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Abstract

Word embeddings have recently proven useful
in a number of different applications that deal
with natural language. Such embeddings suc-
cinctly reflect semantic similarities between
words based on their sentence-internal con-
texts in large corpora. In this paper, we show
that information extraction techniques provide
valuable additional evidence of semantic re-
lationships that can be exploited when pro-
ducing word embeddings. We propose a joint
model to train word embeddings both on reg-
ular context information and on more explicit
semantic extractions. The word vectors ob-
tained from such an augmented joint train-
ing show improved results on word similarity
tasks, suggesting that they can be useful in ap-
plications that involve word meanings.

1 Introduction

In recent years, the idea of embedding words in a
vector space has gained enormous popularity. This
success of such word embeddings as semantic rep-
resentations has been driven in part by the develop-
ment of novel methods to efficiently train word vec-
tors from large corpora, such that words with sim-
ilar contexts end up having similar vectors. While
it is indisputable that context plays a vital role in
meaning acquisition, it seems equally plausible that
some contexts would be more helpful for this than
others. Consider the following sentence, taken from
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Wikipedia, a commonly used training corpus for
word representation learning:

Although Roman political authority in
the West was lost, Roman culture would
last in most parts of the former Western
provinces into the 6th century and beyond.

In this example sentence, the token “parts” does not
seem to bear any particularly close relationship with
the meaning of some of the other tokens, e.g. “Ro-
man” and “culture”. In contrast, the occurrence of
an expression such as “Greek and Roman mythol-
ogy” in a corpus appears to indicate that the two
tokens “Roman” and “Greek” likely share certain
commonalities. There is a large body of work on
information extraction techniques to discover text
patterns that reflect semantic relationships (Hearst,
1992; Tandon and de Melo, 2010).

In this paper, we propose injecting semantic in-
formation into word embeddings by training them
not just on general contexts but paying special at-
tention to stronger semantic connections that can be
discovered in specific contexts on the Web or in cor-
pora. In particular, we investigate mining informa-
tion of this sort from enumerations and lists, as well
as from definitions. Our training procedure can ex-
ploit any source of knowledge about pairs of words
being strongly coupled to improve over word em-
beddings trained just on generic corpus contexts.

2 Background and Related Work

Words are substantially discrete in nature, and thus,
traditionally, the vast majority of natural language
processing tools, both rule-based and statistical,
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have regarded words as distinct atomic symbols.
Even methods that rely on vectors typically made
use of so-called “one-hot” representations, which al-
locate a separate dimension in the vector space for
every content word in the vocabulary. Such rep-
resentations suffer from two problems. First, vec-
tors for two distinct word forms have distinct vec-
tors without any overlap, which means that the vec-
tor similarities for any two distinct individual word
forms will fail to reflect any possible syntactic or se-
mantic similarities between them. Second, the vec-
tor space dimensionality is proportional to the vo-
cabulary size, which can be very large. For instance,
the Google 1T corpus has 13M distinct words.

To address these two problems, other representa-
tions have been proposed. Brown clustering (Brown
et al., 1992) organizes words into a binary tree based
on the contexts in which they occur. Latent Semantic
Analysis and Indexing (LSA/LSI) use singular value
decomposition (SVD) to identify the relationships
between words in a corpus. Latent Dirichlet Anal-
ysis (LDA) (Blei et al., 2003), a generative graphi-
cal model, views each document as a collection of
topics and assigns each word to these topics.

Recently, neural networks have been applied to
learn word embeddings in dense real-valued vector
spaces. In training, such an approach may com-
bine vector space semantics with predictions from
probabilistic models. For instance, Bengio et al.
(2003) present a neural probabilistic language model
that uses the n-gram model to learn word embed-
dings. The network tries to use the first n− 1 words
to predict the next one, outperforming n-gram fre-
quency baselines. Collobert et al. (2011) use word
embeddings for traditional NLP tasks: POS tagging,
named entity recognition, chunking, and semantic
role labeling. Their pairwise ranking approach tries
to maximize the difference between scores from text
windows in a large training corpus and correspond-
ing randomly generated negative examples. How-
ever, the training for this took about one month. The
next breakthrough came with Mikolov et al. (2013a),
who determined that, for the previous models, most
of the complexity is caused by the non-linear hid-
den layer. The authors thus investigated simpler net-
work architectures to efficiently train the vectors at a
much faster rate and thus also at a much larger scale.

