 8899 / 277092 643 / 3075 968 / 9039 993 / 14171 999 / 19154 1000 / 30792

Norwegian 7308 / 316033 419 / 1947 812 / 7031 964 / 12601 997 / 17406 1000 / 43412
Polish 382 / 16481 312 / 1563 483 / 4650 495 / 7587 496 / 10303 500 / 21699

Portuguese 10493 / 414901 549 / 2827 944 / 8794 994 / 14449 1000 / 19554 1000 / 39585
Romanian 9823 / 301461 543 / 2502 929 / 7969 990 / 12894 1000 / 17072 1000 / 30832
Russian 14060 / 592906 484 / 2589 833 / 7866 977 / 14091 998 / 19734 1000 / 41726
Slovak 7482 / 320377 551 / 2757 929 / 8313 994 / 13625 1000 / 18670 1000 / 41426
Spanish 4785 / 237427 477 / 2503 915 / 8322 992 / 13829 998 / 18995 1000 / 49421
Swedish 9044 / 410050 462 / 2243 888 / 7875 987 / 13247 1000 / 17760 1000 / 44829
Turkish 614 / 29611 615 / 3372 976 / 10771 1000 / 17285 1000 / 23733 1000 / 49008

Table 1: Statistics of the LD data sets created from game chat messages.

in 27 languages supported by the game, then split-
ting the messages for each language into a training
set (named TRAIN) and a test set (named FULL).
As our focus is on short messages, we also generate
four other test sets based on FULL. We have truncat-
ed each message in FULL to retain the first n token-
s5, thus generating 4 new test sets named as LENn
where n ∈ {1, 2, 3, 4}. In LENn, only unique
messages are retained based on only texts, e.g., if
we have (text=“thx tom”, userid=“123”, lang=“en”)
and (text=“thx boss”, userid=“456”, lang=“en”) in
FULL, we only keep one message (text=“thx”,
userid=“123”, lang=“en”) generated from the two
messages in the data set LEN1. The statistics of the
resulted data sets are shown in Table 1.

Following Carter et al. (2013), we also use accura-
cy, i.e., the percentage of messages whose language
is detected correctly, to evaluate the effect of LD.

5.2 Systems

We compare our proposed LD system (COMB of
Section 4.6) against three baseline methods:
(1) LANGID: uses the byte n-gram-based LD

5if words are not space-delimited in a language, the first 2×
n characters are kept

method described in Section 4.3 with the 27 lan-
guages of Table 1; we have tried to train a new model
with the data TRAIN in Table 1, but the new mod-
el works worse than the pre-trained model, which
may be due to the fact that the amount of TRAIN is
much smaller than that used to train the pre-trained
model; the pre-trained model is thus used in our ex-
periments; this system has already been shown su-
perior to many methods, e.g., TextCat which is an
implementation of (Cavnar and Trenkle, 1994) and
CLD which is the embedded LD system used in
Google’s Chromium Browser, so we do not compare
our COMB to these methods in this paper;
(2) DICT: uses the dictionary-based LD method de-
scribed in Section 4.4 to detect 10 languages6, as we
only have dictionaries for the 10 languages;
(3) PROFILE: the user language profile method de-
scribed in Section 4.5; the user language profiles of
the 27 languages have been built using LANGID;

The COMB system uses the alphabet-based LD
method (Section 4.2) to detect the 27 languages in
Phase 1. If the result is in {Arabic, Hebrew, Greek,
Russian, Chinese, Japanese, Korean}, we stop and

6the priority language list is {English, French, Spanish, Ger-
man, Portuguese, Russian, Dutch, Polish, Italian, Turkish}

25



return the result. Otherwise, in Phase 2, COMB uses
LibLinear (Section 4.6) to combine LANGID, DIC-
T and PROFILE together to detect the 20 languages,
which are the 27 languages of Table 1 minus the 7
languages detected by Phase 1. The LibLinear mod-
el is trained on the data TRAIN of Table 1.

5.3 Experimental Results
The experimental results on data set LEN1 are
shown in Table 2, from which we can see that for
extremely short messages containing only 1 token,
LANGID performs poorly with an average accura-
cy of 34.88%. DICT works better than LANGID on
the 10 languages supported by DICT, which shows
that dictionary-based methods are very useful in LD
for short messages, though detecting 10 languages
is much easier than detecting 27 languages. More-
over, PROFILE achieves very amazing accuracies on
1-token messages, which confirms the critical im-
portance of user language profiles in LD of very
short messages. At last, COMB successfully com-
bines the three systems above and the alphabet-
based LD method, achieving a relatively high accu-
racy of 73.69% on 1-token messages, which outper-
forms PROFILE by 11.48% accuracy. Note that the
AVERAGE is macro-average.

