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Introduction
In the United States, mental health problems are among the most costly challenges we face. The
numbers are staggering: An estimated $57.5B was spent on mental health care in 2006. Some 25
million American adults will have an episode of major depression this year, and suicide is the third
leading cause of death for people between 10 and 24 years old. The importance of clinical psychology
as a problem space cannot be overstated.

For clinical psychologists, language plays a central role in diagnosis, and many clinical instruments
fundamentally rely on manual coding of patient language. Applying language technology in this domain
can have an enormous impact: Many individuals under-report psychiatric symptoms, such as active duty
soldiers; or lack the self-awareness to report accurately, such as individuals involved in substance abuse
who do not recognize their own addiction. Many people cannot even obtain access to a clinician who
is qualified to perform a psychological evaluation, such as those without adequate insurance or who
live in rural areas. Bringing language technology to bear on these problems could lead to inexpensive
screening measures that may be administered by a wider array of healthcare professionals, suited to the
realities of healthcare practice.

Researchers have begun targeting such issues, applying computational linguistic methods to clinical
psychology with compelling results. Prior to this workshop series, research had looked at identifying
emotion in suicide notes, analyzing the language of those with autistic spectrum disorders, aiding the
diagnosis of dementia, and screening for depression.

ACL 2014 hosted the first Computational Linguistics and Clinical Psychology Workshop, which
brought together the researchers in this nascent field. This workshop was a great success, with accepted
papers proposing methods for predicting veteran suicide risk, aiding the diagnosis of dementia, and
predicting depression and post-traumatic stress order in social media.

NAACL 2015 hosts the second Computational Linguistics and Clinical Psychology Workshop.
Members of the community have come together to organize a hackathon, with a data release and
shared task for detecting mental illness as part of this workshop. We hope to build the momentum
towards releasing tools and data that can be used by clinical psychologists, and as such, we diverge
from the conventional “mini-conference” workshop format, including practicing clinical psychologists
on our program committee and as discussants in the workshop. The ability to communicate relevant
computational methods and results clearly, connecting the work to clinical practice, is as important as
the quality of the work itself, and more important than research novelty.

We received 15 submissions for the main workshop and 3 for the shared task. Of the main workshop
submissions, 12 (80%) were accepted: 6 for oral and 6 for poster presentation. Oral presentations will
be followed by discussions led by several experts on working with patients and clinical data: Shandra
M. Brown Levey, Loring J. Ingraham, John P. Pestian, and Kytja K. S. Voeller. We also have an invited
talk from Munmun De Choudhury, an expert in computational social science who has done pioneering
work on understanding mental health in social media.

We wish to thank everyone who showed interest and submitted a paper, all of the authors for their
contributions, the members of the Program Committee for their thoughtful reviews, our clinical
discussants for their helpful insights, and all the attendees of the workshop. We also wish to extend
thanks to the Association for Computational Linguistics for making this workshop possible, and to
Microsoft Research for its generous sponsorship.

– Meg, Glen, and Kristy
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Abstract

Many significant challenges exist for the men-
tal health field, but one in particular is a lack
of data available to guide research. Language
provides a natural lens for studying mental
health – much existing work and therapy have
strong linguistic components, so the creation
of a large, varied, language-centric dataset
could provide significant grist for the field of
mental health research. We examine a broad
range of mental health conditions in Twitter
data by identifying self-reported statements
of diagnosis. We systematically explore lan-
guage differences between ten conditions with
respect to the general population, and to each
other. Our aim is to provide guidance and
a roadmap for where deeper exploration is
likely to be fruitful.

1 Introduction

A recent study commissioned by the World Eco-
nomic Forum projected that mental disorders will
be the single largest health cost, with global costs
increasing to $6 trillion annually by 2030 (Bloom
et al., 2011). Since mental health impacts the risk
for chronic, non-communicable diseases, in a sense
there is “no health without mental health” (Prince
et al., 2007). The importance of mental health has
driven the search for new and innovative methods for
obtaining reliable information and evidence about
mental disorders. The WHO’s Mental Health Action
Plan for the next two decades calls for the strength-
ening of “information systems, evidence and re-
search,” which necessitates new development and
improvements in global mental health surveillance
capabilities (World Health Organization, 2013).

As a result, research on mental health has turned
to web data sources (Ayers et al., 2013; Althouse et
al., 2014; Yang et al., 2010; Hausner et al., 2008),
with a particular focus on social media (De Choud-
hury, 2014; Schwartz et al., 2013a; De Choudhury
et al., 2011). While many users discuss physical
health conditions such as cancer or the flu (Paul
and Dredze, 2011; Dredze, 2012; Aramaki et al.,
2011; Hawn, 2009), some also discuss mental ill-
ness. There are a variety of motivations for users to
share this information on social media: to offer or
seek support, to fight the stigma of mental illness, or
perhaps to offer an explanation for certain behaviors.

Past mental health work has largely focused on
depression, with some considering post-traumatic
stress disorder (Coppersmith et al., 2014b), suicide
(Tong et al., 2014; Jashinsky et al., 2014), sea-
sonal affective disorder, and bipolar disorder (Cop-
persmith et al., 2014a). While these represent some
of the most common mental disorders, it only begins
to consider the range of mental health conditions
for which social media could be utilized. Yet ob-
taining data for many conditions can be difficult, as
previous techniques required the identification of af-
fected individuals using traditional screening meth-
ods (De Choudhury, 2013; Schwartz et al., 2013b).

Coppersmith et al. (2014a) proposed a novel way
of obtaining mental health related Twitter data. Us-
ing the self-identification technique of Beller et al.
(2014), they looked for statements such as “I was
diagnosed with depression”, automatically uncover-
ing a large number of users with mental health con-
ditions. They demonstrated success at both surveil-
lance and analysis of four mental health conditions.
While a promising first step, the technique’s efficacy
for a larger range of disorders remained untested.
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In this paper we employ the techniques of Cop-
persmith et al. (2014a) to amass a large, diverse col-
lection of social media and associated labels of di-
agnosed mental health conditions. We consider the
broadest range of conditions to date, many signif-
icantly less prevalent than the disorders examined
previously. This tests the capacity of our approach
to scale to many mental health conditions, as well as
its capability to analyze relationships between con-
ditions. In total, we present results for ten condi-
tions, including the four considered by Coppersmith
et al. (2014a). To demonstrate the presence of quan-
tifiable signals for each condition, we build machine
learning classifiers capable of separating users with
each condition from control users.

Furthermore, we extend previous analysis by con-
sidering approximate age- and gender-matched con-
trols, in contrast to the randomly selected controls
in most past studies. Dos Reis and Culotta (2015)
found demographic controls an important baseline,
as they muted the strength of the measured outcomes
in social media compared to a random control group.
Using demographically-matched controls allows us
to clarify the analysis in conditions where age is a
factor, e.g., people with PTSD tend to be older than
the average user on Twitter.

Using the ten conditions and control groups, we
characterize a broad range of differences between
the groups. We examine differences in usage pat-
terns of categories from the Linguistic Inquiry Word
Count (LIWC), a widely used psychometrically val-
idated tool for psychology-related analysis of lan-
guage (Pennebaker et al., 2007; Pennebaker et al.,
2001). Depression is the only condition for which
considerable previous work on social media exists
for comparison, and we largely replicate those pre-
vious results. Finally, we examine relationships be-
tween the language used by people with various con-
ditions — a task for which comparable data has
never before been available. By considering mul-
tiple conditions, we can measure similarities and
differences of language usage between conditions,
rather than just between a condition and the general
population.

The paper is structured as follows: we begin with
a description of how we gathered and curated the
data, then present an analysis of the data’s coher-
ence and the quantifiable signals we can extract from

it, including a broad survey of observed differences
in LIWC categories. Finally, we measure language
correlations between pairs of conditions. We con-
clude with a discussion of some possible future di-
rections suggested by this exploratory analysis.

2 Related Work

There is rich literature on the interaction between
mental health and language (Tausczik and Pen-
nebaker, 2010; Ramirez-Esparza et al., 2008; Chung
and Pennebaker, 2007; Pennebaker et al., 2007;
Rude et al., 2004; Pennebaker et al., 2001). So-
cial media’s emergence has renewed interest in this
topic, though gathering data has been difficult. De-
riving measurable signals relevant to mental health
via statistical approaches requires large quantities of
data that pair a person’s mental health status (e.g.,
diagnosed with PTSD) to their social media feed.

Successful approaches towards obtaining these
data have relied on three approaches: (1) Crowd-
sourced surveys: Some mental health conditions
have self-assessment questionnaires amenable to ad-
ministration over the Internet. Combining this with
crowdsource platforms like Amazon’s Mechanical
Turk or Crowdflower, a researcher can administer
relevant mental health questionnaires and solicit the
user’s public social media data for analysis. This
technique has been effectively used to examine de-
pression (De Choudhury, 2013; De Choudhury et
al., 2013c; De Choudhury et al., 2013b). (2) Face-
book: Researchers created an application for Face-
book users that administered various personality
tests, and as part of the terms of service of the ap-
plication, granted the researchers access to a user’s
public status updates. This corpus has been used in a
wide range of questions from personality (Schwartz
et al., 2013b; Park et al., In press), heart disease
(Eichstaedt et al., 2015), depression (Schwartz et
al., 2014), and psychological well-being (Schwartz
et al., 2013a). (3) Self-Stated Diagnoses: Some
social media users discuss their mental health pub-
licly and openly, which allows researchers to cre-
ate rich corpora of social media data from users
who have a wide range of mental health conditions.
This has been used previously to examine depres-
sion, PTSD, bipolar, and seasonal affective disor-
der (Coppersmith et al., 2014a; Coppersmith et al.,
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2014b; Hohman et al., 2014). A similar approach
has been used to identify new mothers for studying
the impact of major life events (De Choudhury et al.,
2013a). (4) Affiliation: Some rely on a user’s affil-
iation to indicate a mental health condition, such as
using posts from a depression forum as a sample of
depression (Nguyen et al., 2014).

Other work on mental health and related topics
have studied questions that do not rely on an explicit
diagnosis, such as measuring the moods of Twitter
users (De Choudhury et al., 2011) to measure their
affective states (De Choudhury et al., 2012). Outside
of social media, research has demonstrated how web
search queries can measure population level mental
health trends (Yang et al., 2010; Ayers et al., 2013;
Althouse et al., 2014).

3 Data

We follow the Twitter data acquisition and cura-
tion process of Coppersmith et al. (2014a). This
data collection method has been previously vali-
dated through replication of previous findings and
showing predictive power for real-world phenom-
ena (Coppersmith et al., 2014a; Coppersmith et al.,
2014b; Hohman et al., 2014), though there likely is
some ‘selection bias’ by virtue of the fact that the
data is collected from social media – specifically
Twitter – which may be more commonly used by
a subset of the population. We summarize the main
points of the data collection method here1.

We obtain messages with self-reported diagnoses
using the Twitter API. Self-reported diagnoses are
tweets containing statements like “I have been diag-
nosed with CONDITION”, where CONDITION is one
of ten selected conditions (each of which has at least
100 users): Attention Deficit Hyperactivity Disor-
der (ADHD), Generalized Anxiety Disorder (Anx),
Bipolar Disorder, Borderline Personality Disorder
(Border), Depression (Dep), Eating Disorders (Eat-
ing; includes anorexia, bulimia, and eating disor-
ders not otherwise specified [EDNOS]), obsessive
compulsive disorder (OCD), post-traumatic stress
disorder (PTSD), schizophrenia (Schizo; to include
schizophrenia, schizotypal, schizophreniform) and
seasonal affective disorder (Seasonal). We use the

1All uses of these data as reported in this paper have been
approved by the relevant Institutional Review Board (IRB).

Condition Users Median Total
ADHD 102 3273 384k
Anxiety 216 3619 1591k
Bipolar 188 3383 720k
Borderline 101 3330 321k
Depression 393 3306 546k
Eating 238 3229 724k
OCD 100 3331 314k
PTSD 403 3241 1251k
Schizophrenia 172 3236 493k
Seasonal Affective 100 3229 340k

Table 1: The number of users with a genuine statement of
diagnosis (verified by a human annotator), their median
number of tweets, and total tweets for each condition.

common names for these disorders, rather than ad-
hering to a more formal one (e.g., DSM-IV or DSM-
5), for two reasons: (1) to remain agnostic to the
current discussion in clinical psychology around the
standards of diagnosis; and (2) our classification is
based on user statements. While sometimes an ob-
vious mapping exists for user statements to more
formal definitions (e.g., “shell shock” equates to to-
day’s “PTSD”), other times it is less obvious (e.g.,
“Anxiety” might refer to generalized anxiety disor-
der or social anxiety disorder).

Each self-reported diagnosis was examined by
one of the authors to verify that it was a gen-
uine statement of a diagnosis, i.e., excluding jokes,
quotes, or disingenuous statements.2 Previous work
shows high inter-annotator agreement (κ = 0.77)
for assessing genuine statements of diagnosis (Cop-
persmith et al., 2014a). For each author of a genuine
diagnosis tweet we obtain a set of their public Twit-
ter posts using the Twitter API (at least 100 posts
per user, but usually more); we do not have access
to private messages. All collected data was publicly
posted to Twitter between 2008 and 2015.

3.1 Exclusion and Preprocessing

Our analyses focus on user-authored content; we ex-
clude retweets and tweets with a URL since these
often quote text from the link. The text is lower-
cased and all non-standard characters (e.g., emoji)
are converted to a systematic ASCII representation

2We did not formally analyze the disingenuous statements,
but anecdotally many of the jokes seems to stem from laymens
terms and understanding of a condition; for example, “The
weather in Maryland is totally bipolar.”
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via Unidecode3. Users were removed if their tweets
were not at least 75% English, as determined by
the Google Compact Language Detector4. To avoid
bias, we removed the tweets that were used to man-
ually assess genuine statements of diagnosis. How-
ever, other tweets with a self-statement of diagnosis
may remain in a user’s data. Table 1 summarizes the
number of users identified and their median number
of tweets for each condition.

3.2 Age- and Gender-Matched Controls
Generally, control groups were formed via random
selection of Twitter users. Yet physical and men-
tal health conditions have different prevalence rates
depending on age and gender. Dos Reis and Culotta
(2015) demonstrated that failing to account for these
can yield biased control groups that skew results,
so we aim to form approximate age- and gender-
matched control groups.

There is a rich literature investigating the influ-
ence of age and gender on language (Pennebaker,
2011). Since Twitter does not provide demographic
information for users, these insights have been
broadly applied to inferring demographic informa-
tion from social media (Volkova et al., 2015; Fink
et al., 2012; Burger et al., 2011; Rao et al., 2011;
Rao et al., 2010). We use these techniques to esti-
mate the age and gender of each user so as to select
an age- and gender-matched control group. For each
user in our mental health collection we obtain age
and gender estimates from the tools provided by the
World Well-Being Project (Sap et al., 2014)5. These
tools use lexica derived from Facebook data to iden-
tify demographics, and have been shown successful
on Twitter data. The tools provide continuous val-
ued estimates for age and gender, so we threshold
the gender values to obtain a binary label, and use
the age score as is.

We draw our community controls from all the
Twitter users who tweeted during a two week pe-
riod in early 2014 as part of Twitter’s 1% ‘spritzer’
stream. Each user who tweeted in English and
whose tweets were public had an equal probability
of being included in our pool of controls. From
this pool, we identify the closest matching control

3https://pypi.python.org/pypi/Unidecode
4https://code.google.com/p/cld2/
5http://wwbp.org/data.html

Figure 1: Concomitances or comorbidities: cell color
indicates the probability that a user diagnosed with one
condition (row) has a concomitant diagnosis of another
condition (column). For example: ∼30% of users with
schizophrenia also had a diagnosis for bipolar.

user in terms of age and gender for each user in the
mental health collection. We select controls without
replacement so a control user can only be included
once. In practice, differences between estimated age
of paired users were miniscule.

3.3 Concomitance and Comorbidity
Concomitant diagnoses are somewhat common in
clinical psychology; our data is no different. In cases
where a user states a diagnosis for more than one
condition, we include them in each condition. For
most pairs of conditions, these overlaps are only a
small proportion of the data, with a few noted ex-
ceptions (e.g., up to 40% of users who have anxi-
ety also have depression, 30% for schizophrenia and
bipolar). Figure 1 summarizes the concomitance in
our data.

4 Methods and Results

4.1 LIWC differences
We provide a comprehensive picture of differences
in usage patterns of LIWC categories between users
with various mental health conditions. We measure
the proportion of word tokens for each user that falls
into a given LIWC category, aggregate by condition,
and compare across conditions.

For each user, we calculate the proportion of their
tokens that were part of each LIWC category. Thus

4
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Figure 2: Violin plot showing the frequency of negative
emotion LIWC category words by condition. The cen-
ter dashed line is the median, the dotted line is the inter-
quartile-range, and the envelope is an estimate of the dis-
tribution. The vertical line is the control group’s median.

for each category and each condition, we have an
empirical distribution of the proportion of language
attributable to that category. The violin plots in Fig-
ure 2 show an example of how this changes across
conditions as compared to controls.

Table 2 shows deviations for all categories and
conditions as follows: ‘+++’ indicates that condi-
tion users evince this category significantly more
frequently6 than control users; ‘+’ indicates that the
distribution is noticeably higher for the condition
population than the control population, but not out-
side the inter-quartile-range; ‘−’ indicates differ-
ences where condition users use this category less
frequently than control users.

Some interesting trends emerge from this analy-
sis. First, some categories show differences across
a broad range of mental health conditions (e.g.,
the ANXIETY, AUXILIARY VERBS, COGNITIVE

MECHANISMS, DEATH, FUNCTION, HEALTH, and
TENTATIVE categories of words). This suggests that
there are a subset of changes in language that may
be indicative of an underlying mental health condi-
tion (without much regard for specificity), while oth-

6Specifically, the median of the condition distribution is out-
side the inter-quartile-range of the control distribution.

ers seem to be very specific to the conditions they
are associated with (e.g., INGEST and NEGATIONS

with eating disorders). Some of the connections be-
tween LIWC categories and mental health condi-
tions have already been substantiated in the men-
tal health literature, while others (e.g., AUXVERB)
have not and are ripe for further exploration. Sec-
ond, many of the conditions show similar patterns
(e.g., anxiety, bipolar, borderline, and depression),
while others have distinct patterns (e.g., eating dis-
orders and seasonal affective disorder). It is worth
emphasizing that a direct mapping between these
and previously-reported LIWC results (in, e.g., Cop-
persmith et al. (2014a) and De Choudhury et al.
(2013c)) is not straightforward, since previous work
did not use demographically-matched control users.

4.2 Open-vocabulary Approach

Validated and accepted lexicons like LIWC cover
a mere fraction of the total language usage on so-
cial media. Thus, we also use an open-vocabulary
approach, which has greater coverage than LIWC,
and has been shown to find quantifiable signals rele-
vant to mental health in the past (Coppersmith et al.,
2014a; Coppersmith et al., 2014b). Though many
open-vocabulary approaches exist, we opt for one
that provides a reasonable score even for very short
text, and is robust to the creative spellings, lack of
spaces, and other textual faux pas common on Twit-
ter: character n-gram language models (CLMs).

In essence, rather than examining words or
sequences of words, CLMs examine sequences
of characters, including spaces, punctuation, and
emoticons. Given a set of data from two classes
(in our case, one from a given mental health condi-
tion, the other from its matched controls), the model
is trained to recognize which sequences of charac-
ters are likely to be generated by either class. When
these models are presented with novel text, they es-
timate which of the classes was more likely to have
generated it. For brevity we will omit discussion of
the exact score calculation and refer the interested
reader to Coppersmith et al. (2014a). For all we
do here, higher scores will indicate a tweet is more
likely to come from a user with a given mental health
condition, and lower scores are more likely to come
from a control user. Since we are examining ten con-
ditions, we have ten pairs of CLMs (for each pair,
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LIWC ADHD Anx Bipolar Border Dep Eating OCD PTSD Schizo Seasonal
FUNCT +++ +++ +++ +++ +++ +++ +++ + +++ +++

PRONOUN + + +++ +
PPRON + +
I + + +++ +++
WE - - — - —
THEY +++ + + + +

IPRON +++ + + +++
ARTICLE - + +++ +
VERB + + +++ +
AUXVERB + +++ +++ +++ +++ +++ +++ + +++ +
PAST + +
PRESENT + +++
ADVERB + +++ +
CONJ* + +++ + +++ +++ +++ +++ + +++
NEGATE +
QUANT + + +++ + + +++

SWEAR + + +
POSEMO - - -
NEGEMO +++ + +++ + +++

ANXIETY + +++ + +++ + +++ +++ + + +
ANGER + + +++ + +++ +
SAD + +++ +

COGMECH +++ +++ +++ +++ +++ +++ +++ + +++
INSIGHT +++ + +++ +++ + +
CAUSE +++ + + + + +++ +++ + +
DISCREP + +++
TENTAT +++ +++ + +++ +++ +++ + +++
INCL + +++
EXCL +++ +++ + +++ +++ +++ +++

FEEL +
BIO + + + +++ +

BODY +
HEALTH + +++ +++ +++ + +++ +++ + +
INGEST +

RELATIV — - - -
MOTION - - - — - - — — —
SPACE - +
TIME - - +++ +++

LEISURE - - — - -
HOME - -
DEATH + +++ + +++ + + + + +++
ASSENT - -
PRO1 + + +++ +++
PRO3 + +
LIWC ADHD Anx Bipolar Border Dep Eating OCD PTSD Schizo Seasonal

Table 2: Full list of deviations by LIWC category for each condition. Category names that are *’d may have been
affected by our normalization and tokenization procedure. Categories for which no significant differences were
observed: ACHIEVE, AFFECT, CERTAIN, FAMILY, FILLER*, FRIEND, FUTURE, HEAR, HUMANS, INHIBITION,
MONEY, NONFLUENCIES, NUMBER, PERCEPTUAL, PREPOSITIONS, PRO2, RELIGION, SEE, SEXUAL, SHEHE,
SOCIAL.
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one CLM is trained from the users with a given men-
tal health condition, and one CLM is trained from
their matched controls).

4.3 Quantifiable Differences

To validate that our CLMs are capturing quantifi-
able differences relevant to their specific conditions,
we examine their accuracy on a heldout set of users.
Each condition-specific CLM produces a score that
roughly equates to how much more (or less) likely
it is to have come from a user with the given condi-
tion (e.g., PTSD) than a control. We aggregate these
scores to compute a final score for use in classifica-
tion. We score each tweet with the CLM and use
the score to make a binary distinction – is this tweet
more likely to have been generated by someone who
has PTSD or a control? We calculate the propor-
tion of these tweets that are classified as PTSD-like
(the overall mean), which can be thought of as how
PTSD-like this user looks over all time. Given that
some of these symptoms change with time, we can
also compute a more localized version of this mean,
and derive a score according to the “most PTSD-like
period the user has”. This is done by ordering these
binary decisions by the time the tweet was authored,
selecting a window of 50 tweets, and calculating the
proportion of those tweets classified as PTSD-like.
We then slide this window one tweet further (remov-
ing the oldest tweet, and adding in the next in the
user’s timeline) and calculate the proportion again.
The highest this rolling-window mean achieves will
be referred to as the maximum local mean. We com-
bine these scores to yield the classifier score ψ =
overall mean ∗ maximum local mean, capturing how
PTSD-like the user is over all time, and how PTSD-
like they are at their most severe.

We estimated the performance of our classifiers
for each condition on distinguishing users with a
mental health condition from their community con-
trols via 10-fold cross-validation. This differs only
slightly from standard cross-fold validation in that
our observations are paired; we maintain this pair-
ing when assigning folds – each mental health con-
dition user and their matched control are in the same
fold. To assess performance, we could draw a line
(a threshold) in the ranked list, and classify all users
above that line as having the mental health condi-
tion, and all users below that line as controls. Those
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Figure 3: ROC curves for distinguishing diagnosed from
control users, for each of the disorders examined. Chance
performance is indicated by the black diagonal line.

Condition Precision
ADHD 52%
Anxiety 85%
Bipolar 63%
Borderline 58%
Depression 48%
Eating 76%
OCD 27%
PTSD 55%
Schizophrenia 67%
Seasonal Affective 5 %

Table 3: Classifier precision with 10% false alarms.

with the condition above the line would be correctly
classified (hits), while those controls above the line
would be incorrectly classified (false alarms). Fig-
ure 3 shows performance of this classifier as Re-
ceiver Operating Characteristic (ROC) curves as we
adjust this threshold, one curve per mental health
condition. The x-axis shows the proportion of false
alarms and the y-axis shows the proportion of true
hits. All our classifiers are better than chance, but
far from perfect. To aid interpretation, Table 3 shows
precision at 10% false alarms.

Performance for most conditions is reasonable,
except seasonal affective disorder which is very
difficult (as was reported by Coppersmith et al.
(2014a)). Anxiety and eating disorders have much
better performance than the other conditions. Most
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importantly, though, for all conditions (including
seasonal affective disorder), we are able to identify
language usage differences from control groups.

4.4 Cross Condition Comparisons
Given the breadth of our language data, we can
compare across mental health conditions, examin-
ing relationships between the conditions under in-
vestigation, rather than only how each condition dif-
fers from controls. Previous work (Coppersmith et
al., 2014a) reported preliminary findings that indi-
cated a possible relationship between the language
use from different mental health conditions: similar
conditions (either in concomitance and comorbid-
ity or symptomatology) had similar language. The
story found here is related, but more complicated.
For this comparison, we build new CLMs that ex-
clude any user with a concomitant disorder (to pre-
vent their data from making their conditions appear
artificially similar). We then score a random sample
of 1 million tweets that meet our earlier filters with
the CLMs from each condition. We could then ex-
amine how the language in any pair of conditions is
related by calculating the Pearson’s correlation (r)
between the scores from these models.

More interesting, though, is how all these con-
ditions relate to one another, rather than any given
pair. To that end, we use a standard clustering al-
gorithm7, shown in Figure 4. Here, each condition
is represented by a vector of its Pearson’s r correla-
tions, calculated as above, to each of the conditions
(to include an r = 1.0 to itself). Each condition
starts as its own cluster on the left side of the fig-
ure. Moving to the right, clusters are merged, most
similar first, until all conditions merge into a single
cluster. One particular clustering is highlighted by
the colors: conditions with blue lines are in clusters
of their own, so seasonal affective, ADHD, and bor-
derline appear to be significantly different from the
rest); and schizophrenia and OCD are clustered to-
gether, shown in red. While this is not the most obvi-
ous grouping of conditions, the patterns are far from
random: the disorders in green (PTSD, bipolar, eat-
ing disorders, anxiety, and depression) have some-
what frequent concomitance in our data and else-
where (Kessler et al., 2005) and recent research indi-

7Hierarchical, agglomerative clustering from Python’s
scipy.hierarchy.linkage (Jones et al., 2001).

Figure 4: Hierarchical clustering dendrogram of con-
ditions clustered according to the similarity of their
users’ language. Distance between merged clusters in-
creases monotonically with the level of the merger; thus
lower merges (further to the left) indicate greater simi-
larity (e.g., language usage from Seasonal Affective and
ADHD users is very different from conditions in the
green cluster, given how far right the red merge-point is).

cates links between OCD and schizophrenia (Meier
et al., 2014). Notably, these data are not age- and
gender-matched, so these variables also likely factor
into the clustering. Thus, we leave this particular re-
lationship between language and mental health as an
open question, suggesting fertile grounds for more
controlled future work.

5 Conclusion

We examined the language of social media from
users with a wide range of mental health condi-
tions, providing a roadmap for future work. We
explored simple classifiers capable of distinguish-
ing these users from their age- and gender-matched
controls, based on signals quantified from the users’
language. The classifiers also allowed us to system-
atically compare the language used by those with the
ten conditions investigated, finding some groupings
of the conditions found elsewhere in the literature,
but not altogether obvious. We take this as evidence
that examining mental health through the lens of lan-
guage is fertile ground for advances in mental health
writ large. The wealth of information encoded in
continually-generated social media is ripe for anal-
ysis – data scientists, computational linguists, and
clinical psychologists, together, are well positioned
to drive this field forward.
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Abstract

Analyzing symptoms of schizophrenia has
traditionally been challenging given the low
prevalence of the condition, affecting around
1% of the U.S. population. We explore po-
tential linguistic markers of schizophrenia us-
ing the tweets1 of self-identified schizophre-
nia sufferers, and describe several natural lan-
guage processing (NLP) methods to analyze
the language of schizophrenia. We examine
how these signals compare with the widely-
used LIWC categories for understanding men-
tal health (Pennebaker et al., 2007), and pro-
vide preliminary evidence of additional lin-
guistic signals that may aid in identifying
and getting help to people suffering from
schizophrenia.

1 Introduction

Schizophrenia is a group of mental disorders that
affect thinking and emotional responsiveness, doc-
umented throughout history (e.g., The Book of
Hearts, 1550 BCE). Today it is diagnosed and mon-
itored leveraging self-reported experiences.2 This
may be challenging to elicit from schizophrenia suf-
ferers, as a hallmark of the disease is the sufferer’s
belief that he or she does not have it (Rickelman,
2004; National Alliance on Mental Illness, 2015).
Schizophrenia sufferers are therefore particularly at-
risk for not leveraging help (Pacific Institute of Med-
ical Research, 2015). This suggests that techniques

1A posting made on the social media website Twitter,
https://twitter.com/

2With the Diagnostic and Statistical Manual of Mental Dis-
orders (DSM-5) (American Psychiatric Association, 2013).

that leverage social language shared by schizophre-
nia sufferers could be greatly beneficial in treatment
of the disease. Early identification and monitoring
of schizophrenia can increase the chances of suc-
cessful management of the condition, reducing the
chance of psychotic episodes (Häfner and Maurer,
2006) and helping a schizophrenia sufferer lead a
more comfortable life.

We focus on unsupervised groupings of the
words used by people on the social media plat-
form Twitter, and see how well they discriminate
between matched schizophrenia sufferers and con-
trols. We find several potential linguistic indicators
of schizophrenia, including words that mark an irre-
alis mood (“think”, “believe”), and a lack of emoti-
cons (a potential signature of flat affect). We also
demonstrate that a support vector machine (SVM)
learning approach to distinguish schizophrenia suf-
ferers from matched controls works reasonably well,
reaching 82.3% classification accuracy.

To our knowledge, no previous work has sought
out linguistic markers of schizophrenia that can be
automatically identified. Schizophrenia is a rela-
tively rare mental health condition, estimated to af-
fect around 1% of the population in the U.S. (The
National Institute of Mental Health, 2015; Perälä et
al., 2007; Saha et al., 2005), or some 3.2 million
people. Other mental health conditions with a high
prevalence rate such as depression3 have recently re-
ceived increased attention (Schwartz et al., 2014;
De Choudhury et al., 2013b; Resnik et al., 2013;
Coppersmith et al., 2014a). However, similar stud-
ies for schizophrenia have been hard to pursue, given

316.9% lifetime prevalence rate (Kessler et al., 2005)
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the rarity of the condition and thus the inherent dif-
ficulty in collecting data.

We follow the method from Coppersmith et al.
(2014a) to create a relatively large corpus of users
diagnosed with schizophrenia from publicly avail-
able Twitter data, and match them to Twitter con-
trols. This provides a view of the social language
that a schizophrenia sufferer may choose to share
with a clinician or counselor, and may be used to
shed light on the illness and the effect of treatments.

2 Background and Motivation

There has been a recent growth in work using lan-
guage to automatically identify people who may
have mental illness and quantifying its progression,
including work to help people suffering from de-
pression (Howes et al., 2014; Hohman et al., 2014;
Park et al., In press; Schwartz et al., 2014; Schwartz
et al., 2013; De Choudhury et al., 2013a; De Choud-
hury et al., 2013b; De Choudhury et al., 2011;
Nguyen et al., 2014) and post-traumatic stress dis-
order (Coppersmith et al., 2014b). Related work
has also shown it is possible to aid clinicians in
identifying patients who suffer from Alzheimer’s
(Roark et al., 2011; Orimaye et al., 2014) and autism
(Rouhizadeh et al., 2014). The time is ripe to begin
exploring an illness that deeply affects an estimated
51 million people.

The term schizophrenia, derived from the Greek
words for “split mind”, was introduced in the
early 1900s to categorize patients whose thoughts
and emotional responses seemed disconnected.
Schizophrenia is often described in terms of symp-
toms from three broad categories: positive, nega-
tive, and cognitive. Positive symptoms include dis-
ordered thinking, disordered moving, delusions, and
hallucinations. Negative symptoms include a flat af-
fect and lack of ability to begin and sustain planned
activities. Cognitive symptoms include poor abil-
ity to understand information and make decisions,
as well as trouble focusing.

Some symptoms of schizophrenia may be
straightforward to detect in social media. For ex-
ample, the positive symptoms of neologisms, or cre-
ating new words, and word salad, where words and
sentences are strung together without a clear syntac-
tic or semantic structure, may be expressed in the

text written by some schizophrenia sufferers. Nega-
tive symptoms may also be possible to find, for ex-
ample, a lack of emoticons can reflect a flat affect,
or a lower proportion of commonly used terms may
reflect cognitive difficulties.

As we discuss below, natural language processing
(NLP) techniques can be used to produce features
similar to these markers of schizophrenia. For ex-
ample, perplexity may be useful in measuring how
unexpected a user’s language is, while latent Dirich-
let allocation (Blei et al., 2003) may be useful in
characterizing the difference in general themes that
schizophrenia sufferers discuss vs. control users. All
NLP features we describe are either automatically
constructed or unsupervised, meaning that no man-
ual annotation is required to create them. It is impor-
tant to note that although these features are inspired
by the literature on schizophrenia, they are not direct
correlates of standard schizophrenia markers.

3 Data

We follow the data acquisition and curation process
of Coppersmith et al. (2014a), summarizing the ma-
jor points here: Social media, such as Twitter, con-
tains frequent public statements by users reporting
diagnoses for various medical conditions. Many
talk about physical health conditions (e.g., cancer,
flu) but some also discuss mental illness, including
schizophrenia. There are a variety of motivations
for users to share this information on social media:
to offer or seek support, to fight the stigma of mental
illness, or perhaps to offer an explanation for certain
behaviors.4

We obtain messages with these self-reported diag-
noses using the Twitter API, and filtered via (case-
insensitive) regular expression to require “schizo” or
a close phonetic approximation to be present; our
expression matched “schizophrenia”, its subtypes,
and various approximations: “schizo”, “skitzo”,
“skitso”, “schizotypal”, “schizoid”, etc. All data
we collect are public posts made between 2008 and
2015, and exclude any message marked as ‘private’
by the author. All use of the data reported in this

4Anecdotally, many of the users in this study tend to be talk-
ing about a recent diagnosis (looking for information or sup-
port) or fighting the stigma of mental illness (by sharing their
struggles).
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paper has been approved by the appropriate Institu-
tional Review Board (IRB).

Each self-stated diagnosis included in this study
was examined by a human annotator (one of the
authors) to verify that it appeared to be a genuine
statement of a schizophrenia diagnosis, excluding
jokes, quotes, or disingenuous statements. We ob-
tained 174 users with an apparently genuine self-
stated diagnosis of a schizophrenia-related condi-
tion. Note that we cannot be certain that the Twit-
ter user was actually diagnosed with schizophrenia,
only that their statement of being diagnosed appears
to be genuine. Previous work indicates that inter-
annotator agreement for this task is good: κ = 0.77
(Coppersmith et al., 2014a).

For each user, we obtained a set of their public
Twitter posts via the Twitter API, collecting up to
3200 tweets.5 As we wish to focus on user-authored
content, we exclude from analysis all retweets and
any tweets that contain a URL (which often contain
text that the user did not author). We lowercase all
words and convert any non-standard characters (in-
cluding emoji) to a systematic ASCII representation
via Unidecode.6

For our community controls, we used randomly-
selected Twitter users who primarily tweet in En-
glish. Specifically, during a two week period in early
2014, each Twitter user who was included in Twit-
ter’s 1% “spritzer” sample had an equal chance for
inclusion in our pool of community controls. We
then collected some of their historic tweets and as-
sessed the language(s) they tweeted in according to
the Chromium Compact Language Detector.7 Users
were excluded from our community controls if their
tweets were less than 75% English.8

3.1 Age- and Gender-Matched Controls

Since mental health conditions, including
schizophrenia, have different prevalence rates
depending on age and gender (among other de-
mographic variables), controlling for these will be
important when examining systematic differences

5This is the maximum number of historic tweets permitted
by the API.

6https://pypi.python.org/pypi/Unidecode
7https://code.google.com/p/cld2/
8A similar exclusion was applied to the schizophrenia users,

but in practice none fell below the 75% threshold.

between schizophrenic users and community con-
trols. In particular, we would like to be able to
attribute any quantifiable signals we observe to the
presence or absence of schizophrenia, rather than
to a confounding age or gender divergence between
the populations (Dos Reis and Culotta, 2015). To
that end, we estimated the age and gender of all
our users (from their language usage) via the tools
graciously made available by the World Well-Being
Project (Sap et al., 2014). For each user, we applied
a hard threshold to the gender prediction to obtain a
binary ‘Female’ or ‘Male’ label. Then, in order to
select the best match for each schizophrenia user,
we selected the community control that had the
same gender label and was closest in age (without
replacement).

3.2 Drawbacks of a Balanced Dataset

We use a balanced dataset here for our analysis
(an equal number of schizophrenia users and com-
munity controls). This 50/50 split makes the ma-
chine learning and analysis easier, and will allow us
to focus more on emergent linguistics that are re-
lated to schizophrenia than if we had examined a
dataset more representative of the population (more
like 1/99). Moreover, we have not factored in the
cost of false negatives or false positives (how should
the consequences of misclassifying a schizophrenia
user as non-schizophrenic be weighed against the
consequences of misclassifying a non-schizophrenic
user as schizophrenic?). All our classification results
should be taken as validation that the differences in
language we observe are relevant to schizophrenia,
but only one step towards applying something de-
rived from this technology in a real world scenario.

3.3 Concomitance

Often, people suffering from mental illness have
a diagnosis for more than one disorder, and
schizophrenia is no exception. Of our 174 users
with a genuine self-statement of diagnosis of a
schizophrenia-related condition, 41 also state a di-
agnosis of at least one other mental illness (30%),
while 15 of those state that they have a diagnosis
of more than one other mental illness (11%). The
vast majority of these concomitances are with bipo-
lar (25 users), followed by depression (14), post
traumatic stress disorder (8) and generalized anxi-
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ety disorder (6). These comorbidity rates are no-
tably lower than the generally accepted prevalence
rates, which may be due to one of several factors.
First, we rely on stated diagnoses to calculate co-
morbidity, and the users may not be stating each of
their diagnosed conditions, either because they have
not been diagnosed as such, or they choose to iden-
tify most strongly with the stated diagnosed condi-
tions, or they simply ran out of space (given Twit-
ter’s 140-character limit). Second, we are analyz-
ing Twitter users, which consists of only a subset
of the population, and the users that choose to state,
publicly, on Twitter, their schizophrenia diagnosis,
may not be an accurate representation of the pop-
ulation of schizophrenia sufferers. The noted con-
comitance of schizophrenia and bipolar disorder is
frequently labeled as “schizoaffective disorder with
a bipolar subtype”, with some recent research indi-
cating shared impairments in functional connectivity
across patients with schizophrenia and bipolar disor-
ders (Meda et al., 2012). It is worth keeping in mind
throughout this paper that we examine all subtypes
of schizophrenia together here, and further in-depth
analysis between subtypes is warranted.

4 Methods

We first define features relevant to mental health
in general and schizophrenia in particular, and ex-
plore how well each feature distinguishes between
schizophrenia-positive users and community con-
trols. We then design and describe classifiers capa-
ble of separating the two groups based on the val-
ues for these features in their tweets. We reflect on
and analyze the signals extracted by these automatic
NLP methods and find some interesting patterns rel-
evant to schizophrenia.

4.1 Lexicon-based Approaches

We used the Linguistic Inquiry Word Count (LIWC,
Pennebaker et al. (2007)) to analyze the systematic
language differences between our schizophrenia-
positive users and their matched community con-
trols. LIWC is a psychometrically validated lexi-
con mapping words to psychological concepts, and
has been used extensively to examine language (and
even social media language) to understand mental
health. LIWC provides lists of words for categories

such as FUTURE, ANGER, ARTICLES, etc. We treat
each category as a feature; the feature values for a
user are then the proportion of words in each cat-
egory (e.g., the number of times a user writes “I”
or “me”, divided by the total number of words they
have written is encoded as the LIWC “first person
pronoun” category).

4.2 Open-vocabulary Approaches

In addition to the manually defined lexicon-based
features described above, we also investigate some
open-vocabulary approaches. This includes latent
Dirichlet allocation (LDA) (Blei et al., 2003), Brown
clustering (Brown et al., 1992), character n-gram
language modeling (McNamee and Mayfield, 2004),
and perplexity.9 We now turn to a brief discussion of
each approach.

Latent Dirichlet Allocation LDA operates on
data represented as “documents” to infer “topics”.
The idea behind LDA is that each document can be
viewed as a mixture of topics, where each topic uses
words with different probabilities (e.g., “health”
would be likely to come from a psychology topic
or an oncology topic, but “schizophrenia” is more
common from the former). LDA infers these top-
ics automatically from the text – they do not have
labels to start with, but often a human reading the
most frequent words in the topic can see the seman-
tic relationship and assign one.

In our case, all tweets from a user make up a “doc-
ument”, and we use collapsed Gibbs sampling to
learn the distribution over topics for each document.
In other words, given a specific number of topics k
(in our work, k=20), LDA estimates the probabil-
ity of each word given a topic and the probability
of each topic given a document. Tweets from a user
can then be featurized as a distribution over the top-
ics: Each topic is a feature, whose feature value is
the probability of that topic in the user’s tweets.

The LDA implementation we use is available in
the MALLET package (McCallum, 2002).

Brown Clustering Words in context often provide
more meaning than the words in isolation, so we use
methods for grouping together words that occur in
similar linguistic constructions. Brown clustering is

9http://en.wikipedia.org/wiki/Perplexity
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a greedy hierarchical algorithm that finds a cluster-
ing of words that maximizes the mutual information
between adjacent clusters; in other words, words
that are preceded by similar words are grouped to-
gether to form clusters, and then these clusters are
merged based on having similar preceding words,
and then these clusters are further merged, etc. Each
word is therefore associated to clusters of increas-
ing granularity. We define all leaf clusters10 as fea-
tures, and the feature value of each for a user is the
proportion of words from the user in that cluster.
The Brown clustering implementation we use is cur-
rently available on github,11 and is used with default
parameter settings, including a limit of 100 clusters.

Character n-grams Character n-gram language
models are models built on sequences (n-grams) of
characters. Here, we use 5-grams: for all the tweets
a user authored, we count the number of times each
sequence of 5 characters is observed. For example,
for this sentence we would observe the sequences:
“for e”, “or ex”, “r exa”, “ exam”, and so on. The
general approach is to examine how likely a se-
quence of characters is to be generated by a given
type of user (schizophrenic or non-schizophrenic).

To featurize character n-grams, for each character
5-gram in the training data, we calculate its prob-
ability in schizophrenic users and its probability in
control users. At test time, we search for sets of
50 sequential tweets that look “most schizophrenic”
by comparing the schizophrenic and control proba-
bilities estimated from the training data for all the
5-grams in those tweets. We experimented with
different window sizes for the number of tweets
and different n for n-grams; for brevity, we report
only the highest performing parameter settings at
low false alarm rates: 5-grams and a window size
of 50 tweets. An example of this can be found in
Figure 1, where one schizophrenic and one control
user’s score over time is plotted (top). To show
the overall trend, we plot the same for all users in
this study (bottom), where separation between the
schizophrenics (in red) and control users (in blue)
is apparent. The highest score from this windowed
analysis becomes the feature value.

Note that this feature corresponds to only a sub-

10I.e., the most granular clusters for each word.
11https://github.com/percyliang/brown-cluster
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Figure 1: Timeseries of schizophrenia-like tweets for
each user, x-axis is the tweets in order, y-axis denotes
the proportion of tweets in a window of 50 tweets that
are classified as schizophrenia-like by the CLMs. Top:
Example plots of one schizophrenia (red) and one control
user (blue). Bottom: All users.

set of a user’s timeline. For schizophrenia sufferers,
this is perhaps when their symptoms were most se-
vere, a subtle but critical distinction when one con-
siders that many of these people are receiving treat-
ment of some sort, and thus may have their symp-
toms change or subside over the course of our data.

Perplexity The breadth of language used (to in-
clude vocabulary, topic areas, and syntactic con-
struction) can be measured via perplexity – a mea-
surement based on entropy, and roughly interpreted
as a measurement of how predictable the language
is. We train a trigram language model on one million
randomly selected tweets from the 2014 1% feed,
and then use this model to score the perplexity on
all the tweets for each user. If a user’s language
wanders broadly (and potentially has the word salad
effect sometimes a symptom of schizophrenia), we
would expect a high perplexity score for the user.
This gives us a single feature value for the perplex-
ity feature for each user.

15



Cond. Topic Top Words
Sch 2 don(’t) (I’)ve (I’)ll feel people doesn(’t) thing didn(’t) time twitter won(’t)

make kind woman things isn(’t) bad cat makes
Sch 9 don(’t) love fuck fucking shit people life hell hate stop gonna god wanna

die feel make kill time anymore
Sch 12 people don(’t) le world mental schizophrenia (I’)ve god jesus schizophrenic

illness health care paranoid medical truth time life read
Sch 18 people work today good years time make call long find made point thought

free twitter back thing days job
Con 6 lol shit nigga im tho fuck ass ain(’t) lmao don(’t) good niggas gotta bitch

smh damn ya man back
Con 7 game rochester football girls basketball final boys billsmafia win rt valley

team season sectional north play miami st soccer
Con 11 great love time hope today day rt support custserv big happy awesome

amazing easy trip toronto forward orleans hear
Con 19 lol dd love don(’t) today day good happy time ddd miss hate work night

back (I’)ll birthday tomorrow tonight

Table 1: LDA topics with statistically significant dif-
ferences between groups. The condition with the
highest mean proportion is given in column 1, where
Sch=schizophrenia and Con=control.

Figure 2: LDA topic prevalence by condition, shown by
the number of users with each identified topic as their
maximum estimated probability topic (t).

5 Results

5.1 Isolated Features

We examine differences in the language between
schizophrenia sufferers and matched controls by
mapping the words they use to broader categories, as
discussed above, and measuring the relative frequen-
cies of these categories in their tweets. Different ap-
proaches produce different word categories: We fo-
cus on LIWC vectors, topics from latent Dirichlet al-
location (LDA), and clusters from Brown clustering.
We compare whether the difference in the relative
frequencies of each category is significant using an
independent sample t-test,12 Bonferroni-corrected.

12We assume a normal distribution; future work may examine
how well this assumption holds.

Cond. Topic Top Words
Sch 01011111111 but because cause since maybe bc until cuz hopefully plus especially except
Sch 01011111110 if when sometimes unless whenever everytime someday
Sch 010000 i
Sch 010100111 know think thought care believe guess remember understand forget swear

knew matter wonder forgot realize worry imagine exist doubt kno realized
decide complain

Sch 010111010 of
Con 0001001 lol haha omg lmao idk hahaha wtf smh ugh o bruh lmfao ha #askemma tbh

exactly k bye omfg hahahaha fr hahah btw jk
Con 01011011010 today
Con 0010111 ! << >>
Con 01011010100 back home away checked forward asleep stuck button stream rewards closer

messages anywhere apart swimming inspired dong tricks spree cv delivered
tuned increased

Con 00001 ” rt #nowplaying

Table 2: Example Brown clusters with statistically sig-
nificant differences between groups. The condition with
the highest mean proportion is given in column 1, where
Sch=schizophrenia and Con=control.

LIWC vectors We did not make predictions about
which LIWC categories might show deviations be-
tween our schizophrenia and control users, but in-
stead examine all the LIWC categories (72 cat-
egories, corrected α = 0.0007). We find that
the language of schizophrenia users had signifi-
cantly more words from the following major cat-
egories: COGNITIVE MECHANISMS, DEATH, FUNC-
TION WORDS, NEGATIVE EMOTION, and in the follow-
ing subcategories: ARTICLE, AUXILIARY VERBS, CON-
JUGATIONS, DISCREPANCIES, EXCL, HEALTH, I, INCL,
INSIGHT, IPRON, PPRON, PRO1, PRONOUN, TENTA-
TIVE, and THEY. Schizophrenia users had significantly
fewer words in the major categories of HOME, LEISURE,
and POSITIVE EMOTION, and in the subcategories of
ASSENT, MOTION, RELATIVE, SEE, and TIME.