Their word2vec1 implementation provides two ar-
chitectures, the CBOW and the Skip-gram models.
CBOW also relies on a window approach, attempt-
ing to use the surrounding words to predict the cur-
rent target word. However, it simplifies the hidden
layer to be just the average of surrounding words’
embeddings. The Skip-gram model tries to do the
opposite. It uses the current word to predict the sur-
rounding words. Both architectures can be trained
in just a few hours, while obtaining state-of-the-art
embeddings.

Distributed word representations now have been
applied to numerous natural language processing
tasks. For instance, they have been used for sen-
timent analysis (Socher et al., 2013), paraphrase
detection (Socher et al., 2011), machine transla-
tion (Devlin et al., 2014), relation extraction (Chang
et al., 2014), and parsing, just to name a few. Some
of these works use neural network models, e.g. re-
cursive neural networks, auto-encoders, or convo-
lutional neural networks. Others use word embed-
dings directly as features for clustering or classifica-
tion with alternative machine learning algorithms.

There have been other proposals to adapt the
word2vec model. Similar to previous work on se-
mantic spaces based on dependency parse relations
(Padó and Lapata, 2007), Levy and Goldberg (2014)
rely on dependency parsing to create word embed-
dings. These are able to capture contextual relation-
ships between words that are further apart in the sen-
tence while simultaneously filtering out some words
that are not directly related to the target word. Fur-
ther analysis revealed that their word embeddings
capture more functional but less topical similarity.
Faruqui et al. (2015) apply post-processing steps to
existing word embeddings in order to bring them
more in accordance with semantic lexicons such as
PPDB and FrameNet. Wang et al. (2014) train em-
beddings jointly on text and on Freebase, a well-
known large knowledge base. Their embeddings
are trained to preserve relations between entities in
the knowledge graph. Rather than using structured
knowledge sources, our work focuses on improving
word embeddings using textual data by relying on
information extraction to expose particularly valu-
able contexts in a text corpus.

1https://code.google.com/p/word2vec/
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3 Joint Model

Our model simultaneously trains the word embed-
dings on generic contexts from the corpus on the one
hand and semantically significant contexts, obtained
using extraction techniques, on the other hand. For
the regular general contexts, our approach draws on
the word2vec CBOW model (Mikolov et al., 2013a)
to predict a word given its surrounding neighbors in
the corpus.

At the same time, our model relies on our abil-
ity to extract semantically salient contexts that are
more indicative of word meanings. Our algorithm
assumes that these have been transformed into a set
of word pairs known to be closely related. These
pairs of related words are used to modify the word
embeddings by jointly training them simultaneously
with the word2vec model for regular contexts. Due
to this more focused information, we expect the fi-
nal word embeddings to reflect more semantic in-
formation than embeddings trained only on regular
contexts.

Given an extracted pair of semantically related
words, the intuition is that the embeddings for the
two words should be pulled together. We formalize
this intuition with following objective:

1
T

T∑
t=1

∑
wr

log p(wr|wt)

Here, wr is a word related to another word wt ac-
cording to the extractions, and T is the vocabulary
size.

Thus, given a word wt, we try to maximize the
probability of finding its related words wr. Tradi-
tionally, the softmax function is used for the proba-
bility function. Its time complexity is proportional to
the vocabulary size. Here, we use negative sampling
as a speed-up technique (Mikolov et al., 2013b).
This is a simplified version of Noise Contrastive Es-
timation (NCE) (Mnih and Teh, 2012), which re-
duces the problem of determining the softmax to
that of binary classification, discriminating between
samples from the data distribution and negative sam-
ples.