Table 3, 4 and 5 respectively present the result-
s on data set LEN2, LEN3 and LEN4. LANGID’s
accuracy increases as the message length increases,
as expected. Because more text is available. PRO-
FILE maintains a stable accuracy at about 63.5% on
all the 3 data sets, since it only depends on the user
who sends the message, and is independent on texts.
COMB again performs best among the 4 systems.

The experimental results on data set FULL are
shown in Table 6. LANGID works much better
on full-length messages than on shorter messages.
PROFILE still keeps a stable accuracy at 63.57%.
COMB performs best with an average accuracy of
84.61% on the 27 languages.

As a summary, the average accuracy of LANGID

varies from 34.88% to 74.53% on the 5 test sets of
messages of different lengths, which shows that the
traditional LD methods relying on text-based fea-
tures perform poorly on short messages. PROFILE

works consistently well on the test sets with an accu-
racy at about 63%. Our proposed system COMB can
effectively integrate LANGID, DICT, and PROFILE

Languages LANGID DICT PROFILE COMB

Arabic 96.85 N.A. 86.75 97.16
Catalan 1.55 N.A. 9.29 42.04
Chinese 94.96 N.A. 80.29 98.56
Czech 14.57 N.A. 47.75 62.33
Danish 14.44 N.A. 74.66 86.92
Dutch 8.10 25.60 53.17 70.46

English 89.43 100.00 99.79 94.08
Finnish 22.50 N.A. 42.16 57.05
French 13.22 29.09 93.51 82.69
German 24.36 35.76 91.55 93.52
Greek 90.33 N.A. 66.34 90.91

Hebrew 85.57 N.A. 84.76 92.48
Hungarian 20.03 N.A. 52.21 58.36
Indonesian 6.02 N.A. 23.04 82.23

Italian 9.09 32.28 89.98 92.58
Japanese 65.60 N.A. 40.53 65.18
Korean 85.04 N.A. 68.46 88.94
Malay 0.16 N.A. 0.00 14.62

Norwegian 2.39 N.A. 33.65 61.58
Polish 23.72 41.99 32.69 56.09

Portuguese 5.28 42.81 88.89 96.36
Romanian 7.37 N.A. 30.57 62.62
Russian 79.75 82.44 98.55 86.16
Slovak 8.53 N.A. 40.47 73.50
Spanish 22.64 42.14 93.71 43.40
Swedish 18.40 N.A. 67.53 87.45
Turkish 31.87 42.11 89.43 52.36
Average 34.88 N.A. 62.21 73.69

Table 2: Accuracies (%) of LD methods on LEN1.

Languages LANGID DICT PROFILE COMB

Arabic 99.80 N.A. 86.69 99.80
Catalan 1.79 N.A. 7.52 43.56
Chinese 95.46 N.A. 81.15 99.40
Czech 24.97 N.A. 50.88 70.98
Danish 33.96 N.A. 74.50 90.80
Dutch 25.48 31.43 54.10 70.15

English 77.40 100.00 99.66 92.58
Finnish 44.47 N.A. 43.84 62.91
French 37.16 33.06 94.37 85.23
German 43.47 46.32 91.89 92.53
Greek 98.43 N.A. 71.23 98.64

Hebrew 96.71 N.A. 86.17 99.67
Hungarian 37.20 N.A. 56.37 65.08
Indonesian 22.90 N.A. 21.99 85.31

Italian 32.25 46.03 91.86 94.05
Japanese 84.40 N.A. 41.93 83.42
Korean 91.56 N.A. 71.52 93.99
Malay 3.31 N.A. 0.00 14.88

Norwegian 16.87 N.A. 35.34 64.29
Polish 37.06 54.66 33.75 54.24

Portuguese 17.37 51.80 91.00 96.82
Romanian 12.59 N.A. 34.02 70.61
Russian 96.64 94.72 98.80 97.84
Slovak 14.10 N.A. 41.66 76.43
Spanish 50.38 52.02 94.54 46.89
Swedish 38.96 N.A. 68.69 91.55
Turkish 52.46 63.22 89.45 62.50
Average 47.67 N.A. 63.44 77.93

Table 3: Accuracies (%) of LD methods on LEN2.