Latent Dirichlet Allocation We find that the differ-
ence between the two groups is statistically significant
for 8 of the 20 topics, i.e., the relative frequency of the
topic per user is significantly different between groups
(corrected α = 0.0025). Significant topics and top words
are shown in Table 1, with the condition with the highest
mean proportion shown in the leftmost column and indi-
cated by color: red for schizophrenia (Sch) and blue for
control (Con) topics. We then find the topic t with the
maximum estimated probability for each user. To see the
prevalence of each topic for each condition, see Figure 2,
where each user is represented only by their LDA topic t.

Brown Clustering To narrow in on a set of Brown
clusters that may distinguish between schizophrenia suf-
ferers and controls, we sum the relative frequency of each
cluster per user, and extract those clusters with at least
a 20% difference between groups. This yields 29 clus-
ters. From these, we find that the difference between
most of the clusters is statistically significant (corrected
α = 0.0017). Example significant clusters and top words
are shown in Table 2.
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Perplexity We find this to be only marginally different
between groups (p-value = 0.07872), suggesting that a
more in-depth and rigorous analysis of this measure and
its relationship to the word salad effect is warranted.

5.2 Machine Learning
In Section 4, we discussed how we featurized LIWC
categories, LDA topics, Brown clusters, Character Lan-
guage Models, and perplexity. We now report machine
learning experiments using these features. We compare
two machine learning methods: Support Vector Machines
(SVM) and Maximum Entropy (MaxEnt). All meth-
ods are imported with default parameter settings from
python’s scikit-learn (Pedregosa et al., 2011).

As shown in Table 3, the character language model
(‘CLM’) method performs reasonably well at classify-
ing users in isolation, and the features based on the dis-
tribution over Brown clusters (‘BDist’) performs well
in a maximum entropy model. An SVM model with
features created from LIWC categories and a distribu-
tion over LDA topics (‘LIWC+TDist’) works best at
discovering schizophrenia sufferers in our experiments,
reaching 82.3% classification accuracy on our balanced
test set. Featurizing the distribution over topics pro-
vided by LDA increases classification accuracy over us-
ing linguistically-informed LIWC categories alone by
13.5 percentage points.

The CLM method performed surprisingly well, given
its relative simplicity, and outperformed the LIWC fea-
tures by nearly ten percentage points when used in iso-
lation, perhaps indicating that the open-vocabulary ap-
proach made possible by the CLM is more robust to the
type of data we see in Twitter. Combining the LIWC
and CLM features, though, only gives a small bump in
performance over CLMs alone. Given the fairly distinct
distribution of LDA topics by condition as shown in Fig-
ure 2, we expected that the ID of the LDA topic t would
serve well as a feature, but found that we needed to use
the distribution over topics (TDist) in order to perform
above chance. This topic distribution feature was the
best-performing individual feature, and also performed
well in combination with other features, thus seeming to
provide a complementary signal. Interestingly, while the
CLM model out-performed the LIWC model, the com-
bination of LIWC and TDist features outperformed the
combination of CLM and TDist features, yielding our
best-performing model.

5.3 Analysis of Language-Based Signals:
LDA and Brown Clustering

In the previous section, we examined how well the signals
we define discriminate between schizophrenia sufferers
and controls in a balanced dataset. We now turn to an

Features SVM MAXENT

Perplexity (ppl) 52.0 51.4
Brown-Cluster Dist (BDist) 53.3 72.3
LIWC 68.8 70.8
CLM 77.1 77.2
LIWC+CLM 78.2 77.2
LDA Topic Dist (TDist) 80.4 80.4
CLM+TDist+BDist+ppl 81.2 79.7
CLM+TDist 81.5 81.8
LIWC+TDist 82.3 81.9

Table 3: Feature ablation results on 10-fold cross-
validation. We find that LIWC categories combined with
the distribution over automatically inferred LDA topics
(TDist) works well for this classification task.

exploratory discussion of the language markers discov-
ered with the unsupervised NLP techniques of LDA and
Brown clustering, in the hopes of shedding some light on
language-based differences between the two groups.

Refer to Tables 1 and 2. Both LDA and Brown cluster-
ing produce groups of related words, with different views
of the data. We find that both methods group together
words for laughing – “haha”, “lol”, etc. – and these dis-
criminate between schizophrenia sufferers and controls.
In LDA, this is Topic 6; in Brown clustering, this is Clus-
ter 0001001.13 Controls are much more likely to ask
someone to retweet (“rt”), pulled out in both methods
as well (Topics 7 and 11; Cluster 00001). The two ap-
proaches produce word groups with time words like “to-
day” and “tonight” that discriminate between schizophre-
nia sufferers and controls differently; the word “today”
in particular is found in a topic and in a cluster that
is more common for controls (Topic 19 and Cluster
01011011010).

LDA pulls out positive sentiment words such as
“love”, “awesome”, “amazing”, “happy”, “good”, etc.
(Topics 11 and 19), and topics with these words are
significantly more common in controls. It also finds
groups for negated words like “don’t”, “didn’t”, “won’t”,
etc. (Topic 2), and this is significantly more common in
the language of schizophrenia sufferers. Both decreased
occurrence of positive sentiment topics and increase of
negated word topics is suggestive of the flat affect com-
mon to schizophrenics. Topic 12 contains a group of
words specific to mental health, including the words
“mental”, “health”, and “medical”, as well as, interest-
ingly, “schizophrenia” and “schizophrenic” – unsurpris-
ingly occurring significantly more under the schizophre-

13Brown clustering is an unsupervised learning process, so
the labels just indicate the hierarchical structure of the clusters;
for example, Cluster 01 is the parent of Clusters 010 and 011.
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nia condition. Recall that we remove the original diagno-
sis tweet from our analysis, but this topic indicates much
more talk about the condition. One wonders whether
this might extend to other mental health conditions, and
whether the stigma of discussing mental health is re-
duced within the anonymity provided by the Internet and
social media. Figure 2 furthermore indicates that only
schizophrenia sufferers have this Topic 12 as their LDA
topic t.

Brown clustering pulls out the first person pronoun ‘I’
as a main cluster, and we find that this is significantly
more frequent in schizophrenia sufferers than in controls.
This is comparable to the LIWC category ‘I’, which we
also find to be proportionally higher in the language of
schizophrenia sufferers. Interestingly, Brown clustering
pulls out words that mark hedging and irrealis moods in
English (Cluster 010100111). This is found in phrases
such as “I think”, “I believe”, “I guess”, etc. We find
that this cluster is significantly more common in the lan-
guage of schizophrenia sufferers, perhaps related to the
dissociation from reality common to the disorder. We
also find a Brown cluster for connectives (words like
“but”, “because”, “except”) in Cluster 01011111111; and
this is also significantly more common in schizophre-
nia sufferers. The use of an exclamation point (Clus-
ter 0010111) also differs between schizophrenia suffer-
ers and controls. Note that markers << and >> are also
common in this cluster. This is an artifact of our text pro-
cessing of emojis; in other words, both emojis and excla-
mation points are significantly less likely in the language
of schizophrenics. This is potentially another reflection
of the flat affect negative symptom of schizophrenia.

6 Conclusion

Given its relative rarity compared to other mental
health conditions like depression or anxiety disorders,
schizophrenia has been harder to obtain enough data
to leverage state-of-the-art natural language processing
techniques. Many such techniques depend on large
amounts of text data for adequate training, and such data
has largely been unavailable. However, we can discover a
sufficient amount of schizophrenia sufferers via publicly
available social media data, and from here we can begin
to explore text-based markers of the illness. This comes
with a notable caveat: These users battling schizophre-
nia may be different in some systematic ways from the
schizophrenic population as a whole – they are Twitter
users, and they are speaking publicly about their condi-
tion. This suggests that replication of these findings in
more controlled settings is warranted before hard conclu-
sions are drawn.

By applying a wide range of natural language pro-
cessing techniques to users who state a diagnosis of

schizophrenia, age- and gender-matched to community
controls, we discovered several significant signals for
schizophrenia. We demonstrated that character n-grams
featurized over specific tweets in a user’s history per-
forms reasonably well at separating schizophrenia suf-
ferers from controls, and further, featurizing the distribu-
tion over topics provided by latent Dirichlet allocation in-
creases classification accuracy over using linguistically-
informed LIWC categories alone by 13.5 percentage
points in an SVM machine learning approach. More-
over, the features produced by these unsupervised NLP
methods provided some known, some intuitive, and some
novel linguistic differences between schizophrenia and
control users.

Our cursory inspection here is only capturing a frac-
tion of the insights into schizophrenia from text-based
analysis, and we see great potential from future analy-
ses of this sort. Identifying quantifiable signals and clas-
sifying users is a step towards a deeper understanding
of language differences associated with schizophrenia,
and hopefully, an advancement in available technology
to help those battling with the illness.
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Abstract

Mental illnesses, such as depression and post
traumatic stress disorder (PTSD), are highly
underdiagnosed globally. Populations sharing
similar demographics and personality traits
are known to be more at risk than others. In
this study, we characterise the language use of
users disclosing their mental illness on Twit-
ter. Language-derived personality and demo-
graphic estimates show surprisingly strong per-
formance in distinguishing users that tweet a
diagnosis of depression or PTSD from random
controls, reaching an area under the receiver-
operating characteristic curve – AUC – of
around .8 in all our binary classification tasks.
In fact, when distinguishing users disclosing
depression from those disclosing PTSD, the
single feature of estimated age shows nearly
as strong performance (AUC = .806) as using
thousands of topics (AUC = .819) or tens of
thousands of n-grams (AUC = .812). We also
find that differential language analyses, con-
trolled for demographics, recover many symp-
toms associated with the mental illnesses in the
clinical literature.

1 Introduction

Mental illnesses, such as depression and post trau-
matic stress disorder (PTSD) represent a large share
of the global burden of disease (Üstün et al., 2004;
Mathers and Loncar, 2006), but are underdiagnosed
and undertreated around the world (Prince et al.,
2007). Previous research has demonstrated the im-
portant role of demographic factors in depression
risk. For example, while clinically-assessed depres-
sion is estimated at 6.6% in a 12-month interval for
U.S. adults (Kessler et al., 2003), the prevalence in

males is 3-5%, while the prevalence is 8-10% in fe-
males (Andrade et al., 2003). Similarly, prevalence
of PTSD among U.S. adults in any 12-month period
is estimated at 3.5% (Kessler et al., 2005b) – 1.8%
in males and 5.2% in females – yet this risk is not
distributed evenly across age groups; prevalence of
PTSD increases throughout the majority of the lifes-
pan to reach a peak of 9.2% between the ages of
49-59, before dropping sharply to 2.5% past the age
of 60. (Kessler et al., 2005a).

Large scale user-generated content provides the
opportunity to extract information not only about
events, but also about the person posting them. Using
automatic methods, a wide set of user characteristics,
such as age, gender, personality, location and income
have been shown to be predictable from shared social
media text. The same holds for mental illnesses, from
users expressing symptoms of their illness (e.g. low
mood, focus on the self, high anxiety) to talking about
effects of their illness (e.g. mentioning medications
and therapy) and to even self-disclosing the illness.

This study represents an analysis of language use
in users who share their mental illness though social
media, in this case depression and PTSD. We advo-
cate adjusting for important underlying demographic
factors, such as age and gender, to avoid confound-
ing by language specific to these underlying charac-
teristics. The age and gender trends from the U.S.
population are present in our dataset, although im-
perfectly, given the biases of self-reports and social
media sampling. Our differential language analyses
show symptoms associated with these illnesses con-
gruent with existing clinical theory and consequences
of diagnoses.

In addition to age and gender, we focus on the
important role of inferred personality in predicting
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mental illness. We show that a model which uses
only the text-predicted user level ‘Big Five’ person-
ality dimensions plus age and gender perform with
high accuracy, comparable to methods that use stan-
dard dictionaries of psychology as features. Users
who self-report a diagnosis appear more neurotic and
more introverted when compared to average users.

2 Data

We use a dataset of Twitter users reported to suffer
from a mental illness, specifically depression and
post traumatic stress disorder (PTSD). This dataset
was first introduced in (Coppersmith et al., 2014a).
The self-reports are collected by searching a large
Twitter archive for disclosures using a regular ex-
pression (e.g. ‘I have been diagnosed with depres-
sion’). Candidate users were filtered manually and
then all their most recent tweets have been continu-
ously crawled using the Twitter Search API. The self-
disclosure messages were excluded from the dataset
and from the estimation of user inferred demograph-
ics and personality scores. The control users were
selected at random from Twitter.

In total there are 370 users diagnosed only with
PTSD, 483 only with depression and 1104 control
users. On average, each user has 3400.8 messages.
As Coppersmith et al. (2014b) acknowledge, this
method of collection is susceptible to multiple biases,
but represents a simple way to build a large dataset
of users and their textual information.

3 Features

We use the Twitter posts of a user to infer several
user traits which we expect to be relevant to mental
illnesses based on standard clinical criteria (Amer-
ican Psychiatric Association, 2013). Recently, au-
tomatic user profiling methods have used on user-
generated text and complementary features in order
to predict different user traits such as: age (Nguyen et
al., 2011), gender (Sap et al., 2014), location (Cheng
et al., 2010), impact (Lampos et al., 2014), political
preference (Volkova et al., 2014), temporal orienta-
tion (Schwartz et al., 2015) or personality (Schwartz
et al., 2013).

3.1 Age, Gender and Personality

We use the methods developed in (Schwartz et al.,
2013) to assign each user scores for age, gender
and personality from the popular five factor model
of personality – ‘Big Five’ – (McCrae and John,
1992), which consists of five dimensions: extraver-
sion, agreeableness, conscientiousness, neuroticism
and openness to experience.

The model was trained on a large sample of around
70,000 Facebook users who have taken Big Five per-
sonality tests and shared their posts using a model
using 1-3 grams and topics as features (Park et al.,
2014; Schwartz et al., 2013). This model achieves
R > .3 predictive performance for all five traits. This
dataset is also used to obtain age and gender adjusted
personality and topic distributions.

3.2 Affect and Intensity

Emotions play an important role in the diagnosis of
mental illness (American Psychiatric Association,
2013). We aim to capture the expression of users’
emotions through their generated posts. We char-
acterize expressions along the dimensions of affect
(from positive to negative) and intensity (from low to
high), which correspond to the two primary axes of
the circumplex model, a well-established system for
describing emotional states (Posner et al., 2005).

Machine learning approaches perform significantly
better at quantifying emotion/sentiment from text
compared to lexicon-based methods (Pang and Lee,
2008). Emotions are expressed at message-level. Con-
sequently, we trained a text classification model on
3,000 Facebook posts labeled by affect and intensity
using unigrams as features. We applied this model on
each user’s posts and aggregated over them to obtain
a user score for both dimensions.

3.3 Textual Features

For our qualitative text analysis we extract textual
features from all of a user’s Twitter posts. Traditional
psychological studies use a closed-vocabulary ap-
proach to modelling text. The most popular method
is based on Linguistic Inquiry and Word Count
(LIWC) (Pennebaker et al., 2001). In LIWC, psy-
chological theory was used to build 64 different cate-
gories. These include different parts-of-speech, top-
ical categories and emotions. Each user is thereby
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represented as a distribution over these categories.
We also use all frequent 1-3 grams (used by more
than 10% of users in our dataset), where we use point-
wise mutual information (PMI) to filter infrequent
2-3 grams.

For a better qualitative assessment and to reduce
risk of overfitting, we use a set of topics as a form
of dimensionality reduction. We use the 2,000 clus-
ters introduced in (Schwartz et al., 2013) obtained
by applying Latent Dirichlet Allocation (Blei et al.,
2003), the most popular topic model, to a large set of
Facebook posts.

4 Prediction

In this section we present an analysis of the predic-
tive power of inferred user-level features. We use the
methods introduced in Section 3 to predict nine user
level scores: age, gender, affect, intensity and the Big
Five personality traits.

The three populations in our dataset are used to
formulate three binary classification problems in or-
der to analyse specific pairwise group peculiarities.
Users having both PTSD and depression are held-out
when classifying between these two classes. To as-
sess the power of our text-derived features, we use as
features broader textual features such as the LIWC
categories, the LDA inferred topics and frequent 1-3
grams.

We train binary logistic regression classifiers (Pe-
dregosa et al., 2011) with Elastic Net regularisa-
tion (Zou and Hastie, 2005). In Table 1 we report the
performance using 10-fold cross-validation. Perfor-
mance is measured using ROC area under the curve
(ROC AUC), an adequate measure when the classes
are imbalanced. A more thorough study of predictive
performance for identifying PTSD and depressed
users is presented in (Preoţiuc-Pietro et al., 2015).

Our results show the following:

• Age alone improves over chance and is highly
predictive when classifying PTSD users. To vi-
sualise the effect of age, Figure 1 shows the
probability density function in our three pop-
ulations. This highlights that PTSD users are
consistently predicted older than both controls
and depressed users. This is in line with find-
ings from the National Comorbidity Survey and
replications (Kessler et al., 2005a; Kessler et al.,

Feature No.feat C–D C–P D–P
Random - .5 .5 .5
Age 1 .557 .742 .801
Gender 1 .559 .513 .522
Age + Gender 2 .590 .747 .8
Big5 5 .784 .813 .777
Age + Gender + Big5 7 .783 .844 .806
Affect + Intensity 2 .583 .519 .559
LIWC 64 .824 .854 .781
Topics 2000 .851 .901 .819
Unigrams 5432 .858 .911 .809
1-3 grams 12677 .859 .917 .812

Table 1: Predictive performance using Logistic Re-
gression in ROC area under the curve (AUC) between
controls (C), depressed (D) and PTSD (P).

2005b). As a consequence, factoring in age in
downstream analysis is necessary, as language
changes with age on social media.
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Figure 1: Age density functions for each group.

• Gender is only weakly predictive of any men-
tal illness, although significantly above chance
in depressed vs. controls (p < .01, DeLong
test1). Interestingly, in this task age and gen-
der combined improve significantly above each
individual prediction, illustrating they contain
complementary information. Consequently, at
least when analysing depression, gender should

1A non-parametric test for identifying significant differences
in ROC curves (DeLong et al., 1988)
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Figure 2: Big Five personality means (grand mean centered) and confidence intervals for each group.

be accounted for in addition to age.

• Personality alone obtains very good predictive
accuracies, reaching over .8 ROC AUC for clas-
sifying depressed vs. PTSD. In general, person-
ality features alone perform with strong predic-
tive accuracy, within .1 of >5000 unigram fea-
tures or 2000 topics. Adding age and gender
information further improves predictive power
(C–P p < .01, D–P p < .01, DeLong test) when
PTSD is one of the compared groups.

In Figure 2 we show the mean personality scores
across the three groups. In this dataset, PTSD
users score highest on average in openness with
depressed users scoring lowest. However, neu-
roticism is the largest separator between men-
tally ill users and the controls, with depressed
having slightly higher levels of neuroticism than
PTSD. Neuroticism alone has an ROC AUC of
.732 in prediction depression vs. control and
.674 in predicting PTSD vs. control. Controls
score higher on extraversion, a trait related to
the frequency and intensity of positive emotions
(Smillie et al., 2012). Controlling for age (Fig-
ure 2b) significantly reduces the initial associ-
ation between PTSD and higher conscientious-
ness, because PTSD users are likely to be older,
and conscientiousness tends to increase with

age (Soto et al., 2011). After controlling, de-
pressed users score lowest on conscientiousness,
while PTSD and controls are close to each other.
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Figure 3: Users mapped on the emotion circumplex,
consisting of affect (valence) and intensity (arousal).

• Average affect and intensity achieve modest pre-
dictive performance, although significant (C–D
p < .001, D–P p < .001, DeLong test) when
one of the compared groups are depressed. We
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use the two features to map users to the emo-
tion circumplex in Figure 3. On average, control
users expressed both higher intensity and higher
(i.e. more positive) affect, while depressed users
were lowest on both. This is consistent with the
lowered (i.e. more negative) affect typically seen
in both PTSD and depressed patients, and the
increased intensity/arousal among PTSD users
may correspond to more frequent expressions of
anxiety, which is characterized by high arousal
and lower/negative affect (American Psychi-
atric Association, 2013).

• Textual features obtain high predictive perfor-
mance. Out of these, LIWC performs the worst,
while the topics, unigrams and 1-3 grams have
similarly high performance.

In addition to ROC AUC scores, we present ROC
curves for all three binary prediction tasks in Fig-
ures 4a, 4b and 4c. ROC curves are specifically useful
for medical practitioners because the classification
threshold can be adjusted to choose an application-
appropriate level of false positives. For comparison,
we display methods using only age and gender; age,
gender and personality combined, as well as LIWC
and the LDA topics.

For classifying depressed users from controls, a
true positive rate of ∼ 0.6 can be achieved at a false
positive rate of ∼ 0.2 using personality, age and gen-
der alone, with an increase to up to∼ 0.7 when PTSD
users are one of the groups. When classifying PTSD
users, age is the most important factor. Separating
between depressed and PTSD is almost exclusively
a factor of age. This suggests that a application in a
real life scenario will likely overpredict older users
to have PTSD.

5 Language Analysis

The very high predictive power of the user-level fea-
tures and textual features motivates us to analyse the
linguistic features associated with each group, taking
into account age and gender.

We study differences in language between groups
using differential language analysis – DLA (Schwartz
et al., 2013). This method aims to find all the most
discriminative features between two groups by cor-
relating each individual feature (1-3 gram or topic)

to the class label. In our case, age and gender are
included as covariates in order to control for the ef-
fect they may have on the outcome. Since a large
number of features are explored, we consider coeffi-
cients significant if they meet a Bonferroni-corrected
two-tailed p-value of less than 0.001.

5.1 Language of Depression

The word cloud in Figure 5a displays the 1-3 grams
that most distinguish the depressed users from the set
of control users.

Many features show face validity (e.g. ‘de-
pressed’), but also appear to represent a number of
the cognitive and emotional processes implicated in
depression in the literature (American Psychiatric
Association, 2013). 1-3 grams seem to disclose in-
formation relating to illness and illness management
(e.g. ‘depressed’, ‘illness’, ‘meds’, ‘pills’, ‘therapy’).
In some of the most strongly correlated features we
also observe an increased focus on the self (e.g. ‘I’, ‘I
am’, ‘I have’, ‘I haven’t’, ‘I was’, ‘myself’) which has
been found to accompany depression in many studies
and often accompanies states of psychological dis-
tress (Rude et al., 2004; Stirman and Pennebaker,
2001; Bucci and Freedman, 1981).

Depression classically relies on the presence of
two sets of core symptoms: sustained periods of
low mood (dysphoria) and low interest (anhedonia)
(American Psychiatric Association, 2013). Phrases
such as ‘cry’ and ‘crying’ suggest low mood, while
‘anymore’ and ‘I used to’ may suggest a discontinua-
tion of activities. Suicidal ideations or more general
thoughts of death and dying are symptoms used in the
diagnosis of depression, and even though they are rel-
atively rarely mentioned (grey color), are identified
in the differential language analysis (e.g. ‘suicide’,
‘to die’).

Beyond what is generally thought of as the key
symptoms of depression discussed above, the dif-
ferential language analysis also suggests that anger
and interpersonal hostility (‘fucking’) feature signifi-
cantly in the language use of depressed users.

The 10 topics most associated with depression
(correlation values ranging from R = .282 to R =
.229) suggest similar themes, including dysphoria
(e.g. ‘lonely’, ‘sad’, ‘crying’ – Figures 6b, 6c, 6f) and
thoughts of death (e.g. ‘suicide’ – Figure 6h).
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(c) Depressed vs. PTSD.
Figure 4: ROC curves for prediction using different types of features.

(a) Depression. (b) PTSD.
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Figure 5: The word clouds show the 1-3 grams most correlated with each group having a mental illness, with
the set of control users serving as the contrastive set in both cases. The size of the 1-3 gram is scaled by the
correlation to binary depression label (point-biserial correlation). The color indexes relative frequency, from
grey (rarely used) through blue (moderately used) to red (frequently used). Correlations are controlled for
age and gender.

5.2 Language of PTSD

The word cloud in Figure 5b and topic clouds in
Figure 7 display the 1-3 grams and topics most corre-
lated with PTSD, with topic correlation values rang-
ing from R = .280 to R = .237. On the whole, the
language most predictive of PTSD does not map as
cleanly onto the symptoms and criteria for diagnosis
of PTSD as was the case with depression. Across
topics and 1-3 grams, the language most correlated
with PTSD suggests ‘depression’, disease manage-
ment (e.g. ‘pain’, ‘pills’, ‘meds’ – Figure 7c) and
a focus on the self (e.g. ‘I had’, ‘I was’, ‘I am’, ‘I
would’). Similarly, language is suggestive of death
(e.g. ‘suicide’, ‘suicidal’). Compared to the language
of depressed users, themes within the language of

users with PTSD appear to reference traumatic expe-
riences that are required for a diagnosis of PTSD (e.g.
‘murdered’, ‘died’), as well as the resultant states of
fear-like psychological distress (e.g. ‘terrified’, ‘anxi-
ety’).

5.3 PTSD and Depression

From our predictive experiments and Figure 4c, we
see that language-predicted age almost completely
differentiates between PTSD and depressed users.
Consequently, we find only a few features that distin-
guish between the two groups when controlling for
age. To visualise differences between the diseases we
visualize topic usage in both groups in Figure 8. This
shows standardised usage in both groups for each
topic. As an additional factor (color), we include
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(a) R=.282 (b) R=.271 (c) R=.244 (d) R=.239 (e) R=.239

(f) R=.238 (g) R=.237 (h) R=.235 (i) R=.230 (j) R=.229
Figure 6: The LDA topics most correlated with depression controlling for age and gender, with the set of
control users serving as the contrastive set. Word size is proportional to the probability of the word within the
topics. Color is for display only.

(a) R=.280 (b) R=.280 (c) R=.277 (d) R=.266 (e) R=.255

(f) R=.254 (g) R=.254 (h) R=.248 (i) R=.241 (j) R=.237
Figure 7: The LDA topics most correlated with PTSD controlling for age and gender, with the set of control
users serving as the contrastive set. Word size is proportional to the probability of the word within the topics.
Color is for display only.

the personality trait of neuroticism. This plays the
most important role in separating between mentally
ill users and controls.

The topics marked by arrows in Figure 8 are some
of the topics most used by users with depression
and PTSD shown above in Figures 6-7. Of the three
topics, the topic shown in Figure 6h has ‘suicide’ as
the most prevalent word. This topic’s use is elevated
for both depression and PTSD. Figure 6f shows a
topic used mostly by depressed users, while Figure 7c
highlights a topic used mainly by users with PTSD.

6 Related Work

Prior studies have similarly examined the efficacy
of utilising social media data, like Facebook and
Twitter, to ascertain the presence of both depres-
sion and PTSD. For instance, Coppersmith et al.
(2014b) analyse differences in patterns of language
use. They report that individuals with PTSD were sig-
nificantly more likely to use third person pronouns
and significantly less likely to use second person
pronouns, without mentioning differences in the use
of first person pronouns. This is in contrast to the
strong differences in first person pronoun use among
depressed individuals documented in the literature
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Figure 8: Topic usage (z-scored) for depressed and
PTSD users. Color shows correlation of each topic
to neuroticism. Labeled topics can be found in Fig-
ures 6- 7.

(Rude et al., 2004; Stirman and Pennebaker, 2001),
confirmed in prior Twitter studies (Coppersmith et
al., 2014a; De Choudhury et al., 2013) and replicated
here. De Choudhury et al. (2013) explore the relation-
ships between social media postings and depressive
status, finding that geographic variables can alter
one’s risk. They show that cities for which the high-
est numbers of depressive Twitter users are predicted
correlate with the cities with the known highest de-
pression rates nationwide; depressive tweets follow
an expected diurnal and annual rhythm (peaking at
night and during winter); and women exhibit an in-
creased risk of depression relative to men, consistent
with known psychological trends. These studies thus
demonstrate the utility of using social media outlets
to capture nuanced data about an individual’s daily
psychological affect to predict pathology, and sug-
gest that geographic and demographic factors may
alter the prevalence of psychological ill-being. The
present study is unique in its efforts to control for
some of these demographic factors, such as person-
ality and age, that demonstrably influence an indi-
vidual’s pattern of language use. Further, these de-
mographic characteristics are known to significantly
alter patterns e.g. pronoun use (Pennebaker, 2011).
This highlights the utility of controlling for these

factors when analysing pathological states like de-
pression or PTSD.

7 Conclusions

This study presented a qualitative analysis of men-
tal illness language use in users who disclosed their
diagnoses. For users diagnosed with depression or
PTSD, we have identified both symptoms and ef-
fects of their mental condition from user-generated
content. The majority of our results map to clinical
theory, confirming the validity of our methodology
and the relevance of the dataset.

In our experiments, we accounted for text-derived
user features, such as demographics (e.g. age, gen-
der) and personality. Text-derived personality alone
showed high predictive performance, in one case
reaching similar performance to using orders of mag-
nitude more textual features.

Our study further demonstrated the potential for
using social media as a means for predicting and
analysing the linguistic markers of mental illnesses.
However, it also raises a few questions. First, al-
though apparently easily predictable, the difference
between depressed and PTSD users is largely only
due to predicted age. Sample demographics also ap-
pear to be different than the general population, mak-
ing predictive models fitted on this data to be suscep-
tible to over-predicting certain demographics.

Secondly, the language associated with a self-
reported diagnosis of depression and PTSD has a
large overlap with the language predictive of per-
sonality. This suggests that personality may be ex-
planatory of a particular kind of behavior: posting
about mental illness diagnoses online. The mental
illness labels thus acquired likely have personality
confounds ‘baked into them’, stressing the need for
using stronger ground truth such as given by clini-
cians.

Further, based on the scope of the applications –
whether screening or analysis of psychological risk
factors – user-generated data should at minimum be
temporally partitioned to encompass content shared
before and after the diagnosis. This allows one to
separate mentions of symptoms from discussions of
and consequences of their diagnosis, such as the use
of medications.
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Abstract

This paper presents a summary of the Compu-
tational Linguistics and Clinical Psychology
(CLPsych) 2015 shared and unshared tasks.
These tasks aimed to provide apples-to-apples
comparisons of various approaches to model-
ing language relevant to mental health from
social media. The data used for these tasks
is from Twitter users who state a diagnosis
of depression or post traumatic stress disorder
(PTSD) and demographically-matched com-
munity controls. The unshared task was a
hackathon held at Johns Hopkins University
in November 2014 to explore the data, and
the shared task was conducted remotely, with
each participating team submitted scores for
a held-back test set of users. The shared
task consisted of three binary classification ex-
periments: (1) depression versus control, (2)
PTSD versus control, and (3) depression ver-
sus PTSD. Classifiers were compared primar-
ily via their average precision, though a num-
ber of other metrics are used along with this
to allow a more nuanced interpretation of the
performance measures.

1 Introduction

Language is a major component of mental health as-
sessment and treatment, and thus a useful lens for
mental health analysis. The psychology literature
has a long history of studying the impact of various
mental health conditions on a person’s language use.
More recently, the computational linguistics com-
munity has sought to develop technologies to ad-
dress clinical psychology challenges. Some of this
work has appeared at the Computational Linguistics

and Clinical Psychology workshops (Resnik et al.,
2014; Mitchell et al., 2015).

The 2015 workshop hosted a shared and unshared
task. These tasks focused on fundamental computa-
tional linguistics technologies that hold promise to
improve mental health-related applications; in par-
ticular, detecting signals relevant to mental health
in language data and associated metadata. Specif-
ically, technologies that can demonstrably separate
community controls from those with mental-health
conditions are extracting signals relevant to mental
health. Examining the signals those techniques ex-
tract and depend on for classification can yield in-
sights into how aspects of mental health are mani-
fested in language usage. To that end, the shared and
unshared tasks examined Twitter users who publicly
stated a diagnosis of depression or PTSD (and age-
and gender-matched controls).

Shared tasks are tools for fostering research com-
munities and organizing research efforts around
shared goals. They provide a forum to explore
new ideas and evaluate the best-of-breed, emerging,
and wild technologies. The 2015 CLPsych Shared
Task consisted of three user-level binary classifica-
tion tasks: PTSD vs. control, depression vs. control,
and PTSD vs. depression. The first two have been
addressed in a number of settings (Coppersmith et
al., 2015; Coppersmith et al., 2014b; Coppersmith
et al., 2014a; Resnik et al., 2013; De Choudhury et
al., 2013; Rosenquist et al., 2010; Ramirez-Esparza
et al., 2008), while the third task is novel. Organiz-
ing this shared task brought together many teams to
consider the same problem, which had the benefit
of establishing a solid foundational understanding,
common standards, and a shared deep understand-
ing of both task and data.
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The unshared task (affectionately the
“hackathon”) was a weekend-long event in Novem-
ber 2014 hosted by Johns Hopkins University. The
hackathon provided data similar to the shared task
data and encouraged participants to explore new
ideas. In addition to starting new research projects,
some of which were subsequently published in the
CLPsych workshop, the event laid the foundation
for the shared task by refining task definitions and
data setup.

This paper summarizes both the shared and un-
shared tasks at the 2015 Computational Linguistics
and Clinical Psychology workshop. We outline the
data used for these tasks, and summarize the meth-
ods and common themes of the shared task partici-
pants. We also present results for system combina-
tion using the shared task submissions.

2 Shared Task Data

Data for the shared task are comprised of public
tweets collected according to the procedures of Cop-
persmith et al. (2014a). We briefly describe the pro-
cedure here, and refer interested readers to Copper-
smith et al. (2014a). for details.

Users of social media may publicly discuss their
health for a variety of reasons, such as to seek treat-
ment or health advice. More specifically to men-
tal health, users may choose a public forum to fight
the societal stigma associated with mental illness, or
to explain certain behaviors to friends. Many users
tweet statements of diagnosis, such as “I was just di-
agnosed with X and ...”, where X is a mental health
condition. While this can include a large variety of
mental health conditions (Coppersmith et al., 2015),
the shared task considered two conditions: depres-
sion or PTSD. We chose these conditions since they
are among the most common found in Twitter and
have relatively high prevalence compared to other
conditions. A human annotator evaluates each such
statement of diagnosis to remove jokes, quotes, or
any other disingenuous statements. For each user,
up to their most recent 3000 public tweets were in-
cluded in the dataset. Importantly, we removed the
tweet in which the genuine statement of diagnosis
was found, to prevent any artifact or bias created
from our data sampling technique. However, some
of these users do mention their condition in other

tweets, and some approaches may be influenced by
this phenomenon. To ensure that each included user
has a sufficient amount of data, we ensured that each
user has at least 25 tweets and that the majority of
them are English (75% according to the Compact
Language Detector1).

2.1 Age- and Gender-Matched Controls

A goal of the shared task is to differentiate users with
a mental health diagnosis from those who do not.
To that end, the shared task data included a set of
randomly selected Twitter users.

Age and gender play a significant role in many
mental health conditions, making certain segments
of the population more or less likely to be affected or
diagnosed with them. When possible, demographic
variables such as age and gender are controlled for
when doing clinical psychology or mental health re-
search. Few studies looking at social media and
clinical psychology have done analysis with explicit
matched samples, though some have done this im-
plicitly by examining a segment of the population,
(e.g., college students (Rude et al., 2004)). Some
work in social media analysis has considered the
effect of matched samples (Dos Reis and Culotta,
2015).

To create age- and gender-matched community
controls, we estimated the age and gender of each
user in our sample through analysis of their lan-
guage. We used the demographic classification
tool from the World Well-Being Project (Sap et al.,
2014)2. For each depression and PTSD user we es-
timated their gender, forcing the classifier to make a
binary decision as to whether the user was ‘Female’
or ‘Male’, and used the age estimate as-is (an os-
tensibly continuous variable). We did the same for a
pool of control users who tweeted during a two week
time period in early 2013 and met the criteria set out
above (at least 25 Tweets and their tweets were la-
beled as at least 75% English). To obtain our final
data set, for each user in the depression or PTSD
class, we sampled (without replacement) a paired
community control user of the same estimated gen-
der with the closest estimate age.

We expect (and have some anecdotal evidence)

1https://code.google.com/p/cld2/
2http://wwbp.org/
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that some of the community controls suffer from de-
pression or PTSD, and made no attempt to remove
them from our dataset. If we assume that the rate of
contamination in the control users is commensurate
with the expected rate in the population, that would
mean that this contamination makes up a small mi-
nority of the data (though a nontrivial portion of the
data, especially in the case of depression).

2.2 Anonymization

Per research protocols approved by the Johns Hop-
kins University Institutional Review Board, the data
was anonymized to protect the identity of all users
in the dataset. We used a whitelist approach to al-
low only certain kinds of information to be main-
tained, as they posed minimal risk of inadvertently
exposing the identity of the user. We kept unedited
the timestamp and the language identification of the
text. For metadata about the user, we kept the num-
ber of friends, followers, and favorites the user has,
the time zone the user has set in their profile, and
the time their account was created. Screen names
and URLs were anonymized (via salted hash), so
they were replaced with a seemingly-random set of
characters. This procedure was applied to the text
content and all the metadata fields (to include em-
bedded tweets such as retweets and replies). This
was done systematically so the same set of ran-
dom characters was used each time a given screen
name or URL was used. This effectively enabled
statistics such as term frequency or inverse docu-
ment frequency to be computed without revealing
the identity of the user or URL (which sometimes
provided a link to an identifiable account name,
within or outside of Twitter). Some of Twitter’s
metadata uses character offsets into the text to note
positions, so our anonymized hashes were truncated
to be the same number of characters as the origi-
nal text (e.g., @username became @lkms23sO).
For URLs, we left the domain name, but masked
everything beyond that: (e.g., http://clpsych.
org/shared_task/ became http://clpsych.

org/sijx0832aKxP). Any other metadata that did
not match the whitelisted entries or the fields sub-
ject to anonymization was removed altogether – this
includes, for example, any geolocation information
and any information about what devices the user
tweets from.

Shared task participants each signed a privacy
agreement and instituted security and protective
measures on their copy of the data. Participants were
responsible for obtaining ethics board approval for
their work in order to obtain the shared task data.
Data was distributed in compliance with the Twitter
terms of service.

3 Shared Task Guidelines

The shared task focused on three binary classifica-
tion tasks.

1. Identify depression users versus control users.

2. Identify PTSD users versus control users.

3. Identify depression users versus PTSD users.

Twitter users were divided into a train and test
partition that was used consistently across the three
tasks. The train partition consisted of 327 depres-
sion users, 246 PTSD users, and for each an age-
and gender-matched control user, for a total of 1,146
users. The test data contained 150 depression users,
150 PTSD users, and an age- and gender-matched
control for each, for a total of 600 users. Shared task
participants were provided with user data and asso-
ciated labels (depression, PTSD, or control) for the
users contained in the train partition. Participants
were given user data without labels for the test par-
tition.

Participants were asked to produce systems using
only the training data that could provide labels for
each of the three tasks for the test data. Participants
used their systems to assign a numeric real-valued
score for each test user for each of the three tasks.
Each participating team submitted three ranked lists
of the 600 test users, one list for each task. Given
that machine-learning models often have a num-
ber of parameters that alter their behavior, some-
times in unexpected ways, participants were encour-
aged to submit multiple parameter settings of their
approaches, as separate ranked lists, and the best-
performing of these for each task would be taken as
the “official” figure of merit.

Evaluation was conducted by the shared task or-
ganizers using the (undistributed) labels for the test
users. During evaluation, irrelevant users were re-
moved; i.e., for PTSD versus control, only 300 users
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were relevant for this condition: the 150 PTSD users
and their demographically matched controls. The
depression users and their demographically matched
controls were removed from the ranked list prior to
evaluation.

Each submission was evaluated using several met-
rics. Our primary metric was average precision,
which balances precision with false alarms, though
this only tells a single story about the methods ex-
amined. We also evaluated precision at various false
alarm rates (5%, 10%, and 20%) to provide a differ-
ent view of performance. The reader will note that
the highest-performing technique varied according
to the evaluation measure chosen – a cautionary tale
about the importance of matching evaluation mea-
sure to the envisioned task.

3.1 Data Balance

We decided to distribute data that reflected a bal-
anced distribution between the classes, rather than
a balance that accurately reflects the user popula-
tion, i.e., one that has a larger number of controls.
This decision was motivated by the need for creating
a dataset maximally relevant to the task, as well as
limitations on data distribution from Twitter’s terms
of service. A balanced dataset made some aspects
of the shared task easier, such as classifier creation
and interpretation. However, it also means that re-
sults need to be examined with this caveat in mind.
In particular, the number of false alarms expected
in the general population is much larger than in
our test sample (7-15 times as frequent). In effect,
this means that when examining these numbers, one
must remember that each false alarm could count for
7-15 false alarms in a more realistic setting. Unfor-
tunately, when this fact is combined with the con-
tamination of the training data by users diagnosed
(but not publicly stating a diagnosis of) depression
or PTSD, it quickly becomes difficult or impossi-
ble to reliably estimate the false alarm rates in prac-
tice. A more controlled study is required to estimate
these numbers more accurately. That said, the rel-
ative rankings of techniques and approaches is not
subject to this particular bias: each system would be
affected by the false alarm rates equally, so the rel-
ative ranking of approaches (by any of the metrics
investigated) does provide a fair comparison of the
techniques.

4 Shared Task Submissions

We briefly describe the approaches taken by each of
the participants, but encourage the reader to examine
participant papers for a more thorough treatment of
the approaches.

4.1 University of Maryland
UMD examined a range of supervised topic mod-
els, computed on subsets of the documents for each
user. Particularly, they used a variety of supervised
topic-modeling approaches to find groups of words
that had maximal power to differentiate between the
users for each classification task. Moreover, rather
than computing topics over two (typical) extreme
cases – treating each tweet as an individual docu-
ment or treating each users’s tweets collectively as a
single document (concatenating all tweets together)
– they opted for a sensible middle ground of con-
catenating all tweets from a given week together as
a single document (Resnik et al., 2015).

4.2 University of Pennsylvania,
World Well-Being Project

The WWBP examined a wide variety of methods for
inferring topics automatically, combined with binary
unigram vectors (i.e., “did this user ever use this
word?”), and scored using straightforward regres-
sion methods. Each of these topic-modeling tech-
niques provided a different interpretation on mod-
eling what groups of words belonged together, and
ultimately may provide some useful insight as to
which approaches are best at capturing mental health
related signals (Preotiuc-Pietro et al., 2015).

4.3 University of Minnesota, Duluth
The Duluth submission took a well-reasoned rule-
based approach to these tasks, and as such provides
a point to examine how powerful simple, raw lan-
guage features are in this context. Importantly, the
Duluth systems allow one to decouple the power of
an open vocabulary approach, quite independent of
any complex machine learning or complex weight-
ing schemes applied to the open vocabulary (Peder-
sen, 2015).

4.4 MIQ – Microsoft, IHMC, Qntfy
We include a small system developed by the organiz-
ers for this shared task to examine the effect of pro-
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viding qualitatively different information from the
other system submissions. In this system, which we
will refer to as the MIQ3 (pronounced ‘Mike’) sub-
mission, we use character language models (CLMs)
to assign scores to individual tweets. These scores
indicate whether the user may be suffering from
PTSD, depression, or neither.

The general approach is to examine how likely a
sequence of characters is to be generated by a given
type of user (PTSD, depression, or control). This
provides a score even for very short text (e.g., a
tweet) and captures local information about creative
spellings, abbreviations, lack of spaces, and other
textual phenomena resulting from the 140-character
limit of tweets (McNamee and Mayfield, 2004). At
test time, we search for sequences of tweets that
look “most like” the condition being tested (PTSD
or depression) by comparing the condition and con-
trol probabilities estimated from the training data for
all the n-grams in those tweets.

In more detail, we build a CLM for each condi-
tion using the training data. For each user at test
time, we score each tweet based on the character n-
grams in the tweet C with the CLMs for conditions

A andB as
∑

C
log p(cA)−log p(cb)

|C| , where p(cA) is the
probability of the given n-gram c according to the
CLM model for condition A, and p(cB) is the prob-
ability according to the CLM for condition B. We
then compute a set of aggregate scores from a sliding
window of 10 tweets at a time, where the aggregate
score is either the mean, median, or the proportion
of tweets with the highest probability from the CLM
for condition A (‘proppos’). To compute a single
score for a single user, we take the median of the ag-
gregate scores. This follows previous work on pre-
dicting depression and PTSD in social media (Cop-
persmith et al., 2014a; Coppersmith et al., 2014b).
We also experimented with excluding or including
tweets that heuristically may not have been authored
by the Twitter account holder – specifically, this ex-
clusion removes all tweets with URLs (as they are
frequently prepopulated by the website hosting the
link) and retweets (as they were authored by another
Twitter user). We created 12 system submissions
using: n-grams of length 5 and 6 (two approaches)

3M-I-Q for the three authors’ three institutions. Interestingly
and coincidentally, ‘MIQ’ is also Albanian for ‘Friends.’

crossed with the mean, median, and proppos aggre-
gation approaches (three approaches), and with or
without exclusion applied (two approaches).

The top systems for Depression versus Control
used 5-grams, proppos and 5-grams, mean. The top
system for PTSD versus Control used 5-grams, me-
dian, no exclusion. And the top systems for Depres-
sion versus PTSD used 6-grams, mean and 6-grams,
proppos.

5 Results

We examine only the best-performing of each of the
individual system submissions for each binary clas-
sification task, but again encourage the reader to ex-
amine the individual system papers for a more de-
tailed analysis and interpretation for what each of
the teams did for their submission.

5.1 Individual Systems

The results from the four submitted systems are
summarized in Figure 1. The top two rows show
the performance of all the parameter settings for all
the submitted systems, while the bottom two rows
show receiver operating characteristic (ROC) curves
for only the best-performing parameter settings from
each team. Each column in the figure denotes a
different task: ‘Depression versus Control’ on the
left, ‘PTSD versus Control’ in the middle and ‘De-
pression versus PTSD’ on the right. Chance perfor-
mance is noted by a black dotted line in all plots,
and all systems performed better than chance (with
the exception of a system with deliberately random
performance submitted by Duluth).

In the panels in the top two rows of Figure 1, each
dot indicates a submitted parameter setting, arranged
by team. From left to right, the dots represent Duluth
(goldenrod), MIQ (black), UMD (red), and WWBP
(blue). The best-performing system for each team is
denoted by a solid horizontal line, for ease of com-
parison. The top row shows performance by the “of-
ficial metric” of average precision, while the second
row shows performance on precision at 10% false
alarms.

The bottom two rows of Figure 1 show the re-
sults of each team’s top-performing system (accord-
ing to average-precision) across the full space of
false alarms. The third row shows precision over the
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Figure 1: From top to bottom: (1) average precision and (2) precision at 10% false alarms (3) the ROC curve for
each institution with the highest average precision, (4) same ROC curves, focused on the low false alarm range. For
(1) and (2) the submissions are collected and colored by group. Each submitted parameter setting is represented with
a single dot, with the top-scoring submission for each group in each experiment denoted with a horizontal line. The
best ROC curve (according to average precision) for each institution, colored by group are shown in (3) and (4). (3)
covers the range of all false alarms, while (4) is the same ROCs focused on the low false alarm range. Chance in all
plots is denoted by the dotted line.
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Figure 2: ROC curves for system combination results.

whole space of false alarms, while the bottom row
“zooms in” to show the precision at low (0-10%)
false alarm rates. These bottom two rows are shown
as ROC curves, with the the false alarm rate on the
x-axis and the precision on the y-axis. Performance
at areas of low false alarms are particularly impor-
tant to the envisioned applications, since the num-
ber of control users vastly outnumber the users with
each mental health condition.

5.2 System Combination

As each of the submitted systems used what ap-
peared to be very complementary feature sets, we
performed several system combination experiments.
However, as can be seen in Figure 2, system combi-
nation failed to outperform the best-performing sys-
tem submitted for the shared task (UMD).

As features for system combination, we used ei-
ther system ranks or scores. For each system combi-
nation experiment, we included all scores from each
of the submitted systems, for a total of 47 systems
(9 from Duluth, 12 from MIQ, 16 from UMD, and
10 from WWBP), without regard for how well that
system performed on the classification task; future
work may examine subsetting these scores for im-
proved combination results. Since the range of the
scores output by each system varied significantly, we
applied a softmax normalization sigmoid function to
bring all scores for each system to range from zero
to one.

We explored a simple ‘voting’ scheme as well as
a machine learning method, using Support Vector
Machines (SVM). For the SVM, shown in Figure 2

as the lower blue ‘SVM-Combo’ curve, we experi-
mented with using raw scores or normalized scores
as features, and found the normalized scores per-
formed much better. The SVM model is the result of
training ten SVMs on system output using 10-fold
cross-validation, then normalizing the SVM output
prediction scores and concatenating to obtain the fi-
nal result. For the voted model, which can be seen in
Figure 2 as the middle green ‘Rank-Combo’ curve,
we simply took the rank of each Twitter user accord-
ing to each system output, and averaged the result.
Future work will examine other methods for system
combination and analysis.