In the training procedure, this amounts to simply
generating k random negative samples for each ex-
tracted word pair. That is, we replace wr with ran-
dom words from the vocabulary. For the negative

samples, we assign the label l = 0, while for the
original word pairs, l = 1. Now, for each word pair
we try to minimize its loss function:

Loss = −l · log f − (1− l) · log(1− f)

f = σ(vT
wt
· vwr)

Here, σ(·) is the sigmoid function σ(x) = 1
1+e−x

and vwt , vwr refer to the vectors for the two words
wt and wr. We use stochastic gradient descent to
optimize this function. The formulae for the gradient
are easy to compute:

∂Loss

∂vwr

= −(l − f) vwt

∂Loss

∂vwt

= −(l − f) vwr

This objective is optimized alongside with the
original word2vec CBOW objective. Our overall
model combines the two objectives. Training the
model in parallel with the word2vec model allows us
to inject the extracted knowledge into the word vec-
tors such that they are reflected during the word2vec
training rather than just as a post-processing step.
Thus the two components are able to mutually influ-
ence each other.

Both objectives contribute to the embeddings’
ability to capture semantic relationships. Training
with the extracted contexts enables us to adjust word
embeddings based on concrete evidence of semantic
relationships, while the use of general corpus con-
texts enables us to maintain the advantages of the
word2vec model, in particular its ability to benefit
from massive volumes of raw corpus data.

4 Information Extraction

Our model can flexibly incorporate semantic rela-
tionships extracted using various kinds of informa-
tion extraction methods. Different kinds of sources
and extraction methods can bring different sorts of
information to the vectors, suitable for different ap-
plications. In our experiments, we investigate two
sources: a dictionary corpus from which we extract
definitions and synonyms, and a general Web cor-
pus, from which we extract lists. Our model could
similarly be used with other extraction methods, or
in fact any method to mine pairs of semantically re-
lated words.
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word wt definition wr for wt

Befuddle to becloud and confuse as with liquor
Befuddled dazed by alcoholic drink
Befuddled unclear in mind or intent filled with bewilderment
Befuddled confused and vague, used especially of thinking
Beg to ask earnestly for, to entreat, or supplicate for, to beseech
word wt synonym wr for wt

Effectual effectual, efficacious, effective
Effectuality effectiveness, effectivity, effectualness
Efficacious effectual
Efficaciousness efficacy

Table 1: Definitions and synonyms from the GCIDE

player, captain, manager, director, vice-chairman
group, race, culture, religion, organisation, person
Italian, Mexican, Chinese, Creole, French
prehistoric, roman, early-medieval, late-medieval, post-medieval, modern
ballscrews, leadscrews, worm gear, screwjacks, linear, actuator
Cleveland, Essex, Lincolnshire, Northamptonshire, Nottinghamshire, Thames
Valley, South Wales

Table 2: Lists of related words extracted from UKWaC

4.1 Definition Extraction

One can safely assume that any large, broad-
coverage Web corpus will contain significant occur-
rences of word definitions, e.g. whenever new ter-
minology is introduced. These can be harvested us-
ing broad-coverage Definition Extraction methods
(Sierra et al., 2009).

Instead of adopting such generic methods that are
intended to operate on arbitrary text, another op-
tion, appropriate for Web corpora, is to specifically
identify the kinds of Web sources that provide high-
quality definitions, e.g. Wiktionary or Wikipedia. In
fact, when compiling a Web corpus with the explicit
purpose of using it to train word representations, one
may reasonably wish to explicitly ensure that it in-
cludes dictionaries available on the Web. Obviously,
the definitions from a dictionary can provide mean-
ingful semantic relationships between words.

In our experiments, we use the GNU Collabo-
rative International Dictionary of English (GCIDE)
as our dictionary corpus, which is derived from an
older edition of Webster’s Revised Unabridged Dic-
tionary. From this data, we extract the dictionary

glosses as genuine definitions as well as synonyms.
In the dictionary, they are indexed by the 〈def〉 and
〈syn〉 tags. We ignore other embedded tags within
the definitions and synonym entries. These provide
additional word usage notes and other attributes that
are not significant in our work. In total, we obtain
208,881 definition entries. Some words have multi-
ple meanings and thus are part of several entries. We
also obtain 10,148 synonym entries, each of which
consists of one or more synonyms for a given word.
Table 1 shows some examples of this extraction. We
can observe that the definition and synonym extrac-
tions indeed appear to convey valuable information
about semantic proximity of words.