26



Languages LANGID DICT PROFILE COMB

Arabic 99.90 N.A. 86.90 99.90
Catalan 8.17 N.A. 7.08 42.48
Chinese 96.60 N.A. 81.10 99.50
Czech 36.27 N.A. 50.60 72.34
Danish 48.30 N.A. 75.44 92.98
Dutch 40.61 46.60 54.31 74.31

English 70.76 100.00 99.70 91.17
Finnish 55.76 N.A. 43.02 66.26
French 51.12 40.02 94.91 88.19
German 59.18 63.59 91.98 94.08
Greek 99.50 N.A. 71.27 99.70

Hebrew 99.60 N.A. 86.25 99.90
Hungarian 44.93 N.A. 56.17 65.20
Indonesian 33.90 N.A. 22.30 87.70

Italian 54.12 64.96 92.07 95.18
Japanese 88.32 N.A. 42.62 88.32
Korean 93.71 N.A. 71.40 96.04
Malay 6.55 N.A. 0.00 13.90

Norwegian 34.02 N.A. 36.41 65.66
Polish 52.93 66.26 33.74 58.38

Portuguese 33.80 67.40 90.74 96.68
Romanian 23.13 N.A. 34.44 71.92
Russian 99.59 98.67 98.77 99.59
Slovak 23.74 N.A. 42.25 77.87
Spanish 62.20 69.66 94.96 61.09
Swedish 53.90 N.A. 68.69 93.52
Turkish 71.10 76.70 89.50 76.90
Average 57.10 N.A. 63.58 80.32

Table 4: Accuracies (%) of LD methods on LEN3.

Languages LANGID DICT PROFILE COMB

Arabic 99.90 N.A. 86.90 99.90
Catalan 15.31 N.A. 6.63 44.39
Chinese 97.00 N.A. 81.10 99.60
Czech 42.30 N.A. 50.60 72.30
Danish 54.12 N.A. 75.90 93.78
Dutch 53.66 59.48 54.56 76.83

English 75.75 100.00 99.70 92.89
Finnish 59.64 N.A. 42.37 66.57
French 65.93 51.80 94.99 92.18
German 69.07 73.67 91.99 95.20
Greek 99.50 N.A. 71.30 99.70

Hebrew 99.60 N.A. 86.30 99.90
Hungarian 50.40 N.A. 56.00 65.90
Indonesian 44.20 N.A. 22.30 88.80

Italian 69.14 77.25 92.08 95.49
Japanese 91.30 N.A. 43.22 91.70
Korean 95.60 N.A. 71.47 97.60
Malay 11.21 N.A. 0.00 13.31

Norwegian 48.95 N.A. 36.51 67.10
Polish 56.65 73.19 33.67 62.10

Portuguese 46.60 78.30 90.80 97.00
Romanian 29.20 N.A. 34.60 72.00
Russian 100.00 99.80 98.80 100.00
Slovak 30.10 N.A. 42.10 78.40
Spanish 73.15 81.76 94.89 72.65
Swedish 63.40 N.A. 68.90 94.20
Turkish 82.40 84.00 89.50 85.50
Average 63.85 N.A. 63.60 82.04

Table 5: Accuracies (%) of LD methods on LEN4.

Languages LANGID DICT PROFILE COMB

Arabic 99.90 N.A. 86.90 99.90
Catalan 22.50 N.A. 6.50 44.80
Chinese 97.10 N.A. 81.10 99.80
Czech 51.20 N.A. 50.60 72.40
Danish 61.80 N.A. 75.90 95.00
Dutch 80.70 86.70 54.50 80.80

English 90.60 100.00 99.70 96.80
Finnish 62.30 N.A. 42.20 66.80
French 88.60 83.80 95.00 96.10
German 85.00 90.10 92.00 96.30
Greek 99.60 N.A. 71.30 99.80

Hebrew 99.70 N.A. 86.30 100.00
Hungarian 54.80 N.A. 56.00 66.30
Indonesian 52.80 N.A. 22.30 89.80

Italian 91.10 95.10 92.10 96.10
Japanese 95.80 N.A. 43.10 97.70
Korean 97.90 N.A. 71.50 100.00
Malay 16.50 N.A. 0.00 12.10

Norwegian 67.50 N.A. 36.50 70.10
Polish 70.60 81.40 33.40 70.20

Portuguese 71.20 94.30 90.80 97.30
Romanian 42.60 N.A. 34.60 72.70
Russian 100.00 100.00 98.80 100.00
Slovak 47.40 N.A. 42.10 78.80
Spanish 94.40 99.00 94.90 95.00
Swedish 76.90 N.A. 68.90 94.50
Turkish 93.90 94.20 89.50 95.30
Average 74.53 N.A. 63.57 84.61

Table 6: Accuracies (%) of LD methods on FULL.

together, consistently outperforming all the base-
lines on test sets of messages of different lengths.
COMB achieves a relatively consistent and high ac-
curacy on messages of varied lengths from 73.69%
to 84.61%. These results confirm the potential of the
proposed system.