6 Discussion & Conclusion

This shared task served as an opportunity for a va-
riety of teams to come together and compare tech-
niques and approaches for extracting linguistic sig-
nals relevant to mental health from social media
data. Perhaps more importantly, though, it estab-
lished a test set upon which all participating groups
are now familiar, which will enable a deeper level of
conversation.

Two of the classification tasks examined were pre-
viously attempted, and the techniques indicate im-
provement over previously-published findings. Past
results did differ in a number of important factors,
most notably in not examining age- and gender-
matched controls, so direct comparisons are unfor-
tunately not possible.

From these submitted systems we can take away a
few lessons about classes of techniques and their rel-
ative power. There are clear benefits to using topic-
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modeling approaches, as demonstrated by two of the
groups (UMD and WWBP) – these provide strong
signals relevant to mental health, and some intuitive
and interpretable groupings of words without sig-
nificant manual intervention. Simple linguistic fea-
tures, even without complicated machine learning
techniques, provide some classification power for
these tasks (as demonstrated by Duluth and MIQ).
Looking forward, there is strong evidence that tech-
niques can provide signals at a finer-grained tempo-
ral resolution than previously explored (as demon-
strated by UMD and MIQ). This may open up new
avenues for applying these approaches to clinical
settings.

Finally, the results leave open room for future
work; none of these tasks were solved. This suggests
both improvements to techniques as well as more
work on dataset construction. However, even at this
nascent stage, insight from the mental health signals
these techniques extract from language is providing
new directions for mental health research.
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Abstract

This article is a system description and report
on the submission of the World Well-Being
Project from the University of Pennsylvania in
the ‘CLPsych 2015’ shared task. The goal of
the shared task was to automatically determine
Twitter users who self-reported having one of
two mental illnesses: post traumatic stress dis-
order (PTSD) and depression. Our system em-
ploys user metadata and textual features de-
rived from Twitter posts. To reduce the fea-
ture space and avoid data sparsity, we con-
sider several word clustering approaches. We
explore the use of linear classifiers based on
different feature sets as well as a combination
use a linear ensemble. This method is agnos-
tic of illness specific features, such as lists of
medicines, thus making it readily applicable in
other scenarios. Our approach ranked second
in all tasks on average precision and showed
best results at .1 false positive rates.

1 Introduction

Mental illnesses are widespread globally (Üstün et
al., 2004); for instance, 18.6% of US adults were
suffering from a mental illness in 2012 (Abuse and
Administration, 2012). Depression and post trau-
matic stress disorder (PTSD) are some of the most
common disorders, reaching up to 6.6% and 3.5%
prevalence respectively in a 12 month period in the
US (Kessler et al., 2003; Kessler et al., 2005). How-
ever, these are often argued to be under-estimates
of the true prevalence (Prince et al., 2007). This is
in part because those suffering from depression and
PTSD do not typically seek help for their symptoms
and partially due to imperfect screening methods

currently employed. Social media offers us an alter-
native window into an individual’s psyche, allowing
us to investigate how changes in posting behaviour
may reflect changes in mental state.

The CLPsych 2015 shared task is the first evalua-
tion to address the problem of automatically identi-
fying users with diagnosis of mental illnesses, here
PTSD or depression. The competition uses a corpus
of users who self-disclosed their mental illness diag-
noses on Twitter, a method first introduced in (Cop-
persmith et al., 2014). The shared task aims to dis-
tinguish between: (a) control users and users with
depression, (b) control users and users with PTSD
and (c) users with depression and users with PTSD.

For our participation in this shared task, we treat
the task as binary classification using standard reg-
ularised linear classifiers (i.e. Logistic Regression
and Linear Support Vector Machines). We use a
wide range of automatically derived word clusters
to obtain different representations of the topics men-
tioned by users. We assume the information cap-
tured by these clusters is complimentary (e.g. se-
mantic vs. syntactic, local context vs. broader con-
text) and combine them using a linear ensemble to
reduce classifier variance and improve accuracy. Our
classifier returns for each binary task a score for each
user. This enables us to create a ranked list of use in
our analysis.

The results are measured on average precision, as
we are interested in evaluating the entire ranking. On
the official testing data, our best models achieve over
.80 average precision (AP) for all three binary tasks,
with the best model reaching .869 AP on predict-
ing PTSD from controls in the official evaluation. A
complementary qualitative analysis is presented in
(Preoţiuc-Pietro et al., 2015).
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2 System Overview

In our approach, we aggregate the word counts in all
of a user’s posts, irrespective of their timestamp and
the word order within (a bag-of-words approach).
Each user in the dataset is thus represented by a dis-
tribution over words. In addition, we used automat-
ically derived groups of related words (or ‘topics’)
to obtain a lower dimensional distribution for each
user. These topics, built using automatic clustering
methods from separate large datasets, capture a set
of semantic and syntactic relationships (e.g. words
reflecting boredom, pronouns). In addition, we use
metadata from the Twitter profile of the user, such
as number of followers or number of tweets posted.
A detailed list is presented in the next section. We
trained three standard machine learning binary clas-
sifiers using these user features and known labels for
Controls, Depressed and PTSD users.

Data

The data used for training consisted of 1,145 Twit-
ter users, labeled as Controls, Depressed and PTSD.
This dataset was provided by the shared task organ-
isers (Coppersmith et al., 2015). From training and
testing we removed 2 users as they had posted less
than 500 words and thus their feature vectors were
very sparse and uninformative. Dataset statistics are
presented in Table 1. Age and gender were provided
by the task organisers and were automatically de-
rived by the method from (Sap et al., 2014).

Control Depressed PTSD
Number of users 572 327 246

Avg. age 24.4 21.7 27.9
% female 74.3% 69.9% 67.5%

Avg. # followers 1,733 1,448 1,784
Avg. # friends 620 836 1,148

Avg. # times listed 22 17 29
Avg. # favourites 1,195 3,271 5,297
Avg. # statuses 10,772 17,762 16,735

Avg. # unigrams 31,083 32,938 38,337

Table 1: Descriptive statistics for each of the three
categories of users.

3 Features and Methods

3.1 Features

We briefly summarise the features used in our pre-
diction task. We divide them into user features and
textual features.

Metadata Features (Metadata) The metadata
features are derived from the user information avail-
able from each tweet that were not anonymised by
the organizers. Table 2 introduces the eight features
in this category.

m1 log number of followers
m2 log number of friends
m3 follower/friend ratio
m4 log number of times listed
m5 no. of favourites the account made
m6 total number of tweets
m7 age
m8 gender

Table 2: Metadata features for a Twitter user.

Unigram Features (Unigram) We use unigrams
as features in order to capture a broad range of
textual information. First, we tokenised the Twitter
posts into unigrams using our tailored version1 of
Chris Potts’ emoticon-aware HappyFunTokenizer.
We use the unigrams mentioned by at least 1% of
users in the training set, resulting in a total of 41,687
features.

Brown Clusters (Brown) Using all unigrams
may cause different problems in classification.
The feature set in this case is an order of mag-
nitude larger than the number of samples (∼
40, 000 � ∼ 1000), which leads to sparse features
and may cause overfitting. To alleviate this prob-
lem, we use as features different sets of words which
are semantically or syntactically related i.e. ‘topics’.
These are computed on large corpora unrelated to
our dataset in order to confer generality to our meth-
ods.

The first method is based on Brown cluster-
ing (Brown et al., 1992). Brown clustering is a
HMM-based algorithm that partitions words hierar-
chically into clusters, building on the intuition that

1Available for download at http://www.wwbp.org/data.html
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the probability of a word’s occurrence is based on
the cluster of word directly preceding it. We use the
clusters introduced by Owoputi et al. (2013) which
use the method of Liang (2005) to cluster 216,856
tokens into a base set of 1000 clusters using a dataset
of 56 million English tweets evenly distributed from
9/10/2008 to 8/14/2012.

NPMI Word Clusters (NPMI) Another set of
clusters is determined using the method presented
in (Lampos et al., 2014). This uses a word to
word similarity matrix computed over a large ref-
erence corpus of 400 million tweets collected from
1/2/2011 to 2/28/2011. The word similarity is mea-
sured using Normalised Pointwise Mutual Infor-
mation (NPMI). This information-theoretic measure
indicates which words co-occur in the same con-
text (Bouma, 2009) where the context is the entire
tweet. To obtain hard clusters of words we use spec-
tral clustering (Shi and Malik, 2000; Ng et al., 2002).
This methods was shown to deal well with high-
dimensional and non-convex data (von Luxburg,
2007). In our experiments we used 1000 clusters
from 54,592 tokens.

Word2Vec Word Clusters (W2V) Neural meth-
ods have recently been gaining popularity in or-
der to obtain low-rank word embeddings and ob-
tained state-of-the-art results for a number of seman-
tic tasks (Mikolov et al., 2013b).

These methods, like many recent word embed-
dings, also allow to capture local context order rather
than just ‘bag-of-words’ relatedness, which leads
to also capture syntactic information. We use the
skip-gram model with negative sampling (Mikolov
et al., 2013a) to learn word embeddings from a cor-
pus of 400 million tweets also used in (Lampos et
al., 2014). We use a hidden layer size of 50 with
the Gensim implementation.2 We then apply spectral
clustering on these embeddings to obtain hard clus-
ters of words. We create 2000 clusters from 46,245
tokens.

GloVe Word Clusters (GloVe) A different type
of word embeddings was introduced by (Penning-
ton et al., 2014). This is uses matrix factorisation
on a word-context matrix which preserves word or-
der and claims to significantly outperform previous

2
https://radimrehurek.com/gensim/

neural embeddings on semantic tasks. We use the
pre-trained Twitter model from the author’s website3

built from 2 billion tweets. In addition to the largest
layer size (200), we also use spectral clustering as
explained above to create 2000 word clusters from
38,773 tokens.

LDA Word Clusters (LDA) A different type of
clustering is obtained by using topic models, most
popular of which is Latent Dirichlet Allocation (Blei
et al., 2003). LDA models each post as being a
mixture of different topics, each topic representing
a distribution over words, thus obtaining soft clus-
ters of words. We use the 2000 clusters introduced
in (Schwartz et al., 2013), which were computed
over a large dataset of posts from 70,000 Facebook
users. These soft clusters should have a slight dis-
advantage in that they were obtained from Facebook
data, rather than Twitter as all previously mentioned
clusters and our dataset.

LDA ER Word Clusters (ER) We also use a dif-
ferent set of 500 topics. These were obtained by per-
forming LDA on a dataset of∼ 700 Facebook user’s
posts who reported to the emergency room and opted
in a research study.

3.2 Methods

We build binary classifiers to separate users being
controls, depressed or having PTSD. As classifiers,
we use linear methods as non-linear methods haven’t
shown improvements over linear methods in our pre-
liminary experiments. We use both logistic regres-
sion (LR) (Freedman, 2009) with Elastic Net regu-
larisation (Zou and Hastie, 2005) and Support Vec-
tor Machines (LinSVM) with a linear kernel (Vap-
nik, 1998). We used the implementations of both
classifiers from ScikitLearn (Pedregosa et al., 2011)
which use Stochastic Gradient Descent for infer-
ence.

A vital role for good performance in both classi-
fiers is parameter tuning. We measure mean average
precision on our training set using 10 cross-fold val-
idation and 10 random restarts and optimise param-
eters using grid search for each feature set individu-
ally.

Different feature sets are expected to contribute

3
http://nlp.stanford.edu/projects/glove/
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Feature type Features CvD-LR CvD-LinSVM CvP-LR CvP-LinSVM DvP-LR DvP-LinSVM
Metadata 8 .576 .567 .588 .585 .816 .817
Unigram 41687 .838 .843 .850 .845 .831 .820
Brown 1000 .790 .784 .770 .770 .830 .834
NPMI 1000 .789 .770 .785 .774 .825 .822
W2V 2000 .808 .791 .786 .775 .850 .845
GloVe 2000 .788 .784 .780 .761 .844 .839
LDA 2000 .820 .812 .807 .794 .841 .835
LDA ER 500 .785 .787 .740 .736 .850 .834
Ensemble-Avg. 8 .854 .862 .850 .860 .856 .839
Ensemble-Lin. 8 .856 .867 .856 .840 .862 .866

Table 3: Average precision for each individual set of features and both classifiers. The three binary classifi-
cation tasks are Controls vs. Depressed (CvD), Controls vs. PTSD (CvP) and Depressed vs. PTSD (DvP).

to the general classification results with different in-
sights. A combination of features is thus preferable
in order to boost performance and also reduce vari-
ance or increase robustness.

We create an ensemble of classifiers, each of
which uses the different textual feature sets de-
scribed in the previous section. The predicted scores
for each model are used to train a logistic regression
classifier in order to identify the weights assigned
to each classifier before their output is combined
(Ensemble-Lin.). We also experimented with a non-
weighted combination of classifiers (Ensemble-
Avg.).

4 Results

The results of our methods on cross-validation are
presented in Table 3. Results using different feature
sets show similar values, with all unigram features
showing overall best results. However, we expect
that each set of features will contribute with distinc-
tive and complimentary information.

The ensemble methods show minor, but consis-
tent improvement over the scores of each individual
user set. The linear combination of different classi-
fiers shows better performance compared to the av-
erage by appropriately down-weighting less infor-
mative sets of features.

Figure 1 shows the three ROC (Receiver Operator
Characteristic) curves for our binary classification
tasks. These curves are specifically useful for med-
ical practitioners as the classification threshold can
be adjusted to obtain an application specific level of
false positives.

For example, we highlight that at a false positive
rate of 0.1, we reach a true positive rate of 0.8 for
separating Controls from users with PTSD and of
0.75 for separating Controls from depressed users.
Distinguishing PTSD from depressed users is harder
at small false positive rates, with only ∼ 0.4 true
positive rate.

5 Discussion and Conclusions

This paper reported on the participation of the World
Well-Being Project in the CLPsych 2015 shared task
on identifying users having PTSD or depression.

Our methods were based on combining linear
classifiers each using different types of word clus-
ters. The methods we presented were designed to be
as task agnostic as possible, aiming not to use medi-
cal condition specific keywords or data. We thus ex-
pect similar methods to perform well in identifying
other illnesses or conditions.

This generalised approach yielded results ranking
second in the shared task, scoring above 0.80 on all
tasks and reaching up to 0.87 for one of the binary
tasks. Further analysis shows that our models per-
form especially well at small false positive rates (up
to 0.8 true positive rate at 0.1 false positive rate)
where it ranked first.

Our perspective for future improvements is to use
other datasets with similar labels for illnesses in a
domain adaptation scenario, as more observations is
likely to lead to better prediction quality. Another
direction for possible improvement to our methods
is to use a ‘learning to rank’ algorithm in place of
classifiers.
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Figure 1: ROC curves and area under the curve for a selected set of features using Linear Support Vector
Classification. (+) denotes positive class.
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Abstract

This paper describes various systems from the
University of Minnesota, Duluth that partici-
pated in the CLPsych 2015 shared task. These
systems learned decision lists based on lexical
features found in training data. These systems
typically had average precision in the range of
.70 – .76, whereas a random baseline attained
.47 – .49.

1 Introduction

The Duluth systems that participated in the CLPsych
Shared Task (Coppersmith et al., 2015) explore the
degree to which a simple Machine Learning method
can successfully identify Twitter users who suffer
from Depression or Post Traumatic Stress Disorder
(PTSD).

Our approach was to build decision lists of
Ngrams found in training Tweets that had been au-
thored by users who had disclosed a diagnosis of De-
pression or PTSD. The resulting lists were applied
to the Tweets of other Twitter users who served as
a held–out test sample. The test users were then
ranked based on the likelihood that they suffered
from Depression or PTSD. This ranking depends on
the number of Ngrams found in their Tweets that
were associated with either condition.

There were eight different systems that learned
decision lists plus one random baseline. The result-
ing lists are referred to as DecisionList1 – Deci-
sionList 9, where the system that produced the list
is identified by the associated integer. Note that sys-
tem 9 is a random baseline and not a decision list.

2 Data Preparation

The organizers provided training data that consisted
of Tweets from 327 Twitter users who self–reported
a diagnosis of Depression, and 246 users who re-
ported a PTSD diagnosis. Each of these users had
at least 25 Tweets. There were also Control users
identified who were of the same gender and similar
age, but who did not have a diagnosis of Depres-
sion or PTSD. While each control was paired with a
specific user with Depression or PTSD, we did not
make any effort to identify or use these pairings.

If a Twitter user has been judged to suffer from
either Depression or PTSD, then all the Tweets as-
sociated with that user belong to the training data for
that condition. This is true regardless of the contents
of the Tweets. Thus for many users relatively few
Tweets pertain to mental illness, and the rest focus
on more general topics. All of the Tweets from the
Control users are also collected in their own training
set as well.

Our systems only used the text portions of the
Tweets, no other information such as location, date,
number of retweets, etc. was incorporated. The
text was converted to lower case, and any non–
alphanumeric characters were replaced with spaces.
Thus, hashtags became indistinguishable from text,
and emoticons were somewhat fragmented (since
they include special characters) but still included as
features. We did not carry out any spell checking,
stemming, or other forms of normalization.

Then, the Tweets associated with each of the con-
ditions was randomly sorted. The first eight million
words of Tweets for each condition were included
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in the training data for each condition. Any Tweets
beyond that were discarded. This cut–off was se-
lected since after pre-processing the smallest por-
tion of the training data (PTSD) included approx-
imately 8,000,000 words. We wanted to have the
same amount of training data for each condition so
as to simplify the process of feature selection.

3 Feature Identification

The decision lists were made up of Ngrams. Ngrams
are defined as sequences of N contiguous words that
occur within a single tweet.

Decision lists 3, 6, 7, and 8 used bigram (N ==
2) features, while 1, 2, 4, and 5 used all Ngrams
in size between 1 and 6. All of the Tweets in the
training data for each condition were processed sep-
arately by the Ngram Statistics Package (Banerjee
and Pedersen, 2003). All Ngrams of the desired size
were identified and counted. An Ngram must have
occurred at least 50 times more in one condition than
the other to be included as a feature. Any Ngram
made up entirely of stop words was removed from
decision lists 2, 5, 6, and 8. The stoplist comes from
the Ngram Statistics Package and consists of 392
common words, as well as single character words.

The task was to rank Twitter users based on how
likely they are to suffer from Depression or PTSD.
In two cases this ranking is relative to the Control
group (DvC and PvC), and in the third case the rank-
ing is between Depression and PTSD (DvP). A sep-
arate decision list is constructed for each of these
cases as follows. For the condition DvC, the fre-
quencies of the Ngrams from the Depression train-
ing data are given positive values, and the Ngrams
from the Control data are given negative values.
Then, the decision list is constructed by simply
adding those values for each Ngram and recording
the sum as the weight of the Ngram feature.

For example, iffeel tired occurred 4000 times in
the Depression training data, and 1000 times in the
Control data, the final weight of this feature would
be 3000. Ngrams with positive values are then in-
dicative of Depression, whereas those with negative
values point towards the Control group. An Ngram
with a value of 0 would have occurred exactly the
same number of times in both the Depression and
Control group and would not be indicative of either

system stoplist? Ngrams weights
3 N 2 binary
7 N 2 frequency
1 N 1–6 binary
4 N 1–6 frequency
6 Y 2 binary
8 Y 2 frequency
2 Y 1–6 binary
5 Y 1–6 frequency

Table 1: System Overviews.

condition. The same process is followed to create
decision lists for PvC and DvP.

Four of the systems limited the Ngrams in the
decision lists to bigrams, while four systems used
the Ngrams 1–6 as features. In the latter case, the
smaller Ngrams that are also included in a longer
Ngram are counted both as a part of that longer
Ngram, and individually as smaller Ngrams. For ex-
ample, if the trigramI am tired is a feature, then the
bigramsI am andam tired are also features, as areI,
am, tired.

4 Running the Decision List

After a decision list is constructed, a held out sam-
ple of test users can be evaluated and ranked for the
likelihood of Depression and PTSD. The Tweets for
an individual user are all processed by the Ngram
Statistics Package to identify the Ngrams. Then
the Ngrams in a user’s Tweets are compared to the
decision list and any time a user’s Ngram matches
the Decision List the frequency associated with that
Ngram is added to a running total. Keep in mind
that features for one class (e.g., Depression) will add
positive values, while features for the other (e.g.,
Control) will add negative values. This sum is kept
as all of an individual user’s Tweets are processed,
and in the end this sum will have either a positive
or negative value that will determine the the class of
the user. The raw score is used to rank the different
users relative to each other.

There is also a binary weighting variation. In this
case when a user’s Ngram is encountered in the De-
cision list, if the frequency is positive a value of 1 is
added to the running together, and if it is negative a
value of -1 is added. This is done for all of a user’s
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DvP DvC PvC
rank id prec id prec id prec
1 2 .769 2 .736 1 .721
2 5 .764 1 .731 2 .720
3 4 .761 3 .718 3 .708
4 1 .760 8 .718 6 .704
5 8 .738 6 .718 7 .607
6 7 .731 7 .713 8 .572
7 6 .730 4 .713 4 .570
8 3 .724 5 .710 5 .539
9 9 .471 9 .492 9 .489

Table 2: System Precision per Condition.

system DvC DvP PvC
1 20,788 23,552 19,973
4 20,788 23,552 19,973
2 18,617 21,145 17,936
5 18,617 21,145 17,936
3 5,704 6,385 6,068
7 5,704 6,385 6,068
6 4,442 4,998 4,747
8 4,442 4,998 4,747

Table 3: Number of Features per Decision List.

Tweets, and then whether this value is positive or
negative indicates the class of the user.

Table 1 briefly summarizes the eight decision list
systems. These systems vary in three respects :

• Whether the stoplist is used (Y or N),

• the length of the Ngrams used (2 or 1–6), and

• the type of weighting (binary or frequency).

All eight possible combinations of these settings
were utilized.

5 Results

Table 2 shows the average precision per system for
each of the three conditions.

Table 4 shows the average rank and precision at-
tained by each system across all three conditions. It
also lists the characteristics of each decision list.

When taken together, Tables 2 and 4 clearly show
that systems 2 and 1 are the most effective across the
three conditions. These two systems are identical,

except that 2 uses a stoplist and 1 does not. They
both use the binary weighting scheme and Ngrams
of size 1–6.

Table 3 shows the number of features per decision
list. The systems that use the ngram 1–6 features (1,
2, 4, 5) have a much larger number of features than
the bigram systems (3, 6, 7, 8). Note however that
in Table 2 there is not a strong correlation between
a larger number of features and improved precision.
While systems 1 and 2 have the highest precision
(and the largest number of features) systems 4 and 5
have exactly the same features and yet attain average
precision that is quite a bit lower than systems with
smaller numbers of features, such as 3 or 6.

Note that the pairs of systems that have the same
number of features in the decision list only differ in
their weighting scheme (bigram versus frequency)
and so the number of features would be expected to
be the same. Also note that the number of features
per condition for a given system is approximately
the same – this was our intention when selecting
the same number of words (8,000,000) per condition
from the training data.

6 Decision Lists

Below we show the top 100 entries in each decision
list created by system 2, which had overall the high-
est precision of our runs.

System 2 uses Ngrams of size 1–6 with stop
words removed and binary weighting of features.
The decision lists below show the Ngram feature and
the frequency in the training data. Note that Ngrams
that begin with u and are followed by numeric values
(e.g., u2764, u201d, etc.) are emoticon encodings.

All of the decision lists include a mixture of stan-
dard English features and more Web specific fea-
tures, such as portions of URLs and more notably
emoticons. Our systems treated these like any other
Ngram, and so a series of emoticons will appear
as an Ngram, and URLs are broken into fragments
which appears as Ngrams.

6.1 Decision List system 2, DvC

This decision list has 18,617 entries, the first 100 of
which are shown below. This decision list attained
average precision of 77%.

Features and positive counts inbold indicate De-
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avg ranks avg
system rank DvP, DvC, PvC precision stoplist? Ngrams weights

2 1.3 1, 1, 2 .742 Y 1–6 binary
1 2.3 4, 2, 1 .737 N 1–6 binary
3 4.7 8, 3, 3 .717 N 2 binary
6 5.3 7, 5, 4 .717 Y 2 binary
7 5.7 6, 6, 5 .684 N 2 frequency
4 5.7 3, 7, 7 .681 N 1–6 frequency
8 5.0 5, 4, 6 .676 Y 2 frequency
5 6.0 2, 8, 8 .671 Y 1–6 frequency
9 9.0 9, 9, 9 .484

Table 4: Average Rank and Precision over all Conditions.

pression, while those initalics are negative counts
that are associated with the Control.

http -26084; http t co -23935; http t -23906;
co -22388; t co -22210; ud83d -20341; ud83c
15764; lol -9429; please 8166; u2764 u2764 -
8127; u2764 u2764 u2764 -8017; u2764 u2764
u2764 u2764 -7947; u2764 u2764 u2764 u2764
u2764 -7852; u2764 -7769; u2764 u2764 u2764
u2764 u2764 u2764 -7767; gt -7078; love 6041;
u201c -5815; u201d -5635; follow 5578; amp -
5420; gt gt -5237; ufe0f 5138; re 4875; ud83d
ude02 -4841; ude02 -4839; photo -4791; fucking
4616; love you 4603; im 4542;u0627 -4412; rt -
4132; udf38 4046; ud83c udf38 4046; udc95 4033;
ud83d udc95 4033; u043e 3879; you re 3681;
u0430 3666; ve 3624; pj3l408vwlgs3 3606; don
t 3563; udf41 3543; ud83c udf41 3542; u0435
3530; ud83d ude02 ud83d -3529; ude02 ud83d -
3528; gt gt gt -3459; fuck 3372; please follow
3359; check -3357; ud83d ude02 ud83d ude02 -
3355; ude02 ud83d ude02 -3354; don 3298; i
love 3284; u2661 3088; udf38 ud83c 3058; ud83c
udf38 ud83c 3058; i don 3020; i don t 2976; i
ve 2962; udc95 ud83d 2922; ud83d udc95 ud83d
2922; u0438 2905; feel 2818;u0644 -2733; check
out -2703; udc95 ud83d udc95 2687; ud83d udc95
ud83d udc95 2687;photo http t co -2684; photo
http -2684; photo http t -2683; u043d 2581; fol-
low me 2517; udc95 ud83d udc95 ud83d 2511;
ud83d udc95 ud83d udc95 ud83d 2511; udc95
ud83d udc95 ud83d udc95 2464; ud83d udc95
ud83d udc95 ud83d udc95 2464; u0442 2405;lt
lt -2376; i love you 2371; today -2365; udc95

ud83d udc95 ud83d udc95 ud83d 2322; u0440
2289; b4a7lkokrkpq 2260; udf38 ud83c udf38
2236; ud83c udf38 ud83c udf38 2236; inbox 2218;
mean 2172; udf0c 2148; ud83c udf0c 2148;ud83d
ude02 ud83d ude02 ud83d -2147; ude02 ud83d
ude02 ud83d -2146; ni 2142; oh 2114;ud83d ude02
ud83d ude02 ud83d ude02 -2101; ude02 ud83d
ude02 ud83d ude02 -2100; u0441 2075; udf41
ud83c 2074; ud83c udf41 ud83c 2074;

6.2 Decision List system 2, PvC

This decision list has 17,936 entries, the first 100 of
which are shown below. This decision list attained
average precision of 74%.

Features and positive counts inbold indicate
PTSD, while those initalics are negative counts that
are associated with the Control.

ud83d -82824; rt -20230; ude02 -14516; ud83d
ude02 -14516; u2026 12941;gt -12727; u2764 -
10630; lol -9932; u201c -9736; ude02 ud83d -
9112; ud83d ude02 ud83d -9112; u201d -8962; gt
gt -8947; u2764 u2764 -8753; u2764 u2764 u2764
-8425; u2764 u2764 u2764 u2764 -8217; u2764
u2764 u2764 u2764 u2764 -8064; u2764 u2764
u2764 u2764 u2764 u2764 -7940; ude02 ud83d
ude02 -7932; ud83d ude02 ud83d ude02 -7932; co
7291; t co 7140;ud83c -6306; gt gt gt -6171; love
-5322; ude02 ud83d ude02 ud83d -5165; ud83d
ude02 ud83d ude02 ud83d -5165; ude0d -5058;
ud83d ude0d -5056; ude02 ud83d ude02 ud83d
ude02 -4901; ud83d ude02 ud83d ude02 ud83d
ude02 -4901; u043e 4877; u0430 4485;u0627 -
4251; u0435 4241; thank 4109; thank you 4079;
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gt gt gt gt -3936; im -3843; ude18 -3617; ud83d
ude18 -3617; please 3533; u0438 3526;shit -3337;
don -3288; health 3277;don t -3262; lt -3259; haha
-3175; lt lt -3172; ude02 ud83d ude02 ud83d ude02
ud83d -3094; u043d 3074; u0442 3065; answer
2998; my answer 2963; http 2937;ude29 -2932;
ud83d ude29 -2932; answer on 2930; tgtz to 2929;
tgtz 2929; on tgtz to 2929; on tgtz 2929; my an-
swer on tgtz to 2929; my answer on tgtz 2929;
my answer on 2929; answer on tgtz to 2929; an-
swer on tgtz 2929; ude2d -2911; ud83d ude2d -
2911; wanna -2873; day -2869; miss -2868; u0440
2855; nigga -2798; gt gt gt gt gt -2673; u0644
-2632; udc4c -2607; ud83d udc4c -2607; u0441
2581; ude0d ud83d -2574; ud83d ude0d ud83d -
2572; ptsd 2550; amp 2534; bqtn0bi 2510; help
2459; ude12 -2438; ud83d ude12 -2438; bitch -
2433; girl -2398; school -2395; ass -2355; lmao
-2288; u0432 2274;hate -2267; ain -2259; ain t
-2258; i love -2256; lt lt lt -2242; nhttp 2226;

6.3 Decision List system 2, DvP

This decision list has 21,145 entries, the first 100 of
which are shown below. This decision list attained
average precision of 72%.

Features and positive counts inbold indicate De-
pression, while those initalics are negative counts
that are associated with PTSD.

ud83d 62483; co -29679; t co -29350; http -
29021; http t -26110; http t co -24404; ud83c
22070; rt 16098;u2026 -13855; love 11363; ude02
9677; ud83d ude02 9675; im 8385;amp -7954; fol-
low 6927; don t 6825; don 6586; love you 6330;
gt 5649; ude02 ud83d 5584; ud83d ude02 ud83d
5583; i love 5540; ufe0f 5069; pj3l408vwlgs3
4806; please 4633; ude02 ud83d ude02 4578;
udc95 4577; ud83d ude02 ud83d ude02 4577;
ud83d udc95 4577; ude0d 4564; ud83d ude0d
4564; fuck 4474; re 4247; udf38 4112; ud83c
udf38 4112; i don t 3939; u201c 3921; i don 3882;
you re 3770; gt gt 3710; shit 3695; udf41 3604;
ud83c udf41 3603; follow me 3547; please follow
3506;news -3499; fucking 3499; hate 3491; u2661
3483; wanna 3410;thanks -3370; u201d 3327; i
love you 3276; school 3262;answer -3108; udc95
ud83d 3104; ud83d udc95 ud83d 3104; gonna
3103; udf38 ud83c 3068; ud83c udf38 ud83c
3068; health -3025; ude02 ud83d ude02 ud83d

3019; ud83d ude02 ud83d ude02 ud83d 3018; feel
2987; my answer -2977; people 2932;answer on -
2930; tgtz to -2929; tgtz -2929; on tgtz to -2929;
on tgtz -2929; my answer on tgtz to -2929; my an-
swer on tgtz -2929; my answer on -2929; answer on
tgtz to -2929; answer on tgtz -2929; b4a7lkokrkpq
2875; u2764 2861; omg 2852; ude02 ud83d ude02
ud83d ude02 2801; ud83d ude02 ud83d ude02
ud83d ude02 2800; udc95 ud83d udc95 2782;
ud83d udc95 ud83d udc95 2782;thank -2759;
photo -2749; gt gt gt 2712; great -2623; ude2d
2618; ud83d ude2d 2616; udc95 ud83d udc95
ud83d 2590; ud83d udc95 ud83d udc95 ud83d
2590; thank you -2587; ude0d ud83d 2541; ud83d
ude0d ud83d 2541; udc95 ud83d udc95 ud83d
udc95 2535; ud83d udc95 ud83d udc95 ud83d
udc95 2535; bqtn0bi -2533; nhttp -2525; harry
2506;ptsd -2502;

7 Indicative Features

The following results show the top 100 most fre-
quent Ngram features from the training data that
were also used in the Tweets of the user with the
highest score for each of the conditions. Recall that
for system 2 the weighting scheme used was binary,
so these features did not have any more or less value
than others that may have been less frequent in the
training data. However, given that each decision list
had thousands of features 3, this seemed like a rea-
sonable way to give a flavor for the kinds of features
that appeared both in the training data and in users’
Tweets. While not definitive, this will hopefully pro-
vide some insight into which of the decision list fea-
tures play a role in determining if a user may have
a particular underlying condition. Note that the very
long random alpha strings are anonymized Twitter
user ids.

7.1 Decision List system 2, DvC

This user used 3,267 features found in our decision
list, where 2,360 of those were indicative of Depres-
sion, and 907 for Control. This gives this user a
score of 1,453 which was the highest among all users
for Depression. What follows are the 100 most fre-
quent features from the training data that are indica-
tive of Depression that this user also employed in a
tweet at least one time.
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ud83c; please; love; follow; re; fucking; love
you; im; udf38; ud83c udf38; udc95; ud83d udc95;
you re; ve; don t; fuck; please follow; don; i love;
u2661; udf38 ud83c; ud83c udf38 ud83c; i don;
i don t; i ve; udc95 ud83d; ud83d udc95 ud83d;
feel; i love you; udf38 ud83c udf38; ud83c udf38
ud83c udf38; mean; ni; oh; think; why; actually;
guys; i ll; omg; ll; lt 3; n ud83c; people; hi;
3; udf38 ud83c udf38 ud83c; ud83c udf38 ud83c
udf38 ud83c; https; https t; https t co; udf38 ud83c
udf38 ud83c udf38; ud83c udf38 ud83c udf38 ud83c
udf38; sorry; okay; gonna; love you so; thank you; i
feel; bc; this please; otygg6yrurxouh; would mean;
i hope; loves; thank; love you so much; pretty;
friend; u2022; xx; cute; hope; hate; boys; depres-
sion; life; udf38 ud83c udf38 ud83c udf38 ud83c; a
lot; she loves; perfect; u2014; oh my; lot; i think;
thing; help; literally; u2661 u2661; the world; ve
been; yeah; they re; still; it would mean; my life;
friends; the fuck; crying; nplease

7.2 Decision List system 2, PvC

This user used 3,896 features found in our decision
list, where 2,698 of those were indicative of PTSD,
and 1,198 of Control. This gives this user a score
of 1,500 which was the highest among all users for
PTSD. What follows are the 100 most frequent fea-
tures from the training data that are indicative of
PTSD that this user also employed in a tweet at least
one time.

u2026; co; t co; thank; thank you; please;
health; answer; http; ptsd; amp; bqtn0bi; help;
nhttp; ve; http t; https; nhttp t; https t; nhttp
t co; https t co; read; medical; thanks; women;
obama; i ve; ebola; oxmljtykruvsnpd; tcot;
think; http u2026; curp4uo6ffzn2x1qckyok78w2hl
u2026; news; thanks for; fbi; ferguson; chil-
dren; support; mental; mentalhealth; story;
curp4uo6ffzn2x1qckyok78w2hl; fucking; hope; liv-
ing; http http t co; http http t; http http; auspol; sign;
war; veterans; police; freemarinea; i think; bbc; god;
woman; men; 2014; white; great; found; child; ago;
drugs; kind; book; report; thank you for; n nhttp;
agree; healthy; military; ppl; sure; n nhttp t; dvfr-
pdjwn4z; n nhttp t co; please check; care; writing;
please check out; america; israel; tcot http; law;
please check out my; bqtn0bi tcot; lot; son; kids; tcot
http t; uk; isis; homeless; petition; the fbi; daughter

7.3 Decision List system 2, DvP (Depression)

This user used 3,797 features found in our decision
list, where 2,945 of those were indicative of De-
pression, and 852 for PTSD. This gives this user
a score of 2,093 which was the highest among all
users for Depression when gauged against PTSD.
Note that this is a different user than scored high-
est in DvC. What follows are the 100 most frequent
features from the training data that are indicative of
Depression as opposed to PTSD that this user also
employed in a tweet at least one time.

ud83d; ud83c; rt; love; ude02; ud83d ude02; im;
follow; don t; don; love you; gt; ude02 ud83d;
ud83d ude02 ud83d; i love; ufe0f; please; ude02
ud83d ude02; udc95; ud83d ude02 ud83d ude02;
ud83d udc95; ude0d; ud83d ude0d; fuck; re; udf38;
ud83c udf38; i don t; u201c; i don; you re; gt
gt; shit; udf41; ud83c udf41; follow me; fucking;
hate; u2661; wanna; u201d; i love you; school;
udc95 ud83d; ud83d udc95 ud83d; gonna; ude02
ud83d ude02 ud83d; ud83d ude02 ud83d ude02
ud83d; feel; people; u2764; omg; ude02 ud83d
ude02 ud83d ude02; ud83d ude02 ud83d ude02
ud83d ude02; gt gt gt; ude2d; ud83d ude2d; ude0d
ud83d; ud83d ude0d ud83d; happy; guys; oh; girl;
mean; cute; i hate; girls; okay; why; ude18; ud83d
ude18; udf41 ud83c; ud83c udf41 ud83c; n ud83c;
boys; udf42; ud83c udf42; ude02 ud83d ude02
ud83d ude02 ud83d; bitch; bc; gt gt gt gt; perfect;
miss; love you so; sleep; ude0d ud83d ude0d; ud83d
ude0d ud83d ude0d; ude12; ud83d ude12; night; ni;
u2022; life; i feel; wait; my life; ur; day; u263a; hi

7.4 Decision List system 2, DvP (PTSD)

This user used 4,167 features found in our deci-
sion list, where 2,885 of those were indicative of
PTSD, and 1,282 for Depression. This gives this
user a score of 1,603 which was the highest among
all users for Depression when gauged against PTSD.
Note that this is the same user that scored highest in
PvC. What follows are the 100 most frequent fea-
tures from the training data that are indicative of
PTSD as opposed to Depression that this user also
employed in a tweet at least one time.

co; t co; http; http t; http t co; u2026;
amp; news; thanks; answer; health; thank; photo;
great; thank you; bqtn0bi; nhttp; ptsd; obama;
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nhttp t; nhttp t co; thanks for; medical; u2019s;
read; women; tcot; curp4uo6ffzn2x1qckyok78w2hl;
curp4uo6ffzn2x1qckyok78w2hl u2026; oxmljtykru-
vsnpd; check; fbi; http u2026; ebola; today; ppl;
help; support; ferguson; check out; police; sign;
book; veterans; work; blog; children; war; 2; coun-
try; gop; living; thanks for the; report; freemarinea;
auspol; u2019t; military; media; bbc; woman;
house; men; u2026 http; truth; white; u2026 http
t; u2026 http t co; http http; http http t; http http
t co; posted; n nhttp; son; story; a great; photo
http; n nhttp t; photo http t; photo http t co; law;
n nhttp t co; healthy; america; dvfrpdjwn4z; state;
tcot http; agree; mt; government; please check; god;
kids; share; please check out; tcot http t; way; please
check out my; case; bqtn0bi tcot

8 Discussion and Conclusions

This was our first effort at analyzing text from so-
cial media for mental health indicators. Our sys-
tem here was informed by our experiences in other
shared tasks for medical text, including the i2b2
Smoking Challenge (Pedersen, 2006; Uzuner et al.,
2008), the i2b2 Obesity Challenge (Pedersen, 2008;
Uzuner, 2009), and the i2b2 Sentiment Analysis of
Suicide Notes Challenge (Pedersen, 2012; Pestian et
al., 2012).

In those shared tasks we frequently observed
that rule based systems fared reasonably well, and
that machine learning methods were prone to over–
fitting training data, and did not generalize terribly
well. For this shared task we elected to take a very
simple machine learning approach that did not at-
tempt to optimize accuracy on the training data, in
the hopes that it would generalize reasonably well.

However, this task is quite distinct in that the data
is from Twitter. In the other shared tasks mentioned
data came either from discharge notes, or suicide
notes, all of which were generally written in stan-
dard English. We did not attempt to normalize ab-
breviations or misspellings, and we did not handle
emoticons or URLs any differently than ordinary
text. We also did not utilize any of the information
available from Tweets beyond the text itself. These
are all issues we plan to investigate in future work.

While it was clear that the Ngram 1–6 features
performed better than bigrams, it would be interest-

ing to know if the increased accuracy came from
a particular length of Ngram, or if all the different
Ngrams contributed equally to the success of Ngram
1–6. In particular we are curious as to whether or not
the unigram features actually had a positive impact,
since unigrams may tend to be both noisier and more
semantically ambiguous.

Likewise, the binary weighting was clearly supe-
rior to the frequency based method. It seems impor-
tant to know if there are a few very frequent features
that are skewing these results, or if there are other
reasons for the binary weighting to result in such
better performance.

While is it difficult to generalize a great deal from
these findings, there is some anecdotal evidence that
these results have some validity. First, the user that
was identified as most prone to Depression when
compared to Control (in DvC) was different from
the user identified as most prone to Depression when
compared to PTSD (in DvP). This seems consistent
with the idea that a person suffering from PTSD may
also suffer from Depression, and so the DvC case is
clearly distinct from the DvP since in the latter there
may be confounding evidence of both conditions.

In reviewing the decision lists created by these
systems, as well as the features that are actually
found in user’s Tweets, it seems clear that there
were many somewhat spurious features that were
included in the decision lists. This is not surpris-
ing given that features were included simply based
on their frequency of occurrence - any Ngram that
occurred 50 times more in one condition than the
other would be included as a feature in the deci-
sion list. Moving forward having a more selective
method for including features would surely help im-
prove results, and provide greater insight into the
larger problem of identifying mental illness in social
media postings.
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1 Introduction

The 2015 ACL Workshop on Computational Lin-
guistics and Clinical Psychology included a shared
task focusing on classification of a sample of Twit-
ter users according to three mental health categories:
users who have self-reported a diagnosis of depres-
sion, users who have self-reported a diagnosis of
post-traumatic stress disorder (PTSD), and control
users who have done neither (Coppersmith et al.,
2015; Coppersmith et al., 2014). Like other shared
tasks, the goal here was to assess the state of the
art with regard to a challenging problem, to advance
that state of the art, and to bring together and hope-
fully expand the community of researchers inter-
ested in solving it.

The core problem under consideration here is the
identification of individuals who suffer from men-
tal health disorders on the basis of their online lan-
guage use. As Resnik et al. (2014) noted in their
introduction to the first ACL Workshop on Compu-
tational Linguistics and Clinical Psychology, few so-
cial problems are more costly than problems of men-
tal health, in every possible sense of cost, and iden-
tifying people who need help is a huge challenge for
a variety of reasons, including the fear of social or
professional stigma, an inability of people to recog-
nize symptoms and report them accurately, and the
lack of access to clinicians. Language technology
has the potential to make a real difference by offer-
ing low-cost, unintrusive methods for early screen-
ing, i.e. to identify people who should be more thor-
oughly evaluated by a professional, and for ongoing
monitoring, i.e. to help providers serve their patients
better over the long-term continuum of care (Young
et al., 2014).

This paper summarizes the University of Mary-
land contribution to the CLPsych 2015 shared task.
More details of our approach appear in Resnik et al.
(2015), where we also report results on preliminary
experimentation using the CLPsych Hackathon data
(Coppersmith, 2015).

2 System Overview

In our system, we build on a fairly generic super-
vised classification approach, using SVM with a lin-
ear or RBF kernel and making use of baseline lexical
features with TF-IDF weighting.

2.1 Variations explored
The innovations we explore center on using topic

models to develop features that capture latent struc-
ture in the dataset, going beyond “vanilla” latent
Dirichlet allocation (Blei et al., 2003) to include su-
pervised LDA (Blei and McAuliffe, 2008, sLDA)
as well as a supervised variant of the “anchor” al-
gorithm (Arora et al., 2013; Nguyen et al., 2015,
sAnchor). Putting together various combinations in
our experimentation — linear vs. RBF kernel, big
vs. small vocabulary, and four feature configura-
tions (namely sLDA, sAnchor, lexical TF-IDF, and
all combined), we evaluated a total of 16 systems
for each of the three shared tasks (discriminating
depression vs. controls, depression vs. PTSD, and
PTSD vs. controls) for a total of 48 systems in all.

In general below, systems are named simply by
concatenating the relevant elements of the descrip-
tion. For example, combobigvocabSVMlinear 1 is
the name of the system that uses (a) an SVM with
linear kernel (SVMlinear), (b) models computed us-
ing the big vocabulary (bigvocab, details below),
and (c) the “all combined” feature configuration
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(combo). The numerical suffix is for internal ref-
erence and can be ignored. The names of all sys-
tems are shown in the legends of Figure 1 grouped
by each pair of conditions.

As an exception to our general scheme, we also
explored using sLDA to make predictions directly
rather than providing topic posterior features for the
SVM, i.e. by computing the value of the regression
variable as a function of the posterior topic distribu-
tion given the input document (Blei and McAuliffe,
2008, sLDA). These systems are simply referred to
as SLDA Prediction.

2.2 SLDA and SAnchor topic features
We briefly describe the features we used based

on sLDA and sAnchor; see Resnik et al. (2015)
for more details, as well as sample topics induced
by these models on the closely related CLPsych
Hackathon dataset. For both topic models, we
used posterior topic distributions, i.e. the vector
of Pr(topick|document), k = 1..K in a K-topic
model, as features for supervised learning.

SLDA posteriors with informed priors. To take
full advantage of the shared task’s labeled training
data in a topic modeling setting, we opted to use
supervised topic models (sLDA, introduced by Blei
and McAuliffe (2008)), as a method for gaining
both clinical insight and predictive ability. How-
ever, initial exploration with the training dataset pro-
vided noisy topics of variable quality, many of which
seemed intuitively unlikely to be useful as predic-
tive features in the mental health domain. Therefore
we incorporated an informed prior based on a model
that we knew to capture relevant latent structure.

Specifically, we followed Resnik et al. (2013)
in building a 50-topic model by running LDA on
stream-of-consciousness essays collected by Pen-
nebaker and King (1999) — a young population that
seems likely to be similar to many authors in the
Twitter dataset. These 50 topics were used as in-
formed priors for sLDA.

Tables 3 to 5 show the top words in the sLDA
topics with the 5 highest and 5 lowest Z-normalized
regression scores, sLDA having been run with pa-
rameters: number of topics (k) = 50, document-
topic Dirichlet hyper-parameter (α) = 1, topic-word
Dirichlet hyper-parameter (β) = 0.01, Gaussian
variance for document responses (ρ) = 1, Gaussian

variance for topic’s regression parameters (σ) = 1,
Gaussian mean for topic’s regression parameters (µ)
= 0.0, using binary variables for the binary distinc-
tion in each experimental task.

Supervised anchor (SAnchor) posteriors. The
anchor algorithm (Arora et al., 2013) provides a fast
way to learn topic models and also enhances inter-
pretability by automatially identifying a single “an-
chor” word associated with each topic. For example,
one of the topics induced from the Hackathon tweets
is associated with the anchor word fat and is charac-
terized by the following most-probable words in the
topic:

fat eat hate body sleep weight girl bed skinny
cry fast beautiful die perfect cross hair ugh
week sick care

Nguyen et al. (2015) introduce SANCHOR, a su-
pervised version of the anchor algorithm which, like
sLDA, jointly models text content along with a per-
document regression variable. We did not explore
informed priors with SANCHOR in these experi-
ments; this is left as a question for future work.

2.3 Classifier details
The majority of our experiments used SVM

classifiers with either a linear or an RBF kernel.
Specifically, we used the python scikit-learn mod-
ule (sklearn.svm.SVC), which interfaces with the
widely-used libsvm. Default parameters were used
throughout except for the class weight parameter,
which was set to None.

In the SLDA Prediction experiments, we fol-
lowed Blei and McAuliffe (2008) in computing the
response value for each test document from η>z̄
where z̄ is the document’s posterior topic distribu-
tion and the ηs are the per-topic regression param-
eters. SLDAPrediction 1 and SLDAPrediction 2
were conducted with small and big vocabularies, re-
spectively.