4.2 List Extraction

Lists and enumerations are another promising
source of information. Words that occur together
within a list are not just semantically connected but
often even of the same type. These sorts of contexts
thus also have the potential to improve the word em-
beddings. We extract them from the UKWaC cor-
pus (Baroni et al., 2009), a general broad-coverage
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corpus crawled from the Web, but limited to the .uk
domain. After post-crawl cleaning, it contains a to-
tal of about 2 billion words. It is annotated with POS
and dependency tags, which simplifies our work of
extracting high-quality lists.

To extract lists of similar words, we use a simple
rule-based method. We first search for continuous
appearances of commas, which indicate a possible
list of similar things. To filter out noise, we require
that the entries in the list be approximately of equal
length. The length of each entry should be in the
range from 1 to 4. Longer entries are much more
likely to be short sentences or clauses, which are not
very useful when our aim is to obtain lists of sim-
ilar words. We also restrict list items to be nouns
and adjectives using the POS tags provided with the
UKWaC.

Additionally, we rely on special search patterns
matching for instance “include A, B, C, (and) D”,
“A and(or) B”, “cities(or other nouns) like A, B, C,
D”, “cities(or other nouns) such as A, B, C, (and)
D”, etc. Here, the letters A, B, and so on, refer to
the extracted target words, while other words and
punctuation, merely indicating the occurrence of the
lists, are removed, e.g. commas or the word “and”.

In total, 339,111 lists are extracted from the
UKWaC, examples of which are shown in Table 2.
We see that although there is some noise, the list
extraction also captures semantically meaningful re-
lationships. The words in the lists tend to be of the
same or similar type and represent similar or related
things.

5 Experiments and Evaluation

In order to investigate the impact of extractions on
word embeddings, we conduct an empirical analysis
based on semantic relatedness assessments.

5.1 Data

Our model relies on two types of input. For seman-
tically salient contexts, we rely on the data and ex-
traction techniques described above in Section 4 to
obtain pairs of related words.

For the regular contexts used by the CBOW
model, we rely on a 2010 Wikipedia data set2.

2http://nlp.stanford.edu/data/
WestburyLab.wikicorp.201004.txt.bz2

We normalize the text to lower case and remove
special characters. After prepocessing, it contains
1,205,009,210 tokens. We select words appearing at
least 50 times and obtain a vocabulary of 220,521
words.

5.2 Training
Having obtained two kinds of extracted word con-
texts, we use these separately to train word embed-
dings jointly with the word2vec model. Our training
implementation relies on a multi-threaded architec-
ture in which some threads optimize for the origi-
nal word2vec objective, training on different parts
of the corpus. At the same time, alongside with
these threads, further threads optimize based on the
extracted pairs of words using the objective given
earlier. All threads asynchronously update the word
embeddings, using stochastic gradient descent steps.
Thus, both the raw corpus for the word2vec model
and the related word pairs can bring their informa-
tion to bear on the word embeddings.

We use 20 threads for the CBOW architecture,
which runs faster than the Skip-gram model. The
window size of the CBOW model is set to 8. We run
it for 3 passes over the Wikipedia data set, which is
sufficient to achieve good results. We sample 10 ran-
dom words as negative examples for each instance.

Additional threads are used for the extracted pairs
of words. We use 4 threads each for lists and def-
initions (by splitting definitions) and one thread for
synonyms. In each case, the extractions lead to pos-
itive pairs of semantically related words. For def-
initions and synonyms, the word pair consists of a
headword and one word from its definition, or of the
headword and one of its synonyms. For the list ex-
traction setup, the training word pairs consist of any
two words from the same list. For these word pairs,
we also randomly sample 10 words as the corre-
sponding negative examples. They update the word
embeddings jointly with the CBOW model. This
way, the semantic information they contain can be
used to adjust the results from word2vec.