We also found both LANGID and COMB perform
poorly on Malay and Catalan, which may be due to
the fact that Malay is very similar to Indonesian, and
that Catalan is similar to French and Spanish.

6 Conclusion

This paper presents a novel LD system for chat mes-
sages in mobile games. The system can effectively
integrate both text-based and user-based LD meth-
ods. In our experiments, we achieve highly statis-
tically significant (p < 0.0001 in T-test) improve-
ments (10.08%-18.19% in absolute accuracy) over
strong baselines on 27-language test sets which con-
tain messages of various lengths.

Future work can investigate how to preprocess or
normalize game chat messages to further improve
LD. Moreover, adding more dictionaries may also
be a future direction to improve the accuracy of the
proposed LD system.

27



References
Bashir Ahmed, Sung-Hyuk Cha, and Charles Tappert.

2004. Language identification from text using n-gram
based cumulative frequency addition. In Proceedings
of Student/Faculty Research Day, CSIS, Pace Univer-
sity.

Timothy Baldwin and Marco Lui. 2010. Language i-
dentification: The long and the short of the matter. In
Proceedings of NAACL-HLT.

Shane Bergsma, Paul McNamee, Mossaab Bagdouri,
Clayton Fink, and Theresa Wilson. 2012. Language
identification for creating language-specific Twitter
collections. In Proceedings of the Second Workshop
on Language in Social Media.

Simon Carter, Wouter Weerkamp, and Manos Tsagkias.
2013. Microblog language identification: Overcoming
the limitations of short, unedited and idiomatic text.
Language Resources and Evaluation, 47(1):195–215.

William B. Cavnar and John M. Trenkle. 1994. N-
gram-based text categorization. In Proceedings of the
Third Symposium on Document Analysis and Informa-
tion Retrieval.

Hakan Ceylan and Yookyung Kim. 2009. Language i-
dentification of search engine queries. In Proceedings
of ACL-IJCNLP.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM:
A library for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology, 2:27:1–
27:27. Software available at http://www.csie.
ntu.edu.tw/˜cjlin/libsvm.

Ted Dunning. 1994. Statistical identification of lan-
guage. Computing Research Laboratory, New Mexico
State University.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin. 2008. LIBLINEAR: A li-
brary for large linear classification. Journal of Ma-
chine Learning Research, 9:1871–1874.

Jennifer Foster, Özlem Çetinoglu, Joachim Wagner,
Joseph Le Roux, Stephen Hogan, Joakim Nivre,
Deirdre Hogan, and Josef Van Genabith. 2011. #
hardtoparse: POS tagging and parsing the twitterverse.
In Proceedings of the AAAI Workshop On Analyzing
Microtext.

Thomas Gottron and Nedim Lipka. 2010. A comparison
of language identification approaches on short, query-
style texts. In Advances in information retrieval, pages
611–614. Springer.

Lena Grothe, Ernesto William De Luca, and Andreas
Nürnberger. 2008. A comparative study on language
identification methods. In Proceedings of LREC.

Baden Hughes, Timothy Baldwin, Steven Bird, Jeremy
Nicholson, and Andrew MacKinlay. 2006. Recon-
sidering language identification for written language
resources. In Proceedings of LREC.

Xiaohua Liu, Shaodian Zhang, Furu Wei, and Ming
Zhou. 2011. Recognizing named entities in tweets.
In Proceedings of ACL-HLT.

Fei Liu, Fuliang Weng, and Xiao Jiang. 2012. A broad-
coverage normalization system for social media lan-
guage. In Proceedings of ACL.

Marco Lui and Timothy Baldwin. 2011. Cross-domain
feature selection for language identification. In In Pro-
ceedings of IJCNLP.

Marco Lui and Timothy Baldwin. 2012. langid.py: An
off-the-shelf language identification tool. In Proceed-
ings of ACL System Demonstrations.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni.
2011. Named entity recognition in tweets: An experi-
mental study. In Proceedings of EMNLP.

Erik Tromp and Mykola Pechenizkiy. 2011. Graph-
based n-gram language identification on short texts. In
Proceedings of the 20th Machine Learning conference
of Belgium and The Netherlands.

Tommi Vatanen, Jaakko J. Väyrynen, and Sami Virpioja.
2010. Language identification of short text segments
with n-gram models. In Proceedings of LREC.

John Vogel and David Tresner-Kirsch. 2012. Robust
language identification in short, noisy texts: Improve-
ments to LIGA. In Proceedings of The Third Inter-
national Workshop on Mining Ubiquitous and Social
Environments.

28