2.4 Data Preparation
Data organization: weekly aggregation. To
overcome potential problems for topic modeling
with documents that are too small (individual
tweets) or too large (all tweets for an author) we
grouped tweets together by the week they were
posted. Thus each author corresponded to several
documents, one for each week they tweeted one or
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Notes Valence Top 20 words

high emotional valence e life live dream change future grow family goal mind rest decision marry chance choice successful career set regret support true
high emotional valence e love life happy heart amaze hurt perfect crazy beautiful lose smile cry boy true fall real sad relationship reason completely
relationship problems n time boyfriend friend relationship talk person break doe happen understand hard trust care spend reason san situation antonio date leave
transition to college n school college student semester university experience hard grade parent graduate freshman campus learn texas attend teacher expect challenge adjust education
self-doubt n question realize understand completely idea sense level bring issue concern simply situation lack honestly admit mention fear step feeling act
poor ego control n yeah suck wow haha stupid funny hmm crap crazy blah freak type ugh weird lol min gosh hey bore hmmm
feeling ignored/annoyed * n call talk phone doe stop bad ring message loud head homework answer cell mad forget annoy sound hurt suppose mine
somatic complaints n cold hot feel sick smell rain walk start weather bad window foot freeze nice wait throat day heat hate warm
emotional distress * n feel happy day sad depress feeling cry scar afraid lonely head moment emotion realize confuse hurt inside guilty fear upset
family of origin issues n mom dad family sister parent brother kid child mother father grow doctor baby hard cousin die age cry proud husband
negative affect * n damn hell doe shit fuck smoke woman hate drink piss sex drug kid god bitch time real break screw cigarette
anxiety over failure n worry hard study test class lot grade focus mind start nervous stress concentrate trouble reason easier hop harder fail constantly
negative affect* n hate doe bad stupid care understand time suck happen anymore mad don mess scar horrible smart matter hat upset fair
sleep disturbance* n sleep tire night morning wake bed day time late stay hour asleep nap fall start tomorrow sleepy haven awake lay
somatic complaints n hurt eye hear itch hand air sound tire nose arm loud leg leave noise finger smell neck stop light water
social engagement p game football team win ticket excite school weekend week texas run lose night season saturday sport dallas longhorn coach fan
exercise, good self-care p run day feel walk class wear lose weight buy gym gain short fat dress shop exercise campus clothe body shirt

Table 1: LDA topics from Pennebaker stream-of-consciousness essays identified by a clinician as most relevant for
assessing depression. Topics with negative valence (n) were judged likely to be indicators for depression, those with
positive valence (p) were judged likely to indicate absence of depression, and those labeled (e) have strong emo-
tional valence without clearly indicating likely assessment. Asterisked topics were viewed as the strongest indicators.
Many more of the 50 topics from this model were intuitively coherent but not judged as particularly relevant for the
depression-assessment task. This table is reproduced from Resnik et al. (2015).

more times; each document was treated as being la-
beled by the author’s individual-level label. In pre-
liminary experimentation, we found that this tem-
poral grouping greatly improved the performance of
our models, though it should be noted that organiz-
ing the data in this way fails to account for the fact
that an author’s mental health can vary greatly from
week to week. For instance, a user identified as hav-
ing depression at some point may not be experienc-
ing symptoms in any given week, yet that week’s
document would still be labeled as positive for de-
pression. This could potentially be mitigated in fu-
ture work by attempting to identify the time of diag-
nosis and increasing the label weight on documents
near that time.

Token pre-processing and vocabularies. All sys-
tems went through the same basic pre-processing:
we first removed words with non-alphanumeric
characters, emoticon character codes, and stop
words.1 The remaining tokens were further lemma-
tized.

For SVM classification we explored using sys-
tems with both small and big vocabularies. For
the former, we first filtered out documents with less
than 50 tokens and then selected tokens that ap-
peared more than 100 documents; the latter was ob-
tained in a similar fashion, except setting the word-
per-document cutoff to 10 rather than 50, and the

1Unicode emoticons were left in, converted to the token
EMOJI.

document-per-word cutoff to 30 instead of 100.2

For sLDA prediction, we used an external vo-
cabulary produced from the set of 6,459 stream-
of-consciousness essays collected between 1997
and 2008 by Pennebaker and King (1999), who
asked students to think about their thoughts, sensa-
tions, and feelings in the moment and “write your
thoughts as they come to you”. As discussed in
Section 2, running LDA on this dataset provided
informative priors for sLDA’s learning process on
the Twitter training data. The student essays aver-
age approximately 780 words each, and for unifor-
mity, we pre-processed them with the same tools as
the Twitter set.3 We created a shared vocabulary for
our models by taking the union of the vocabularies
from the two datasets, resulting in a roughly 10-20%
increase in vocabulary size over the Twitter dataset
alone.

Author-level features. In order to arrive at a sin-
gle feature vector for each author based on docu-
ments aggregated at the weekly level, we weight-
averaged features across weeks, where weights cor-
responded to the fraction of the author’s tweets as-
sociated with each week alone. In other words, the
more an author posted in a week, the more impor-
tant that week’s features would be, compared to the

2When referring to vocabulary size, we use the terms short
and small interchangeably.

3With the exception of the document count filters, due to the
different number and sizes of documents, which were adjusted
accordingly.
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other weeks.

Data splits. We did an 80-20 partition into train-
ing and development sets, respectively. Since we
did not do any hyper-parameter tuning, the dev set
was used primarily for sanity checking and to get a
preliminary sense of system performance. We report
test set results based on models that were trained on
the training set alone.4

3 Results

3.1 Overall results and ROCs
The ROC curves for all our submitted systems

on the shared tasks (Section 2) are shown in Fig-
ure 1. The area under curve (AUC) scores for TF-
IDF (baseline) and all configurations of combined
features (best systems) are shown in Table 2, from
which we see that the 8 best-performing feature con-
figurations achieved an average AUC of about 0.84.
We obtained the best overall results when we used
a big vocabulary, combined all features, and trained
a linear SVM. We saw that bigger vocabularies im-
proved performance of linear SVMs but not RBF
SVMs, and that, in general, linear SVMs did better.

The order of difficulty for these discrimination
problems seems to be DvP > DvC > PvC, judg-
ing from the performance of our top 8 systems.
This suggests that there may be greater overlap of
linguistic signal between tweets from people who
have self-reported PTSD and those who have self-
reported depression, which is not entirely surprising
since the two conditions often co-occur. According
to Tull (2015), “Depression is one of the most com-
monly occurring disorders in PTSD... [A]mong peo-
ple who have or have had a diagnosis of PTSD, ap-
proximately 48% also had current or past depression
...People who have had PTSD at some point in their
life are almost 7 times as likely as people without
PTSD to also have depression.”

3.2 Qualitative discussion for sLDA
To get a sense of the role that supervised topic

modeling may be playing, we take a brief qualita-
tive look at the topics induced by sLDA on the train-
ing set. Tables 3,4, and 5 show the most polarized

4It is possible that modest improvements could be obtained
by folding the dev set back into the training data, but we wished
to avoid inspecting the dev set so that we can continue to use it
for further development.

Feature configuration / Problem AUC DvC DvP PvC
tfidfshortvocabSVMlinear 0.824 0.808 0.860
tfidfbigvocabSVMlineasr 0.845 0.827 0.884
tfidfshortvocabSVMrbf 0.831 0.812 0.872
tfidfbigvocabSVMrbf 0.815 0.798 0.855
comboshortvocabSVMlinear 0.841 0.832 0.879
combobigvocabSVMlinear 0.860 0.841 0.893
comboshortvocabSVMrbf 0.835 0.818 0.876
combobigvocabSVMrbf 0.830 0.811 0.869

Table 2: Area under curve (AUC) of selected feature con-
figurations in Fig. 1 per each problem: depression vs.
control (DvC), depression vs. PTSD (DvP) and PTSD
vs. control (PvC). Boldface: big vocabulary, combined
features, SVM linear. This setting was the best for all
three tasks.

topics resulting from the sLDA models constructed
on the DvC, DvP and PvC tasks respectively, where
polarization is measured by the value of the sLDA
regression variable for the topic. The topics we see
are not as clean and coherent as the topics in Ta-
ble 1, which is unsurprising since the latter topics
came from LDA run on individually coherent doc-
uments (stream-of-consciousness essays) collected
from a more uniform population (UT Austin col-
lege students) (Pennebaker and King, 1999), as con-
trasted with aggregations of tweets over time from a
sample of Twitter users.

At the same time, there does seem to be inter-
pretable signal distinguishing the high versus low
polarity topics, at least in comparisons against con-
trols. Comparing depression vs. control (Table 3),
we see subdivisions of negative affect — for exam-
ple, the most depression-oriented topic, as identified
using positive regression values, is dominated by
negatively oriented interjections (fuck, shit, damn,
etc.), and the next most depression oriented topic
appears to largely capture relationship discussion
(omg, cute, cry, guy, feel, hot, pretty). Conversely,
the least depression-oriented topics in the table, i.e.
with the most negative regression values, contain
not only many positive affect terms (lol, haha, etc.)
but also activities related to family (car, weekend,
home) and social activity (food, tonight, party, din-
ner, weekend).

In PTSD vs. control (Table 5), we see, among the
topics more oriented toward PTSD users, topics that
may be related to attention to veteran issues (sign,
support, homeless, petition, marine), and possibly
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Figure 1: ROC curves of submitted systems.

Regression value Top 20 words

5.362 fuck shit bitch sex smoke dick drink girl damn fuckin suck weed wanna life wtf hell gonna gay hate drug
4.702 omg cute cry gonna god guy demi idk literally feel wow hot pretty dont bye perfect pls ugh omfg laugh
4.204 line feel people cross friend comment doe start time link mental depression life live health submit deal talk lot issue
3.132 watch movie time episode read write season totally book favorite play character awesome scene star stuff cool horror start hug
2.877 week post baby inbox month day hey pain ago pregnant hun girl start doe bad boy feel time ive private

-1.689 food tonight truck night bring android party dinner tomorrow weekend awesome island game free wine lunch bar complete jack live
-1.87 nigga shit bitch hoe bout real tho gotta ima aint money lil wit bruh tryna mad yall damn ppl smh
-2.584 lol lmao damn smh yea gotta hell dude gon tho watch baby lmfao EMOJI wtf black bro idk boo funny
-2.966 car weekend home house drive summer miss week beach family rain weather run dog ready leave cancer race ride hour
-3.017 haha hahaha yeah hahahaha time night hahah wait watch ill love feel drink dad brother sleep phone sister eat miss

Table 3: Most extreme sLDA topics from Twitter training data (Depression (1) vs. Control (-1))
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Regression value Top 20 words

3.342 harry boy direction louis niall liam guy zayn demi fan tweet fandom laugh video tour day love concert people proud
2.984 EMOJI EMOJI night love EMOJI EMOJI EMOJI EMOJI EMOJI EMOJI EMOJI EMOJI tonight miss girl people EMOJI happy feel tomorrow
2.933 yeah pretty lot stuff play doe cool time send weird wait aww favourite kinda twitter awesome wow happen cat sound
2.708 bitch lmao nigga shit girl wanna hoe talk fuck dick bae damn baby lmfao pussy EMOJI text school boy lil
2.227 girl cute wanna boy guy friend love hate hair text life mom kiss hot feel fall relationship literally boyfriend date

-1.847 kid halloween call guy drink beer fun college throw sam hey dress pick scream play star remember walk porn doe
-2.11 child read change public agree abuse issue record system service kid pay refuse article response court lie business company doe
-2.357 obama tcot vote american ppl ebola america president gop gun country isi texas pay law lie idiot democrat military illegal
-2.568 food live beach town local fresh city coffee time life ago meet house chef fish street change nyc month san
-2.682 ptsd learn fear create canada meet experience speak positive step battle join voice awareness hear youth future world understand key

Table 4: Most extreme sLDA topics from Twitter training data (Depression (1) vs. PTSD (-1))

Regression value Top 20 words

5.007 people woman doe call black white sex gay real kid word person twitter dude wrong lady marriage female marry tweet
3.581 sign support free share people day family time release send stand fight homeless petition marine pic hero home raise info
3.498 time doe cat lot tweet buy wife twitter feel haven move yep sit door house nice wear glad leave send
3.472 story child mother ptsd mom life son talk death surprise family mental parent woman care save daughter difference pls watch
3.238 feel day eat lose time fat body hard weight start run sleep gym workout fast cut stop food pain stay

-1.979 lol lmao ppl yea dat tho jus gotta wat smh kno dnt money yal dey damn cuz leo tht wen
-2.013 EMOJI love EMOJI EMOJI girl EMOJI day EMOJI EMOJI EMOJI EMOJI EMOJI EMOJI wanna miss people EMOJI EMOJI EMOJI night
-2.318 iphone apple player app phone bowl super youtube free update add ipad hand note box review pro game google play
-2.418 school class sleep tomorrow day feel hate bed tire home night hour homework study people teacher start wake boyfriend gonna
-2.743 haha hahaha yeah night love xxx sleep feel babe miss bed mum girl wait home ill bore boy phone tonight

Table 5: Most extreme sLDA topics from Twitter training data (PTSD (1) vs. Control (-1))

mental health issues including PTSD itself (story,
mother, ptsd, death, surprise, mental).

Consistent with the lower performance on depres-
sion vs. PTSD (DvP), in Table 4 no topics jump
out quite as forcefully as being polarized toward one
condition or the other, except for the most PTSD-
oriented topic, which appears as if it may concern
efforts to draw attention to PTSD (ptsd, learn, fear,
speak, positive, step, battle, join, voice, awareness).
It may be, however, that in incorporating the de-
pression vs. PTSD distinction, the model is actually
capturing broader characteristics of relevant subpop-
ulations: particularly in this dataset, people self-
reporting a PTSD diagnosis may well be older on
average than people self-reporting a depression di-
agnosis, if not chronologically than in terms of life
experience. The topic with the most positive regres-
sion value in the table, i.e. leaning toward depres-
sion rather than PTSD, includes terms most likely
related to youth/pop culture: Niall Horan, Harry
Styles, Liam Payne, and Louis Tomlinson are the
members of the pop boy band One Direction. Other
positive- (i.e. depression-)leaning topics in the table
also have a quality of disinhibition more character-
istic of younger people. In contrast, the negative-
(i.e. PTSD-)leaning topics in the table tend toward
more mature topics, including, for example, politics
and current affairs (obama, tcot (top conservatives
on Twitter), vote, ebola).

Although our efforts are still in an early stage,
our hope is that more sophisticated topic models can
not only enhance predictive accuracy, as in Table 2,
but also that observations like these about topics or
themes might help create insight for clinicians. Ex-
amples like the ones in Tables 1 and 3-5 can help es-
tablish face validity with clinicians by showing that
these models can capture things they already know
about. Others can potentially lead to new questions
worth asking, e.g. in Table 3, might the topic relat-
ing to entertainment (watch, movie, episode, read,
write, season, book) suggest a closer look at so-
cial isolation (staying in watching movies, reading
books) as a linguistically detectable online behav-
ior that might correlate with increased likelihood of
depression? If true, this would be consistent with,
and complement, Choudhury et al. (2013), who look
at non-linguistic measures of social engagement in
Twitter among their potential depression-related at-
tributes.5

4 Conclusions and Future Directions

In this paper we have briefly described the Univer-
sity of Maryland contribution to the CLPsych 2015
shared tasks. We found that TF-IDF features alone

5Although only an anecdotal observation involving two
rather different datasets, the Depression v Control ROC curve
in Figure 1 appears remarkably similar to the ROC curve in De
Choudhury et al’s Figure 4.
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performed very well, perhaps surprisingly well, on
all three tasks; TF-IDF combined with supervised
topic model posteriors resulted in an even more pre-
dictive feature configuration.

In future work, we plan to conduct a thorough er-
ror analysis to see where the models go astray. We
also plan to look at the extent to which our data or-
ganization may have influenced performance; in pre-
liminary experimentation in Resnik et al. (2015), we
found suggestive evidence that aggregating tweets
by week, rather than as a single document per user,
might make a significant difference, and that is the
strategy we adopted here. This may not just be a
question of document size — other time-based ag-
gregations may be worth exploring, e.g. grouping
tweets by time of day.
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Abstract 

Alzheimer’s Disease, as other mental and neu-
rological disorders, is difficult to diagnose 
since it affects several cognitive abilities 
shared with other impairments. Current diag-
nostic mainly consists of neuropsychological 
tests and history obtained from the patient and 
relatives. In this paper we propose a method-
ology for the characterization of probable AD 
based on the computational cognitive model-
ing of a language function in order to capture 
the internal mechanisms of the impaired brain. 
Parameters extracted from the model allow a 
better characterization of this illness than us-
ing only behavioral data. 

1 Introduction 

Document “Dementia. A public health priority” by 
the World Health Organization1 defines dementia 
as a syndrome, usually of a chronic or progressive 
nature, caused by a variety of brain illnesses that 
affect memory, thinking, orientation, comprehen-
sion, calculation, learning capacity, language, and 
judgment leading to an inability to perform every-
day activities. Current data estimate over 35.6 mil-
lion people worldwide affected by dementia and 
this number will double by 2030 and more than 
triple by 20502. Dementia is among the seven pri-

                                                             
1 www.who.int/mental_health/publications/ 
2 www.who.int/mental_health/neurology/dementia/ 

ority mental and neurological impairments1. Alt-
hough dementia is a collective concept including 
different possible causes or diseases (vascular, 
Lewy bodies, frontotemporal degeneration, Alz-
heimer), there are broad similarities between the 
symptoms of all them. Alzheimer’s Disease (AD) 
is the most common cause of dementia. Its early 
diagnosis may help people to have information in 
the present for making decisions about their future 
and to receive treatment as soon as possible.  

Clinical diagnosis of dementia happens after 
subjects realize memory loss or language difficul-
ties affecting their everyday activities. Usually, the 
therapist takes note of these subjective impair-
ments coupled with objective information given by 
some relative and then performs a battery of neu-
ropsychological tests. Besides, neuroimaging tech-
niques (MRI, PET) and biomarkers tests can 
strengthen the diagnosis process by discarding any 
other pathology. The drawback of these last tech-
niques is their high cost. So, a key point in detect-
ing this syndrome is to research about noninvasive 
and low cost diagnosis techniques whose applica-
tion could be extended to everybody at a very early 
stage even before appearing any subjective or ob-
servable symptom. 

One of the most common functions affected in 
dementia is language production (Hart and Semple, 
1990). Many of the structures and processes in-
volved in language processing are shared by dif-
ferent cognitive capacities. So, it would be possible 
to identify any cognitive impairment not directly 
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related to language at an early stage by analyzing 
language processing. 

The loss of communicative capability is detected 
in 80% of people at the first development stage of 
AD. Most research works relating AD and lan-
guage have mainly focused their efforts on the lex-
ical-semantics area (Cherktow and Bub, 1990) 
although there are also several studies showing 
linguistic problems in areas like phonology, syn-
tax, pragmatics and inflectional morphology and 
how these problems evolve along the disease´s 
stages (Taller and Philips, 2008).  

The majority of these works have been carried 
out in English but their results can be extended to 
other languages such as Spanish. An exhaustive 
analysis of linguistic processing in Spanish was 
performed by Cuetos el al. (2003) covering phono-
logical, syntactical and semantic areas. However, 
there is no study dealing with verbal morphology 
in Spanish. The closest reference work examining 
the effects of AD in past-participle and present-
tense production of real regular and irregular verbs 
as well as novel verbs of the two first morphologi-
cal classes is in Italian (Walenski et al. 2009). The 
pattern found is the same as in English inflection: 
dementia patients are impaired at inflecting real 
irregular verbs but not real regular verbs for both 
tenses or novel verbs (Ullman, 2004).  

Although there exist many neuropsychological 
tests used to diagnose dementia (Pasquier, 1999), 
like MMSE (Mini-Mental State Examination) 
(Folstein et al., 1975), they have a low sensibility 
at early stages and do not provide an individual 
and distinguishing measure of the disease. Lan-
guage tests have proven to be very useful tools in 
identifying different types of mental disorders 
(Stevens et al., 1996).  

In (Cuetos et al., 2003) the authors build a sup-
port model for the diagnosis of probable AD from 
the results of tasks belonging to phonological, syn-
tactic and semantics areas by using a linear regres-
sion analysis. Other research work (Bucks et al., 
2000) finds the predictive markers of probable AD 
by Principal Component Analysis (PCA) from 
measures of spontaneous narrative speech. The 
same kind of measures were processed by different 
machine learning methods resulting in classifica-
tion models with a high predictive power (Thomas 
et al., 2005), which were able to detect the type of 
disorder even in pre-symptomatic subjects (Jarrold 
et al., 2010). These works demonstrate, on the one 

hand, the role of language use as a behavioral 
measure; on the other, the potential value of the 
computational analysis of language as a characteri-
zation and diagnostic means and, specifically, the 
capability of machine learning techniques to de-
velop descriptive and predictive models of mental 
disorders from language use.  

In other cognitive impairments related to lan-
guage production (Oliva et al., 2014), the perfor-
mance of classification models obtained with 
machine learning techniques have shown to be bet-
ter than statistical methods like regression or lineal 
discriminant analyses. Nevertheless, to the best of 
our knowledge, there is no study about modeling 
by machine learning methods the behavior of na-
tive Spanish-speakers with dementia by using 
measures extracted from verbal morphology tests. 

As stated before, there exist different types of 
dementia as a consequence of diverse diseases that 
share similar symptoms and behavioral patterns. A 
deeper knowledge about the specific structural or 
functional causes of this syndrome and so about 
the underlying disease can be gained by neuroim-
aging techniques. But these techniques are expen-
sive and their use is not generally extended. The 
efficacy of a therapy or treatment depends on how 
the disease affects the patient individually. How-
ever, most studies present a profile of average be-
havior behind disorders. A novel way to overcome 
this lack of personalized information about the pa-
tient can be supplied by computational modeling of 
individual patients’ behavior when patients per-
form a certain cognitive task. 

A cognitive architecture is a general framework 
to develop behavior computational models about 
human cognition (Anderson and Lebiere, 1998). 
This type of architecture must take into account the 
abilities (i.e. memory, learning, perception, motor 
action) and the boundaries (i.e. forgetting) of the 
human being. As a general theory about the struc-
ture and function of a complete cognitive system, a 
cognitive architecture determines the way percep-
tual, cognitive and motor processes interact in pro-
ducing behavior. The framework provided by a 
cognitive architecture allows the computational 
models supported by it to be neurologically and 
psychologically plausible. Computational model-
ing is an integral procedure for obtaining indirect 
measurements about structures and processes in-
volved when people accomplish a cognitive task 
(Iglesias et al., 2012; Serrano et al., 2009). A good 
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subject’s model must fit the behavior of such a 
subject, that is, it must generate statistically equiv-
alent data to the subject’s data. A well-known cog-
nitive architecture is ACT-R (Anderson, 2007). Its 
application to a language function as the task of 
acquiring verbal morphology in English (Taagten 
and Anderson, 2002) is based on the dual-
mechanism theory (Pinker and Prince, 1988), 
which posits that irregular forms of verbs are 
stored in memory as entries in the mental lexicon 
while regular forms are computed by rules. This 
same paradigm has been used to model the acquisi-
tion of a highly inflected verbal system like Span-
ish (Oliva et al., 2010) and the behavior of children 
with Specific Language Impairment (SLI) (Oliva et 
al., 2013). 

This paper presents a methodology for the char-
acterization and diagnosis of probable AD (pAD) 
for native-Spanish speakers based on the computa-
tional cognitive modeling of the subjects’ behavior 
when they perform verb inflection tasks. The set of 
variable values of each model are presented to su-
pervised machine learning algorithms to learn a 
classification and predictive model of data. The 
results of the preliminary study that we have car-
ried out show that the variables obtained from the 
computational cognitive models are very informa-
tive for the diagnosis process. Also it is important 
to note that this methodology can be easily extend-
ed to other languages and even to other cognitive 
impairments not necessarily related to language. 

2 Method 

As commented in the previous section, AD can 
present overlapping symptoms with other types of 
dementia and exhibit more deficits other than lan-
guage use. So, any methodology for the diagnosis 
of cognitive or mental impairments should have 
two main goals: generality and individualization. 
The methodology should be adequate to diagnose 
different cognitive impairments and, at the same 
time, it should take into account the individual dif-
ferences that are usually present on these impair-
ments. Here we present a methodology that 
achieves these two objectives applied to the partic-
ular case of pAD consisting mainly in: i) finding 
the task that exhibits behavioral differences be-
tween healthy and impaired subjects, ii) preparing 
the computational cognitive architecture with the 
knowledge to deal with the selected task, iii) mod-

eling the individual subject’s behavior to obtain the 
parameters of the architecture specific to each par-
ticipant, and iv) applying machine learning tech-
niques on the information given by the cognitive 
models to learn the classification model that sup-
ports impairment diagnosis. Next, the different 
steps of the methodology are explained and applied 
to characterize and diagnose pAD. 

2.1 Participants 

Twenty-two native-Spanish speakers were initially 
selected to take part in this preliminary study by 
the Centro de Referencia Estatal de Discapacidad y 
Dependencia (CRE) de León, Spain, distributed 
into twelve patients of pAD (six men, six women) 
and ten healthy control subjects (five men, four 
women) age-matched. pAD participants were iden-
tified by the MEC (Lobo et al., 1979) and Barcelo-
na tests (Peña-Casanova et al. 2005) for Spanish 
speakers. 
Three participants with pAD were discarded due to 
two of them have a low educational level and the 
third one was not originally from Spanish. The fi-
nal participants’ demographic features can be seen 
in Table 1. 

 
 pAD control 

Participants 9 10 
Avg. Age (SD) 69.33   (6.42) 67.3 (2.58) 
Sex 4F / 5M 5F / 5M 

Table 1. Participants’ demographic features. SD stands 
for Standard Deviation. 

2.2 Define target task 

The task to be carried out intends to reflect be-
havioral differences between pAD patients and 
control healthy individuals. Since patients with 
pAD have shown deficits with verbal morphology 
in English and Italian, we have selected a task of 
verb inflection consisting of two sets with 40 pairs 
of sentences. In selecting the sentences’ verbs, we 
have avoided reflexive, recent and onomatopoeic 
verbs. In the first set, devoted to present tense, all 
the sentences were presented at first person, singu-
lar and together a frequency adverb to denote that 
the action is usually performed. An example of this 
set is: a) A mí me gusta llevar pantalones vaqueros 
(I like to wear jeans) and b) Así que todos los días 
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… pantalones vaqueros (So I … jeans every day). 
In the second set, devoted to simple past, all sen-
tences were presented at third person, singular and 
together the adverb “ayer” (“yesterday”) to denote 
that the action was done in the past. An example of 
this set is: a) A Lola le gusta comer temprano (Lola 
likes to eat early) and b) Así que ayer Lola … tem-
prano (So Lola … early yesterday). 

In the two sets, 20 regular and 20 irregular verbs 
were used, respectively. These verbs were re-
trieved from the Reference Corpus of Current 
Spanish3 and matched in frequency (regular = 
44.79, irregular = 44.33, p = 0.98). All regular 
verbs, except one (“comer”-“to eat”), belonged to 
the first morphological class, or first conjugation, 
finishing the infinitival form of the verb with “–
ar”. Irregular verbs belonged to the second and 
third conjugation, finishing with “–er” and “–ir”, 
respectively. Both regular and irregular matched in 
orthographical (Number of letters: Infinitive form: 
regular = 6.4, irregular = 5.85, p = 0.29; Inflected 
form: regular = 5.48, irregular = 5.58, p = 0.74) 
and phonological length (Number of syllables: In-
finitive form: regular = 2.4, irregular = 2.25, p = 
0.41; Inflected form: regular = 2.4, irregular = 
2.35, p = 0.69), and consonant density (Infinitive 
form: regular = 1.62, irregular = 1.57, p = 0.62; 
Inflected form: regular = 1.18, irregular = 1.24, p = 
0.43) in order to avoid phonological factors biasing 
results. 

2.3 Behavioral profile 

Next, the procedure performed to collect this kind 
of data and the results obtained are briefly de-
scribed. 

Procedure: 80 pairs of sentences were random-
ly sorted and presented to all the participants. Eve-
ry participant had to read each sentence pair slowly 
and to fill the gap in the second sentence with the 
suited inflected form of the verb in the first sen-
tence. The answers of each participant are catego-
rized as follows: 1) Correct answers, 2) 
Overregularization or Irregularization errors, oc-
curring when the expected form was irregular or 
regular, respectively, 3) Number or Person (NP) 
errors, when fails the number or person affix, 4) 

                                                             
3 RAE. 2012. Real Academia Española: Banco de datos 

(CREA). Corpus de Referencia del Español Actual. 
http://www.rae.es. 
 

Mood, Tense or Aspect (MTA) errors, when fails 
the mood or tense or aspect affix, and 6) Other er-
rors, not included in the previous categories. 

Results: People with pAD made more mistakes 
when inflecting both past and present tenses. The 
results obtained show a clear deficit in producing 
irregular forms both in past and present tense in 
participants with pAD compared with controls, as 
seen in languages such as English (Ullman, 2004) 
and Italian (Walenski et al., 2009). Table 2 pre-
sents these results. Other types of errors made by 
participants with pAD holding statistical differ-
ences with the control group are overregularization 
ones in present tense and substitution errors of 
mood, tense or aspect. According to the dual-
mechanism theory (Pinker and Prince, 1988), er-
rors in irregular forms and MTA errors are focused 
on declarative memory fails since this memory 
stores irregular verb forms 

 
   pAD     control 
 
 
 
 
 
 
Present 
Tense 

 
 
Regular 
Forms 

 
Correct 
Irregularization 
NP Errors 
MTA Errors 
Other Errors 

 
0.983 0.995 
0 0 
0 0 
0.006 0 
0.013 0.005 

   
  

Irregular 
Forms 

Correct 
Irregularization 
NP Errors 
MTA Errors 
Other Errors 

0.911** 0.985 
0.028* 0.01 
0 0 
0.039* 0 
0.022 0.005 

 
 
 
 
 
 
Past 
Tense 

 
 
Regular 
Forms 

 
Correct 
Irregularization 
NP Errors 
MTA Errors 
Other Errors 

 
0.978 0.99 
0 0 
0 0 
0.011 0.005 
0.011 0.005 

  
 
Irregular 
Forms 

 
Correct 
Irregularization 
NP Errors 
MTA Errors 
Other Errors 

 
0.9** 0.98 
0.039 0.02 
0.006 0 
0.033** 0 
0.022* 0 

Table 2. Behavioral results. 

and their abstract grammatical features. In the 
same way, overregularization errors are predicted 
by this mechanism due to the application by proce-
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dural memory of a regular rule to produce an ir-
regular form when this form is not found in the 
declarative memory. 

2.4 Computational Cognitive Modeling  

The next step is to build a personalized computa-
tional cognitive model for the target task. The psy-
chological plausibility of the model is a key point. 
The cognitive architecture should be able to model 
the normal and the impaired behavior. It is also 
highly relevant how the architecture produces these 
behaviors because its parameters are to be used on 
the diagnosis process. The better the model mimics 
human behavior, the more useful would be the in-
formation obtained from it. 

Each individual computational cognitive 
model is obtained from a dual-mechanism cogni-
tive architecture for the acquisition of verbal mor-
phology in highly inflected languages like Spanish 
along children’ development. A more detailed de-
scription of this architecture can be found in (Oliva 
et al., 2010). We describe below the instantiation 
of this architecture to fit adults’ features and be-
havior in the verb inflection task: 

 
• Mechanisms: The architecture is based on 

two general strategies: memory retrieval 
and analogy. Using these two initial mech-
anisms, the architecture is able to use the 
regular rules and the irregular exceptions 
just using the examples from the input vo-
cabulary.  

• Parameters: The mechanisms of the archi-
tecture are controlled by a series of param-
eters that give shape to its behavior. These 
parameters form three main groups: de-
clarative memory parameters that control 
the retrieval of learned facts from memory 
(RT-retrieval threshold, ANS-noise intro-
duced into the memory retrieval process, 
BLL-forgetting factor, A0-initial activa-
tion); procedural memory parameters that 
control the learning and execution of rules 
(α) and the noise in the process of select-
ing a rule to execute (EGS); and grammat-
ical processing parameters that control 
how the architecture deals with the differ-
ent grammatical features (γm, controls the 
noise introduced into the perception of 
morphological features, C-PM, NP-PM 

and MTA-PM, which control the sensitivi-
ty of the model to each grammatical fea-
ture as conjugation, number-person and 
mood-time-aspect, respectively) when re-
trieving a verb form from memory. 

• Representation: The architecture uses se-
mantic and morphological information. 
Each verb form is represented by its mean-
ing and some grammatical features such as 
conjugation, number, person, mood, tense 
or aspect in the declarative memory.  

• Input vocabulary: The architecture uses the 
same 20 regular verbs and 20 irregular 
verbs in present and past tense, retrieved 
from the Reference Corpus of Current 
Spanish (RAE, 2012) and engaged in the 
target task. 
  

The procedure used to make the architecture 
mimic participants’ behavior lies in presenting to it 
randomly each of the 40 verbs in infinitive form 
and to ask for the present tense of the first person 
of singular or the past tense of the third person of 
singular, depending on the sentence pair.  

2.5 Subject modeling profile  

Our proposal is to obtain for each participant the 
set of parameter values of the computational cogni-
tive architecture that best fit the behavior of that 
participant.  
 

Type Attribute Range 
 
 
Declarative 
Memory 

RT 
ANS 
BLL 
A0 

-0.02 ± (5*0.62) 
 0.43 ± (5*0.34) 
 0.40 ± (5*0.31) 
-0.02 ± (5*0.62) 
 

 
Procedural  
Memory 

α 
EGS 

  
 0.20 ± (5*0.03) 
 0.13 ± (5*0.46) 

 
 
Grammatical  
Processing 

γm 
Conj-PM 
NP-PM 
MTA-PM 

            0.1 ± 0.5 
           -2.8 ± 5 
           -3.6 ± 5 
           -3.0 ± 5 
 

Table 3. Attributes and their range of values in the 
search space. 
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Procedure: This stage of the methodology re-
quires the use of an optimization algorithm for ob-
taining the architecture´s parameter values that 
adjust to the user´s behavior. We used an evolu-
tionary strategy (Beyer and Schwefel, 2002), 
where the genotype consists of the 9 parameters of 
the cognitive architecture mentioned above. To 
constrain the search space to psychologically plau-
sible values we used the database proposed by 
(Wong et al., 2010) shown in Table 3.  
 

Subset Type Attribute  Index 
  

Present 
Regular 

% Correct-PresReg 
% Irregul-PresReg 
% NP-PresReg 
% MTA-PresReg 
% Other-PresReg 

1 
2 
3 
4 
5 

 
 
 
Behavioral  
data 
 

 
Present 
Irregular 

% Correct-PresReg 
% Irregul-PresReg 
% NP-PresReg 
% MTA-PresReg 
% Other-PresReg 

6 
7 
8 
9 

10 

  
Past 
Regular 

% Correct-PresReg 
% Irregul-PresReg 
% NP-PresReg 
% MTA-PresReg 
% Other-PresReg 

11 
12 
13 
14 
15 

  
Past 
Irregular 

% Correct-PresReg 
% Irregul-PresReg 
% NP-PresReg 
% MTA-PresReg 
% Other-PresReg 

16 
17 
18 
19 
20 

  
Declarative 
Memory 

RT 
ANS 
BLL 
A0 

21 
22 
23 
24 

 
Cognitive 
data 

Procedural 
Memory 

α 
EGS 

25 
26 

  
Grammatical 
Processing 

γm 
Conj-PM 
NP-PM 
MTA-PM 

27 
28 
29 
30 

Table 4. Attributes used by machine learning methods. 

In order to model individuals with impairment, 
the range allowed for each of the parameters is de-

fined as the average value ± five standard devia-
tions (Thomas et al., 2003). Since dementia is an 
impairment happening in adulthood, when most 
verbs have been yet acquired, verbs in declarative 
memory have associated a default activation value 
equal to the forgetting factor (RT). The fitness 
function used was the minimum mean square error 
between the participant’s error rate vector and the 
model’s error rate vector and the operators were 
Gaussian mutation, an intermediate crossover op-
erator and 1:5 ratio for the parent population and 
the offspring sizes. 

Results: The behavioral profile of every partici-
pant at inflecting verb forms was modeled by the 
architecture. The parameter values for each partic-
ipant’s model were computed as the average value 
for 10 runs of the evolutionary strategy, with a stop 
criterion of 200 generations. The global correlation 
between the participants’ and models’ error vectors 
was of 0.92, showing a very high fitting degree. 
The values of these personalized cognitive model 
data could aid to determine the status of specific 
cognitive structures and processes. The efficiency 
of the modeling process is not taken account since 
time is not an important constraint in this applica-
tion. 

2.6 Application of machine learning tech-
niques  

The final stage of the methodology has a two-fold 
goal: a) applying different machine learning tech-
niques to both the behavioral and cognitive model 
data and analyzing their respective informative and 
discriminant power, and b) comparing both kind of 
data and the combination of them in the diagnosis 
process. Variables used by machine learning tech-
niques are shown in Table 4. 

Variable weighting: Cognitive model data pro-
vided further information than behavioral data for 
discriminating between pAD and control partici-
pants. First, variables of both behavioral profile 
and cognitive model sources were ordered by five 
attribute weighting methods, given by RapidMiner 
(Mierswa et al, 2006), which weight variables ac-
cording to different criteria. Table 5 presents the 
ranking, computed by each method (Information 
Gain (I.G), Correlation (C.), Chi-square (Chi-sq.), 
Rule weighting (R-W), SVM weighting (SVM-
W)), and the average ranking for every variable. 
From this, we also calculated the average ranking 
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for each information source and the global average 
ranking, seeking for statistical differences between 
sources.  

Figure 1 shows these average rankings with their 
standard deviations. In this figure, the variables 
related to cognitive model data have been indexed 
from 1 to 10 referring indexes from 20 to 30 in 
Table 4. 

 
Index I.G.  C. Chi2 R-W SVM-W   Avg. 

1 
2 
3 
4 
5 

11 
27 
28 
26 
16 

12 
26 
25 
20 
19 

13 
30 
26 
25 
20 

14 
25 
30 
24 
19 

16 
28 
26 
25 
17 

13.2 
27.2 
27.0 
24.0 
18.2 

6 
7 
8 
9 

10 

10 
2 

29 
7 

21 

13 
3 

27 
2 

28 

15 
9 

28 
4 

21 

12 
5 

26 
6 

29 

14 
7 

29 
8 

23 

12.8 
5.2 

27.8 
5.4 

24.4 
11 
12 
13 
14 
15 

17 
30 
25 
22 
23 

10 
29 
24 
14 
30 

8 
27 
29 
17 
18 

7 
28 
27 
12 
21 

4 
30 
27 
12 
21 

9.2 
28.8 
26.4 
15.4 
22.0 

16 
17 
18 
19 
20 

9 
12 
24 
1 

18 

4 
15 
23 
5 

16 

3 
10 
19 
2 

14 

8 
13 
23 
2 

22 

9 
13 
22 
11 
15 

6.6 
12.6 
22.2 

4.2 
17.0 

21 
22 
23 
24 

4 
5 
8 

14 

9 
6 

17 
8 

1 
11 
17 
7 

1 
4 

15 
11 

2 
3 

20 
6 

3.4 
5.8 

15.4 
9.2 

25 
26 

19 
13 

18 
11 

23 
14 

20 
10 

24 
10 

20.8 
11.6 

27 
28 
29 
30 

3 
15 
20 
6 

1 
22 
21 
7 

6 
16 
22 
5 

3 
16 
21 
9 

1 
18 
19 
5 

2.8 
17.4 
20.6 

6.4 

Table 5. Attributes sorted by 5 different attributes 
weighting methods and average rank (Avg.). The Index 

field refers to attributes’ index in Table 4. 

Behavioral data show that the most relevant var-
iables are mood, tense and aspect substitutions 
both in present and past tense forms of irregular 
verbs, overregularization in present tense and the 
percentage of correct past tense forms of irregular 
verbs. The group of behavioral data achieves an 
average ranking significantly lower (p<0.05) than 
cognitive model data using a two-tailed t-test. 

As can be seen in Figure 1, among the group of 
cognitive model data, the four variables with the 

lowest ranks present an average ranking of 4.6 that 
stand out on the six remaining variables, which 
have an average ranking of 15.83.  

Two of these four variables are related to the de-
clarative memory (RT and ANS, with indexes 1 
and 2 in abscises of Fig. 1, respectively) and the 
other two to the grammatical processing (γm and 
MTA-PM, with indexes 7 and 10 in abscises of 
Fig. 1, respectively). These results indicate that the 
major differences between pAD and controls rely 
on internal structures and mechanisms involving 
declarative memory affecting the retrieval of irreg-
ular forms and of their grammatical features as 
predicted in (Ullman, 2001).  

Predictive power: The full set of combined data 
had better performance metrics than individual 
data sets to correctly classify pAD. We evaluated 
the predictive power of data by four machine learn-
ing algorithms.  

The algorithms are applied on the behavioral da-
ta, cognitive model data and the combined set of 
behavioral and cognitive model data to assess the 
informative and discriminant role of every infor-
mation source in the classification performance. 
The cognitive model feature set is made only by 
the internal variables of the model (9 parameters). 
The behavioral feature set consists of the variables 
collected from participants (20 parameters corre-
sponding to six error categories for four combina-
tions tense-form). The third feature set is a 
combination of the two previous sets. 

 
Subset Metric SVM NB DT NN 
 
 
Behavioral 
data 
 

Sensitivity    
Specificity 
PR+ 
PR- 
AUC 

0.61 
0.64 
1.69 
0.61 
0.62 

0.65 
0.73 
2.41 
0.48 
0.68 

0.50 
0.54 
1.09 
0.93 
0.52 

0.54 
0.63 
1.46 
0.73 
0.60 

 
 
Cognitive  
data 

Sensitivity 
Specificity 
PR+ 
PR- 
AUC 

0.71 
0.77 
3.09 
0.38 
0.73 

0.68 
0.77 
2.96 
0.42 
0.72 

0.62 
0.63 
1.68 
0.60 
0.62 

0.61 
0.74 
2.35 
0.53 
0.68 

 
 
Full set 

Sensitivity 
Specificity 
PR+ 
PR- 
AUC 

0.86 
0.81 
4.53 
0.17 
0.58 

0.75 
0.79 
3.57 
0.32 
0.76 

0.71 
0.79 
3.38 
0.37 
0.76 

0.85 
0.81 
4.47 
0.19 
0.82 

Table 6. Sensitivity, Specificity, Positive Probability 
Rate (PR+), Negative Probability Rate (PR-) and AUC 
results obtained by the four classification algorithms 

and the three feature sets. 
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Figure 1. Average ranking and standard deviation for each attribute of the two attribute sets. 

The classifiers used are a Support Vector Ma-
chine (SVM), a Naïve Bayes classifier (NB), a 
Neural Network (NN) and a Decision Tree (DT) 
(Mitchell, 1997). All the experiments were run un-
der RapidMiner with its default parameter configu-
ration (Mierswa et al, 2006). To evaluate each 
algorithm’s performance, a leave-one-subject-out 
cross validation (LOOCV) was carried out and the 
sensitivity, specificity, positive and negative prob-
ability rates, and the Area Under Curve (AUC) 
metrics were computed. 

Table 6 shows the results obtained for each one 
of the four classifiers and each feature set. A de-
tailed analysis of all metrics confirms the im-
portance of cognitive model data either alone or 
combined with behavioral features. 

A one-way ANOVA test was carried out to 
check the differences among the performance of 
every classifier applied on each one of the three 
features set. Note that, given the preliminary nature 
of this study, the statistical power of them could be 
low. The SVM and DT classifiers improved statis-
tically their sensitivity results (p<0.05) with the 
use of cognitive model variables regarding behav-

ioral variables. Besides, DT and NN improved sta-
tistically their specificity results (p<0.05) with this 
feature set. The results are also better in sensitivity, 
specificity and AUC metrics for all classifiers with 
the use of complete feature set as compared to only 
behavioral feature set (p<0.05). The SVM and NN 
classifiers achieve sensitivity and specificity values 
higher than 80%, exceeding the threshold whereby 
a classification method can be considered a diag-
nosis support method (Plante and Vance, 1994). 
All these results confirm the relevant role of cogni-
tive model variables supporting the diagnosis of 
pAD.  

3 Discussion 

In this paper we present a general methodology for 
the diagnosis of cognitive impairments when an 
inflectional verb task is carried out and we apply it 
to the particular case of pAD. The performed study 
corroborates the underlying hypothesis that com-
putational cognitive modeling of a subject per-
forming that inflection task provides a more char-
characteristic and discriminant information than 
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only behavioral information extracted from neuro-
psychological tests. In spite of the low number of 
patients and types of verbs used, the results ob-
tained in this preliminary study allow to identify 
significant differences useful for analyzing the re-
lation between pAD and the verb morphology in 
Spanish. Beside, computational cognitive modeling 
could be a useful tool to have some kind of access 
to the processes that underlie normal and impaired 
behavior and this information could support the 
diagnosis process.  

The average results of the five attribute 
weighting techniques rank informative ability of 
cognitive modeling variables above behavioral var-
iables for discriminating pAD from control sub-
jects when all of them perform an inflectional verb 
task. Besides, the full set of both cognitive model-
ing and behavioral variables lead to classifiers that 
improve sensitivity, specificity and AUC in com-
parison to only behavioral variables. All the results 
confirm the cross-linguistic generality of the pat-
tern found in English an Italian: pAD patients are 
spared at processing regular inflected forms but 
impaired at irregular forms. 

The methodology allows an individualized cog-
nitive modeling for each subject and the parameter 
values obtained from the model can provide some 
clues about the underlying areas or mechanisms 
affected by the disease and their level of effects. 
The methodology has shown its successful applica-
tion to cognitive impairments directly related to 
language like SLI (Oliva et al., 2013) as well as 
non-specific language impairment like pAD. 

We conclude that the combination of machine-
learning techniques with the information obtained 
through computational cognitive modeling could 
be a helpful methodology to support the diagnosis 
of pAD. Finally, it is important to note that this 
methodology is easily extensible to other lan-
guages, based on the language-independent nature 
of the mechanisms, parameters, representation and 
input vocabulary of the computational cognitive 
architecture used. 
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Abstract

Motivational Interviewing (MI) is an effica-
cious treatment for substance use disorders
and other problem behaviors (Lundahl and
Burke, 2009). However, little is known about
the specific mechanisms that drive therapeu-
tic change. A growing body of research has
focused on coding within-session language to
better understand how therapist and patient
language mutually influence each other and
predict successful (or unsuccessful) treatment
outcomes. These studies typically use hu-
man raters, requiring considerable financial,
time, and training costs for conducting such
research. This paper describes the develop-
ment and testing of a recursive neural network
(RNN) model for rating 78,977 therapist and
patient talk turns across 356 MI sessions. We
assessed the accuracy of RNNs in predicting
human ratings for client speech and compared
them to standard n-gram models. The RNN
model showed improvement over ngram mod-
els for some codes, but overall, all of the mod-
els performed well below human reliability,
demonstrating the difficulty of the task.

1 Introduction

1.1 Motivational Interviewing

Motivational Interviewing (MI) (Miller and Roll-
nick, 2012) is a counseling style that attempts to
highlight and resolve patient ambivalence about be-
havioral change. To achieve these aims, MI the-
ory emphasizes that therapists should use specific
MI-consistent strategies, such as fostering collab-
oration rather than confrontation, emphasizing pa-
tient autonomy rather than therapist authority, and

eliciting discussion of the factors that motivate pa-
tients to change or not change their behavior. Dur-
ing MI sessions, therapists are instructed to attend
to patient change talk (i.e., language that indicates a
desire, reason, or commitment to make a behavioral
change), and sustain talk ( i.e., language that indi-
cates a desire, reason, or commitment against mak-
ing a behavioral change). Therapists are further in-
structed to respond to such change and sustain talk
in specific, MI-consistent manners. For example,
therapists are instructed to frequently use open ques-
tions and to reflect patient language with the goal of
eliciting change talk from patients. Likewise, thera-
pists are instructed to minimize their use of behav-
iors such as confrontation, warning, and giving ad-
vice without permission.

MI researchers have developed several coding
systems for identifying these types of patient and
therapist language. The information provided by
these MISC ratings often provides critical data for
a variety of research and training purposes. For
example, such coding data can be used to assess
therapists’ fidelity to using MI (e.g., based on the
amount of MI-consistent and MI-inconsistent thera-
pist behaviors), to understand the temporal relation-
ships between therapist and patient behaviors (e.g.,
through sequential analysis of therapist and patient
codes), or to understand how in-session behaviors
predict out-of-session behavioral change (e.g., ther-
apist and patient language predicting reductions in
substance use). These coding systems typically re-
quire human coders to listen to psychotherapy ses-
sions and manually label each therapist and patient
utterance using codes derived from MI theory. For
example, one of the most versatile but time con-
suming coding systems, the Motivation Interview-
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ing Skill Code (Houck et al., 2012) assigns codes
to every therapist and patient utterance (defined as
a single idea within a section of speech) using over
30 different predefined codes (See examples below
in Figure 1).