We use different learning rates to control each
source’s contribution to the final word embeddings.
We set the initial learning rate for the CBOW threads
to be 0.050 and report results for different rates for
the other threads, ranging from 0.001 to 0.1.

We stop training the word embeddings in the fol-
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Figure 1: Spearman’s ρ for wordsim-353

lowing way to ensure convergence: when all the
CBOW threads finish, the other threads are termi-
nated. This is because the extractions are supple-
mentary to the CBOW model, which is the main
source to train the word vectors. This mode of op-
eration also ensures that we are always training on
both components of the model jointly rather than al-
lowing one component to dominate towards the end.
We did also experiment with pre-defined numbers of
iterations for the additional threads to control con-
vergence, but the results were not very different.

5.3 Evaluation and Analysis

We use the wordsim-353 (Finkelstein et al., 2001)
and MEN (Bruni et al., 2014) datasets to evaluate
the semantic similarities reflected in the final word
embeddings. Wordsim-353 and MEN are datasets
of English word pairs with human-assigned similar-
ity judgements. They are often used to train or test
semantic similarity measures of words. We calcu-
late the cosine distance of word embeddings for the
word pairs in wordsim-353 and MEN and compare
them to the scores from human annotations.

Fig. 1 shows the Spearman’s correlation coeffi-
cients for the wordsim-353 dataset. Even for a learn-
ing rate α as low as 0.001 for the additional threads,
we can obtain some improvement over the CBOW
baseline (which corresponds to an α setting of 0.0).
As α increases, the result gets better. The best result
we get for synonyms and definitions is 0.706, while
for lists from UKWaC, it is 0.693. The best learn-
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Figure 3: Spearman’s ρ for MEN

ing rate for the definitions and synonyms is 0.020,
while for the list extractions, it is 0.040. Both lead to
noticeably better results than the CBOW baseline’s
correlation coefficient of 0.642. Note that for large
α, the augmentation performs worse than the base-
line. This is expected, as an overly high learning rate
causes information from the related words to over-
whelm the original CBOW model, leading to exces-
sively biased final embeddings.

Fig. 3 plots the results on the MEN dataset. The
best-performing learning rate is different from that
for wordsim-353. In particular, well-performing
learning rates are slightly smaller. For the defini-
tions and synonyms, the best is 0.002, while for the
lists, the best learning rate is 0.020. After training
jointly, we obtain higher correlation coefficients for
the MEN similarity task.

wordsim-353 MEN

CBOW (baseline) 0.642 0.736
Definitions and synonyms 0.706 0.748
Lists 0.693 0.749

Table 3: Best results for the word similarity tasks

Table 3 provides a summary of the best results
that we obtain on the two similarity tasks.3 It can
be seen that we obtain higher correlation coefficients
for these tasks. This suggests that the word vectors

3Unfortunately, there is no independent tuning set from the
same distribution and thus we follow previous work in reporting
best results on the final set.
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jointly trained embeddings with definitions and synonyms

Figure 2: A t-SNE visualization of the word embeddings, comparing the CBOW baseline (left) with that of our joint
model (right)

capture more semantic properties of words and thus
may be used in applications that benefit from seman-
tic information.

Finally, we plot a sample of the word embeddings
obtained from the joint training with definitions and
synonyms using t-SNE (van der Maaten and Hin-
ton, 2008). t-SNE is a technique for visualization of
high-dimensional datasets using dimensionality re-
duction. The perplexity of the Gaussian kernel for
the t-SNE is set to 15. Figure 2 shows a plot for 26
words: levity, lewd, and merry, and their synonyms.
We see that our model successfully distinguishes the
different meanings of these words while reflecting
semantic relationships.

6 Conclusion

We have presented a way to improve word embed-
dings by drawing on the idea that certain contexts
exhibit more semantically meaningful information
than others. Information extraction methods allow
us to discover such contexts and mine semantic rela-
tionships between words. We focus on word defini-
tions and synonyms, as well as on lists and enumer-
ations. The final word embeddings after joint train-
ing show better correlation coefficients in similar-
ity tasks. This suggests that information extraction
methods can help word vectors capture more mean-
ing, making them useful for semantic applications
and calling for further research in this area.
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