Counselor: “How do you feel about your
progress so far?” (Open Question)
Patient: “Everyone’s getting on me about
my drinking.” (Follow-Neutral)
Counselor: ”Kind of like a bunch of
crows pecking at you.” (Complex Reflec-
tion)
Patient: “I’m not sure I can finish treat-
ment.” (Sustain Talk)
Counselor: “You’re not sure if you can
finish treatment.” (Simple Reflection)
Patient: “I drank a couple of times
this week when I was with my brother
(Sustain Talk). I want to quit so badly
(Change Talk), but I don’t think I can do
it.” (Sustain Talk)

Figure 1: Example of MISC codes from (Houck et
al., 2012)

1.2 Machine Learning and Psychotherapy
Coding

There are few studies that have used machine learn-
ing to assess therapist and patient behavior in psy-
chotherapy sessions. Most of these methods have
relied heavily on n-grams (i.e., specific words or
phrases) and have used a bag of words approach
where the temporal ordering of n-grams within an
utterance is mostly ignored, thereby losing infor-
mation about the functional relationships between
words.

For example (Atkins et al., 2014) used topic mod-
eling to predict utterance-level MISC codes in 148
MI sessions obtained from studies of primary care
providers in public safety net hospitals and brief in-
terventions for college student drinking. The topic
models were able to predict human ratings of ut-
terances with high accuracy for many codes, such
as open and closed questions or simple and com-
plex reflections (Cohen’s kappa all >0.50). How-

ever, the topic models struggled to accurately pre-
dict other codes, such as patient change talk and sus-
tain talk (Cohen’s kappa all <0.25). The limitations
in the prediction model were attributed to multiple
sources, including low inter-rater agreement among
the human raters, the limited information provided
within the relatively small number of n-grams con-
tained in single utterances, the inability to incor-
porate the local context of the conversation in the
predictive model, and the lack of a uniform lin-
guistic style associated with some codes (e.g., ques-
tions typically contain keywords such as “what” or
“how”, but change talk does not).

Using a subset of the same data, (Can et al., 2012)
used multiple linguistic features to predict utterance-
level therapist reflections with reasonably high ac-
curacy, F1 = 0.80. Specifically, Can et al. used
N-grams (i.e., specific words and phrases), simi-
larity features (i.e., overlapping N-grams between
therapist utterances and patient utterances that pre-
ceded), and contextual meta-features (i.e., words
in the surrounding text) with a maximum-entropy
Markov model and found improved performance
relative to models that did not include similarity or
meta-features. However, this study did not test the
prediction of language categories that were difficult
to predict in Atkins et al., such as change talk and
sustain talk.

1.3 Aims
An important problem with the word and n-gram
based models is that they do not account for syntac-
tic and semantic properties of the text. In this work,
we study the question of using dense vector features
and their compositions to address this issue

To our awareness, no research to date has tested
the use of recursive neural networks (RNNs) for pre-
dicting MISC codes. It is possible that a model cap-
turing semantic and syntactic similarity in text can
perform better than n-gram models in identifying re-
flections in MI sessions. The present study aimed to
test (1) whether recursive neural networks (RNNs)
(Socher, 2014) can be used to predict utterance-level
patient MISC codes and (2) whether RNNs can im-
prove the prediction accuracy of these codes over n-
gram models.

Following the basic procedure described in
(Socher, 2014), we developed a Recursive Neural
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Network model to achieve these aims. We used the
Stanford parser (Klein and Manning, 2003) to cre-
ate parse trees that modeled the language structure
of patient and therapist utterances. These sentence-
level models were then used as input into a Maxi-
mum Entropy Markov Model (MEMM), a type of
sequence model that uses the sentence and surround-
ing context to predict MISC codes. The recursive
neural networks were designed using the ’standard’
model (Socher et al., 2011) with a single weight ma-
trix to combine each node in the tree.

We tested both a standard RNN model and an
RNN that utilized a dependency parsing of the sen-
tence. Once a final model was tuned, the perfor-
mance of each model predicting change talk and sus-
tain talk codes was examined by comparing RNNs
with an n-gram based model using cross-validation.

The main goals of this paper are to

1. Define the challenging and interesting problem
of identifying client change and sustain talk in
psychotherapy transcripts.

2. Explore and evaluate methods of using continu-
ous word representations to identify these types
of utterances and

3. Propose future directions for improving the
performance of these models

2 Data

We used the dataset constructed as part of a collab-
orative project between psychologists at the Univer-
sity of Utah and the University of Washington and
computer scientists and engineers at the University
of California, Irvine and University of Southern Cal-
ifornia. The dataset consists of 356 psychotherapy
sessions from 6 different studies of MI, including
the 5 studies (148 sessions) reported in (Atkins et al.,
2014). The original studies were designed to assess
the effectiveness of MI at a public safetynet hospi-
tal (Roy-Byrne et al., 2014), the efficacy of training
clinicians in using MI (Baer et al., 2009), and the
efficacy of using MI to reduce college student drink-
ing (Tollison et al., 2008; Neighbors et al., 2012;
Lee et al., 2013; Lee et al., 2014). All sessions have
utterance level MISC ratings totaling near 268,000
utterances in 78,977 talk turns. A subset of sessions
was coded by multiple raters to estimate inter-rater

reliability, which serves as a theoretical lower-bound
for the predictive performance.

3 Modeling MISC Codes

3.1 Sequence Labeling

All of the models attempted to correctly label utter-
ances as a single sequence. For example, a patient
may speak two or three times in a row, then the ther-
apist may speak once. Each utterance code is pre-
dicted by the preceding utterance label, regardless
of the speaker. Both patient and therapist utterances
were combined into this sequence model.

All sequence models were Maximum Entropy
Markov Models (MEMM)(McCallum and Freitag,
2000). At test time, the sequences for the codes were
inferred using the Viterbi algorithm. The models all
differed in their feature inputs into the MEMM. The
N-gram model used sparse input vectors represent-
ing the presence of the various unigrams, bigrams
and trigrams in each utterance. The RNN models
used the final sentence vector as the input into the
MEMM model. The RNN models were allowed
to learn from the mistakes in the MEMM models
through backpropogation.

Even though the purpose of this model was to pre-
dict patient change and sustain talk, we attempted to
predict all codes in the sequence to assist in the task
due to the relationship between change talk, sustain
talk, and other MISC codes. Other codes identified
by the models included reflect, affirm, giving infor-
mation, facilitate, open questions, closed questions,
advise, confront, and follow-neutral (See (Houck et
al., 2012)).

It should be noted that the MEMM models only
used the previous utterance codes (or predicted
codes) and the current utterance for feature inputs.
We were attempting in this study to identify the best
sentence model. At a later point in time, similar
work will be done testing various iterations of se-
quence models to find the optimal version, after the
best sentence level model has been chosen. One of
the reasons for choosing a MEMM over a condi-
tional random field was to allow for joint training
of the RNN models and the sequence model (with a
MEMM, it is easy to backpropogate errors from the
sequence model to the sentence model).
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3.2 Word Based Features

Our first feature set for utterances is defined using
indicators for n-grams. In all cases, the speaker of
the utterance (patient or therapist) was considered
to be known. That is, the models only had to dis-
tinguish between codes applicable for each speaker
role and did not have to distinguish the roles of the
speakers as patient or therapist. We trained two dif-
ferent models – one that uses indicators for only un-
igrams in the utterance and the second that uses in-
dicators for unigrams, bigrams and trigrams in the
utterance.

3.3 Recursive Neural Network

Our second feature set uses recursive neural network
(RNN) models, which are variants of the ideas pre-
sented in (Socher, 2014). The models were initial-
ized with word vectors (i.e., numeric representations
of word tokens) that were pre-trained using word
vectors generated by the Glove model (Pennington
et al., 2014). The RNNs in this paper relied mostly
on the standard model for combining nodes of a re-
cursive tree. For example, for combining word vec-
tor 1 a1 (e.g., numeric representation of ”hate”) and
word vector 2 a2 (e.g., numeric representation of
“hangovers”), the two vectors are multiplied through
a weight matrix Wm that is shared across the tree in
order to combine the individual words (e.g., “hate”
and “hangovers”) into a new vector that combines
the meaning of both inputs, a1,2 (e.g., “hate hang-
overs”). This is performed through the function:

p1,2 = tanh

(
Wm

[
a1

a2

]
+ b

)
where a1,a2 and p1,2 are all Rdx1 where d is dimen-
sionality value for the word vectors that is chosen by
the researcher. Typically, several sizes of word vec-
tors are tried to discover the optimal length for dif-
ferent types of problems. Based on cross-validated
comparisons of different vector lengths, 50 dimen-
sional word vectors were found to have the best
overall performance and were used in the present
study. Importantly, the non-linearity of hypertangent
is used, which constrains the outputs to be between
-1 and +1.

The top level vector of the RNN, which represents
the whole linguistic utterance, was used as input into

a MEMM to combine individual utterances with in-
formation from the surrounding linguistic context.

Figure 2: RNN Model. Each level of the parse
tree is represented by a vector of 50 numeric values.
Higher-level phrases and subphrases are modeled by
multiplying the child node vectors through a weight
matrix Wm.

The learning utilized backpropagation through
structure (Goller and Kuchler, 1996). In other
words, errors made at the top of the tree structure
gave information that allowed the parameters lower
in the model to learn, improving prediction accu-
racy. Weight updates were performed using ada-
grad with the diagonal variant (see Technical Ap-
pendix)(Duchi et al., 2011). The advantage of this
weight update method is that it allows the model to
learn faster for more rare words and to learn more
slowly for frequently seen words.

3.4 Dependency RNN

Figure 3: Example Dependency Parse

The final feature vector we tested was based on
(Socher et al., 2014), with some important differ-
ences. In our model, we used the dependency tree
from the Stanford parser to create a collection of
edges, each with its label. For example, in figure
3 the dependency parse can be thought of as hav-
ing three node with two labeled edges. The edge
between “I” and “hate” has the label nsubj for nomi-
nal subject. In our dependency RNN we multiply the
word vectors for “I” (the child node) and “Hate” (the
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parent node) through a weight matrix that is specific
to the label nominal subject.

The model cycles through all of the edges in the
dependency tree, then sums the output vectors. Af-
ter summing, a hypertangent nonlinearity is applied
to get the final feature vector for the sentence. For-
mally, this can be written as follows:

ps = tanh

(∑
(p,c,`)∈D(s)

W`

[
ap

ac

]
+ b

)
ap is the parent word vector and ac is the child

word vector. In this case, W` is the weight matrix
specific to the dependency relationship for that spe-
cific label. The model sums over all parent p, child
c and label ` triads in the dependency parse of the
sentence (D(s)) and then adds an intercept vector b.
The weight matrix is initialized to the shared weight
matrix from the pre-trained standard RNN, but then
is allowed to learn through backpropagation. The fi-
nal model combines the output of the standard RNN
and the dependency RNN as adjacent vectors. Both
models share their word vectors and learn these vec-
tors jointly.

4 Evaluation

To evaluate the performance of the RNN and n-gram
models we compared precision (i.e., proportion of
model-derived codes that matched human raters), re-
call (i.e., proportion of human-rated codes that were
correctly identified by the model), and F1 scores
(i.e., the harmonic mean of precision and recall) for
each model. The current results are an early stage
in the process toward developing a final model. As
such, all models were evaluated using 5 fold cross
validation on the section of the dataset that is des-
ignated as training data (which is two thirds of the
total dataset). The cross validation subsets were di-
vided by session (so each session could only occur
in one or the other subsets). The testing section of
the data will be used at a later date when the model-
ing process is complete.

5 Results

5.1 Prediction Accuracy
When predicting change talk (see table 1), the mod-
els varied in their performance. Unigram-only and

Table 1: Cross Validation Results: Change Talk

Model Precision Recall F1
Uni-gram .24 .13 .17
Uni,Bi,Tri-Gram .28 .18 .21
Standard RNN .15 .03 .06
Dependency RNN .29 .18 .22
Human Agreement .73 .42 .61

Table 2: Cross Validation Results: Sustain Talk

Model Precision Recall F1
Uni-gram .26 .20 .22
Uni,Bi,Tri-Gram .33 .20 .24
Standard RNN .19 .23 .21
Dependency RNN .26 .19 .22
Human Agreement .66 .53 .59

unigram, bigram, and trigram models had F1 scores
of 0.17 and 0.21, respectively. The standard RNN
had a much lower F1 score of 0.06. The depen-
dency RNN outperformed both the n-gram models
and the standard RNN on F1 score (0.22). While the
dependency RNN performed best on F1 score and
precision, the Uni,Bi and tri-gram model tied for re-
call of change talk. These values were all relatively
low compared to the theoretical upper bound of pre-
dictive performance based on the estimated human
agreement, F1 = 0.61.

When predicting sustain talk (table 2), the uni-
gram model, unigram, bigram, and trigram model,
and the standard RNN all performed similarly in
terms of F1 scores (F1 = 0.21 to 0.24), with the Uni,
Bi and trigram model performing the best (.24). The
Standard RNN had the highest recall (.23), but had
the lowest precision (.19) As with change talk, all
models had relatively low F1 scores compared to the
F1 scores between human raters, F1 = 0.59.

5.2 Examples

Figure 4 shows two example sentences from the
test sample of the dataset, one which was predicted
correctly from the dependency RNN and one that
was predicted incorrectly. Below each sentence is
a chart with the predicted probability that it was
change talk, sustain talk or follow-neutral (i.e., nei-
ther change talk or sustain talk). In the first example,
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the dependency RNN did well at identifying a sim-
ple change statement. Similarly simple utterances,
such as “I don’t want to drink anymore” or “I en-
joy drinking alcohol” were typically coded correctly
as change talk or sustain talk. But more compli-
cated utterances, like the second example in figure
4 were less likely to be coded correctly. (Note that
the second utterance depends more than the context
of previous statements in the conversation, which in-
volved the patient discussing reasons for smoking
marijuana.)

”Because I don’t really want to have to
smoke more” (Change Talk)

“I don’t have to lay there in bed for three
hours staring at the ceiling being like why
am I still awake” (Sustain Talk)

Figure 4: Example Codings

6 Conclusions

In general, predicting change and sustain talk is a
non-trivial task for machine learning. It involves a
subtle understanding of the context of a phrase and
involves more than just the words in a single sen-
tence. These early models are able to correctly iden-
tifying many statements as change talk or sustain
talk, particularly for sentences with simple struc-
tures such as “I want to stop drinking”. However,
these models appear have a harder time with sen-
tences that are longer and have greater complexity
and sentences that require more contextual informa-

tion based on previous statements. These initial re-
sults show that our dependency RNN has the ability
to outperform n-gram models on identifying client
change talk, but this performance gain did not apply
to sustain talk.

As shown in (Can et al., 2012) and (Atkins et al.,
2014), machine learning techniques are able to re-
liably identify important linguistic features in MI.
This study represents an initial attempt at predict-
ing the more difficult-to-identify patient behaviors,
which are central to much of the research on MI.
More work is needed to improve these models, and
it is likely that performance could be improved by
going beyond word counting models, for example,
by using the syntactic structure of sentences as well
as the context of surrounding utterances.

NLP applications have been successful in areas
in which human annotators can clearly label the
construct of interest (e.g., sentiment in movie re-
views(Socher et al., 2013b), classifying news arti-
cles(Rubin et al., 2012)). Psychotherapy generally
and ‘change talk’ within MI specifically are often
concerned with latent psychological states of human
experience. Verbalizations of reducing drug use are
hypothesized to be observed indicators of a patient’s
inclination to change their behavior and is mutually
dependent on both their own previous linguistic be-
havior as well as the therapist’s. This is a challeng-
ing, new arena for NLP application and develop-
ment, and one that will only be successful through
the tight collaboration of NLP researchers and do-
main experts.

6.1 Limitations

There were some important limitations to this ini-
tial study. First, we have not yet systematically ex-
plored all of the possible options for discrete word
models. For example, one could use the dependency
tree to create non-sequential n-grams that capture
longer range dependencies than traditional n-grams.
We acknowledge that part of the advantage given to
the RNN is the information the dependency tree pro-
vides and that it is possible for discrete word models
to use this type of information as well. Second, not
all of the possible combinations of word dimensions
and word models were tried. Because of limitations
in available compute capacity, only promising com-
binations were tested. Third, there was a moder-
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ate degree of disagreement between human raters.
These human ratings were required for training each
method and were used as the criterion for classifying
correct or incorrect ratings, and error in these ratings
limits the performance of the models.
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7 Technical Appendix

7.1 General Details on Learning

The loss function for all outputs o was: E =
1
2

∑
o

(to − yo)2 . All of the weights were given ran-

dom initialization between -.001 and .001. The se-
lection of all hyper-parameters including ada-grad
learning rate, weight decay and word vector size
were chosen using 5 fold cross validation in the
training set of data. As mentioned in the paper, these
results will be tested on a third of the data reserved
for testing at a later stage in this process when we
have selected a final set of models. The optimal
learning rate for the RNN models was .1, and the
optimal weight decay was 1 × 10−7. It should be
noted that selection of hyperparameters had a major
impact on the success of the RNN models. Differ-
ent learning rates would often result in RNN models
that performed half as well as the optimal models.

All models were pre-trained on the general psych
corpus (The corpus is maintained and updated by the
Alexander Street Press (http://alexanderstreet.com/)
and made available via library subscription) using an
idea from (Bottou, 2014) called a corrupted frame
classifier. The idea is to try to get the model to
predict which parts of its parse tree are ’real’ sen-
tences and which ones are ’corrupted’, that is, one
word has been replaced with a random word. Early
testing found this unsupervised pre-training signifi-
cantly improves the performance of the final models.

7.2 Ada-Grad

The training for both the Recursive Neural Nets and
the Maximum Entropy Markov Models in this paper
utilize stochastic gradient descent, based on com-
mon conventions in the machine learning literature,
with one important exception. We used the adaptive
gradient descent algorithm to adjust our learning rate
(Duchi et al., 2011). We opted to use the diagonal
variant for simplicity and conservation of memory.
The Ada-grad variant to stochastic gradient descent,
basically adapts the change in the gradient so that
parameters that have many updates will update more
slowly over time. Whereas, the parameters that have
very few updates will make larger changes. It is ob-
vious that this is advantageous given the fact that in
RNN’s, the main weight parameters might update on

every case, whereas certain word vectors may only
have a couple of presentation of an entire corpus.
The classic weight update for stochastic gradient de-
scent is θt+1 = θt − αGt Where θ are the weights
that are being estimated and α is the learning rate.
Gt is the gradient at time t. For Ada-grad, we just
need to save a running total of the squared gradient,
elementwise (we call it γ here):

γt = γt−1 +G2
t

And then we add an adjustment to the update step
(again, elementwise). Divide the gradient by the
square root of the running total sum of squared gra-
dients:

θt+1 = θt − αt
Gt√
γt + β

Where β is a constant.

7.3 Notes on Code
Most of the code for this project was writ-
ten specifically for this problem, but some
additional libraries were used. All matrix op-
erations used the Universal Java Matrix Pack-
age: http://sourceforge.net/projects/ujmp/files/.
Some spell checking was required of some of
the data and the open source Suggester was used:
http://www.softcorporation.com/products/suggester/
. Version 3.2 of the Stanford parser was used to
create the parse trees for the RNN’s. (Klein and
Manning, 2003; Socher et al., 2013a)
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Abstract

The use of language to convey emotional
experience is of significant importance to
the process of psychotherapy, the diagno-
sis of problems with emotion and memory,
and more generally to any communication
that aims to evoke a feeling in the recipi-
ent. Bucci’s theory of the referential pro-
cess (1997) concerns three phases whereby
a person activates emotional, or bodily ex-
perience (Arousal Phase), conveys the im-
ages and events associated with it (Symbol-
izing Phase), and reconsiders them (Reor-
ganizing Phase). The Symbolizing Phase
is the major focus of this study and is
operationalized by a measure called refer-
ential activity (RA) based on judges’ rat-
ings of the concreteness, specificity, clarity
and imagery of language style. Computa-
tional models of RA have previously been
created in several languages, however, due
to the complexity of modeling RA, dif-
ferent modeling strategies have been em-
ployed for each language and common fea-
tures that predict RA across languages
are not well understood. Working from
previous computational models developed
in English and Italian, this study speci-
fies a new model of predictors common to
both languages that correlates between r
= .36 and.45 with RA. The components
identified support the construct validity of
the referential process and may facilitate
the development of measures in other lan-
guages.

1 Introduction

Emotional states are generally accompanied by
the retrieval of specific images and events. Simi-
lar methods are used to activate emotional states
in both research and clinical contexts. For exam-
ple, appraisal researchers may ask a participant
to describe an experience of being angry at one-
self in as much vivid detail as possible (Ellsworth
and Tong, 2006). Prompting retrieval of images
and events also underlies imaginal exposure in
treatments for Post Traumatic Stress Disorder
(PTSD) and other anxiety disorders (Powers et
al., 2010).

Bucci (1997) theorized that the process of
putting sensory, visceral and emotional experi-
ences into words requires connection of symbols
(words) to non-verbal and non-discrete, analogic
(or subsymbolic) information through what she
terms the referential process.

1.1 The referential process.

Arousal Phase: According to the theory, in
the Arousal Phase, material that cannot yet be
described or thought of in verbal terms is acti-
vated. This may include bodily sensations, or
plans for motor action. The speaker is often un-
sure of what to talk about and may shift loosely
from association to association. Language may
have greater disfluency (e.g. ‘um’, ‘uh’), more
false starts, or non-sequiturs. The proportion of
disfluency in a text is used as a major indicator
of the Arousal Phase.
Symbolizing Phase: As the activated material
is processed it coalesces into a prototypic im-
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age or plan for action. This is the preliminary
part of the Symbolizing Phase, when the mate-
rial is brought into symbolic form but is not yet
expressed in language. The latter part of this
phase is the expression of this material in words
by telling about an image, or event. The lan-
guage of this phase will tend to be more specific,
will focus on describing a single idea or frame,
will refer more to the concrete or sensate prop-
erties of things, and will tend to evoke imagery
in the listener, or reader. This style of language
has been operationalized by referential activity
(RA), which is understood as the connection of
words to nonverbal experience, including bod-
ily and emotional experiences that are subsym-
bolic. This measure is the focus of the current
study and will be discussed in greater detail be-
low along with computational models of referen-
tial activity.
Reorganizing Phase: Once symbolically ex-
pressed, such ideas are open for reflection and
reorganization which takes place during the Re-
organizing Phase. The restructuring that oc-
curs during this phase encourages psychological
development, and can begin the referential pro-
cess anew by raising new questions, thoughts or
feelings in response to the revelations that have
occurred. The language of this phase is marked
by references to cognitive processes, logical oper-
ations and reasoning. Such references are oper-
ationalized by a dictionary of ‘Reflection’ words
(REF) which is used as a measure of the reor-
ganizing phase and is discussed in greater detail
below and in Maskit et al. (2015, this confer-
ence).

1.2 Referential activity (RA).

Referential activity was first operationalized by
Bucci through a scoring system whereby judges
rate language segments on dimensions of con-
creteness, specificity, clarity and imagery. Each
scale is scored from zero to ten. The four dimen-
sions are significantly inter-correlated for most
speakers and most texts and are understood as
reflecting different aspects of the same general
dimension. For this reason, the average of the
four scales is taken as the overall referential ac-
tivity (RA) score of the segment (Bucci et al.,

2004). Using these four scales, raters are able to
achieve excellent inter-rater reliability with stan-
dardized item alphas exceeding .90 (Bucci et al.,
2004, p. 24). The RA scales (as defined above)
have been used in many studies (e.g. Appelman,
(2000); Bucci, (1984); Dodd & Bucci, (1987);
Fretter, Bucci, Broitman, Silberschatz, & Cur-
tis, J., (1994); Horowitz, et al. (1993); Jepson
& Bucci (1999); Langs, Bucci, Udoff, Cramer,
& Thomson, (1993); Watson, J., (1996); also
see Samstag, (1997) for a review of dissertations
utilizing these scales).

1.3 The referential process and
psychotherapy process.

In order to function well in life we need to be
able to connect our sensory and emotional ex-
periences to the people and events of our life so
that we can make the best possible judgments
regarding how to respond. We need to take in
new information and modify our understanding
of the world and our relationships as we and our
life situations change.

In talk therapies, Bucci argues that psycholog-
ical change occurs through the referential pro-
cess. In the Arousal Phase, activation of a prob-
lematic experience can be gradually tolerated as
the relationship develops between therapist and
patient. In the Symbolizing Phase, the person
talks about an episode of life, a dream or fan-
tasy that is connected to this problematic expe-
rience. The representation of the experience in
share-able symbolic form allows for new infor-
mation to be brought in and connected with it.
Once shared, there is an opportunity for a Reor-
ganizing Phase where the meaning of the events
may be reconsidered and further explored.

1.4 Clinical studies of the referential
process.

Clinical studies have demonstrated that mea-
sures of the referential process are meaningful
predictors of good psychotherapy process and
outcome. Bucci and Maskit (2007) showed that
the referential activity of a series of sessions in
a single case design of a psychoanalytic treat-
ment had strong correlations with the process
ratings of expert clinicians who read and scored

81



these sessions. Higher RA in therapist process
notes, understood as indicating greater emo-
tional engagement of the therapist, was associ-
ated with better treatment outcome as assessed
by independent raters (Bucci et al., 2012). Mar-
iani et al. (2013) found that RA (measured by
the Italian Weighted Referential Activity Dictio-
nary IWRAD) increased over the course of three
psychotherapy treatments that showed improve-
ment in personality functioning.

1.5 RA as an indicator of episodic
memory capability and impairment.

In their 2008 paper, Nelson, Moskowitz and
Steiner found a robust correlation (rs(53) =
.69, p < .001) between a measure of narrativ-
ity and the WRAD in a sample of high school
students talking about their most stressful time.
In their paper, Nelson et al. (2008) noted the
similarity between the ”story-now grammar” of
narratives (Clark, 1996; Fleischman, 1990) and
Tulving’s concept of episodic memory as ”time
travel” (1972). Maskit et al. (2014) directly
compared WRAD with measures of episodic
memory strength using data provided by Schac-
ter and scored by Addis, Wong and Schacter
(2008), and also found strong correlations be-
tween the two measures. In line with these
findings WRAD has been shown to differenti-
ate populations with impairments in episodic
memory such as participants with Schizophre-
nia (Lewis et al., 2009) and with Alzheimer’s de-
mentia (Nelson and Polignano, 2009) from non-
clinical controls.

1.6 Previous computational models of
referential activity.

The first computerized model of RA was the
Computerized Referential Activity (CRA) of
Mergenthaler and Bucci (1999), based on mod-
eling very high and very low RA scale scores.
The technique used to develop this measure was
refined to develop the second generation com-
puter model, the Weighted Referential Activity
Dictionary (WRAD) (Bucci and Maskit, 2006).
The WRAD was developed through a process
of modeling the frequency with which words ap-
peared in texts at several levels of RA as scored

by judges, producing a weighted dictionary. In
comparison to the CRA the WRAD represents
an improvement in the correlation between com-
puterized and judge based RA scoring in six of
the seven samples utilized to model and test the
dictionary. Correlations between WRAD and
judges scoring of RA ranged between r = .38
and r = .60 in these samples. A detailed expla-
nation of the modeling procedure for the WRAD
dictionary may be found in Bucci and Maskit
(2006).

The WRAD is a weighted dictionary with
weights lying between −1, for words used more
frequently in low RA speech, and +1 for words
used more frequently in high RA speech. The
WRAD comprises 697 frequently used items,
primarily function words, including personal
pronouns such as ‘she’, conjunctions such as
‘and’, and articles such as ‘the’. Because of the
dominance of such extremely frequent function
words, the dictionary covers approximately 85%
of the tokens used in the sample from which the
dictionary was derived.

The structure of the Italian language is differ-
ent from that of English; thus modeling strate-
gies based on a restricted number of core types
was less successful when modeling referential ac-
tivity in Italian. (See Mariani, Maskit, Bucci
and De Coro, 2013). This led to a model that
includes a much larger number of types (9596).
The IWRAD covers approximately 97% of the
tokens used in the sample from which the dictio-
nary was derived and correlates between r = .24
and r = .91 with samples used to develop and
test the model.

1.7 The need for understanding
common predictors of RA across
languages.

Successful computational models have been
built for referential activity (RA) in several lan-
guages including: English (Bucci and Maskit,
2006); Italian (Mariani et al., 2013); Span-
ish (Roussos and O’Connel, 2005) and German
(Ehrman, 1997); however, each model was built
separately and without a common basis. The
current study seeks to identify a model that may
be applied across languages based on a common
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definition of the features associated with refer-
ential activity.

We address this question by identifying those
predictors in English and Italian that are most
strongly associated with RA scores and have
shared meaning. We hope that this model will
be validated in other languages and develop into
a generalized model that may be applied across
languages. The value of such a model is twofold.
First, there is pragmatic value as we receive re-
quests from psychotherapy researchers who are
working in various languages for which no com-
putational model exists.1 Second, the develop-
ment of a generalized model provides a unique
opportunity to study the construct validity of
the referential process. To the degree that we
can describe how the process of putting feelings
into words plays out across languages we will
have a more accurate description of this basic
psychological process.

2 Methods and Results

2.1 Spoken corpora.

This study utilized segments from the same
corpora that were used to build the English
(N=763 segments) and Italian (N=936 seg-
ments) Weighted Referential Activity Dictionar-
ies. The segments in the English sample had an
average length of 163 words (SD 115) and in the
Italian sample had an average length of 83 words
(SD 60). Both corpora included psychotherapy
and other spoken narrative material such as in-
terviews, monologues, early memories and sto-
ries told to pictures. These materials were reli-
ably segmented and scored for referential activ-
ity by judges following instructions from Bucci
et al. (2004) and in Italian following a trans-
lation of this manual by De Coro and Caviglia
(2000). All of the texts were scored for the four
RA scales by at least two trained raters who had
achieved high inter-rater reliability. The average
of the scales was taken as the RA score. Detailed
descriptions of the composition of these samples
and scoring procedures may be found in Bucci &

1We have received requests for measures of referential
activity in: Bulgarian, French, German, Hebrew, Man-
darin, Norwegian, Polish and Portuguese.

Maskit (2006), for the English sample and Mar-
iani et al. (2013), for the Italian sample.

For the current study both the English and
Italian corpora were subdivided into training,
testing and validation subsets. The training sub-
set (English N=362, Italian N=472) was used to
develop the model in this study and the test sub-
set (English N=209, Italian N=272) was used to
test interim models. The validation subset (En-
glish N=192, Italian N=192) was reserved for
final validation of the model.

2.2 The Discourse Attributes Analysis
Programs (DAAP) and (IDAAP).

The Discourse Attributes Analysis Program
(DAAP) is a computer-based text analysis sys-
tem designed by Bernard Maskit, whose features
include the use of both weighted and unweighted
dictionaries. The Italian version of the software
differs mainly in its ability to handle accented
letters from a variety of text formats. The En-
glish version of the software is publicly available
at: https://github.com/DAAP/DAAP09.6

2.3 Existing referential process
dictionaries.

The phases of the referential process are oper-
ationalized by three main measures: disfluency
(Arousal Phase), referential activity (Symboliz-
ing Phase), and reflection (Reorganizing Phase).
In addition there are several other dictionary
based measures that are routinely used in stud-
ies of the referential process. These dictionaries
were created using standard procedures for com-
puterized text analysis that involve compiling
word lists for a large source of texts and selecting
items based on agreement among judges follow-
ing the conceptual definitions of the dictionaries
which follow below. The dictionaries listed be-
low were created independently in English and
Italian except where otherwise indicated.

Disfluency (DF): A limited set of six items
that people use when struggling to communi-
cate such as ‘um’, ‘uh’, ‘hmmm’, etc. Disfluent
language is also associated with cognitive load
and effort in speech planning (Bortfeld et al.,
2001). In addition to matching types in the dis-
fluency dictionary DAAP also counts incomplete
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words (indicated by transcribers using a dash),
repeated words and repeated two word phrases
as disfluencies.

Reflection (REF): A dictionary of 1436 words
that concern how people think and communi-
cate thoughts. This dictionary includes words
referring to cognitive or logical functions, e.g.,
‘assume’, ‘think’, ‘plan’.

Affect (AFF): Words that concern how peo-
ple feel and communicate feelings directly such
as, ‘angry’, ‘sad’, and ‘happy’. The global mea-
sure of these words is the ‘Affect Sum’ dictionary
(AFFS 2452 words). These are further classi-
fied as ‘Positive’ (AFFP; 620 words), ‘Negative’
(AFFN; 1470 words) and ‘Mixed’ affect (AFFZ;
362 words) words. The definitions of positive
and negative affect are self explanatory; mixed
affect words are words that seem to have an
affective or emotional loading, but are neither
positive, nor negative, e.g., ‘anticipate’, ‘over-
whelmed’, ‘serious’.

Sensory Somatic (SENS): A set of 1936 words
pertaining to bodily and or sensory experience,
e.g., ‘dizzy’, ‘eye’, ‘face’, ‘listen’.

Negation (NEG): A limited set of 26 items
that people use when negating in communica-
tion. e.g., ‘no’, ‘not’, ‘never’; this may be seen
as a function of the logic mode. This dictionary
was not created independently in Italian.

2.4 Test of automated translation of
existing dictionaries.

In order to test how well dictionaries might work
in direct translation by automated means, all of
the dictionaries described above in English and
Italian were translated using Google Translate
(through Google Sheets). The translated dictio-
naries were then run on the corpora described
above using the English and Italian versions of
the DAAP. Tables 1 and 2 show the correlations
of the native language to the translated dictio-
naries.

The translation of the dictionaries used here,

2Since there are core differences in typical words used
as disfluencies in English, such as, ‘like’, and Italian, such
as ‘boh’ the full dictionary in each language was com-
pared to a common subset of lexical items, e.g., ‘uh’ and
‘um’.

Dictionary Correlation
Negative Affect .75∗∗∗

Positive Affect .33∗∗∗

Mixed Affect .69∗∗∗

Affect Sum .66∗∗∗

Reflection .44∗∗∗

Sensory Somatic .62∗∗∗

Disfluency2 .66∗∗∗

WRAD & IWRAD-T -.10∗∗

Note: N=763; ∗p<.05; ∗∗p<.01; ∗∗∗p<.001

Table 1: Pearson’s correlations of English DAAP dic-
tionaries with translated Italian DAAP dictionaries
(translated using Google Translate).

Dictionary Correlation
Negative Affect .27∗∗∗

Positive Affect .57∗∗∗

Mixed Affect .34∗∗∗

Affect Sum .40∗∗∗

Reflection .33∗∗∗

Sensory Somatic .40∗∗∗

Disfluency .23∗∗

IWRAD & WRAD-T .16∗∗∗

Note: N=936; ∗p<.05; ∗∗p<.01; ∗∗∗p<.001

Table 2: Pearson’s correlations of Italian DAAP dic-
tionaries with translated English DAAP dictionaries
(translated using Google Translate).

based largely on content words including nouns,
verbs and adjectives, showed moderate to strong
correlations both from and to Italian. Though
manual translation would likely show stronger
results, these results indicate that even auto-
mated translation of these dictionaries shows
good correspondence with the dictionaries cre-
ated by native speakers. The two computational
models of RA, which are more dominated by
function words, though strongly correlated with
Judges’ RA in both languages (English r(761) =
.53, p < .001; Italian r(934) = .73, p < .001)
were only weakly correlated and in the opposite
of the expected direction in Italian (as shown
in Tables 1 and 2). The translated dictionar-
ies were also weakly related to judge scored
RA (English r(761) = −.03, p = .363; Italian
r(934) = .04, p = .130). The difficulty of trans-
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lating these dictionaries based on style rather
than content underscore the need for the cur-
rent study.

2.5 New model development.

In order to develop a more universal model
of referential activity, impact scores were cre-
ated for the current English and Italian WRAD
dictionaries by multiplying the WRAD weight
for each dictionary term by the frequency with
which it occurred in the corpus from which
the dictionary was derived. These lists were
then sorted by this impact score and compared.
Words in the top 50 of both lists that had shared
translated meaning were selected. Finally, the
word ‘uno’ (ranked 97) was added as the mascu-
line of ‘una’ (ranked 13), the word ‘mia’ (ranked
86) was added as the feminine of ‘mio’ (ranked
44) and the word ‘ed’ (ranked 99) was added as
an additional translation of the English ‘and’.
Table 3 below shows the selected words along
with the proportion of the corpus each repre-
sents.3

2.6 New ‘Universal Weighted
Referential Activity Dictionary’
(UWRAD) regression model.

All types4 in Table 3 were entered into a re-
gression model predicting the RA score for the
Italian training set along with the following dic-
tionaries translated to Italian from English using
Google Translate: SENS, DF, REF, NEG, and
AFFS. All entries that were significant at the
.10 level or better were retained, all others were
dropped. This left ‘and’, ‘to’, ‘he / she’, ‘the’,
‘was’, SENS and NEG in the final model shown
in Table 4.

2.7 New model performance.

Table 5 shows the correlations of the UWRAD
model with judge scored referential activity in
each of the sub-samples of the two corpora.

3The number 50 was an arbitrary choice intended to
include a high proportion of the positive predictors of RA
in both languages.

4She / He was added as a single type all others were
kept separate.

English Proportion Italian Proportion
and 4.3% e 2.7%

ed 0.1%
poi 0.6%

the 3.2% il 1.1%
le 0.6%
gli 0.4%
lo 0.5%
i 0.5%
la 1.6%

a 1.9% un 1.8%
una 1.2%
uno 0.2%

my 0.8% mio 0.5%
mia 0.6%

all 0.3% tutti 0.2%
from 0.2% da 0.6%
to 2.9% a 1.8%

al 0.3%
per 1%

in 1.3% in 1.2%
she 2.1% lei 0.4%
he 1.2% lui 0.5%
they 0.7% sono 1%
me 0.6% mi 1.6%

me 0.5%
there 0.5% là 1.6%

l̀ı 0.2%
was 1.6% era 0.6%

ero 0.2%
had 0.6% aveva 0.2%

avevo 0.2%
22% 24%

Table 3: Predictors of RA with shared translated
meaning. These types were selected by comparing
the top 50 positive predictors of referential activity
in English and Italian from previous computational
models.

As for the UWRAD’s relation to other in-
dices of the referential process, the model cor-
related r(761) = −.38, p < .001 with Reflec-
tion in English and r(934) = −.28, p < .001
in Italian. UWRAD also correlated r(761) =
−.16, p < .001 with Disfluency5 in English and

5Disfluency was modified for this comparison as dis-
cussed above by removing all language specific indicators.
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Dependent variable:

RA Score

and 8.370∗∗∗

(2.240)

to 6.780∗∗

(2.580)

he / she 6.880†
(3.910)

the 8.470∗∗∗

(2.060)

was 16.300∗∗

(6.120)

Sensory Somatic 6.120∗

(2.430)

Negation −12.900∗∗∗

(2.140)

Constant 4.140∗∗∗

(0.180)

Observations 472
R2 0.197
Adjusted R2 0.185
Residual Std. Error 1.320 (df = 464)
F Statistic 16.200∗∗∗ (df = 7; 464)

Note: † p<.10; ∗p<.05; ∗∗p<.01; ∗∗∗p<.001

Table 4: ‘Universal Weighted Referential Activity’
(UWRAD) model.

r(934) = −.23, p < .001 in Italian. This pat-
tern of correlations, which is typically observed
in studies of the referential process, indicate
that the Arousal, Symbolizing and Reorganiz-
ing phases are distinct from one another6 and
thus provide support for the construct validity

6Correlations of Reflection and Disfluency were
r(761) = −.02, p = .567 and r(934) = .02, p = .571,
suggesting that these dimensions are orthogonal.

Sample Correlation
English (N=736) .43∗∗∗

Training (n=362) .41∗∗∗

Testing (n=209) .44∗∗∗

Validation (n=192) .45∗∗∗

Italian (N=936) .41∗∗∗

Training (n=472) .44∗∗∗

Testing (n=272) .38∗∗∗

Validation (n=192) .36∗∗∗

Note: ∗p<.05; ∗∗p<.01; ∗∗∗p<.001

Table 5: Pearson’s correlations of the ‘Uni-
versal Weighted Referential Activity Dictionary’
(UWRAD) with judge scored RA for all subsets in
English and Italian

of the UWRAD as developed here.

3 Discussion

This study identified a single model comprised
of seven common components that accounted for
13% to 20% of the variance in judges’ scores of
referential activity in two languages. As this
model was able to function in translation be-
tween English and Italian, which have quite
different lexical structures, it holds promise to
translate into other languages as well. Future
research will explore this modeling strategy in
additional languages by comparing the model
identified here to the scoring of referential ac-
tivity by native speakers in similar corpora to
those utilized here. Future research will also test
this model for stability in additional samples of
English and Italian.

While this study shows promise to facilitate
the development of computational models of ref-
erential activity in other languages it also rep-
resents an opportunity to better understand the
construct of referential activity. We believe that
the components identified by this model sup-
port the idea that referential activity represents
the language of scene construction. As evidence,
the model makes use of definite object references
(‘the’) sensate and experience near content (Sen-
sory Somatic), the movement of actors and ob-
jects (‘to’) and orientation in time (‘was’), all of
which are consistent with the detailed descrip-
tion of images and events. A higher density of
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‘and’ suggests that such texts may be similarly
dense in details and events which require con-
nection to one another in the context of a scene.

The inclusion of the third person singular an-
imate pronouns ‘he’ and ‘she’ is consistent with
an emphasis on concrete immediate experience
with other people as opposed to internal reflec-
tion and consideration which may be more likely
to involve a more reflective or abstract point
of view. Similarly, negations as strong negative
predictors of RA suggest that when speakers are
using high RA language they are not engaged in
reconsideration and qualification involving logi-
cal operations.

Scene construction is consistent with the idea
of the Symbolizing Phase of the referential pro-
cess which suggests that our felt experience is
most effectively conveyed by telling about the
events and images that give rise to a feeling so
that others may become engaged in the event
in their own bodily, sensory and emotional ex-
perience. This basic function is central to com-
municating emotional experience to others, and
to making sense of our own experience. Such
a dimension is necessarily important for under-
standing emotion in interpersonal communica-
tion in clinical contexts such as psychotherapy
and the diagnosis of problems with memory and
emotion, and in non-clinical contexts such as in-
spiration in political speech, clarity in effective
teaching, or connection in interpersonal relation-
ships.
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Abstract

Major depressive disorder is one of the most bur-
densome and debilitating diseases in the United
States. In this pilot study, we present a new an-
notation scheme representing depressive symp-
toms and psycho-social stressors associated with
major depressive disorder and report annotator
agreement when applying the scheme to Twitter
data.

1 Introduction

Major depressive disorder — one of the most de-
bilitating forms of mental illness — has a lifetime
prevalence of 16.2% (Kessler et al., 2003), and a
12-month prevalence of 6.6% (Kessler and Wang,
2009) in the United States. In 2010, depression was
the fifth biggest contributor to the United State’s dis-
ease burden, with only lung cancer, lower back pain,
chronic obstructive pulmonary disease, and heart
disease responsible for more poor health and disabil-
ity (US Burden of Disease Collaborators, 2013).

Social media, particularly Twitter, is increasingly
recognised as a valuable resource for advancing pub-
lic health (Ayers et al., 2014; Dredze, 2012), in areas
such as understanding population-level health be-
haviour (Myslı́n et al., 2013; Hanson et al., 2013),
pharmacovigilance (Freifeld et al., 2014; Chary et
al., 2013), and infectious disease surveillance (Chew

and Eysenbach, 2010; Paul et al., 2014). Twitter’s
value in the mental health arena — the focus of
this paper — is particularly marked, given that it
provides access to first person accounts of user be-
haviour, activities, thoughts, feelings, and relation-
ships, that may be indicative of emotional wellbe-
ing.

The main contribution of this work is the devel-
opment and testing of an annotation scheme, based
on DSM-5 depression criteria (American Psychiatric
Association, 2013) and depression screening instru-
ments1 designed to capture depressive symptoms in
social media data, particularly Twitter. In future
work, the annotation scheme described here will be
applied to a large corpus of Twitter data and used to
train and test Natural Language Processing (NLP)
algorithms.

The paper is structured as follows. Section 2 de-
scribes related work. Section 3 sets out the method-
ology used, including a list of semantic categories
related to depression and psycho-social stressors de-
rived from the psychology literature, and a descrip-
tion of our annotation process and environment.
Section 4 presents the results of our annotation ef-
forts and Section 5 provides commentary on those
results.

1For example, the 10-item HANDS scale (Harvard Depart-
ment of Psychiatry/NDSD) (Baer et al., 2000).
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2 Background

2.1 Mental Health, NLP, and Social Media
Significant research effort has been focused on de-
veloping NLP methods for identifying mental health
risk factors. For example, Huang et al., in a large-
scale study of electronic health records, used struc-
tured data to identify cohorts of depressed and non-
depressed patients, and — based on the narrative
text component of the patient record — built a re-
gression model capable of predicting depression di-
agnosis one year in advance (Huang et al., 2014).
Pestian et al. showed that an NLP approach based on
machine learning performed better than clinicians in
distinguishing between suicide notes written by sui-
cide completers, and notes elicited from healthy vol-
unteers (Pestian et al., 2010; Pestian et al., 2012).
Using machine learning methods, Xuan et al. iden-
tified linguistic characteristics — e.g. impoverished
syntax and lexical diversity — associated with de-
mentia through an analysis of the work of three
British novelists, P.D. James (no evidence of demen-
tia), Agatha Christie (some evidence of dementia),
and Iris Murdoch (diagnosed dementia) (Xuan et al.,
2011).

More specifically focused on Twitter and depres-
sion, De Choudhury et al. describes the creation
of a corpus crowdsourced from Twitter users with
depression-indicative CES-D scores2, then used this
corpus to train a classifier, which, when used to
classify geocoded Twitter data derived from 50 US
states, was shown to correlate with US Centers for
Disease Control (CDC) depression data (De Choud-
hury et al., 2013). Jashinsky et al. used a set of Twit-
ter keywords organised around several themes (e.g.
depression symptoms, drug use, suicidal ideation)
and identified strong correlations between the fre-
quency of suicide-related tweets (as identified by
keywords) and state-level CDC suicide statistics
(Jashinsky et al., 2014). Coppersmith et al. identi-
fied Twitter users with self-disclosed depression di-
agnoses (“I was diagnosed with depression”) using
regular expressions, and discovered that when de-
pressed Twitter users’ tweets where compared with
a cohort of non-depressed Twitter users’ tweets there
were significant differences between the two groups

2Center for Epidemiologic Studies Depression Scale
(Radloff, 1977)

in their expression of anger, use of pronouns, and
frequency of negative emotions (Coppersmith et al.,
2014).

2.2 Annotation Studies
Annotation scheme development and evaluation
is an important subtask for some health and
biomedical-related NLP applications (Conway et al.,
2010; Mowery et al., 2013; Roberts et al., 2007;
Vincze et al., 2008; Kim et al., 2003). Work on
building annotation schemes (and corpora) for men-
tal health signals in social media is less well de-
veloped, but pioneering work exists. For example,
Homan et al. created a 4-value distress scale for
rating tweets, with annotations performed by novice
and expert annotators (Homan et al., 2014). To our
knowledge, there exists no clinical depression anno-
tation scheme that explicitly captures elements from
common diagnostic protocols for the identification
of depression symptoms in Twitter data.

3 Methods

Our first step was the iterative development of a
Depressive Disorder Annotation Scheme based on
widely-used diagnostic criteria (Section 3.1). We
then went on to evaluate how well annotators were
able to apply the schema to a small corpus of Twit-
ter data, and assessed pairwise inter-annotator agree-
ment across the corpus (Section 3.2).

3.1 Depressive Disorder Annotation Scheme
3.1.1 Classes

Our Depressive Disorder Annotation Scheme is
hierarchally-structured and is comprised of two
mutually-exclusive nodes - No evidence of clinical
depression and Evidence of clinical depression.
The Evidence of clinical depression node has two
non-mutually-exclusive types, Depression Symp-
tom and Psycho-Social Stressor, derived from our
literature review (top-down modeling) and dataset
(bottom-up modeling). A summary of the scheme
is shown in Figure 1.

For Depression Symptom classes, we identified
9 of the 10 parent-level depression symptoms from
five resources for evaluating depression:
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Figure 1: Radial representation of Depressive Disorder Annotation Scheme

1. Diagnostic and Statistical Manual of Mental
Disorders, Edition 5 (DSM-5) (American Psy-
chiatric Association, 2013)

2. Behavioral Risk Factors Surveillance System
BRFSS depression inventory (BRFSS)(Centers
for Disease Control, 2014)3

3. The Harvard Department of Psychiatry National
Depression Screening Day Scale (HANDS)
(Baer et al., 2000)

3www.webcitation.org/6Ws1k4tki

4. Patient Health Questionnaire (PHQ-9) (Kroenke
et al., 2001)

5. The Quick Inventory of Depressive Symptoma-
tology (QIDS-SR) (Rush et al., 2003)

Additionally, we included a suicide related class,
Recurrent thoughts of death, suicidal ideation,
which consisted of child level classes derived from
the Columbia Suicide Severity Scale (Posner et al.,
2011).

For Psycho-Social Stressor classes, we synthe-
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sised 12 parent-level classes based on the Diagnos-
tic and Statistical Manual of Mental Disorders, Edi-
tion 4 (DSM IV) Axis IV “psychosocial and envi-
ronmental problems” (American Psychiatric Asso-
ciation, 2000) and work by Gilman et al. (Gilman
et al., 2013). We identified other potential par-
ent classes based on annotation of 129 randomly-
selected tweets from our corpus. The hierarchi-
cal structure of the scheme, emphasising parent and
child classes assessed in this study, is depicted in
Figure 2.

In the following subsections, 3.1.1.1 Depression
Symptom Classes and 3.1.1.2 Psycho-Social
Stressor Classes, we list some example tweets
for each Depression Symptom and Psycho-Social
Stressor class.

3.1.1.1 Depression Symptom Classes

• No evidence of clinical depression: political
stance or personal opinion, inspirational state-
ment or advice, unsubstantiated claim/fact, NOS
E.g.“People who eat dark chocolate are less
likely to be depressed”

• Low mood: feels sad, feels hopeless, “the
blues”, feels down, NOS
E.g. “Life will never get any better #depression”

• Anhedonia: loss of interest in previous inter-
ests, NOS
E.g. “Cant seem to jam on this guitar like the
old days #depressionIsReal”

• Weight change or change in appetite: increase
in weight, decrease in weight, increase in
appetite, decrease in appetite, NOS
E.g. “At least I can now fit into my old fav jeans
again #depressionWeightLossProgram”

• Disturbed sleep: difficulty in falling asleep,
difficulty staying awake, waking up too early,
sleeping too much, NOS
E.g. “I could sleep my life away; I’m a de-
pressed sleeping beauty”

• Psychomotor agitation or retardation: feeling
slowed down, feeling restless or fidgety, NOS
E.g. “I just feel like I’m talking and moving in
slow motion”

• Fatigue or loss of energy: feeling tired, insuffi-
cient energy for tasks, NOS

E.g. “I just cannot muster the strength to do
laundry #day20 #outOfUnderwear”

• Feelings of worthlessness or excessive in-
appropriate guilt: perceived burdensome,
self-esteem, feeling worthless, inappropriate
guilt, NOS
E.g. “I just can’t seem to do anything right for
anybody”

• Diminished ability to think or concentrate,
indecisiveness: finding concentration difficult,
indecisiveness, NOS
E.g. “Should I do my homework or the laundry
first? What does it matter anyway?”

• Recurrent thoughts of death, suicidal
ideation: thoughts of death, wish to be dead,
suicidal thoughts, non-specific active suicidal
thoughts, active suicidal ideation with any
method without intent to act, active suicidal
ideation with some intent to act, without specific
plan, active suicidal ideation with specific plan
and intent, completed suicide, NOS
E.g. “Sometimes I wish i would fall asleep and
then not wake up”

3.1.1.2 Psycho-Social Stressor Classes

• Problems with expected life course with
respect to self: serious medical condition,
failure to achieve important goal, NOS
E.g. “If it wasn’t for my chronic pain, I could
have made the Olympics. Now what?!”

• Problems with primary support group: death
of a family member, health problem in a family
member, serious disability of a family member,
separation/divorce/end of serious relationship,
serious disagreement with or estrangement from
friend, NOS
E.g. “I’ve been so depressed since my brother
passed this year”

• Problems related to the social environment:
death of friend, death of celebrity or person
of interest, social isolation, inadequate social
support personal or romantic, living alone,
experience of discrimination, adjustment to
lifestyle transition, NOS
E.g. “Since Robin Williams’s death, I’ve only
known dark days”
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Figure 2: Annotation scheme hierarchy. light gray=parent classes; dark gray=child classes. NOS (Not Otherwise
Specified indicates the parent class by default) .

• Educational problems: academic problems,
discord with teachers or classmates, inadequate
or dangerous school environment, NOS
E.g. “This MBA program is the worst! I feel
like I’m leaving Uni with no skill sets”

• Occupational problems: firing event, unem-
ployment, threat of job loss, stressful work
situation, job dissatisfaction, job change, diffi-
cult relationship with boss or co-worker, NOS
E.g. “What kind of life is this working 12 hour
days in a lab??”

• Housing problems: homelessness, inadequate
housing, unsafe neighbourhood, discord with
neighbours or landlord, NOS
E.g. “My dad threw me out of the house again.
I didn’t want to live under his roof anyway”

• Economic problems: major financial crisis,
regular difficulty in meeting financial commit-
ments, poverty, welfare recipient, NOS
E.g.“My clothes have more patches than original
cloth. #whateverItTakes”

• Problems with access to healthcare: inad-
equate health care services, lack of health
insurance, NOS
E.g. “These generic pills do nothing to subside

my depressed thoughts”
• Problems related to the legal system/crime:

problems with police or arrest, incarceration,
litigation, victim of crime, NOS
E.g. “3 years in the joint and life hasn’t changed
at all on the outside #depressingLife”

• Other psychosocial and environmental
problems: natural disaster, war, discord with
caregivers, NOS
E.g. “I lost everything and my mind to Hurri-
cane Katrina”

• Weather: NOS
E.g. “Rainy day - even the weather agrees with
my mood” [NOT A DSM IV PSYCHO-SOCIAL

STRESSOR]
• Media: music, movie or tv, book, other, NOS

E.g. “After reading Atonement I became really
bummed out” [NOT A DSM IV PSYCHO-
SOCIAL STRESSOR]

3.2 Pilot Annotation Study

The goal of this preliminary study was to assess how
reliably our annotation scheme could be applied to
Twitter data. To create our initial corpus, we queried
the Twitter API using lexical variants of “depres-
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sion” e.g., “depressed” and “depressing”, and ran-
domly sampled 150 tweets from the data set4. Of
these 150 tweets, we filtered out 21 retweets (RT).
The remaining tweets (n=129 tweets) were anno-
tated with the annotation scheme and adjudicated
with consensus review by the authors (A1, A2), both
biomedical informaticists by training. Two clini-
cal psychology student annotators (A3, A4) were
trained to apply the guidelines using the extensible
Human Oracle Suite of Tools (eHOST) annotation
tool (South et al., 2012) (Figure 3). Following this
initial training, A3 and A4 annotated the same 129
tweets as A1 and A2.

In this study, we calculated the frequency distribu-
tion of annotated classes for each annotator. In order
to assess inter-annotator agreement, we compared
annotator performance between annotators (IAAba
— between annotators) and against the adjudicated
reference standard (IAAar — against the reference
standard) using F1-measure. Note that F1-measure,
the harmonic mean of sensitivity and positive pre-
dictive value, is equivalent to positive specific agree-
ment which can act as a surrogate for kappa in situ-
ations where the number of true negatives becomes
large (Hripcsak and Rothschild, 2005). We also as-
sessed IAAar performance compared to the refer-
ence standard at both parent and child levels of the
annotation scheme hierarchy (see Figure 2 for exam-
ple parent/child classes). In addition to presenting
IAAar by annotator for each parent class, we also
characterise the following distribution of disagree-
ment types:

1. Presence/absence of clinical evidence (CE)
e.g., No evidence of clinical depression vs. Fa-
tigue or loss of energy

2. Spurious class (SC)
e.g., false class annotation

3. Missing class (MC)
e.g., missing class annotation

4. Other (OT)
e.g., errors not mentioned above

4The Twitter data analysed were harvested from the Twitter
API during February 2014. Only English language tweets were
retained.

4 Results

In Table 1, we report the distribution of annotated
classes per tweet. The prevalence of tweets an-
notated with one class label ranged from 83-97%,
while the prevalence of tweets annotated with two
class labels ranged from 3-16%. A3 and A4 anno-
tated all 129 tweets. Annotators annotated between
133-149 classes on the full dataset.

A1 A2 A3 A4
1 106 (83) 116 (91) 121 (94) 125 (97)
2 20 (16) 12 (9) 8 (6) 4 (3)
3+ 1 (1) 0 (0) 0 (0) 0 (0)
tws 127 128 129 129
cls 149 140 137 133

Table 1: Count (%) distribution for annotated classes
per tweet; total annotated tweets (tws); total annotated
classes (cls)

Table 2 shows assessed pair-wise IAAba agree-
ment between annotators. We observed moder-
ate (A1/A2: 68; A2/A4: 43) to low (A2/A3: 30;
A1/A4:38) IAAba between annotators.

In Table 3, we report IAAar for each annotator
compared to the reference standard for both par-
ent and child classes. IAAar ranged from 60-90 for
the parent classes (e.g. Media) and 41-87 for child
classes (e.g. Media: book). The IAAar difference
between parent and child class performance ranged
from 3-36 points.

Table 4 enumerates IAAar for the observed par-
ent classes. Note that only 12 (55%) of the par-
ent classes were observed in the reference standard.
A1 had variable agreement levels including 4 sub-
types between 80-100, 6 subtypes between 60-79,
and 3 subtypes between 40-59. A2 had consistently
high agreement with 10 subtypes between 80-100
followed by 1 subtype IAAar between 20-39 IAAar.
A3 achieved 3 subtypes between 60-79 and 1 sub-
type between 40-59. A3 performed with 2 subtypes
between 80-100, 3 subtypes between 60-79, 1 sub-
type between 40-59, and 2 subtypes between 20-39.

A1 A2 A3 A4
A1 68 24 38
A2 30 43
A3 28
A4

Table 2: Pairwise IAAba between annotators
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Figure 3: eHOST annotation tool

A1 A2 A3 A4
parent 75 90 66 60
child 63 87 30 41

Table 3: Overall IAAar for each annotator at parent and
child levels compared against the reference standard

We observed between 15-57 disagreements across
annotators when compared to the reference standard
(see Table 5), with No evidence of clinical depres-
sion accounting for 60-77% of disagreements. Miss-
ing classes accounted for 16-33% of disagreements.

5 Discussion

We developed an annotation scheme to represent de-
pressive symptoms and psychosocial stressors asso-
ciated with depressive disorder, and conducted a pi-
lot study to assess how well the scheme could be
applied to Twitter tweets. We observed that con-
tent from most tweets can be represented with one
class annotation (see Table 1), an unsurprising re-
sult given the constraints on expressivity imposed by
Twitter’s 140 character limit. In several cases, two
symptoms or social stressors are expressed within a
single tweet, most often with Low mood and a sec-
ond class (e.g. Economic problems).

We observed low to moderate IAAba between an-
notators (Table 2). Annotators A1 and A2 achieved
highest agreement suggesting they have a more sim-
ilar understanding of the schema than all other pair
combinations. Comparing our kappa scores to re-
lated work is challenging. However, Homan et al.
reports a comparable, moderate kappa (50) between

two novice annotators when annotating whether a
tweet represents distress.

When comparing IAAar, annotators achieved
moderate to high agreement at the parent level
against the reference standard (Table 3). Annota-
tors A1 and A2 had higher parent and child level
agreement than annotators A3 and A4. This may
be explained by the fact that the schema was ini-
tially developed by A1 and A2. Additionally, the
reference standard was adjudicated using consen-
sus between A1 and A2. Around half of the de-
pressive symptoms and psycho-stressors were not
observed during the pilot study (e.g. Anhedonia,
Fatigue or loss of energy, Recurrent thoughts of
death or suicidal ideation — see Table 4) although
may well appear in a larger annotation effort. The
reference standard consists mainly of No evidence
of clinical depression and Low mood classes sug-
gesting that other depressive symptoms and psycho-
stressors (e.g. Psychomotor agitation or retarda-
tion) are less often expressed or more difficult to de-
tect without more context than is available in a sin-
gle tweet. For these most prevalent subtypes, good
to excellent agreement was achieved by all 4 anno-
tators. Considerably lower agreement was observed
for annotators A3 and A4 for less prevalent classes.
In contrast, A1 and A2 maintained similar moderate
and high agreement, respectively. In future experi-
ments, we will leverage all annotators’ annotations
when generating the reference standard (i.e. the ref-
erence standard will be created using majority vote).

The most prevalent disagreement involved iden-
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Parent Classes Ct A1 A2 A3 A4
All 148 75 90 66 60
No evidence of clinical depression 73 77 94 74 66
Low mood 52 75 91 70 63
Problems related to social environment 6 80 80 40 22
Media 4 67 33 0 31
Problems with expected life course wrt. self 3 86 0 0 0
Weather 3 86 100 0 50
Education problems 2 67 80 0 0
Disturbed sleep 1 100 100 0 100
Economic problems 1 50 100 0 0
Occupational problems 1 67 100 0 100
Problems with primary support group 1 50 100 0 0
Weight or appetite change 1 50 100 0 0
Fatigue or loss of energy 0 0 0 0 0
Housing problems 0 0 0 0 0
Psychomotor agitation or retardation 0 0 0 0 0

Table 4: Agreement for parent classes between annotator & reference standard; darker gray=higher IAAar, lighter
gray=lower IAAar. Note that not all classes are listed.

A1 A2 A3 A4
CE 25 (65) 9 (60) 36 (74) 44 (77)
MC 8 (21) 5 (33) 8 (16) 9 (16)
SC 3 (8) 1 (7) 2(4) 0 (0)
OT 2 (5) 0 (0) 3 (6) 4 (7)
Total 38 15 49 57

Table 5: Count (%) of disagreements by type for each
annotator compared against the reference standard

tifying a tweet as containing No evidence of clini-
cal depression (see Table 5). The line between the
presence and absence of evidence for clinical de-
pression is difficult to draw in these cases due to the
use of humour (“So depressed :) #lol”), misuse or
exaggerated use of the term (“I have a bad case of
post concert depression”), and lack of context (“This
is depressing”). In very few cases, disagreements
were the result of other differences such as speci-
ficity (Media vs Media: book) or one-to-one mis-
match (Weather: NOS vs Media: book). This re-
sult is unsurprising given that agreement tends to
reduce as the number of categories become large,
especially for less prevalent categories (Poesio and
Vieira, 1998). We acknowledge several limitations
in our pilot study, notably the small sample size and
initial queried term. We will address these limita-
tions in future work by annotating a significantly
larger corpus (over 5,000 tweets) and querying the
Twitter API with a more diverse list of clinician-
validated keywords than was used in this pilot an-
notation study.

6 Conclusions

We conclude that there are considerable challenges
in attempting to reliably annotate Twitter data for
mental health symptoms. However, several de-
pressive symptoms and psycho-social stressors de-
rived from DSM-5 depression criteria and depres-
sion screening instruments can be identified in Twit-
ter data.

Acknowledgements

We would like to thank Dr Murray Stein (Univer-
sity of California San Diego, Department of Psy-
chiatry) and Dr Gary Tedeschi (California Smokers
Helpline) for their comments on an early draft of
the annotation scheme described in this paper. We
would also like to thank Mr Soumya Smruti Mishra
(University of Utah, Department of Computer Sci-
ence) for help with diagram creation, and both Mr
Tyler Cheney and Ms Hilary Smith (University of
Utah, Department of Psychology) for their annota-
tion efforts. This work was funded by a grant from
the National Library of Medicine (R00LM011393).

Ethics Statement

This study was granted an exemption from review by
the University of Utah Institutional Review Board
(IRB 00076188). Note that in order to protect
tweeter anonymity, we have not reproduced tweets
verbatim. Example tweets shown were generated by
the researchers as exemplars only.

96



References

American Psychiatric Association. 2000. Diagnostic
and Statistical Manual of Mental Disorders, 4th Edi-
tion, Text Revision (DSM-IV-TR). American Psychi-
atric Association.

American Psychiatric Association. 2013. Diagnostic
and Statistical Manual of Mental Disorders, Fifth Edi-
tion (DSM-5). American Psychiatric Publishing.

J Ayers, B Althouse, and M Dredze. 2014. Could behav-
ioral medicine lead the web data revolution? JAMA,
311(14):1399–400, Apr.

L Baer, D G Jacobs, J Meszler-Reizes, M Blais, M Fava,
R Kessler, K Magruder, J Murphy, B Kopans, P Cukor,
L Leahy, and J O’Laughlen. 2000. Development of a
brief screening instrument: the HANDS. Psychother
Psychosom, 69(1):35–41.

Centers for Disease Control. 2014. BRFSS - Anxiety and
Depression Optional Module.

M Chary, N Genes, A McKenzie, and A Manini. 2013.
Leveraging social networks for toxicovigilance. J Med
Toxicol, 9(2):184–91, Jun.

C Chew and G Eysenbach. 2010. Pandemics in the age
of Twitter: content analysis of tweets during the 2009
H1N1 outbreak. PLoS One, 5(11):e14118.

M Conway, A Kawazoe, H Chanlekha, and N Collier.
2010. Developing a disease outbreak event corpus. J
Med Internet Res, 12(3):e43.

G Coppersmith, M Dredze, and C Harman. 2014. Quan-
tifying mental health signals in Twitter. In Proceed-
ings of the Workshop on Computational Linguistics
and Clinical Psychology: From Linguistic Signal to
Clinical Reality, pages 51–60, Baltimore, Maryland,
USA, June. Association for Computational Linguis-
tics.

M De Choudhury, S Counts, and E Horvitz. 2013. Social
media as a measurement tool of depression in popu-
lations. In Proceedings of the 5th Annual ACM Web
Science Conference, pages 47–56. ACM.

M Dredze. 2012. How social media will change public
health. Intelligent Systems, IEEE, 27(4):81–84.

C Freifeld, J Brownstein, C Menone, W Bao, R Filice,
T Kass-Hout, and N Dasgupta. 2014. Digital drug
safety surveillance: monitoring pharmaceutical prod-
ucts in Twitter. Drug Saf, 37(5):343–50, May.

S Gilman, N Trinh, J Smoller, M Fava, J Murphy, and
J Breslau. 2013. Psychosocial stressors and the prog-
nosis of major depression: a test of Axis IV. Psychol
Med, 43(2):303–16, Feb.

C Hanson, B Cannon, S Burton, and C Giraud-Carrier.
2013. An exploration of social circles and prescrip-
tion drug abuse through Twitter. J Med Internet Res,
15(9):e189.

C Homan, R Johar, T Liu, M Lytle, V Silenzio, and
C Ovesdotter Alm. 2014. Toward macro-insights for
suicide prevention: analyzing fine-grained distress at
scale. In Proceedings of the Workshop on Computa-
tional Linguistics and Clinical Psychology: From Lin-
guistic Signal to Clinical Reality, pages 107–117, Bal-
timore, Maryland, USA, June. Association for Com-
putational Linguistics.

G Hripcsak and A Rothschild. 2005. Agreement,
the f-measure, and reliability in information retrieval.
JAMIA, 12(3):296–298.

S Huang, P LePendu, S Iyer, M Tai-Seale, D Carrell, and
N Shah. 2014. Toward personalizing treatment for
depression: predicting diagnosis and severity. J Am
Med Inform Assoc, 21(6):1069–75, Nov.

J Jashinsky, S Burton, C Hanson, J West, C Giraud-
Carrier, M Barnes, and T Argyle. 2014. Tracking
suicide risk factors through Twitter in the US. Crisis,
35(1):51–9.

R Kessler and P Wang. 2009. Handbook of Depres-
sion. chapter Epidemiology of Depression, pages 5–
22. Guilford Press, 2nd edition.

R Kessler, P Berglund, O Demler, R Jin, D Koretz,
K Merikangas, A Rush, E Walters, P Wang, and
National Comorbidity Survey Replication. 2003.
The epidemiology of major depressive disorder: re-
sults from the national comorbidity survey replication
(NCS-R). Journal of the American Medical Associa-
tion, 289(23):3095–105.

J-D Kim, T Ohta, Y Tateisi, and J Tsujii. 2003.
Genia corpus–semantically annotated corpus for bio-
textmining. Bioinformatics, 19 Suppl 1:i180–2.

K Kroenke, R Spitzer, and J Williams. 2001. The PHQ-
9: validity of a brief depression severity measure. J
Gen Intern Med, 16(9):606–13, Sep.

D Mowery, P Jordan, J Wiebe, H Harkema, J Dowling,
and W Chapman. 2013. Semantic annotation of clin-
ical events for generating a problem list. AMIA Annu
Symp Proc, 2013:1032–41.

M Myslı́n, S-H Zhu, W Chapman, and M Conway. 2013.
Using Twitter to examine smoking behavior and per-
ceptions of emerging tobacco products. J Med Internet
Res, 15(8):e174.

M Paul, M Dredze, and D Broniatowski. 2014. Twitter
improves influenza forecasting. PLoS Curr, 6.

J Pestian, H Nasrallah, P Matykiewicz, A Bennett, and
A Leenaars. 2010. Suicide note classification us-
ing natural language processing: a content analysis.
Biomed Inform Insights, 2010(3):19–28, Aug.

J Pestian, P Matykiewicz, and M Linn-Gust. 2012.
What’s in a note: construction of a suicide note cor-
pus. Biomed Inform Insights, 5:1–6.

97



M Poesio and R Vieira. 1998. A corpus-based investi-
gation of definite description use. Comput. Linguist.,
24(2):183–216, June.

K Posner, G Brown, B Stanley, D Brent, K Yershova,
M Oquendo, G Currier, G Melvin, L Greenhill,
S Shen, and J Mann. 2011. The Columbia-Suicide
Severity Rating Scale: initial validity and internal con-
sistency findings from three multisite studies with ado-
lescents and adults. Am J Psychiatry, 168(12):1266–
77, Dec.

L Sawyer Radloff. 1977. The CES-D scale: a self-report
depression scale for research in the general population.
Applied Psychological Measurement, 1(3):385–401.

A Roberts, R Gaizauskas, M Hepple, N Davis,
G Demetriou, Y Guo, J Kola, I Roberts, A Setzer,
A Tapuria, and B Wheeldin. 2007. The CLEF cor-
pus: semantic annotation of clinical text. AMIA Annu
Symp Proc, pages 625–9.

A Rush, M Trivedi, H Ibrahim, T Carmody, B Arnow,
D Klein, J Markowitz, P Ninan, S Kornstein, R Man-
ber, M Thase, J Kocsis, and M Keller. 2003. The
16-item Quick Inventory of Depressive Symptomatol-
ogy (QIDS), clinician rating (QIDS-C), and self-report
(QIDS-SR): a psychometric evaluation in patients with
chronic major depression. Biol Psychiatry, 54(5):573–
83, Sep.

B South, S Shen, J Leng, T Forbush, S DuVall, and
W Chapman. 2012. A prototype tool set to support
machine-assisted annotation. In Proceedings of the
2012 Workshop on Biomedical Natural Language Pro-
cessing, BioNLP ’12, pages 130–139, Stroudsburg,
PA, USA. Association for Computational Linguistics.

US Burden of Disease Collaborators. 2013. The state
of US health, 1990-2010: burden of diseases, injuries,
and risk factors. JAMA, 310(6):591–608, Aug.

V Vincze, G Szarvas, R Farkas, G Móra, and J Csirik.
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Abstract

Topic models can yield insight into how de-
pressed and non-depressed individuals use
language differently. In this paper, we explore
the use of supervised topic models in the anal-
ysis of linguistic signal for detecting depres-
sion, providing promising results using several
models.

1 Introduction

Depression is one of the most prevalent forms of
mental illness: in the U.S. alone, 25 million adults
per year suffer a major depressive episode (NAMI,
2013), and Katzman et al. (2014) observe that “[by]
2020, depression is projected to be among the most
important contributors to the global burden of dis-
ease”. Unfortunately, there are significant barriers
to obtaining help for depression and mental disor-
ders in general, including potential stigma associ-
ated with actively seeking treatment (Rodrigues et
al., 2014) and lack of access to qualified diagnosti-
cians (Sibelius, 2013; APA, 2013). When patients
suffering from depression see a primary care physi-
cian, the rates of misdiagnosis are staggering (Ver-
mani et al., 2011).

These considerations have helped to motivate a
recent surge of interest in finding accessible, cost
effective, non-intrusive methods to detect depres-
sion and other mental disorders. Continuing a line
of thought pioneered by Pennebaker and colleagues
(Pennebaker and King, 1999; Rude et al., 2004, and
others), researchers have been developing methods
for identifying relevant signal in people’s language

use, which could potentially provide inexpensive
early detection of individuals who might require a
specialist’s evaluation, on the basis of their naturally
occurring linguistic behavior, e.g. (Neuman et al.,
2012; De Choudhury et al., 2013; Coppersmith et
al., 2014). Critical mass for a community of interest
on these topics has been building within the compu-
tational linguistics research community (Resnik et
al., 2014).

To date, however, the language analysis methods
used in this domain have tended to be fairly simple,
typically including words or n-grams, manually de-
fined word categories (e.g., Pennebaker’s LIWC lex-
icon, Pennebaker and King (1999)), and “vanilla”
topic models (Blei et al., 2003, latent Dirichlet al-
location (LDA)). This stands in contrast to other
domains of computational social science in which
more sophisticated models have been developed for
some time, including opinion analysis (Titov and
McDonald, 2008), analysis of the scientific literature
(Blei and Lafferty, 2007), and computational politi-
cal science (Grimmer, 2010).

In this paper, we take steps toward employing
more sophisticated models in the analysis of lin-
guistic signal for detecting depression, providing
promising results using supervised LDA (Blei and
McAuliffe, 2007) and supervised anchor topic mod-
els (Nguyen et al., 2015), and beginning some initial
exploration of a new supervised nested LDA model
(SNLDA).

2 Data

Our primary experimental dataset is the Twitter
collection created by Coppersmith et al. (2014)
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and used in the CLPsych Hackathon (Coppersmith,
2015). The raw set contains roughly 3 million tweets
from about 2,000 twitter users, of which roughly
600 self-identify as having been clinically diag-
nosed with depression (by virtue of having publicly
tweeted “I was diagnosed with depression today” or
similar, with manual validation by the individuals
preparing the data). We grouped all tweets by an in-
dividual user into a single document, and a base vo-
cabulary was created by pre-processing documents
using standard NLP tools, specifically: (1) keeping
alphanumeric words and word-encoded emoticons,
(2) removing stopwords using the MALLET stop-
word list, and (3) lemmatizing using NLTK’s Word-
NetLemmatizer. We then filtered out words that ap-
peared in fewer than 20 documents, words only ap-
pearing in documents of fewer than 50 words (fewer
than 10 users), and URLs. The resulting set of 1,809
documents was randomly divided into train/dev/test
subsets to create a 60-20-20% split. We model doc-
uments from the Twitter datasets depression subset
as having a regression value of 1 and those from the
control subset as having a regression value of -1.

In building some of our models, we also use a col-
lection of 6,459 stream-of-consciousness essays col-
lected between 1997 and 2008 by Pennebaker and
King (1999), who asked students to think about their
thoughts, sensations, and feelings in the moment and
“write your thoughts as they come to you”. As dis-
cussed in Section 3.1, running LDA on this dataset
provides informative priors for SLDA’s learning
process on the Twitter training data. The student
essays average approximately 780 words each, and
Resnik et al. (2013) showed that unsupervised topic
models based on this dataset can produce very clean,
interpretable topical categories, a number of which
were viewed by a clinician as relevant in the assess-
ment of depression, including, for example, “vege-
tative” symptoms (particularly related to sleep and
energy level), somatic symptoms (physical discom-
fort, e.g. headache, itching, digestive problems), and
situational factors such as homesickness.

For uniformity, we preprocessed the stream-of-
consciousness dataset with the same tools as the
Twitter set.1 We created a shared vocabulary for our
models by taking the union of the vocabularies from

1With the exception of the document count filters, due to the
different number and sizse of documents; instead, we allowed

the two datasets, leading to a roughly 6% increase in
vocabulary size over the Twitter dataset alone.

3 Models

3.1 LDA

LDA (Blei et al., 2003) uncovers underlying struc-
ture in collections of documents by treating each
document as if it was generated as a “mixture”
of different topics. As a useful illustration, repli-
cating Resnik et al. (2013), we find that using
LDA with 50 topics on the Pennebaker stream-of-
consciousness essays produces many topics that are
coherent and meaningful. We had a licensed clinical
psychologist review these to identify the topics most
likely to be relevant in assessing depression, shown
in Table 1.2 This step exploiting domain expertise
can be viewed as a poor-man’s version of interactive
topic modeling (Hu et al., 2014), which we intend to
explore in future work.

3.2 Supervised LDA

Basic (sometimes referred to as “vanilla”) LDA is
just the entry point when it comes to characterizing
latent topical structure in collections of documents,
and extensions to LDA have proven valuable in
other areas of computational social science. Super-
vised topic models (SLDA, introduced by Blei and
McAuliffe (2007)), extend LDA in settings where
the documents are accompanied by labels or values
of interest, e.g. opinion analysis (reviews accompa-
nied by k-star ratings) or political analysis (politi-
cal speeches accompanied by the author’s political
party). The advantage of supervised topic modeling
is that the language in the documents and the accom-
panying values are modeled jointly — this means
that the unsupervised topic discovery process seeks
to optimize not just the coherence of the topics un-
derlying the discourse, but the model’s ability to pre-
dict the associated values. So, for example, in mod-
eling Amazon reviews, vanilla LDA might discover
a topic containing opinion words (great, enjoy, dis-
like, etc.) but SLDA would be more likely to sep-
arate these out into a positive opinion-word topic

all non stopwords that appear in more than one document.
2Many other topics were coherent and meaningful, but were

judged as falling below the clinician’s intuitive threshold of rel-
evance for assessing depression.
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Notes Valence Top 20 words

high emotional valence e life live dream change future grow family goal mind rest decision marry chance choice successful career set regret support true
high emotional valence e love life happy heart amaze hurt perfect crazy beautiful lose smile cry boy true fall real sad relationship reason completely
relationship problems n time boyfriend friend relationship talk person break doe happen understand hard trust care spend reason san situation antonio date leave
transition to college n school college student semester university experience hard grade parent graduate freshman campus learn texas attend teacher expect challenge adjust education
self-doubt n question realize understand completely idea sense level bring issue concern simply situation lack honestly admit mention fear step feeling act
poor ego control n yeah suck wow haha stupid funny hmm crap crazy blah freak type ugh weird lol min gosh hey bore hmmm
feeling ignored/annoyed * n call talk phone doe stop bad ring message loud head homework answer cell mad forget annoy sound hurt suppose mine
somatic complaints n cold hot feel sick smell rain walk start weather bad window foot freeze nice wait throat day heat hate warm
emotional distress * n feel happy day sad depress feeling cry scar afraid lonely head moment emotion realize confuse hurt inside guilty fear upset
family of origin issues n mom dad family sister parent brother kid child mother father grow doctor baby hard cousin die age cry proud husband
negative affect * n damn hell doe shit fuck smoke woman hate drink piss sex drug kid god bitch time real break screw cigarette
anxiety over failure n worry hard study test class lot grade focus mind start nervous stress concentrate trouble reason easier hop harder fail constantly
negative affect* n hate doe bad stupid care understand time suck happen anymore mad don mess scar horrible smart matter hat upset fair
sleep disturbance* n sleep tire night morning wake bed day time late stay hour asleep nap fall start tomorrow sleepy haven awake lay
somatic complaints n hurt eye hear itch hand air sound tire nose arm loud leg leave noise finger smell neck stop light water
social engagement p game football team win ticket excite school weekend week texas run lose night season saturday sport dallas longhorn coach fan
exercise, good self-care p run day feel walk class wear lose weight buy gym gain short fat dress shop exercise campus clothe body shirt

Table 1: LDA topics from Pennebaker stream-of-consciousness essays identified by a clinician as most
relevant for assessing depression. Topics with negative valence (n) were judged likely to be indicators for
depression, those with positive valence (p) were judged likely to indicate absence of depression, and those
labeled (e) have strong emotional valence without clearly indicating likely assessment. Asterisked topics
were viewed as the strongest indicators.

(great, enjoy, etc.) predicting higher star ratings and
a negative opinion-word topic (dislike, sucks, etc.)
predicting lower ratings.

Table 2 illustrates topics we obtained by run-
ning 50-topic SLDA on the Pennebaker stream-of-
consciousness dataset, using, as each essay’s regres-
sion variable, the student’s degree of neuroticism —
a personality trait that can be a risk factor for in-
ternalizing disorders such as depression and anxi-
ety — as assessed using the Big-5 personality in-
ventory (John and Srivastava, 1999). The neuroti-
cism scores are Z-score normalized, so the more
positive (negative) a topic’s regression value, the
more (less) the supervised model associates the topic
with neuroticism. As was done for Table 1, we had
a clinician identify the most relevant topics; these
were presented in random order without the neu-
roticism regression values in order to avoid biasing
the judgments. The SLDA neuroticism values for
topics in Table 2 pattern nicely with the clinician
judgments: negative neuroticism scores are associ-
ated with clinician-judged positive valence topics,
and positive neuroticism scores with negative va-
lence. Scores for the p and n valence items differ
significantly according to a Mann-Whitney U test
(p < .005).

Table 3 shows topics derived using SLDA on the
Twitter training data; owing to space limitations, we
show the topics with the 5 highest and 5 lowest Z-
normalized regression scores.

We also derive topics on Twitter training data
using a “seeded” version of SLDA in which the
50 topics in Section 3.1 provide informative pri-
ors; recall that these came from the Pennebaker
stream-of-consciousness data. We were motivated
by the hypothesis that many of the topics emerg-
ing cleanly in Pennebaker’s population of college
students would be relevant for the Twitter dataset,
which also skews toward a younger population but is
significantly messier. Although the SLDA runs with
and without informative priors produce many simi-
lar topics, Table 4 shows a number of topics identi-
fied by SLDA with informative priors, that were not
among the topics found without them.

3.3 Supervised Anchor Model
As another extension to LDA-based modeling, we
explore the use of the the anchor algorithm (Arora
et al., 2013, hence ANCHOR), which provides a fast
way to learn topic models and also enhances inter-
pretability by identifying a single “anchor” word as-
sociated with each topic. Unlike SLDA, which ex-
amines every document in a dataset, ANCHOR re-
quires only a V by V matrix Q of word cooccur-
rences, where V is the size of the vocabulary, to
discover topics. Nguyen et al. (2015) introduces
a supervised anchor algorithm (hence SANCHOR),
which, like SLDA, takes advantage of joint mod-
eling with document-level metadata to learn better
topics and enable prediction of regression variables.

Briefly, the anchor algorithm assumes that each
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Notes Valence Regression value Top 20 words

social engagement p -1.593 game play football team watch win sport ticket texas season practice run basketball lose soccer player beat start tennis ball
social engagement p -1.122 music song listen play band sing hear sound guitar change remind cool rock concert voice radio favorite awesome lyric ipod
social engagement p -0.89 party night girl time fun sorority meet school house tonight lot rush drink excite fraternity pledge class frat hard decide
social engagement p -0.694 god die church happen day death lose doe bring care pray live plan close christian control free hold lord amaze
high emotional valence e -0.507 hope doe time bad wait glad nice happy worry guess lot fun forget bet easy finally suck fine cat busy
somatic complaints n -0.205 cold hot hair itch air light foot nose walk sit hear eye rain nice sound smell freeze weather sore leg
poor ego control; immature n 0.177 yeah wow minute haha type funny suck hmm guess blah bore gosh ugh stupid bad lol hey stop hmmm stuff
relationship issues n 0.234 call talk miss phone hope mom mad love stop tonight glad dad weird stupid matt email anymore bad john hate
homesick; emotional distress n 0.34 home miss friend school family leave weekend mom college feel parent austin stay visit lot close hard boyfriend homesick excite
social engagement p 0.51 friend people meet lot hang roommate join college nice fun club organization stay social totally enjoy fit dorm conversation time
negative affect* n 0.663 suck damn stupid hate hell drink shit fuck doe crap smoke piss bad kid drug freak screw crazy break bitch
high emotional valence e 0.683 life change live person future dream realize mind situation learn goal grow time past enjoy happen control chance decision fear
sleep disturbance* n 0.719 sleep night tire wake morning bed day hour late class asleep fall stay nap tomorrow leave mate study sleepy awake
high emotional valence e 0.726 love life happy person heart cry sad day feel world hard scar perfect feeling smile care strong wonderful beautiful true
memories n 0.782 weird talk doe dog crazy time sad stuff funny haven happen bad remember day hate lot scar guess mad night
somatic complaints* n 0.805 hurt type head stop eye hand start tire feel time finger arm neck move chair stomach bother run shoulder pain
anxiety* n 1.111 feel worry stress study time hard lot relax nervous test focus school anxious concentrate pressure harder extremely constantly difficult overwhelm
emotional discomfort n 1.591 feel time reason depress moment bad change comfortable wrong lonely feeling idea lose guilty emotion confuse realize top comfort happen
homesick; emotional distress* n 2.307 hate doe sick feel bad hurt wrong care happen mess horrible stupid mad leave worse anymore hard deal cry suppose

Table 2: SLDA topics from Pennebaker stream-of-consciousness essays identified by a clinician as most
relevant for assessing depression. Supervision (regression) is based on Z-scored Big-5 neuroticism scores.

Regression value Top 20 words

2.923 eat fat cut hate fuck weight cross line body sleep scar die food cry fast ugh gym skinny boyfriend week
1.956 omg cry school god cute literally hair gonna hate mom ugh idk wow sleep omfg laugh wear picture tbh sad
1.703 book write read episode twitter story tweet fan cover movie awesome win doctor alex season character yeah film happen week
1.676 fuck shit bitch gonna wanna hate damn man dick wtf suck dude smoke god drink gay sex girl hell piss
1.602 pls depression donate kindly film support mental word ocd health package producer hour anxiety mind tomorrow hun teamfollowback disorder visit

-1.067 game win team play coach season run player state tonight fan football baseball lead brown dodger ohio score red week
-1.078 game man win play team damn fan lebron tonight dude gonna football heat ball bro nba hell boy basketball bull
-1.354 man goal fan win unite game arsenal play team player league score season madrid football match manchester cup sign chelsea
-1.584 EMOJI EMOJI EMOJI EMOJI EMOJI EMOJI EMOJI EMOJI EMOJI EMOJI EMOJI EMOJI EMOJI EMOJI birthday EMOJI bae EMOJI lmao EMOJI
-2.197 birthday class tonight week literally hour tomorrow weekend summer college home break party favorite excite game die beach drive study

Table 3: Most extreme SLDA topics from Twitter training data

Regression value Top 20 words

4.119 happiness cut line depression post cross anxiety mental read view eat suicide scar die ago family connect month account hospital
1.68 brain episode doctor fan season week movie link tumblr comment finally read story ago scene buy gaga write order hey
0.054 eat sleep morning hour home food bed drink week run dinner tomorrow wake dog fat coffee tire buy tonight lunch
0.039 girl baby boy hot beautiful kiss date heart sexy dance babe week sweet hair marry birthday lady retweet nice miley
-0.641 tonight dress beautiful fashion style cute party beauty hair nail black shop lady free beach vip bottle outfit buy ticket
-1.199 wanna baby sleep phone hate home mad bore tire bitch text morning hurt play man ready tomorrow leo stay ima

Table 4: Selected SLDA topics from Twitter training data with informative priors

Anchor Top 20 words

business business market plan lead build birmingham car city support social pay company system legal financial deal service design creative control
college college school class girl week student study hour test learn summer parent high hate sit tomorrow senior mom wear teacher
dance dance girl school amaze tonight wear song funny movie picture beautiful pretty fun sing omg hot high drink hair boy
fat fat eat hate body sleep weight girl bed skinny cry fast beautiful die perfect cross hair ugh week sick care
friday friday tonight weekend week tomorrow party monday saturday morning thursday tuesday sunday club meet drink hour wednesday queen card movie
fuck fuck shit hate bitch girl wanna gonna sleep care school drink damn die suck yeah break kill text stupid phone
god god heart man jesus lord bless pray person men mind church trust woman care truth girl walk hear matter true
haha haha yeah tomorrow gonna bed pretty omg xx nice sleep excite tweet fun week hour yay mum amaze hate tonight
music music song album awesome single grey rock hear justin meet band gonna light sound tour grab concert artist tonight amaze
play play game tonight man fan team radio hey season sound hour yeah episode nice buy hear football ball beat player
win win game team fan tonight vote season player goal football man chance final card coach score week luck usa top

Table 5: Examples of topics identified by SANCHOR on Twitter training data.
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topic has at least one anchor word that unambigu-
ously identifies that topic — when you see an an-
chor in a document, you know for sure that that
topic is relevant somewhere in it.3 For instance,
fifa might be an anchor word for the soccer topic.
Words such as ball, net, or player are related to
the soccer topic, but they cannot be anchor words
because they are also mentioned in topics such as
baseball or networking. The supervised anchor algo-
rithm (SANCHOR) extends ANCHOR by expanding
the word co-occurrence data to include word-level
conditional probabilities for the regression variable
of interest (Nguyen et al., 2015). Table 5 illustrates a
number of the topics discovered by SANCHOR in the
Twitter training data.4 See the Appendix for more
details.

3.4 Supervised Nested Latent Dirichlet
Allocation

Like all topic models, SNLDA is based on a gener-
ative model in which each document is created by
selecting a probability distribution over topics it will
contain, and then selecting words based on that topic
distribution; that is, every document can be viewed
as coming from a mixture of topics. Like SLDA
(Section 3.2), SNLDA allows us to connect each topic
with a regression variable of interest; however, in
SNLDA we additionally assume that the underlying
topics are organized into a tree. The additional hier-
archy is intended to improve our ability to represent
more complicated text and account for the fact that
a single topic can contribute to either side of the re-
gression parameter depending on its subcontext.

The input of SNLDA is identical to that of SLDA,
namely a collection of D documents, each associ-
ated with a response variable. The output is a tree
T , with fixed height L and a pre-defined number of
childrenKl for each level l of the tree. At each node,
we have a process similar to SLDA: we draw (a) a
topic φk specifying what this node k is about and
(b) a regression parameter ηk specifying the weight
of k in capturing the response variable. A child
node is connected with its parent node, topically, by
drawing its topic distribution from a Dirichlet prior

3This assumption can be violated, but the truer it is, the bet-
ter the model.

4Note that SANCHOR does not produce regression values for
each topic in the way that SLDA does.

Features P, R=0.5 P, R=0.75 P, R=1

(A) Unigrams 0.607 0.483 0.342
(B) LIWC 0.571 0.479 0.344
(C) LDA-50 (Mallet) 0.447 0.402 0.349

(D) SLDA features, uninformative priors 0.308 0.352 0.341
(E) SLDA features, informative priors 0.648 0.584 0.353
(F) SANCHOR 0.638 0.529 0.348
(G) SLDA prediction, uninformative priors 0.568 0.479 0.271
(H) SLDA prediction, informative priors 0.643 0.436 0.303

(I) Combining A+B+C+E+F 0.632 0.526 0.342

Table 7: Evaluation on Twitter test set, showing pre-
cision at three levels of recall.

Dir(βlkφpk
) whose mean vector φpk

is the topic of
the parent node pk. See the Apendix for more de-
tails.

The structure of this model is similar in spirit to
SHLDA (Nguyen et al., 2013), and it is intended
to serve a similar purpose, namely inducing struc-
ture in such a way that sub-topics meaningfully spe-
cialize their parent nodes. Nguyen et al. illustrate
how this can be useful in the political domain — for
example, in an analysis of Congressional floor de-
bates, the model identifies taxation as a first-level
topic, with one child node that captures Democrats’
framing of the subject (with terms like child support,
education, students, and health care, i.e. the social
services that taxes pay for) and another child node
capturing Republican framing (with terms like death
tax, jobs, family businesses, and equipment, related
to the implications of taxation for businesses). Here
our goal is to use a similarly structured model, but
jointly modeling authors’ language with their de-
pression status as the regression variable rather than
their political affiliation.

Tables 6 provide some illustrative examples of
SNLDA topics induced from the Twitter training
data. The hierarchical organization is apparent in,
for example, Topic 8, where a sports topic is subdi-
vided into subtopics related to, among others, soccer
and professional wrestling; Topic 9 on politics/news,
subdividing into, among others, education, India,
Britain, and controversies involving race and law en-
forcement (Ferguson, the Travyon Martin shooting);
and Topic 6, which our clinician characterizes as is-
sues that tend to be discussed on social media by
women, e.g. relationships, body issues, parenting,
and physical maladies.
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Topic:Subtopic Regression value Top 20 words

8 -3.279 game win team play player fan season football coach basketball score lebron nfl baseball nba ball beat lead ohio brown
8:3 -0.15 goal dodger cup madrid match brazil usa chris soccer germany worldcup ronaldo messi spain ucla ger fifa orlando oscar att
8:5 -0.021 spur wrestle match wwe raw danny podcast wrestler fantastic batman title fan cont cena nxt wrestlemania corbin debut manu kick

9 -1.874 obama vote news report support government police bob president tax plan obamacare labour campaign business law leader election birmingham city
9:1 -0.244 student art education teach college teacher visa africa university scholarship mandela literacy typhoon science digital haiyan nelson child phot
9:2 -0.23 india medium hindu saint allegation conspiracy indian follower delhi fake diwali expose police sai rape truth false support jail fir
9:3 -0.056 manchester tory bbc ukip lib britain cut british event dems council library thatcher clegg guardian dem england farage unite mail
9:7 0 ferguson black williams prison crochet police topic false morning zimmerman trayvon chicago woman angeles family community ebay guest sxsw discus

6 0.093 lol sleep haha hate wanna omg ugh eat mom tire gonna baby idk bed yeah tomorrow wake hurt bore hair
6:0 0.102 anxiety vlog stress weightloss anxious panda migraine tire guinea therapy shift interview EMOJI remedy mind relief irritable chil
6:1 0.171 skype husband lols hubby dream reply week meet edit youi nowplaying owner instagram steam beautiful yup birthday notice amaze admin
6:4 0.972 fat eat cut weight cross calorie skinny fast line body burn workout account food water weigh gain exercise leg healthy

Table 6: Selected SNLDA topics

4 Quantitative results

An established use of topic models in predictive
modeling is to create a K-topic model using some
relevant document collection (which might or might
not include the training set), and then, for training
and test documents, to use the posterior topic dis-
tribution Pr(zk|d), k = 1..K as a set of K features
(Resnik et al., 2013; Schwartz et al., 2014). These
features can be useful because the automatically dis-
covered topics sometimes capture higher-level prop-
erties or “themes” in authors’ language that have
predictive value beyond individual words or phrases.
Our experimentation used these features from LDA,
SLDA, and sANCHOR; using topic posteriors from
SNLDA is left for future work.

To assess the ability of the models/features and
how they compare to baseline methods, we trained
a linear support vector regression (SVR) model on
the union of the Twitter train and dev sets, evaluated
on the test set. We chose regression over classifica-
tion despite having binary labels in our data in order
to more easily evaluate precision at various levels
of recall, which can be done simply by threshold-
ing the predicted value at different points in order to
obtain different recall levels. In addition, SVR has
been shown to be an adequate choice to other sim-
ilar text regression problems (Kogan et al., 2009),
and in future analyses the use of the linear kernel
will allow us to further see the contributions of each
feature from the weights assigned by the regression
model. We follow standard practice in using uni-
gram features and LIWC categories as baseline fea-
ture sets, and we also use topic posteriors from a 50-
topic LDA model built on the Twitter training data.5

5Not to be confused with the LDA model built using the
stream-of-consciousness dataset in Section 3.1, which was used

As shown in Table 7, we evaluated alternative
models/feature sets by fixing the percentage of re-
called (correctly classified) depression subjects at
levels R=1, 0.75, and 0.5 and looking at preci-
sion, or, equivalently, the rate of misdiagnosed con-
trol subjects.6 When R=1, it means the classifica-
tion threshold was set to the smallest value such
that all depressed subjects were correctly classified.
The results show that all methods perform similarly
badly at 100% recall: when required to identify all
depressed individuals, two thirds or so of the flagged
individuals are false positives. When allowed to
trade off recall for improved precision, SLDA per-
forms well if provided with informative priors, and
the supervised anchor method (without informative
priors) is not far behind.

For completeness, we also used the SLDA mod-
els directly for prediction, i.e. computing the ex-
pected response value for a test document from η>z̄
where z̄ is the document’s posterior topic distribu-
tion and the ηs are the per-topic regression parame-
ters. These results are shown as “SLDA prediction”
(lines G and H) in the table. The utility of this tech-
nique is illustrated on the model without informative
priors (G), where it yielded a substantial improve-
ment over the use of the posterior topics as features
for both LDA (line C) and SLDA with uninforma-
tive priors (line D). This suggests that SLDA-based
features (D) may have performed so poorly because
they failed to sufficiently leverage the added value
of the regression parameter, making them no bet-
ter than vanilla LDA (C). SNLDA models can sim-
ilarly be used to predict a test document’s expected

to provide informative priors for SLDA.
6Owing to an error discovered late in the writing process,

4 out of 396 test items were excluded from the SANCHOR eval-
uation. If accepted, this will be corrected in the final version.
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response value; we will explore this in future work.
To the extent that this test set is representative of

the real world, the results here seem promising: with
R=0.75, 3 of 4 depressed individuals are detected at
the cost of roughly 1 false positive per 3 individu-
als predicted. The representativeness of the exper-
iment, however, depends heavily on the true preva-
lence of depression. On the one hand, the preva-
lence in the Coppersmith (2015) dataset — in the
vicinity of 30% — is consistent with Vermani et al.
(2011), who cite four prior studies when stating that
“major depressive disorder has been shown to be
one of the most common mental disorders seen in
primary care patients, with prevalence rates ranging
from 23% to 35%”. In their own study of 840 pri-
mary care patients in Canada, they found that 27.2%
met criteria for major depressive disorder. On the
other hand, those numbers seem quite high: Vermani
et al. also cite a WHO study finding that 10.4% of
screened patients met criteria for current depression,
and that number is more in line with NIMH’s 12-
month prevalence figures.7

Although it introduces a mismatch between train-
ing and test data prevalence, therefore, we experi-
mented with randomly down-sampling the number
of positive examples in the test data (but not the
training set) to get a test-set prevalence of 10%. Ta-
ble 8 shows the mean ± standard deviation results.8

The absolute numbers are significantly lower, but the
same trend persists in the comparison across mod-
els/features.

Elsewhere in this volume, a companion paper
describes our participation in the CLPsych 2015
Shared Task (Coppersmith et al., 2015), providing
experimentation on shared task datasets and further
discussion and analysis (Resnik et al., 2015).

5 Conclusions

Our goal in this paper has been to go beyond sim-
ple, “vanilla” topic models to explore the poten-
tial utility of more sophisticated topic modeling in
the automatic identification of depression. Qualita-
tive examples have confirmed that LDA, and now

7http://www.nimh.nih.gov/
health/statistics/prevalence/
major-depression-among-adults.shtml

8To obtain means and standard deviations we down-sampled
100 times.

Features P, R=0.5 P, R=0.75 P, R=1
Uni 0.239 ± 0.047 0.165 ± 0.042 0.108 ± 0.010
SANCHOR 0.271 ± 0.045 0.189 ± 0.033 0.126 ± 0.015
SLDA-inf 0.267 ± 0.042 0.216 ± 0.035 0.119 ± 0.022

Table 8: Mean ± stdev precision (P) and recall (R)
scores of linear SVR for the3 best-performing mod-
els/features in Table 7 (SLDA with informative pri-
ors, SANCHOR and unigrams) on test sets where the
prevalence of depression was randomly downsam-
pled to 10%.

additional LDA-like models, can uncover mean-
ingful and potentially useful latent structure, and
our quantitative experimentation using the CLPsych
Hackathon dataset has shown more sophisticated
topic models exploiting supervision, such as SLDA
and SANCHOR, can improve on LDA alone.

One of the additional take-aways here is that in-
formative priors can make a meaningful difference
in performance; we plan to pursue this further us-
ing interactive topic modeling (Hu et al., 2014) with
our domain expert, and also by providing informa-
tive priors for anchor methods.

Another important observation is that prevalence
matters, and therefore further work is needed explor-
ing the sensivity of early screening approaches to
changes in the proportion of the target signal rep-
resented in the data.

Finally, a third interesting observation coming out
of our experimentation was that aggregation might
matter a great deal. Rather than aggregating by au-
thor, we defined a set of documents for each author
as their tweets aggregated on a weekly basis, i.e. one
document per author per week. Although just a pre-
liminary experiment with one model, we found with
SANCHOR that the weekly grouping improved pre-
cision at R=0.5 to 74% and precision at R=0.75 to
62%. The improvement makes intuitive sense, since
topics and emotional state vary over time and lan-
guage samples grouped on a weekly basis are likely
to have more internal coherence than samples aggre-
gated over long periods. This led us to adopt weekly
aggregation in the CLPsych 2015 shared task, with
good results (Resnik et al., 2015), and other forms
of aggregation therefore seem like a fruitful area for
further exploration.
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Abstract

Quantitative analysis of clinical language
samples is a powerful tool for assessing and
screening developmental language impair-
ments, but requires extensive manual tran-
scription, annotation, and calculation, result-
ing in error-prone results and clinical un-
derutilization. We describe a system that
performs automated morphological analy-
sis needed to calculate statistics such as
the mean length of utterance in morphemes
(MLUM), so that these statistics can be com-
puted directly from orthographic transcripts.
Estimates of MLUM computed by this sys-
tem are closely comparable to those pro-
duced by manual annotation. Our system
can be used in conjunction with other auto-
mated annotation techniques, such as maze
detection. This work represents an important
first step towards increased automation of
language sample analysis, and towards atten-
dant benefits of automation, including clini-
cal greater utilization and reduced variability
in care delivery.

1 Introduction

Specific language impairment (SLI) is a neurode-
velopmental disorder characterized by language de-
lays or deficits in the absence of other develop-
mental or sensory impairments (Tomblin, 2011).
A history of specific language impairment is as-
sociated with a host of difficulties in adolescence
and adulthood, including poorer quality friend-
ships (Durkin and Conti-Ramsden, 2007), a greater

risk for psychiatric disturbance (Durkin and Conti-
Ramsden, 2010), and diminished educational at-
tainment and occupational opportunities (Conti-
Ramsden and Durkin, 2012). SLI is common but
remains significantly underdiagnosed; one large-
scale study estimates that over 7% of kindergarten-
aged monolingual English speaking children have
SLI, but found that the parents of most of these chil-
dren were unaware that their child had a speech or
language problem (Tomblin et al., 1997).
Developmental language impairments are nor-

mally assessed using standardized tests such as
the Clinical Evaluation of Language Fundamen-
tals (CELF), a battery of norm-referenced language
tasks such as Recalling Sentences, in which the
child repeats a sentence, and Sentence Structure, in
which the child points to a picture matching a sen-
tence. However, there has been a recent push to
augment norm-referenced tests with language sam-
ple analysis (Leadholm and Miller, 1992; Miller
and Chapman, 1985), in which a spontaneous lan-
guage sample collected from a child is used to com-
pute various statistics measuring expressive lan-
guage abilities.
Natural language processing (NLP) has the po-

tential to open new frontiers in language sample
analysis. For instance, some recent work has
applied NLP techniques to quantify clinical im-
pressions that once were merely qualitative (e.g.,
Rouhizadeh et al. 2013, van Santen et al. 2013) and
other work has proposed novel computational fea-
tures for detecting language disorders (e.g., Gabani
et al. 2011). In this study, our goal is somewhat sim-
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pler: we attempt to apply novel NLP techniques to
assist the clinician by automating the computation
of firmly established spontaneous language statis-
tics.
Quantitative analysis of language samples is a

powerful tool for assessing and screening develop-
mental language impairments. Measures derived
from naturalistic language samples are thought to
be approximately as sensitive to language impair-
ment as are decontextualized tests like those that
make up the CELF (Aram et al., 1993); they may
also be less biased against speakers of non-standard
dialects (Stockman, 1996). Despite this, language
sample analysis is still underutilized in clinical set-
tings, in part due to the daunting amount of manual
transcription and annotation required.
Clinicians may avail themselves of software like

Systematic Analysis of Transcripts (SALT; Miller
and Iglesias 2012), which partially automates the
language sample analysis. But this tool (and oth-
ers like it) require the clinician to provide not only
a complete orthographic transcription, but also de-
tailed linguistic annotations using a complex and
unforgiving annotation syntax that itself takes sig-
nificant effort to master. In what follows, we de-
scribe a system which automates a key part of this
annotation process: the tedious and error-prone an-
notation of morphological structure.
In the next section, we describe mean length of

utterance in morphemes (MLUM), a widely used
measure of linguistic productivity, and associated
morphological annotations needed to compute this
measure. We then outline a computational model
which uses a cascade of linear classifiers and finite-
state automata to generate these morphological an-
notations; this allows MLUM to be computed di-
rectly from an orthographic transcription. Our eval-
uation demonstrates that this model produces esti-
mates of MLUM which are very similar to those
produced by manual annotation. Finally, we out-
line directions for future research.

2 Mean length of utterance and
morphological annotations

Mean length of utterance in morphemes is a widely-
used measure of linguistic productivity in children,

consisting essentially of the average number of
morphemes per utterance. Brown (1973), one of
the first users of MLUM, describes it as a sim-
ple, face-valid index of language development sim-
ply because nearly any linguistic feature newly
mastered by the child—be it obligatory morphol-
ogy, more complex argument structure, or clausal
recursion—results in an increase in the average
utterance length. MLUM has also proven use-
ful in diagnosing developmental language impair-
ments. For instance, typically-developing children
go through a stage where they omit affixes and/or
function words which are obligatory in their tar-
get language (e.g., Harris and Wexler 1996; Legate
and Yang 2007). Children with language impair-
ment are thought to omit obligatory morphemes at
a higher rate than their typically-developing peers
(Eisenberg et al., 2001; Rice and Wexler, 1996;
Rice et al., 1998; Rice et al., 2006), and differences
in omission rate can be detected, albeit indirectly,
with MLUM.
SALT (Miller and Chapman, 1985) provides

specific guidelines for estimating MLUM. These
guidelines are concerned both with what utter-
ances and tokens “count” towards MLUM, as
well as which tokens are to be considered mor-
phologically complex. The SALT guidelines re-
quire that complex words be written by writing
the free stem form of the word, followed by a
forward-slash (/) and an unambiguous signature
representing the suffix. SALT recognizes 13 “suf-
fixes”, including the noun plural (dog/s), posses-
sive (mom/z), preterite/past participle (walk/ed),
progressive/future (stroll/ing), and various en-
clitics (I/'m, we/'re, is/n't); some SALT suf-
fixes can also be combined (e.g., the plural posses-
sive boy/s/z). Each SALT suffix is counted as
a single morpheme, as are all stems and simplex
words. Irregulars affixes (felt), derivational affixes
(un-lock, write-r), and compounds (break-fast) are
not annotated, and words bearing them are counted
as a single morpheme unless these words happen to
contain one of the aforementioned SALT suffixes.
In the next section, we propose a computational

model which generates SALT-like morphological
annotations. Our highest priority is to be faith-
ful to the SALT specification, which has proved
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sufficient for the creators’ well-defined, clinically-
oriented aims. We do not claim that our system
will generalize to any other linguistic annotation
scheme, but only that we have successfully auto-
mated SALT-style morphological annotations. We
recognize the limitations of the SALT specification:
it draws little inspiration from linguistic theory, and
furthermore fails to anticipate the possibility of the
sort of automation we propose. As it happens,
there is a large body of work in natural language
processing on automated methods for morphologi-
cal segmentation and/or analysis, which could eas-
ily be applied to this problem. Yet, the vast ma-
jority of this literature is concerned with unsuper-
vised learning (i.e., inducing morphological analy-
ses from unlabeled data) rather than the (consider-
ably easier) task of mimicking morphological anal-
yses produced by humans, our goal here. (For one
exception, see the papers in Kurimo et al. 2010.)
While it would certainly be possible to adapt ex-
isting unsupervised morphological analyzers to im-
plement the SALT specification, the experiments
presented below demonstrate that simple statistical
models, trained on a small amount of data, achieve
near-ceiling performance at this task. Given this
result, we feel that adapting existing unsupervised
systems to this task would be a purely academic ex-
ercise.

3 The model

We propose a model to automatically generate
SALT-compatible morphological annotations, as
follows. First, word extraction identifies words
which count towards MLUM. Then, suffix predic-
tion predicts the most likely set of suffixes for each
word. Finally, stem analysis maps complex words
back to their stem form. These three steps generate
all the information necessary to compute MLUM.
We now proceed to describe each step in more de-
tail.

3.1 Word extraction
The SALT guidelines excludes any speech which
occurs during an incomplete or abandoned utter-
ance, speech in utterances that contain incompre-
hensible words, and speech duringmazes—i.e., dis-
fluent intervals, which encompass all incomplete

words and fillers—for the purpose of computing
MLUM and related statistics. A cascade of reg-
ular expressions are used to extract a list of eligi-
ble word tokens from individual lines of the ortho-
graphic transcript.

3.2 Suffix prediction
Once unannotatedword tokens have been extracted,
they are input to a cascade of two linear classifiers.
The first classifier makes a binary prediction as to
whether the token is morphologically simplex or
complex. If the token is predicted to be complex,
it is input to a second classifier which attempts to
predict which combination of the 13 SALT suffixes
is present.
Both classifiers are trained with held-out-data us-

ing the perceptron learning algorithm and weight
averaging (Freund and Schapire, 1999). We re-
port results using four feature sets. The baseline
model uses only a bias term. The φ0 set uses or-
thographic features inspired by “rare word” fea-
tures used in part-of-speech tagging (Ratnaparkhi,
1997) and intended to generalize well to out-of-
vocabulary words. In addition to bias, φ0 con-
sists of six orthographic features of the target token
(wi), including three binary features (“wi contains
an apostrophe”, “wi is a sound effect”, “wi is a hy-
phenated word”) and all proper string suffixes ofwi
up to three characters in length. The φ1 feature set
adds a nominal attribute, the identity of wi. Finally,
φ2 also includes four additional nominal features,
the identity of the nearest tokens to the left and right
(wi−2, wi−1, wi+1, wi+2). Four sample feature vec-
tors are shown in Table 1.

3.3 Stem analysis
Many English stems are spelled somewhat differ-
ently in free and bound (i.e., bare and inflected)
form. For example, stem-final usually changes to
i in the past tense (e.g., buried), and stem-final e
usually deletes before the progressive (e.g., bounc-
ing). Similarly, the SALT suffixes have different
spellings depending on context; the noun plural
suffix is spelled es when affixed to stems ending
in stridents (e.g., mixes), but as s elsewhere. To
model these spelling changes triggered by suffix-
ation, we use finite state automata (FSAs), math-
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I'm looking for one dinosaur

φ0 *apostrophe*
suf1="M" suf1="G" suf1="R" suf1="E" suf1="R"
suf2="'M" suf2="NG" suf2="OR" suf2="NE" suf2="UR"

suf3="ING" suf3="AUR"

φ1 w_i="I'M" w_i="LOOKING" w_i="FOR" w_i="ONE" w_i="DINOSAUR"

φ2 *initial* *peninitial* w_i-2="I'M" w_i-2="LOOKING" w_i-2="FOR"
w_i-1="I'M" w_i-1="LOOKING" w_i-1="FOR" w_i-1="ONE"

w_i+1="LOOKING" w_i+1="FOR" w_i+1="ONE" w_i+1="DINOSAUR" *ultimate*
w_i+2="FOR" w_i+2="ONE" w_i+2="PET" *penultimate*

Table 1: Sample features for the utterance I’m looking for one dinosaur; each column represents a separate feature
vector.

ematical models widely used in both natural lan-
guage processing and speech recognition. Finite
state automata can be used implement a cascade
of context-dependent rewrite rules (e.g., “α goes
to β in the context δ γ”) similar to those used
by linguists in writing phonological rules. This
makes FSAs particularly well suited for dealing
with spelling rules like the ones described above.
This spell-out transducer can also be adapted to

recover the stem of a wordform, once morpholog-
ical analysis has been performed. If I is the in-
put wordform, S is the spell-out transducer, and D
is a simple transducer which deletes whatever suf-
fixes are present, then the output-tape symbols of
I ◦ S−1 ◦ D contain the original stem.1 How-
ever, there may be multiple output paths for many
input wordforms. For instance, a doubled stem-
final consonant in the inflected form could either
be present in the bare stem (e.g., guess→ guessing)
or could be a product of the doubling rule (e.g., run
→ running); both are permitted by S−1. To resolve
these ambiguities, we employ a simple probabilis-
tic method. LetW be a weighted finite-state accep-
tor in which each path represents a stem, and the
cost of each path is proportional to that stem’s fre-

1An anonymous reviewer asks how this “stemmer” relates
to familiar tools such as the Porter (1980) stemmer. The stem-
mer described here takes morphologically annotated complex
words as input and outputs the uninflected (“free”) stem. In
contrast, the Porter stemmer takes unannotated words as input
and outputs a “canonical” form—crucially, not necessarily a
real word—to be used in downstream analyses.

quency.2 Then, the most likely stem given the input
wordform and analysis is given by the output-tape
symbols of

ShortestPath(I ◦ S−1 ◦ D ◦ W) .

Both the spell-out transducer and the stem-
mer were generated using the Thrax grammar-
compilation tools (Roark et al., 2012); a full speci-
fication of both models is provided in the appendix.

4 Evaluation

We evaluate the model with respect to its ability
to mimic human morphological annotations, using
three intrinsic measures. Suffix detection refers
to agreement on whether or not an eligible word
is morphologically complex. Suffix classification
refers to agreement as to which suffix or suffixes
are borne by a word which has been correctly clas-
sified as morphologically complex by the suffix de-
tector. Finally, token agreement refers agreement
as to the overall morphological annotation of an el-
igible word. We also evaluate the model extrinsi-
cally, by computing the Pearson product-moment
correlation between MLUM computed from man-
ual annotated data to MLUM computed from au-
tomated morphological annotations. In all evalu-

2To prevent composition failure with out-of-vocabulary
stems, the acceptor W is also augmented with additional arcs
permitting it to accept, with some small probability, the clo-
sure over the vocabulary.
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ations, we employ a “leave one child out” cross-
validation scheme.

4.1 Data

Our data comes from a large-scale study of autism
spectrum disorders and language impairment in
children. 110 children from the Portland, OR
metropolitan area, between 4–8 years of age, took
part in the study: 50 children with autism spectrum
disorders (ASD), 43 typically-developing children
(TD), and 17 children with specific language im-
pairment (SLI). All participants had full-scale IQ
scores of 70 or higher. All participants spoke En-
glish as their first language, and produced a mean
length of utterance in morphemes (MLUM) of at
least 3. During the initial screening, a certified
speech-language pathologist verified the absence
of speech intelligibility impairments. For more de-
tails on this sample, see van Santen et al. 2013.
The ADOS (Lord et al., 2000), a semi-structured

autism diagnostic observation, was administered to
all children in the current study. These sessions
were recorded and used to generate verbatim tran-
scriptions of the child and examiner’s speech. Tran-
scriptions were generated using SALT guidelines.
Conversational turns were segmented into individ-
ual utterances (or “C-units”), each of which con-
sisted of (at most) a main clause and any subordi-
nate clauses modifying it.

4.2 Interannotator agreement

Manual annotation quality was assessed using a
stratified sample of the full data set, consisting of
randomly-selected utterances per child. These ut-
terances were stripped of their morphological an-
notations and then re-annotated by two experienced
transcribers, neither of whom participated in the ini-
tial transcription efforts. The results are shown in
Table 2. On all three intrinsicmeasures, the original
and retrospective annotators agreed an overwhelm-
ing amount of the time; the Κ (chance-adjusted
agreement) values for the former two indicate “al-
most perfect” (Landis and Koch, 1977) agreement
according to standard qualitative guidelines.

Anno. 1 Anno. 2

Suffix detection Κ .9207 .9529
Suffix classification Κ .9135 .9452
Token agreement .9803 .9869

Table 2: Interannotator agreement statistics for suffix
detection, suffix identity, and overall token-level agree-
ment; the Κ values indicate “almost perfect agreement”
(Landis and Koch, 1977) according to qualitative guide-
lines.

4.3 Results

Table 3 summarizes the intrinsic evaluation results.
The baseline system performs poorly both in suf-
fix detection and suffix classification. Increasingly
complex feature sets result in significant increases
in both detection and classification. Even though
most eligible words are not morphologically com-
plex, the full feature set (φ2) produces a good bal-
ance of precision and recall and correctly labels
nearly 99% of all eligible word tokens. MLUMs
computed using the automated annotations and the
full feature set are almost identical to MLUMs de-
rived from manual annotations (R = .9998).
This table also shows accuracies for two particu-

larly difficult morphological distinctions, between
the noun plural S and the 3rd person active indica-
tive suffix 3s (seeks), and between the possessive
'S and Z (the contracted form of is), respectively.
These distinctions in particular appear to benefit in
particular from the contextual features of the φ2 fea-
ture set.
In the above experiments, the data contained

manually generated annotations of mazes. These
are required for computing measures like MLUM,
as speech in mazes is ignored when counting the
number of morphemes in an utterance. Like mor-
phological annotations, human annotation of mazes
is also tedious and time-consuming. However,
some recent work has attempted to automatically
generate maze annotations from orthographic tran-
scripts (Morley et al., 2014a), and automatic maze
annotation would greatly increase the utility of the
larger system described here.
We thus performed a simple “pipeline” evalu-

ation of the morphological annotation system, as
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Baseline φ0 φ1 φ2

Suffix detection

Accuracy .8122 .9667 .9879 .9913
Precision .8710 .9508 .9610
Recall .8393 .9451 .9644
F1 .8549 .9479 .9627

Suffix classification

Overall accuracy .1917 .8916 .9689 .9880
S vs. 3S accuracy .7794 .9478 .9788
'S vs. Z accuracy .9341 .9469 .9923

Token accuracy .8267 .9663 .9878 .9899

Table 3: Intrinsic analysis results on suffix detection, suffix classification, and overall token accuracy.

follows. First, maze annotations are automati-
cally generated for each transcript. We then feed
the maze-annotated transcripts into the morpholog-
ical analyzer described above, which is then used
to compute MLUM. The maze annotation system
used here was originally developed by Qian and
Liu (2013) for detecting fillers in Switchboard as
an early step in a larger disfluency detection sys-
tem; Morley et al. (2014a) adapted it for maze de-
tection. This system is trained from a dataset of
transcripts with manually-annotated mazes; here
we depart from the prior work in training it using a
leave-one-child-out strategy. Features used are de-
rived from tokens and automatically generated part-
of-speech tags. This system treats maze detection
as a sequence labeling task performed using a max-
margin Markov network (Taskar et al., 2004); for
more details, see Morley et al. 2014a.

We hypothesized that the errors introduced by au-
tomated maze annotation would not greatly affect
MLUM estimates, as maze detection errors do not
necessarily impact MLUM. For example, an utter-
ance like I went to I go to school might be brack-
eted as either (I went to) I go to school
and I went to (I go to) school, but either
analysis results in the same MLUM. And in fact,
MLUMs computed using the combined maze de-

tection/morphological annotation system are com-
petitive with MLUMs derived from manual annota-
tions (R = .9991).

4.4 Discussion

Our results show that the proposed morphologi-
cal analysis model produces accurate annotations,
which then can be used to compute relatively pre-
cise estimates of MLUM. Furthermore, automa-
tion of other SALT-style annotations (such as maze
detection) does not negatively impact automatic
MLUM estimates.
We experimented with other feature sets in the

hopes of approving accuracy and generalizability.
We hypothesized that suffix classification would
benefit from part-of-speech features. Since our
data was not manually part-of-speech tagged, we
extracted these features using an automated tagger
similar to the one described in (Collins, 2002).3
The tagger was trained on a corpus of approxi-
mately 150,000 utterances of child-directed speech
(Pearl and Sprouse, 2013) annotated with a 39-tag
set comparable to the familiar PTB tagset. Addi-

3The tagger was tested using the traditional “standard split”
of the Wall St. Journal portion of the Penn Treebank, with sec-
tions 0–18 for training, sections 19–21 for development, and
sections 22–24 for evaluation. The tagger correctly assigned
96.69% of the tags for the evaluation set.
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tional POS features were also generated by map-
ping the 39-tag set down to a smaller set of 11 “uni-
versal” tags (Petrov et al., 2012). However, neither
set of POS features produced any appreciable gains
in performance. We speculate that these features
are superfluous given the presence of the φ2 word
context features.

5 Conclusions

Wehave described a principled and accurate system
for automatic calculation of widely-used measures
of expressive language ability in children. The sys-
tem we propose does not require extensive man-
ual annotation, nor does it require expensive or
difficult-to-use proprietary software, another poten-
tial barrier to use of these measures in practice. It
is trained using a small amount of annotated data,
and could easily be adapted to similar annotation
conventions in other languages.
We view this work as a first step towards increas-

ing the use of automation in language assessment
and other language specialists. We foresee two ben-
efits to automation in this area. First, it may re-
duce time spent in manual annotation, increasing
the amount of time clinicians spend interactingwith
patients face to face. Second, increased automation
may lead to decreased variability in care delivery, a
necessary step towards improving outcomes (Ran-
som et al., 2008).
One remaining barrier to wider use of language

sample analysis is the need for manual transcrip-
tion, which is time-consuming even when later an-
notations are generated automatically. Future work
will consider whether transcripts derived from auto-
matic speech recognition are capable of producing
valid, unbiased estimates of measures like MLUM.
Our group has made progress towards automat-

ing other clinically relevant annotations, including
grammatical errors (Morley et al., 2014b) and repet-
itive speech (van Santen et al., 2013), and we are
actively studying ways to integrate our various sys-
tems into a full suite of automated language sam-
ple analysis utilities. More importantly, however,
we anticipate collaborating closely with our clini-
cal colleagues to develop new approaches for inte-
grating automated assessment tools into language
assessment and treatment workflows—an area in

which far too little research has taken place.
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Abstract

Restrictive and repetitive behavior (RRB) is
a core symptom of autism spectrum disorder
(ASD) and are manifest in language. Based
on this, we expect children with autism to talk
about fewer topics, and more repeatedly, dur-
ing their conversations. We thus hypothesize
a higher semantic overlap ratio between dia-
logue turns in children with ASD compared to
those with typical development (TD). Partic-
ipants of this study include children ages 4-
8, 44 with TD and 25 with ASD without lan-
guage impairment. We apply several seman-
tic similarity metrics to the children’s dialogue
turns in semi-structured conversations with
examiners. We find that children with ASD
have significantly more semantically overlap-
ping turns than children with TD, across dif-
ferent turn intervals. These results support our
hypothesis, and could provide a convenient
and robust ASD-specific behavioral marker.

1 Introduction

Autism spectrum disorder (ASD) is a neurode-
velopmental disorder characterized by two broad
groups of symptoms: impaired social communica-
tion and presence of restrictive and repetitive behav-
ior (RRB) (American Psychiatric Association, 2000;
American Psychiatric Association, 2013). RRB
comprises both lower-order behaviors such as mo-
tor movements and higher-order cognitive behav-
iors such as circumscribed interests and insistence
on sameness. Both of these are manifest in lan-
guage as well. (Boyd et al., 2012; Szatmari et

al., 2006; Turner, 1999; Kanner, 1943). All ma-
jor ASD diagnostic instruments require the evalua-
tion of RRB (Rutter et al., 2003; Lord et al., 2002;
Lord et al., 1994). Individuals with ASD have sig-
nificantly more RRB, stereotyped phrases, and id-
iosyncratic utterances in their conversations (Nadig
et al., 2010; Capps et al., 1998; Volden and Lord,
1991).

However, such assessments are mostly qualita-
tive, relying on clinical impressions or parental re-
ports. There has been little work on quantitative
or automated assessment methods for these behav-
iors in ASD, possibly due to the significant ef-
fort of detailed annotation of conversations that this
would entail. Previous research in our group an-
alyzed automatic detection of poor topic mainte-
nance and use of off-topic words (Rouhizadeh et
al., 2013; Prud’hommeaux and Rouhizadeh, 2012).
We have also explored the different directions of de-
parture from the target topic in ASD (rou, 2014;
Prud’hommeaux et al., 2014).

In this paper, we attempt to automatically assess
the presence of RRB in language, specifically at
the semantic level, in children’s conversation with
an adult examiner during a semi-structured dia-
logue. We expect children with ASD to talk about
fewer topics more repeatedly during their conversa-
tions. Specifically, we hypothesize a significantly
higher semantic overlap ratio (SOR) between dia-
logue turns in children with ASD compared to those
with typical development (TD). In order to calcu-
late the SOR at different turn intervals for each
child, we apply multiple semantic similarity metrics
(weighted by child specificity scores) on every turn
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pair in four distance windows. We then compute the
SOR for each child by averaging the similarity of ev-
ery turn pair in the four distance windows. Our anal-
ysis indicates that, based on different similarity met-
rics, the ASD group had a significantly higher SOR
than the TD group in most of the distance windows.
These results support our hypothesis. Thus, patterns
of semantic similarity between child’s turns could
provide an automated and robust ASD-specific be-
havioral marker.

In a previous study, van Santen and colleagues
(van Santen et al., 2013) reported an automated
method for identifying and quantifying two types of
repetitive speech in ASD: repetitions of what child
him or herself said (intra-speaker repetitions) and
of what the conversation partner said (inter-speaker
repetitions, or echolalia). The focus of this study
was on verbatim repeats of word n-grams at short
turn distances. The present study differs in several
ways. (1) We focus on intra-child repetitions only.
(2) We do so using bag-of-words similarity mea-
sures and lexical semantic expansion. (3) We con-
sider short and long turn distance windows. (4) We
use frequency weighting, assigning lower weights to
frequent words.

2 Participants and data

Participants in this study include 44 children with
TD and 25 children with ASD. ASD was diagnosed
via clinical consensus according to the DSM-IV-TR
criteria (American Psychiatric Association, 2000)
and established threshold scores on two diagnos-
tic instruments: the Autism Diagnostic Observation
Schedule (ADOS) (Lord et al., 2002); and the Social
Communication Questionnaire (Rutter et al., 2003).
None of the ASD children in this study met crite-
ria for a language impairment, defined as having a
Core Language Score (CLS) on the CELF (Semel et
al., 2003) of more than one standard deviation be-
low the mean. The groups were well matched in age
(6.41 vs. 5.91 years for the ASD and TD groups,
respectively; p>0.2), and Nonverbal IQ (114.0 and
118.4; p>0.25), but not for nonverbal IQ (108 and
119; p<0.0025).

Each participant’s ADOS session was recorded
and the recordings were transcribed. The examiner
and transcribers were unaware of the child’s diag-

nostic status, the study hypothesis, and the compu-
tational methods. The automated methods in this pa-
per are applied to these un-annotated raw transcripts.

The ADOS is a widely-used instrument for ASD
diagnosis. It consists of a semi-structured series of
spontaneous conversations and interactions between
a child and a examiner (usually 30 to 60 minutes
long) in which the examiner asks questions and pro-
vides prompts that serve to bring out verbal and non-
verbal behaviors indicative of ASD. The ADOS cov-
ers a broad range of conversational topics and activ-
ities, including Picture Description, Play, and Word-
less Picture Book Description activities. Our expec-
tation is that even though the activities, conversation
topics, and actual questions are standardized, ASD
children will tend to stick with their own topics of
interest to a larger degree than children with TD.

3 Measuring the semantic overlap ratio
(SOR)

For each child, we compute the semantic similarity
score between every turn pair I and J in the follow-
ing exponentially increasing distance windows, D:

a) 0<D≤3: J is between 1 to 3 turns after I ,
b) 3<D≤9,
c) 9<D≤27,
d) 27<D≤81.

Then we compute the child’s SOR for a given
window D by averaging the similarity scores of turn
pairs in D. We explored four semantic similarly
measures which we describe in this section.

3.1 Semantic Similarity Measures

We expect ASD children to use more specific terms,
relevant to their particular and often idiosyncratic in-
terest due to their restrictive behavior. Therefore,
we want our measures to be sensitive to how com-
mon or uncommon the words used by an individual
child are. To assign lower weights to words used
frequently by a large number of children, we apply
an inverse document frequency (IDF) term weight
using the standard definition of IDF in Information
Retrieval (IR) (Manning et al., 2008):

idfw=log
( N
dfw

)
(1)
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where N is the total number of participants and dfw

is the number of children who used the word w.
We also lemmatize our corpus to reduce the sparsity
(hence higher IDF weights) caused by inflectional
variations of the same lexeme.

3.1.1 Weighted Jaccard Similarity Coefficient
The weighted Jaccard similarity coefficient (Jac)

(Jaccard, 1912) is a word overlap measure between
a pair of turns I and J defined as the sum of the
minimum term frequency of each overlapping word
w in I and J weighted by idfw, and then normalized
by the sum of the maximum term frequency of each
word in either turn:

Jac(I, J)=

∑
w∈I∩J

min(tfw,I , tfw,J)× idfw∑
w∈I∪J

max(tfw,I , tfw,J)
(2)

where tfw,I is the term frequency of word w in turn
I (number of times w occurs in I), and tfw,J is the
term frequency of w in J .

3.1.2 Cosine Similarity Score
The cosine similarity score (Cos) is a popular

metric in IR to measure the similarity between the
two turns I and J via the cosine of the angle be-
tween their vectors. We assign IDF weights to term
frequencies, and then normalize the turn vectors by
their length and the term weights:

Cos(I, J)=∑
w∈I∩J

tfw,I × tfw,J × (idfw)2√ ∑
wi∈I

(tfwi,I × idfwi)2 ×
√ ∑

wj∈j
(tfwj ,J × idfwj )2

(3)

3.1.3 Relative Frequency Measure
The relative frequency measure (RF ) (Hoad and

Zobel, 2003) is introduced as an author identity mea-
sure for detecting plagiarism at the document level.
However, it has been shown to be applicable to the
sentence level as well (Metzler et al., 2005). For
this measure, we first normalize the differences in
the turn lengths, and, second, we measures the simi-
larity of the two turns I and J by the weighted rela-

tive frequency of their common words:

RF (I, J)=
1

1 + ||I| − |J ||
×
∑

w∈I∩J

idfw

1 + |tfw,I − tfw,J | (4)

3.1.4 Knowledge-Based Similarity Measure
We now generalize our measures that are based on

verbatim overlap to non-verbatim overlap. Toward
this end, we use a knowledge-based turn similarity
measureKBS that integrates verbatim word overlap
with lexical relatedness (Mihalcea et al., 2006).

We begin with finding the maximum lexical simi-
larity score S(wi, J) for each word wi in turn I with
words in turn J using the following formulation:

S(wi, J)=

{
1× idfwi if wi∈J
max
wj∈J

LS(wi, wj)× idfwi otherwise

(5)

where LS is Lin’s universal similarity (Lin, 1998).
In other words, if the word wi is present in J ,

S(wi, J) will be 1 multiplied by idfwi . If not, the
most similar word to wi will be chosen from words
in J using Lin’s universal similarity and S(wi, J)
will be that maximum score multiplied by idfwi . The
same procedure is applied to the words in J , and fi-
nally the similarity between I and J is calculated :

KBS(I, J)=
1
2

( ∑
wi∈I

S(wi, J)∑
wi∈I

idfwi

+

∑
wj∈J

S(wj , I)∑
wj∈J

idfwj

)
(6)

Lin’s universal similarity can only be applied to
word pairs with the same part-of-speech (POS).
For automatic POS tagging of the ADOS corpus,
we trained a multi-class classifier (Yarmohammadi,
2014) from labeled training data from the CHILDES
corpus of transcripts of children’s conversational
speech (MacWhinney, 2000). The classifier uses
a discriminative linear model, learning the model
parameters with the averaged perceptron algorithm
(Collins, 2002). The feature set includes bigrams of
surrounding words, a window of size 2 of the next
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and previous words, and the POS-tag of the previ-
ous word. An additional orthographical feature set
is used to tag rare and unknown words. This feature
set includes prefixes and suffixes of the words (up to
4 characters), and presence of a hyphen, digit, or an
uppercase character.

4 Results

As described in Section 3, we use our measures to
calculate the similarity scores of all turn pairs for
each distance window. Table 1 shows examples
of similar turn pairs in the four distance windows
based on the Weighted Jaccard Similarity Coeffi-
cient score.

We then calculate the SOR of each child in each
given distance window by averaging the similarity
scores of turn pairs in that window. Finally, we per-
form a two-tailed Mann-Whitney’s U test, which is a
non-parametric test of significance that does not as-
sume that scores have a normal distribution. It eval-
uates the statistical difference between the SOR in
ASD and TD children by comparing the medians of
the two groups. For each similarity measure we re-
port the medians of SOR in ASD and TD groups
(with the group mean rank) as well as the signif-
icance test results: Mann-Whitney’s U-Value (re-
ported as W ), P-Value (p), and the effect size (R).

Table 2 shows that both ASD and TD groups have
a greater SOR in shorter distances with more sig-
nificant difference and higher effect size. We see a
decreasing trend in SOR by exponentially increas-
ing the window size and distance. For each analysis,
ASD group has a higher SOR than TD and the differ-
ence is statistically significant (p<0.05) in all short
distances (up to 9<D≤27) and marginally missed
the standard significance levels for the longest win-
dow (p<0.1 in 27<D≤81). We also investigated
the effect of distance window on SOR in a different
window set. The results are shown in Figure 1 us-
ing the KBS measure. We observe the exact same
trend in these new windows as our main distance
windows. All the differences between SOR in ASD
and TD are statistically significant as well (p<0.05).

The comparison between various semantic sim-
ilarity measures also indicates that KBS measure
which takes into account lexical similarity in addi-
tion to word overlap, have more statistical power
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Figure 1: Semantic Overlap Ratio in ASD and TD at
different turn distance windows using the KBS measure

to distinguish between ASD and TD groups in the
longer windows (9<D≤27 and 27<D≤81). This
observation is reasonably consistent with our expec-
tations that children may use synonyms and seman-
tically similar words (rather than the exact set of
words) within the same topic space especially in the
longer distances.

To address the possible confounding effect of ver-
bal IQ, where a small but significant difference be-
tween the groups was found, we conducted two ad-
ditional analyses. In one, we used analysis of covari-
ance, with age, VIQ, and NVIQ as covariates; unlike
W, there is no non-parametric equivalent of the anal-
ysis of covariance. In the other, we applied an algo-
rithm that iteratively removes data until no signifi-
cant group difference remains (at p>0.15) on age,
VIQ, or NVIQ. Both analyses provided results that,
while quantitatively different, were qualitatively the
same.

5 Conclusions and future work

The results obtained with the methods presented
here for measuring the semantic overlap between
conversational turns in children with and without
ASD in a spontaneous conversation indicate the util-
ity of natural language processing for capturing di-
agnostically relevant information. The higher ra-
tio of semantic overlap in children with ASD com-
pared with TD children suggests that children with
ASD are returning to specific topics more repeat-
edly. Thus, the findings support our hypothesis.
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Window Example of turn pairs

0<D≤3
That is a crab with a humongous tail.
Crab with a humongous tail is called a lobster.

3<D≤9
So well, plus I got my and I got my magic carpets.
You could use my magic carpet as a blanket.

9<D≤27
Could you please get me some sports action figures?
I just really want to play with sports action figures.

27<D≤81
Yeah, just challenge him for one more duel.
Alright, but first I challenge you for a duel.

Table 1: Examples of similar turns in four distance windows based on the Weighted Jaccard Similarity Coefficient

Similarity Window ASD Mdn* (M Rank) TD Mdn* (M Rank) W p r

Jac

0<D≤3 .72 (43.68) .59 (30.07) 333 .006 .33
3<D≤9 .25 (42.84) .17 (30.55) 354 .014 .29
9<D≤27 .14 (42.44) .09 (30.77) 364 .02 .28
27<D≤81 .08 (40.32) .05 (31.98) 417 .09 .2

Cos

0<D≤3 6.0 (45.28) 4.6 (29.16) 293 .001 .39
3<D≤9 2.2 (41.64) 1.8 (31.23) 384 .038 .25
9<D≤27 1.3 (42.32) 1.0 (30.84) 367 .022 .28
27<D≤81 .76 (40.6) .53 (31.82) 410 .082 .21

RF

0<D≤3 1.8 (44.48) 1.4 (29.61) 313 .003 .36
3<D≤9 .59 (45.2) .41 (29.2) 295 .001 .38
9<D≤27 .31 (42.52) .23 (30.73) 362 .018 .28
27<D≤81 .16 (40.68) .13 (31.77) 408 .077 .21

KBS

0<D≤3 15.0 (43.16) 12.0 (30.36) 346 .01 .31
3<D≤9 7.7 (41.64) 6.9 (31.23) 384 .038 .25
9<D≤27 5.9 (42.72) 5.0 (30.61) 357 .016 .29
27<D≤81 4.7 (43.76) 4.2 (30.02) 331 .006 .33

*ASD and TD SOR Median values are multiplied by 102.

Table 2: Significance Test Results of Semantic Overlap Ratio in ASD and TD groups at different turn distance
windows, D

121



We are proposing a method of enabling measure-
ment of a characteristic of language use in ASD that
is currently “known" to be aberrant but is now as-
certained only by impressionistic judgments rather
than by quantification; and this is performed auto-
matically on easy-to-obtain raw transcriptions of a
clinical behavioral observation session (the ADOS)
as opposed to requiring labor-intensive expert cod-
ing. To the best of our knowledge, this is the first
time that verbal repetitiveness in natural language
samples has been successfully measured — quan-
titatively, and automatically.

A major focus of our future work will be to au-
tomatically detect the topics introduced by the ex-
aminer to the child. The main assumption of this
work is that children with ASD return to a set of
topics during their conversation, no matter if they or
the examiner initiated the topic. Given the high se-
mantic overlap ratio seen here, we expect that chil-
dren with autism contribute in conversations related
to their particular topic of interest, rather than col-
laborating with the examiner in a dialogue.

A second area to investigate in the future is deter-
mining the children’s conversation topics, especially
the ones that are repeated. We could combine the
child specificity scores such as IDF with the highly
overlapping lexical items across different turns. We
could also use manual annotation and clinical im-
pression to determine if a child has a particular (id-
iosyncratic) topic of interest . We could then com-
pare these annotations with the findings from our au-
tomated measures.

Third, we are also interested in trying additional
similarity measures including BLEU (Papineni et
al., 2002), ROUGE, (Lin, 2004), and Latent Seman-
tic Analysis (Deerwester et al., 1990) to verify the
robustness of our findings even further.

Finally, we plan to apply our methods to the out-
put of Automatic Speech Recognition (ASR) sys-
tems to eliminate the transcription process. Measur-
ing semantic similarity on ASR output will be an in-
teresting challenge since it will likely contain word
errors especially in children’s spontaneous speech.
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Abstract 

Background: Verbal fluency tasks, which re-

quire producing as many words in response to 

a cue in a fixed time, are widely used within 

clinical neuropsychology and in neuropsycho-

logical research. Although semantic word lists 

can be elicited, typically only the number of 

words related to the cue is interpreted thus ig-

noring any structure in the word sequences. 

Automated language techniques can provide a 

much needed framework for extracting and 

charting useful semantic relations in healthy 

individuals and understanding how cortical 

disorders disrupt these knowledge structures 

and the retrieval of information from them. 

Methods: One minute, animal category verbal 

fluency tests from 150 participants consisting 

of healthy individuals, patients with schizo-

phrenia, and patients with bipolar disorder 

were transcribed. We discuss the issues in-

volved in building and evaluating semantic 

frameworks and developing robust features to 

analyze this data. Specifically we investigate a 

Latent Semantic Analysis (LSA) semantic 

space to obtain semantic features, such as 

pairwise semantic similarity and clusters. 

Results and Discussion: An in-depth analysis 

of the framework is presented, and then re-

sults from two measures based on LSA se-

mantic similarity illustrate how these 

automated techniques provide additional, clin-

ically useful information beyond word list 

cardinality. 

1 Introduction 

Language disturbances, especially semantic defi-

cits, constitute one of the hallmark features of se-

vere mental illness such as schizophrenia. Reliably 

and robustly quantifying these deficits in ways that 

can support diagnosis, gauge illness severity, de-

termine treatment effectiveness and provide inter-

mediate phenotypes to help further unravel the 

underlying genetic components of the disease has 

until recently proven elusive. With the advent of 

large, corpus-based statistical models of language, 

it has become possible to investigate techniques 

that can automatically elucidate and operationalize 

the semantic structure of elicited language in ways 

that can further these clinical goals. 

Underlying these automated language tech-

niques is an attempt to quantitatively define 

measures of semantic similarity based on the anal-

ysis of large sets of documents. Examples of these 

techniques include Latent Semantic Analysis (Fur-

nas et al., 1988), Neural Networks and specifically 

Deep Learning (Hinton, 2006), Topic Models 

(Blei, Ng, & Jordan, 2003) and Independent Com-

ponent Analysis (Hyvärinen, Karhunen, & Oja, 

2004). Claims for these techniques include pro-

gress toward text understanding (Zhang & LeCun, 

2015), as a theory of meaning (Landauer, 2007), 

characterizing the temporal flow of topics in a 

large set of technical articles (Griffiths & Styvers, 
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2004), and a computational model of vocabulary 

acquisition (Biemiller et al., 2014).  

In this paper, we focus on one of these tech-

niques, Latent Semantic Analysis (LSA; Deerwest-

er et al., 1990) and carefully examine the process 

of building an LSA semantic space and the result-

ing issues that arise in applying that space to gen-

erate quantitative results for Norwegian verbal 

fluency test data. The paper provides an in-depth 

methodological analysis of the approach of apply-

ing LSA in order to document the considerations 

for its effective use in semantic verbal fluency 

analysis. We provide a rationale for the use of two 

measures based on semantic similarity that indicate 

the potential of these automated techniques to pro-

vide additional clinically useful information be-

yond word list cardinality. 

1.1 Latent Semantic Analysis 

LSA generates semantic representations of words 

based on an analysis of a large corpus of domain 

relevant texts. Applying LSA begins when the cor-

pus of texts is reduced to a term by document ma-

trix. The columns of the matrix represent 

“documents”,  semantically coherent segments of 

text (for example a paragraph, or a short encyclo-

pedia article), across all the text in the corpus and 

the rows represent the union of the words that are 

present in the corpus. The cell at the jth column, ith 

row contains a count of the number of times the ith 

word appears in the jth document. Various en-

hancements to this basic scheme, such as eliding 

common words (stop words) or applying weighting 

schemes for cells (see for instance Dumais, 1990) 

can be used to modify these counts, but for sim-

plicity we will just call the contents of the cells 

counts. In Norwegian, compound words are con-

catenated, so for instance water (“vann”) buffalo 

(“bøffel”) is written vannbøffel, which simplifies 

word tokenization for the Norwegian animal 

words. 

A lower dimensional approximation to the term 

by document matrix is computed using Singular 

Value Decomposition (SVD) (for details see for 

instance Berry, Dumais, & O'Brien, 1995). This 

lower dimensional matrix, or semantic space, dis-

tills the semantic relationships of words and con-

texts, such that the vector representing a document 

is the sum of its constituent word vectors. The la-

tent semantic structure emerges from the dimen-

sion reduction, where semantic similarity between 

words or documents is computed by taking the co-

sine between vectors representing the words or the 

documents. This similarity has been exploited in 

numerous practical applications, such as infor-

mation retrieval (Berry & Browne, 2005), essay 

scoring (Foltz, Laham, & Landauer, 1999) and bio-

informatics (for example Homayouni et al., 2005). 

LSA has been employed to chart how core cog-

nitive processes are affected by illnesses that dis-

turb cortical function. These include categorizing 

incoherence in speech during a fairy tale retelling 

task to distinguish patients with schizophrenia 

from controls (Elvevåg et al., 2007), as a more in-

formative scoring mechanism for the Wechsler 

Logical Memory test (a story retelling task) (Dunn 

et al., 2002; Rosenstein et al., 2014), to distinguish 

language differences between healthy individuals 

and individuals with risk of psychosis  (Elvevåg et 

al., 2010; Rosenstein et al., in press) and its use 

was suggested as an early indicator of Alzheimer’s 

disease derived from analysis of a writer’s oeuvre 

(Garrard et al., 2005). In all of these examples, a 

substantial amount (a paragraph or larger) of se-

mantically related text was elicited and used in the 

analysis. Though it is more difficult to obtain se-

mantic measures with shorter quantities of text, in 

his dissertation Koehn (2003) used LSA to study 

the degradation of semantic memory in Alz-

heimer’s patients using word lists from verbal flu-

ency tests.  

1.2 Verbal Fluency Tests 

Verbal Fluency tests, which are also referred to as 

Word List Generation tests, are one of the more 

commonly performed neuropsychological tests. 

They require the participants to produce, in re-

sponse to a cue, a series of words in a set period of 

time. In the phonemic or letter fluency test, the cue 

is unique words that are not proper nouns begin-

ning with a given letter, such as “l” or “s”. In the 

semantic or category fluency task, the cue is 

unique words related to a category, for instance 

“animals” or “furniture”. In a test to cue affect, the 

cue is unique words related to an emotional state, 

such as “happy”. The number of correct words 

generated in these tasks has been shown to be a 

useful indicator in a number of severe mental ill-

nesses. The verbal fluency test is easy to adminis-

ter and is relatively easy to score since the scoring 
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rubric typically only requires a count of the correct 

words produced.  

As our concern is with underlying changes in 

semantics, we limit our investigation to the seman-

tic fluency task. Given that participants are not in-

structed in any way on the manner in which they 

should retrieve the words, a priori it may be sur-

prising that a tantalizing structure runs through the 

thread of words from the semantic task. Bousfield 

and Sedgewick (1944) were the first to report on 

temporal patterns in participant recall, where recall 

occurred in fits and starts with the rate of new 

words decreasing over time, and Bousfield (1953) 

noted that participants tended to recall groups of 

semantically similar words. Wixted and Rohrer 

(1994) provide a review of the research into the 

structure derived from the timing literature. Based 

on earlier work in memory search and clustering, 

such as Pollio (1964), Troyer et al. (1997) posited 

semantic clustering and switching as two important 

additional features that could be extracted from 

word lists produced in the semantic verbal fluency 

tests.  

An obvious difficulty of attempting to reach 

deeper into the structure of word lists is maintain-

ing objectivity and reliability in detecting these 

clusters. Beyond the deep philosophical issues of 

whether to include a dog used in hunting birds 

(“fuglehund”, variously in English a bird dog, 

pointing dog, or hunting dog) in a cluster contain-

ing birds, there is a strong reliability issue in defin-

ing cluster boundaries. The appendix of Troyer et 

al. (1997) defines a set of semantic categories for 

animals. The difficulty for any fixed list is that the 

distribution of word frequencies is such that there 

are many infrequent words (Zipf, 1935) ensuring 

that it is difficult to obtain comprehensive lists, and 

even if a partial list is produced the potential com-

binations that could constitute clusters grows com-

binatorially.  

Pakhomov, Hemmy and Lim (2012), attempted 

to overcome these concerns by using a lexical da-

tabase, WordNet (Miller, 1995), a curated word 

collection that captures hierarchical relations 

among words for automated analysis of verbal flu-

ency tasks in cognitive decline.  Pakhomov and 

Hemmy (2014) applied LSA to measure cognitive 

decline in data from the Nun Study, where they 

proposed using LSA to provide an automated, con-

sistent, generalized measure of cluster boundaries 

and switching. This contrasts somewhat with 

Koehn (2003), where the LSA measure was de-

rived from the overall semantic similarity of the 

word list, and with Nicodemus et al. (2014), where 

a number of LSA measures were proposed to de-

rive quantitative measures over semantic fluency 

data in a candidate gene study for schizophrenia. 

Instead of attempting to define and detect clusters, 

the measures discussed in Nicodemus et al. (2014) 

examined the overall coherence (the semantic simi-

larity of all pairs of words in each word list), and 

coherence in moving windows of fixed word 

length (sets of 1-3 words). We build on these ap-

plications of LSA to verbal fluency data and report 

on constructing a semantic space for an animal 

semantic fluency test in Norwegian. We visualize 

the resulting semantic relations and temporal paths 

in an effort to understand how better to detect se-

mantic coherence and clusters, and derive useful 

semantic features. 

2 Methods  

2.1 Oslo Verbal Fluency Study 

Verbal fluency data from 150 participants (50 

healthy participants, 75 diagnosed with bipolar 

disorder and 25 diagnosed with schizophrenia; na-

tive Norwegian speakers recruited in the Oslo area) 

who gave informed consent was analyzed. The 

participants were asked to generate as many animal 

words in one minute as possible. The audio data 

was transcribed. Figure 1 shows a histogram of the 

list lengths. 

 
Figure 1: Distribution of word list lengths. 

Since one semantic structure of interest is the 

path of retrieval, we did not remove perservations 

(repeated words), and 57 participants had at least 
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one repeated word, though no word was repeated 

more than once by any participant. Nonadjacent 

perseverations (repeated words) were retained, 

though non-animal words were discarded, resulting 

in a total of 3148 words distributed over 269 

unique animal words. The mean number of words 

per participant was 20.97 (5.83), with range from 4 

to 38. Table 1 shows the distribution of repeated 

words by number of participants. 

Number of repeated words   1   2 3 4 

Number of participants 41 13  2 1 

Table 1. Occurrences of perservations in word lists. 

Keeping perservations was one aspect of our 

overall goal to preserve the original intent of the 

participants as much as practically possible. Over-

all, we would prefer the semantic space automati-

cally normalize meanings. Participants used 

different word forms such as “koala” and “koa-

labjørn” to refer to the same animal. We did not 

perform lemmatization, and specifically kept both 

singular and plural forms. The only occasion where 

we did intervene was when the transcription pro-

cess added variability due to spelling variants, 

where we selected the most frequent form. In other 

cases we preserved the variability except where a 

form was poorly represented in the corpus, and 

then the more frequent form was used. All tran-

scripts were checked and corrected for typograph-

ical errors. By retaining these differences, the 

spread of nearly similar meanings can be exploited 

in the process of determining thresholds for cluster 

boundaries. Specific modifications of the word 

lists are discussed as part of developing the seman-

tic space.  

2.2 Building the Semantic Space 

A semantic space is most effective when it is built 

from a corpus that captures a wide range of natu-

rally occurring contexts, which produces a space 

with a robust exposure to the category (e.g. Lan-

dauer et al., 1998). Pakhomov and Hemmy (2014) 

built a space based on Wikipedia articles. We 

chose a different route due to both the limited ani-

mal articles in the Norwegian language version of 

Wikipedia and also the assumption that a more 

general source would provide more contexts to 

build semantic relationships than the encyclopedia 

model of Wikipedia. 

We selected articles from the Norwegian News-

paper Corpus (Norsk aviskorpus), version 0.9 

http://www.nb.no/sbfil/tekst/norsk_aviskorpus.zip, 

which is a component of text resources made 

available by the National Library of Norway, 

http://www.nb.no/English/Collection-and-

Services/Spraakbanken/Available-resources/Text-

Resources. 

The newspaper corpus consists of approximately 

3.7 million articles, of which we used a subset of 

3.6 million articles, excluding approximately 

100,000 that were explicitly tagged as “Nynorsk”
1
. 

There were 269 unique animal words generated 

in the verbal fluency study. Of these words, two: 

“gråmeis” and “svintoks” were not contained in 

any articles and were removed from the word lists. 

Two additional words “gjerv” and “papegøje” did 

not appear in the corpus, but alternative spellings 

“jerv” and “papegøye” were substituted in the 

word lists. Two other words “måse” and “panda-

bjørn” had very few representations in the articles, 

but alternative spellings “måke" and “panda” were 

well represented, so these substitutions were made. 

These substitutions resulted in 263 unique animal 

words for the study. Approximately 620,000 news-

paper articles contained one or more occurrences 

of those 263 animals.  Figure 2 shows the frequen-

cy of articles containing the words, with the y-axis 

on a log10 scale. The most frequent word is “ørn” 

(eagle), due to a popular football team of that 

name, the next most frequent is “and” (duck), due 

to contamination from the English connective
2
, and 

the next three are “fisk” (fish), “menneske” (hu-

man) and “laks” (salmon). Excluding the tails, the 

plot is quite linear throughout its range. 

For animals appearing in 200 or more articles, a 

random sample of 200 articles for each animal was 

added to the space, while for the 114 animals with 

200 or fewer articles all the relevant articles were 

used. Duplicate articles were removed and each 

article constituted a document for the LSA analy-

                                                           
1 There are two versions of the Norwegian language – “Bok-

mål” and “Nynorsk”. Although “Bokmål” is used by the ma-

jority in both written and spoken language, they are of equal 

standing. “Bokmål” is used in the Oslo area where our data 

was collected, hence our exclusion of the “Nynorsk” articles. 
2 We have experimented using the text categorization tech-

nique of Cavnar and Trenkle (1994) on small windows around 

“and” to separate English “rock and roll” article occurrences 

from Norwegian “Sprø and med appelsin og koriander” 

(Crispy duck with orange and coriander), though not imple-

mented for the analysis reported here. 
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sis. The final space has 286,371 terms and 36,516 

articles.  

 
Figure 2. Number of articles per animal word. 

We selected 300 dimensions for the reduced 

dimension space based on experience with other 

semantic spaces and the observation that usually 

there is a range of dimensions with approximately 

similar performance. Often the number of dimen-

sions is chosen to optimize some external perfor-

mance measure (e.g. Turney & Littman, 2003) and 

in future work our intention is to explore the 

choice of dimension. All cosine similarity compar-

isons were derived from vectors in this 300 dimen-

sion space. About half the terms are dates and 

times, not of much semantic value, but we tend to 

be conservative in tokenization, so preserve terms 

such as “Øst-Afrika” (East Africa) and “øko-

maten” (eco-food), which increases the term count. 

With the semantic space in place, we performed 

a set of validations of the semantic relationships. 

Table 2 shows the cosine similarity for singular vs. 

plural forms and for variant spellings (the last four 

rows) that were produced by the participants and 

transcribers. The columns include the counts in the 

newspaper articles (news cnt) and among the par-

ticipants (part cnt). Table S1 in the Supplemental 

Materials contains an English/Norwegian transla-

tion for the 263 animals. Notice that plural forms 

are relatively uncommon among participants rela-

tive to the frequencies found in the newspaper arti-

cles. Most of the plurals have relatively high 

cosine to their singular form. The variant spellings 

of the participants follow the newspaper frequen-

cies, except in the case of “tarantella”. Of the vari-

ant spellings, only the “ponni/ponny” pair has high 

cosine similarity, so the other variants were con-

verted to the most frequent newspaper form. From 

the cosine similarities between the singular and 

plural forms, we expect that a cluster threshold will 

likely be at or below 0.3, if we want to keep those 

forms clustered.  
 

sing. plural 

sing 

news 

cnt 

plur 

news 

cnt 

sing 

part 

cnt 

plur

part 

cnt 

cos( 

sing. 

plur.) 

fisk fisker 32321 7239 36 3 0.582 

fugl fugler 7546 6738 48 1 0.815 

geit geiter 1107 1224 53 2 0.522 

gris griser 4630 3122 54 1 0.351 

høne høner 746 1209 32 2 0.649 

insekt insekter 396 1627 2 1 0.614 

katt katter 5510 4075 132 1 0.740 

ku kyr 3351 3088 87 1 0.571 

reke reker 395 2942 3 1 0.332 

rotte rotter 686 5088 53 1 0.395 

var. 1 var. 2           

giraff sjiraff 118 303 1 111 0.246 

lemen lemmen 371 150 5 1 0.003 

ponni ponny 194 28 2 1 0.742 

taran-

tell 

tarantel-

la 341 77 1 3 -0.012 

Table 2. Singular and plural forms (top) and spelling 

variants (bottom 4 rows). 

There are a number of additional ways to vali-

date the overall semantic relationships in the space. 

Figure 3 shows the distribution of cosines taken 

between all pairs of animal words. The median of 

this distribution is essentially zero, though due to 

the long right tail the mean is 0.022 (.117). Of the 

34,453 word pairs, only 1098 have a cosine greater 

than 0.3 and 2174 have a cosine greater than 0.2, 

so most animals have low similarity.  

Another approach is to use hierarchical cluster-

ing on the cosine distance matrix among the ani-

mals to see one representation of the imposed 

relationships. We used hierarchical clustering from 

the statistical programming environment R (R Core 

Team, 2014).  

Figure S1 in the Supplemental Materials (a high 

resolution version to allow magnified viewing to 

facilitate examining details), shows the hierarchical 

clustering. In addition we have labeled a few sub-

128



trees with categories, and smaller scale effects can 

be seen within categories, for instance in barnyard 

animals, subtrees of horses, hens and livestock 

naturally arise. Like any projection, hierarchical 

clustering reveals some relationships, while others 

require a different projection to be revealed. Using 

LSA to measure semantic similarity is equivalent 

to allowing the relationships that emerge from the 

corpus to constrain semantic similarity. The only 

free parameter is the cosine similarity threshold to 

define a cluster
3
.  

 
Figure 3. Distribution of animal pair cosines. 

2.3 Analysis of Fluency Data 

While it is informative to examine the relation-

ships across all the animals, our particular interest 

is in the sets of animals generated by each partici-

pant both in terms of the choices of animals, and 

the structure of the order of those choices. Figure 4 

shows the distribution of cosines for all the word 

pairs (reiterating Figure 3 but as a density plot), as 

well as just the sequential pairs in the word lists of 

participants. While there are still a majority of un-

related pairs, the participants clearly have more 

structure and higher cosines with a median 0.08 

and 25% of the pairs having a cosine exceeding 

0.24. So, as expected, there is substantial structure 

here.  

Figures 5 and 6 show the cosine time paths from 

two participants. The x-axis is the word sequence, 

and the y-axis is the cosine similarity between each 

sequential pair of words. The word pair is plotted 

vertically next to the cosine point. Table S1 in the 

                                                           
3 The selection of number of dimensions for the space is also a 

free parameter, but much less directly related to cluster size 

than this threshold. 

supplemental materials contains both English and 

Norwegian forms of the 263 animal words. Both 

figures indicate that as the threshold for defining a 

cluster is lowered the size of clusters will increase, 

while increasing will cause an increase in number 

of clusters (in the limit each word will be its own 

cluster). 

Figure 4. Distribution of all animal pair cosines vs. pairs 

limited to participants. 

In Figure 5, we see potentially 4 clusters. The 

first peak might be called Africa, the second dogs, 

the third fish and the last pets. Where the bounda-

ries are located and cluster membership depends 

on the cosine threshold. We note that the “fugle-

hund” (bird dog) does cluster with dogs, but not 

with the bird “papegøye” (parrot), and the overall 

bird similarity is quite low in this sequence. 

 
Figure 5. Time path of cosine similarities with word 

pairs (example 1). 

In Figure 6, the sequence begins with four fish, 

but the cluster likely ends with “hai” (shark) then 
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“hval” (whale) and a return to fish in the next peak. 

In addition there is a long low peak of barnyard 

animals, followed by a pet peak and a small bear 

peak. How the threshold is set in conjunction with 

the semantic similarity of the space will greatly 

influence the shape of clusters. 

 
Figure 6. Time path of cosine similarities with word 

pairs (example 2). 

These examples illustrate that clusters may have 

a good deal of variability, since they can be de-

pendent on single words to delimit the cluster. This 

implies that distortions of the words “and” and 

“ørn” due to non-animal meanings and words ab-

sent from the corpus such as “gråmeis” and 

“svintoks” may have disproportionate effects. In-

vestigating measures that are more robust to small 

changes in single words seems a profitable direc-

tion. A measure less affected by single word varia-

bility is the area under the temporal curve, which if 

divided by the number of words is just the mean of 

the cosine pairs. 

Figures 5 and 6 indicate that it would be useful 

to better understand the relationship between 

threshold and number of clusters over the partici-

pants’ data. Figure 7 shows the tradeoff in terms of 

number of clusters as the threshold for cluster 

boundary is increased. We see a rapid growth and 

then a leveling off toward the asymptote. The 

curve drawn in the figure is a locally weighted re-

gression (Loader, 2013) to help visualize the rela-

tionship. Following Pollio (1964) the vertical line 

is at the 75th percentile of the cosine distribution, 

and is our first pass at a threshold, though further 

experimentation is necessary to better understand 

how to set this value. 

Figure 7. Change in number of clusters as cosine 

threshold increases. 

2.4 Continuous Space Word Representa-

tion 

To validate this approach, we built a semantic 

space based on a second automated technique, con-

tinuous space word representations (Mikolov, Yih, 

& Zweig, 2013) with the exact same corpus as the 

LSA space, utilizing bag-of-words and 300 dimen-

sions, using the word2vec
4
 software. We chose this 

representation since it belongs to the family of sta-

tistical vector space representations which use co-

sine similarity to measure semantic closeness. The 

mean cosine and cosines using word pairs from the 

participants were both higher than for the LSA 

space and well above the mean for 1000 randomly 

chosen word pairs (mean all animal pairs=0.114 

(0.100), for participants=0.275 (0.137), random 

pairs=0.040 (0.078)).  

Figure 8 reprises the first example word list 

shown for LSA-based semantics in Figure 5, but 

now using cosine similarity from the new space. 

The main feature of four peaks remains, but there 

are differences such as now instead of increasing 

similarity with on the right (pets), the plot levels 

off. 

To further compare the semantic spaces, we 

took the correlation between all 263 animal pairs in 

the two spaces and the subset of pairs generated by 

the participants. For all pairs the correlation was 

0.505 and for the participant pairs the correlation 

was 0.727, with 95% confidence interval (0.709, 

                                                           
4 http://code.google.com/p/word2vec/ 
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0.743). This is a quite interesting result in that 

pairs humans generate have higher similarity, but 

also that both models capture more similar seman-

tic patterns over the human generated pairs. This 

result increases our confidence that these models 

are capturing critical aspects of human semantic 

organization. 

 
Figure 8. Time path of cosine similarities using contin-

uous space model with word pairs (example 1). 

2.5 Differences in Diagnostic Groups 

The primary purpose of developing this seman-

tic framework is to provide the basis for much 

needed tools to measure how semantic structures 

are affected by cortical disorders. Utilizing the 

LSA space and threshold from Section 2.3, we can 

now begin that process. We compute three 

measures on the data, the mean number of words 

per diagnostic group, the mean cosine, and a clus-

ter measure, the cluster fraction which is the num-

ber of clusters divided by the number of words. 

Since the number of clusters is limited by the 

number of words, we need a measure that factors 

out the number of words, and dividing by the num-

ber of words is a way to achieve that aim. Table 3 

shows the three measures and their standard devia-

tions, as well as the number of participants for the 

three groups, control (CNTL), bipolar disorder 

(BD) and schizophrenia (SZ). 

All three measures are significantly different 

among the groups: number of words (F[2,147] = 

13.117, p = 5.73e-6), mean cosine (F[2,147] = 

3.398, p = .036), and cluster fraction (F[2,147] = 

3.190, p = 0.044). The two new semantic features 

are only moderately correlated to number of words, 

mean cos, cor = 0.301 and cluster fraction, cor = 

-0.254, indicating both provide additional infor-

mation beyond the number of words. The control 

group results are consistent with normative word 

count results reported by Egeland et al. (2006), 

where in their Table 5 they report a mean animal 

word list length of 23.5 (5.7) for 201 participants. 

Unfortunately, they did not separately report ani-

mal counts for their groups with schizophrenia or 

depression. 
 

Group n num words mean cos cluster frac 

CNTL 50 23.92(4.750) 0.172(0.0597) 0.736(0.0994) 

BD 75 20.12(5.273) 0.151(0.0589) 0.778(0.103) 

SZ 25 17.64(6.867) 0.137(0.0572) 0.794(0.131) 

Table 3. Mean(sd) semantic features by group. 

The direction of change is consistent among the 

three measures, number of words decreases from 

control to bipolar disease to schizophrenia, seman-

tic coherence between pairs of words also drops in 

that order, and cluster fraction, which increases as 

pairwise semantic coherence decreases moves in 

the expected opposite direction to the other two 

measures. 

3 Discussion  

The aim of this paper is to illustrate a semantic 

framework that can provide tools for measuring 

how semantic structure is affected by cortical dis-

orders. The approach illustrates that effective se-

mantic representations can be developed through 

automated language models such as LSA. While it 

is possible to treat automated language models as 

black boxes, we have attempted to show that there 

are many ways these spaces can be probed to en-

sure that they provide useful semantic relations 

that correspond to human results and provide po-

tentially clinically useful applications.  

From comparing the semantic similarity of sin-

gular to plural forms or visualizing the semantic 

path of verbal fluency word lists, we gain confi-

dence that the mathematical models behind the 

scenes matches our understanding. When we com-

pared LSA to a continuous space model, we ob-

served strong overlap in the semantic relations 

increasing our confidence in this enterprise. Dele-

gating the responsibility to determine semantic 

similarity to an automated method, captures a con-

sensus view of semantics based on the corpus used 

in building the semantic relationships. This ap-
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proach can help reduce variability due to human 

judgements, making it easier to detect important 

patterns in the data. Individual differences will 

continue to make it difficult to detect diagnostic 

group differences, but by having multiple classes 

of semantic features we improve the chances of 

capturing those group differences. Our next steps 

are to use this knowledge to continue to build ro-

bust semantic features and attempt to operational-

ize those features with fluency data as well as with 

other tasks.  The overall framework provides a 

means to continue work to better understand how 

to use semantics to build robust features, and apply 

it to data.  
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Abstract

Describing troubling events and images and
reflecting on their emotional meanings are
central components of most psychotherapies.
The computer system described here tracks
the occurrence and intensity of narration or
imagery within transcribed therapy sessions
and over the course of treatments; it likewise
tracks the extent to which language denoting
appraisal and logical thought occurs. The Dis-
course Attributes Analysis Program (DAAP)
is a computer text analysis system that uses
several dictionaries, including the Weighted
Referential Activity Dictionary (WRAD), de-
signed to detect verbal communication of
emotional images and events, and the Re-
flection Dictionary (REF), designed to detect
verbal communication denoting cognitive ap-
praisal, as well as other dictionaries. For each
dictionary and each turn of speech, DAAP
uses a moving weighted average of dictio-
nary weights, together with a fold-over pro-
cedure, to produce a smooth density func-
tion that graphically illustrates the rise and
fall of each underlying psychological variable.
These density functions are then used to pro-
duce several new measures, including mea-
sures of the vividness of descriptions of im-
ages or events, and a measure of the extent to
which descriptions of events or images and re-
flection on their meaning occur separately.

1 Introduction

In most forms of therapy, the treatment process in-
cludes two major phases of discourse: (1) the client

talks about his or her concerns or problems and de-
scribes incidents related to these concerns, and (2)
the client, perhaps with the help of the therapist,
thinks about these concerns and evaluates the sig-
nificance of the described incidents (Bucci, 2013).
These phases are likely to be repeated in different
contexts and with different contents. Some versions
of psychodynamic therapy include reports of mem-
ories and dreams, as well as current interactions and
interpretations of these. Some types of Cognitive-
Behavioral Therapy include ‘experiments’ and other
forms of ‘homework’ outside the treatment situa-
tion, and descriptions and evaluations of these crit-
ical events in the session. Some exposure therapies
require that the client tell and retell the story of the
trauma. Different treatments have different mixes of
these two crucial phases.

These two styles of discourse have been termed
Symbolizing and Reorganizing by Bucci (1997) and
defined within the framework of her general theory
of the referential process as this plays out in psy-
chotherapy. According to this theory, an emotion
schema is first aroused (this phase will not be dis-
cussed here); then communicated in the form of an
image or narrative in the Symbolizing phase. The
meaning of this image or story is then reflected on
in the Reorganizing phase.

Much also occurs in a therapy session that lies
outside these two modes of discourse; the client
sometimes talks in general terms, sometimes is dis-
fluent, and sometimes discusses matters outside the
problem areas. In this paper, we describe a com-
puter system designed to read texts, including tran-
scriptions of therapy sessions, and track the extent
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to which the speaker or writer is engaged in either of
these two major phases or in some other mode.

The key components of our system are the Dis-
course Attributes Analysis Program (DAAP); the
empirically derived Weighted Referential Activity
Dictionary (WRAD) (Bucci and Maskit, 2006),
which measures the extent to which the speaker or
writer is in symbolizing mode; and the conceptually
derived unweighted Reflection dictionary (REF),
which measures the extent to which the speaker or
writer is in reorganizing mode; in this paper we fo-
cus on these measures and measures derived from
them. The system also includes other dictionaries,
including disfluency and affect. These dictionaries
can be used to help distinguish different phases of
discourse (Kingsley, 2009), and also as measures of
session effectiveness (Bucci and Maskit, 2007; Mar-
iani et al., 2013; Andrei, 2011)1.

According to Bucci (1997), Referential Activity
(RA) is a psycholinguistic variable that concerns the
extent to which language can capture a speaker’s
bodily, sensory and affective experience in such a
way as to evoke corresponding experience in the lis-
tener. This communication generally takes the form
of narratives or descriptions of imagery, and is the
central indicator of the Symbolizing phase. The
Weighted Referential Activity Dictionary (WRAD),
which was designed to model RA, will be described
in more detail below.

The Discourse Attributes Analysis Program
(DAAP) is a modern text analysis program that pro-
duces, for each weighted or unweighted dictionary,
and for each turn of speech or other user-defined
segment a smoothly varying density function that
tracks the rise and fall of the underlying psycholog-
ical variable that the dictionary is designed to repre-
sent. DAAP uses the WRAD density function to de-
rive a measure of average vividness while in symbol-
izing mode, and a measure of the extent of discourse
spent in the symbolizing mode; DAAP also pro-
duces a measure of the extent to which a speaker’s
language is simultaneously in both symbolizing and
reorganizing modes; there is evidence that a client’s
separation of these two modes of speech is related to
session or treatment effectiveness.

1This system is publicly available for non-commercial use;
it can be downloaded from ww.thereferentialprocess.org/the-
discourse-attributes-analysis-program-daap.

There are several computer programs that have
been used for the study of the content of psychother-
apy sessions. Earlier programs, such as the General
Inquirer (Stone et al. , 1966), as well as more recent
comprehensive programs such as the LIWC of Pen-
nebaker et al. (2001), use counts of words within
user-defined segments, such as turns of speech, that
match words in dictionaries defined by particular
grammatical or psychological categories. Mergen-
thaler’s Text Analysis System (1996) uses artificial
segmentation into word blocks of approximately 150
words each, which enables some differentiation of
different text modes. However this segmentation
does not correspond to turns of speech or boundaries
of meaning units. Some modern systems, as for ex-
ample Salvatore et al. (2012), Imel et al. (2014) or
Werbart et al. (2011) use topic models, Latent Se-
mantic Analysis and/or other machine learning tech-
niques to form their categories. Such programs are
primarily concerned with the contents of discourse;
some of these start by eliminating function words.

1.1 The Referential Process as a Common
Mechanism in Talking Cures

Bucci (2013) argues that the sequence of Symboliz-
ing and Reorganizing, characterized as the referen-
tial process, constitutes a common factor that occurs
in different forms in a wide range of psychother-
apies practiced today. In all these treatments, ef-
fectiveness of treatment depends on communicating
emotional experiences in specific and concrete lan-
guage. Such language has been shown by Bucci and
Maskit (2007) to be associated with effective ther-
apeutic work in psychodynamic treatment. In their
extensive and critical review of process-outcome re-
search, appearing in the current Handbook of Psy-
chotherapy and Behavior Change, which provides
the standard reference for the field of psychother-
apy research, Crits-Cristoph, et al. (2013) have pro-
vided evidence that arousal of emotional experience,
for example through retelling narratives of central
traumatic events, is likely to be an essential ingredi-
ent in achieving positive outcomes in exposure treat-
ments. They have also shown that concrete tech-
niques, such as asking for specific examples of be-
liefs, also lead to better outcome in cognitive ther-
apy, while abstract techniques were unrelated to sub-
sequent improvement. Several studies reviewed by
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Crits-Cristoph et al. (2013), have provided evidence
that gains in self-understanding lead to improve-
ments in symptoms in psychodynamic therapy. Re-
organizing also occurs in the various forms of cog-
nitive behavioral, schema and exposure treatments,
in processes characterized as reappraisal, cognitive
restructuring and development of techniques of self-
regulation.

2 Dictionaries

The DAAP system uses several dictionaries to locate
different phases of discourse. We are concerned here
only with the Weighted Referential Activity Dictio-
nary (WRAD), as a measure of the extent to which
the speaker is in the Symbolizing phase, and the Re-
flection dictionary (REF), as a measure of the extent
to which the speaker is in the Reorganizing phase.

2.1 Referential Activity

Variation in RA is interpreted as indicating a
speaker’s or writer’s degree of emotional engage-
ment or immersion in an experience as represented
in language (Bucci, 1997). Such engagement is indi-
cated by qualities of language ranging widely across
divergent contents. A novelist may write about chas-
ing the white whale, life in an English village in
the early nineteenth century, or experiences in the
Spanish Civil War with equivalent degrees of en-
gagement; clients may describe a similarly wide
range of experiences. The challenge in develop-
ing a lexical measure of engagement in experience
was in capturing features of language that are de-
pendent on style and essentially independent of con-
tent. Bucci and colleagues began development of
the RA measure by turning to the principles of lan-
guage style as given by Strunk and White, in partic-
ular their sixteenth principle of composition, which
states: “Use definite, specific, concrete language.”
(1972) (pp. 16–18). Based on the features specified
in this principle, four scales were developed: Speci-
ficity (quantity of detail), Clarity (organization and
focus) Concreteness (degree of reference to sensory
and other bodily experience) and Imagery (degree
to which language evokes imagery). Definitions of
the scales and procedures for rating them are out-
lined in a manual (Bucci et al. , 1992; Bucci and
McKay, 2014). Scores for the four attributes are av-

eraged to yield an overall RA measure for texts or
text segments. The manual provides some explicit
features of the several dimensions, but the scoring is
based primarily on intuitive judgments. As for most
linguistic processing, speakers of a language have
more implicit knowledge concerning language style
and its effects than they are able to state in explicit
terms. Scorers achieve acceptable reliability levels
by reading the manual and brief training with prac-
tice segments.

The RA scales have been applied to many types
of texts, including brief monologues, early mem-
ories, and Thematic Apperception Test (TAT) pro-
tocols as well as transcripts of therapy sessions, in
populations varying on demographic and clinical di-
mensions. In a meta-analysis of 23 studies, Samstag
(1996) found significant relationships, with moder-
ate to strong effect size, between RA scales and
other indicators of capacity to connect cognitive,
and emotional experience to language. While the
scales are reliably scored with relatively brief train-
ing, computerized procedures are needed to enable
assessment of RA in large sample and longitudinal
studies, and micro-analytic tracking of fluctuation
in RA within various forms of communicative dis-
course. Traditional methods of computerized lan-
guage analysis depend on construction of word lists
representing specified contents and concepts. For
the RA dimension, a different approach to modeling
the scales was used.

A first computer model of Referential Activity,
called CRA, was empirically derived by Mergen-
thaler and Bucci (1999) using a set of transcriptions
of spoken language that had been scored for RA. The
model consisted of two dictionaries; one made up of
words that are used significantly more often in high
RA speech and the other of words used significantly
more often in low RA speech. These were used as a
measure of RA with the Text Analysis System (TAS)
of Mergenthaler (1996), which segments each text
into word blocks of approximately 150 words each,
and then computes a mean CRA score for each such
word block (High RA words minus Low RA words
divided by the total number of words).

The dictionary currently in use, the Weighted Ref-
erential Activity Dictionary (WRAD), was also em-
pirically derived from a set of transcriptions of spo-
ken language that had been scored for RA (Bucci
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and Maskit, 2006). Weighted referential activity
dictionaries have also been constructed in Span-
ish (Roussos and O’Connell, 2005), and Italian
(Mariani et al., 2013). The WRAD contains ap-
proximately 700 single-word items, including many
very frequent function words; thus WRAD covers
roughly 75–85% of spoken language. Each item
in the WRAD has a weight, ranging from −1 to
+1, that was empirically derived so as to model
that item’s usage in segments at different RA levels.
For example, an item with weight −1 is used much
more often in text segments having RA scores in the
range of 0 to 2.75, an item with weight +1 is used
much more often in text segments having RA scores
in the range of 7.25 to 10. As described in Bucci
and Maskit (2006), the algorithm used to make the
WRAD uses different definitions of the term ‘much
more often’ to construct different dictionaries; the fi-
nal one is chosen by maximizing the correlation with
judge’s scores of RA on a separate set of texts.

As shown in Bucci and Maskit (2006), the WRAD
and CRA were tested on a set of 113 text segments
that had been scored for RA, and that had not been
used in the construction of either dictionary. For
this test set, the WRAD/RA correlation was .47;
the CRA/RA correlation was .31. As the coverage
of a dictionary could be important for interpreting
the corresponding density function, we note that the
CRA coverage of this material was .50, while the
WRAD coverage was .83. To the best of the authors’
knowledge, there are no other computer measures of
RA to test the WRAD against.

Since the contents of the WRAD are based on
the scales, which are intuitively scored, the weights
are generally independent of linguistic or grammat-
ical category and relate to language style in ways
that are generally not explicitly understood. Thus
general content or grammatical categories, such as
are applied in the LIWC and other text analysis
systems, could not be used in making the WRAD.
For example, ‘in’ and ‘inside’ might be grouped to-
gether in typical categorical systems; however the
WRAD weight of the word ‘in’ is +1, signifying
that people generally use this word far more often
in symbolizing mode than otherwise; the weight of
the word ‘inside’ is −1, signifying that people gen-
erally use this word far less often in symbolizing
mode than otherwise. Similarly, the words ‘and’,

‘was’, ‘she’ and ‘on’ each have the highest possi-
ble WRAD weight of +1, while the words ‘also’,
‘is’, ‘it’ and ‘off’, which appear semantically re-
lated to these four items respectively, have very low
WRAD weights (‘it’ has weight −.875, the others
have the lowest possible weight of−1). The content
words in the dictionary include ‘mother’ and ‘class’,
which have WRAD weight +1, as well as ‘family’
and ‘money’, which have WRAD weight −1.

Post-hoc examination of the lexical contents of
the WRAD suggests that many frequent words with
high WRAD weights are those with the types of
functions required for telling stories. The five most
frequent words with weights of +1 are the conjunc-
tion ‘and’, the definite article ‘the’, the past tense
verb ‘was’, the spatial preposition ‘in’, and the per-
sonal pronoun ‘she’; these are items with the types
of pointing and connecting functions that are likely
to be used in describing episodes — to locate the
objects of discourse in place and time, and to join
together or relate objects or ideas — as well as past
tense verbs that serve as indicators of memory re-
trieval, and third person singular animate pronouns
that are used to refer to specific other people figur-
ing in an episode. The most frequent words with low
WRAD weights are associated with subjective focus
(‘I’) rather than pointing to objects and describing
events, present rather than past tense (‘is’), general
and abstract usage (‘it’ and ‘that’) and disfluency in-
dicated by the filled pause term (‘mm’) (Bucci et al.,
2015). Other factors contributing to the contents of
the WRAD are now being studied by Murphy et al.
(2015).

2.2 Reflection

The Reflection dictionary (REF) is an unweighted
list of over 1400 words that relate to reflection
or logical thought. These include logic terms
(‘if’, ‘but’); words referring to cognitive functions
(‘think’, ‘plan’), or entities (‘cause’, ‘belief’); prob-
lems of failure of cognitive or logical functions
(‘confuse’, ‘confound’); complex verbal commu-
nicative functions (‘comment’, ‘argue’); and fea-
tures of mental functioning (‘creative’, ‘logical’).

The REF dictionary was formed by having three
judges, using a definition of the Reflection category,
independently rate words from a large set of texts,
including the texts used to make and test the WRAD.
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For each word, if all three judges agreed on its inclu-
sion, it was added to the REF dictionary. If two of
the three agreed on inclusion, the word was given to
a fourth judge, and included in the dictionary if the
fourth judge agreed.

3 The Discourse Attributes Analysis
Program (DAAP)

The DAAP system operates on the assumption that
each dictionary represents an underlying psycholog-
ical process that varies over time. For each dic-
tionary and each turn of speech DAAP produces
a smoothly varying density function that models
the underlying psychological variable. DAAP uses
these density functions to produce several derived
measures; the density functions and some derived
measures will be described and illustrated below.

The WRAD weights are given as lying between
−1 and +1, with a neutral value of 0, correspond-
ing to the RA scale score neutral value of 5. As is
usual for a text analysis system, DAAP assigns the
weight 0 to a word that is not in a dictionary; a word
that is in an unweighted dictionary is assigned the
weight +1; a word that is in a weighted dictionary
is assigned its dictionary weight. As negative values
are sometimes difficult to interpret for psychological
variables, the WRAD dictionary scores are linearly
transformed so as to lie between 0 and 1, with neu-
tral value at .5. With this transformation, the DAAP
density functions are all non-negative and have val-
ues between 0 and +1.

In what follows, the WRAD neutral value of .5
is used as a dividing line between segments of dis-
course that are considered to be high in RA and those
that are considered to be low. This division enables
DAAP to segment text into contiguous sets of words
for which the WRAD density function is either high
or low; that is, greater than or less than this neutral
value.

3.1 Ordinary Text Analysis Functions

Session material is usually transcribed with markers
indicating changes in speaker. DAAP permits but
does not require this or other segmentation markers
and treats each such marker as indicating a new turn
of speech, thus allowing for different definitions of
’turn of speech’. For example, pauses of a certain

length or longer might be viewed as indicating a new
turn of speech, even if no change of speaker has ac-
tually occurred; or certain interjections, such as ‘um-
hm’, might be viewed as not indicating a change of
speaker. For qualitative analysis of content spoken at
interesting points as indicated by the graphs of the
density functions, DAAP produces a marked text;
this reproduces the original text file with markers in-
serted every 50 words.

3.2 The Density Function

For each dictionary and each turn of speech, DAAP
constructs a density function, which has a non-
negative value at each word in the turn of speech.
This construction starts with a moving weighted av-
erage of the dictionary weights, where the weighting
function is an exponential closely related to the nor-
mal curve. This weighting function is equal to zero
for all values outside the range, −99 ≤ x ≤ +99.
Except for the first and last 99 words of each turn
of speech, the density function is equal to this mov-
ing weighted average. Special adjustments using a
fold-over technique are made for the first and last
99 words. These adjustments have the consequence
that the mean of the density function is equal to the
mean of the dictionary weights. Precise definitions
of the density function and the measures outlined be-
low are given in the appendix.

Most therapy sessions have a total of between
5,000 and 7,000 words. For each dictionary, the
density function appears as a visually smooth curve
with discontinuities at each change of speaker. (As
explained in the appendix, one can regard the den-
sity function as being defined at every real number
so that it is a mathematically smooth function for ev-
ery turn of speech.) The segments where the WRAD
density function lies above the neutral value of .5 are
easily located, and the text corresponding to these
segments can be located in the marked text.

We illustrate the density function and the derived
measures with graphs of the WRAD and REF den-
sity functions of Session 4 from a treatment carried
out by Carl Rogers at the research program in psy-
chotherapy of the University of Chicago; the client is
known as Miss Vib (Rogers and Kinget, 1965). The
treatment was regarded as highly successful, and this
session was considered a pivotal session. Rogers and
Kinget say that during Session 4 “the inner disorga-
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nization that characterizes this phase of the process
reaches its climax” leading then to a shift into an
evaluation mode in Session 5. In both these figures,
the client data appears as the thinner black line; the
therapist data appears as the thicker black line.
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Figure 1: Client and therapist WRAD density.
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Figure 2: Client and therapist REF density.

The session opens with the client expressing her
concern that she is not accomplishing much in the
treatment, she wonders whether she should be doing
something different, she’s not sure what she should
talk about. She feels she was functioning well sev-
eral years ago; she doesn’t know what is blocking
her now in her life. The conversational pattern of rel-
atively brief utterances by the client and responses
by the therapist is characteristic of the treatment

and continues until about word 1200; the therapist
reflects the client’s ideas, with some shifts in lan-
guage. Following these interactions, Miss Vib be-
gins a turn of speech of approximately 1400 words,
lasting from about word 1200 to about word 2600;
this is the longest uninterrupted utterance in this
treatment.

In this segment, which reaches a WRAD peak of
.73, as shown in Figure 1, the client tells how she had
accepted a fellowship for graduate training without
realizing what the fellowship required; then tells a
detailed and vivid story of how she had to push her-
self through a project that she did not want to do, that
she did not believe in, and that required work with a
population and in a setting that was frightening for
her. She is deeply immersed in the description and
it is highly evocative for the reader.

During the same period, the Reflection (REF)
measure is very low, as shown in Figure 2. As
WRAD declines following the extended speech seg-
ment, REF increases; the graphs of the WRAD and
REF density functions are close to mirror images of
one another. This configuration, indicating separa-
tion of the Symbolizing and Reorganizing phases, is
a major marker of the referential process. Miss Vib
tells a pivotal story, and then reflects on it, leading
to development of new emotional meanings.

3.3 Derived Functions
The covariation between two variables is a measure
of the degree to which the variables are simultane-
ously high and low. Mathematically it is exactly
the same as the (Pearson) correlation coefficient be-
tween the corresponding density functions. As the
values of a density function at nearby words are not
statistically independent, we call this operation co-
variation rather than correlation. The covariation
of REF and WRAD is an indicator of the extent to
which the speaker is separating the functions of sym-
bolizing and reorganizing; we expect this measure to
be mainly negative and to be more negative in more
effective sessions and treatments (see Sec. 4.2). The
REF-WRAD covariation for the 1405 words in the
client’s extended turn of speech shown above is -.76;
for the session as a whole the covariation is -.56.

The High WRAD Proportion (HWP) is computed
for each turn of speech, or for any user-defined set of
turns of speech, as the proportion of words for which
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the WRAD density function lies above its neutral
value of .5. It is used as an indicator of the propor-
tion of time in a session that the client is in symbol-
izing mode. We expect this measure to be high for
client speech in effective sessions, and at least not to
decrease over time in successful treatments (see Sec.
4.2).

The Mean High WRAD (MHW) is the mean of the
difference between the WRAD density function and
the WRAD neutral value of .5, when this difference
is positive. That is, MHW is computed by consider-
ing only those words for which the WRAD density
function is greater than its neutral value of .5. It is
used as an indicator of the intensity or vividness of
language when the speaker is in symbolizing mode,
and is independent of the number of words in the
turn of speech or other text segment(s) under con-
sideration. As with HWP, we expect this measure
for client speech to be relatively high in more effec-
tive sessions and to be at a generally high level in
successful treatments (see Sec. 4.2).

The figures above illustrate the power of the den-
sity functions to identify pivotal moments of a ses-
sion. For the long turn of speech discussed above,
Mean WRAD (MWRAD) = .55, HWP = .79, MHW
= .07 and Mean REF = .07. For this session as a
whole, the client Mean WRAD = .47, HWP = .40,
MHW = .07 and Mean REF = .09.

4 Related Research

4.1 Evidence for Construct Validity

A relationship between WRAD and narrativity was
established by Nelson et al. (2008), who used a set
of 55 narratives from high school students talking
about their most stressful time. They found a high
(Spearman) correlation (ρ = .69, p < .01) between
Mean WRAD and a measure of narrativity given by
a count of temporal sequences (Labov, 1997).

Using a data set provided by Addis et al. (2008),
Maskit et al. (2015) found a relationship for both
MWRAD and HWP with a measure of episodic
memory given by the proportion of ‘internal’ to total
‘details’; the measures were applied to a set of re-
sponses by 32 participants to prompts for 8 past and
8 future personal (episodic) events. The responses
were recorded, transcribed and separated into details
by Addis et al. (2008). A detail was considered to

be internal if it was a specific fact concerning the
main event being described, and was considered to
be external if it was general rather than specific, or
it concerned an event other than the main event or
was a repetition. For the 32 subjects, high (Pear-
son) correlations were found between this measure
of episodic memory and HWP (r = .68, p < .01)
and with MWRAD (r = .58, p < .01).

A set of 70 segments taken from psychoanalytic
sessions were rated by judges on a scale of 1 to 7
for location in each of the phases: Arousal, Sym-
bolizing and Reorganizing. For the symbolizing
phase, high (Pearson) correlations were found be-
tween those ratings and MWRAD (r = .56, p <
.01), HWP (r = .58, p < .01) and MHW (r = .55,
p < .01); a high negative correlation with REF
(r = −.27, p = .02) was also found. For the re-
organizing phase, a high positive correlation with
REF (r = .42, p < .01), and high negative corre-
lations with MWRAD (r = −.60, p < .01), HWP
(r = −.60, p < .01) and MHW (r = −.52, p < .01)
were also found (Kingsley, 2009).

Murphy (2015) presents three studies showing
that WRAD scores tend, on average, to be substan-
tially higher when participants are asked to discuss
stories, events, or other scenarios such as dreams in
comparison to other speech contexts (1.5 ≤ d ≤
3.5). These studies also show that WRAD scores
have moderate temporal stability over a six week pe-
riod for the same task (.33 ≤ r ≤ .61).

4.2 Applications to Psychotherapy
In a study of 16 sessions from a long term psycho-
analysis, Bucci and Maskit (2007) found high (Pear-
son) correlations between a measure of session ef-
fectiveness based on clinical judgments (Freedman
et al., 2003) and DAAP measures; these include
the negative REF-WRAD covariation (r = .70,
p < .01), and MWRAD (r = .54, p < .05). These
suggest that in the more effective sessions, the client
had more separation of symbolizing and reorganiz-
ing discourse, and was more vivid while in symbol-
izing mode.

Using the Italian version of this system, Mariani
et al. (2013) used Spearman correlations to examine
the client speech for entire sessions of three success-
ful psychotherapies. They found as expected that
HWP increased over time; that is, the client spent an
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increasing proportion of time in symbolizing mode
[(N = 10, ρ = .79, p < .01), (N = 33, ρ = .43,
p < .01), (N = 23, ρ = .33, p = .07)]; the over-
all Mean WRAD (MWRAD) also increased over
time for all three treatments, [(N = 10, ρ = .60,
p < .05), (N = 33, ρ = .50, p < .01), (N = 23,
ρ = .36, p < .05)], and the REF-WRAD covariation
decreased over time; that is, the client on average
had more separation of the functions of symbolizing
and reorganizing, [(N = 10, ρ = −.48, p = .08),
(N = 33, ρ = −.49, p < .01), (N = 23, ρ = −.44,
p < .05)].

Andrei (2011) studied 15 sessions of a success-
ful psychotherapy treatment (as measured by stan-
dard client self-report measures). Using Spearman
correlations for client speech only and for sessions
as a whole, she found predicted increases in MHW
(ρ = .52, p < .05); MWRAD (ρ = .37) and the
HWP ( ρ = .35).

In a study of 14 sets of candidate treatment notes
from the New York Psychoanalytic Society and In-
stitute Treatment Center, high (Pearson) correlations
were found between a measure of treatment effec-
tiveness (found by comparisons of client functioning
between beginning and end of treatment) and both
MHW (r = .73, p < .01) and MWRAD (r = .70,
p < .01), for the treatment notes as a whole (Bucci
et al. , 2012).

5 Limitations and Future Research

The system presented here for the study of psy-
chotherapy process is based on Bucci’s theory of
the referential process (1997). We are concerned
with measurements for two of the three phases of
this process, Symbolizing and Reorganizing. The
WRAD, which was designed as a measure of the
Symbolizing phase has been extensively validated
and has been favorably compared with the only other
known measure of this psycholinguistic style, the
CRA. WRAD’s correlation to the scales might be
improved by including some number of less fre-
quently used words, as was done with the Italian
WRAD (Mariani et al., 2013), and/or by enlarging
the number of text segments scored for RA on which
the measure is based and using some machine learn-
ing techniques.

The Reflection dictionary, used to mark the Re-

organizing phase, is unweighted and theoretically
based. Our current information concerning the
REF-WRAD covariation suggests that, just as peo-
ple use different function words to different extents
when speaking at different levels of the Symbolizing
phase, so they may also use different function words
to different extents for different aspects of the Reor-
ganizing phase. To the best of the authors’ knowl-
edge, no weighted reorganizing dictionary or set of
dictionaries based on these ideas has as yet been de-
veloped.

We have not here addressed the Arousal phase
of the referential process, in part due to limitations
of space, and in part because this phase is some-
times marked by silence, variation in speech rate and
acoustic features rather than lexical items. The sys-
tem described here, based on word count, includes
a Disfluency measure, which can to some extent be
used to mark the Arousal phase. We are currently
developing a Variable Time DAAP (VTDAAP) that
uses sound recordings to provide acoustic data, such
as changes in pitch and intensity as well as paus-
ing and speech rate. VTDAAP produces data for
which the independent variable is time rather than
word count. A first version of this program has been
tested and is currently being revised; we expect it to
be publicly available in early 2016.

A major feature of the DAAP system is the pro-
duction of density functions. These depend on
the values of the parameters used for the weight-
ing function, as described in the appendix. These
parameters were chosen so as to make the graphs
of the WRAD and REF density functions for psy-
chotherapy sessions reasonably smooth and read-
able. Changes in these parameters would produce
changes in the derived functions described above; as
there are, however, no other measures of the vari-
ables these measures are meant to model, we have
no standard against which to measure the effect of
changing the weighting function parameters.

Several new studies are currently under way re-
lating WRAD to narrativity and Episodic Memory;
these use a new version of DAAP that produces den-
sity functions based on user-defined segmentation.2

2We expect this version of DAAP to be publicly available in
2016.
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6 Appendix: The Density Function and
Associated Measures

In this appendix we give precise definitions of the
density function and the DAAP measures derived
from it. The density function is constructed in two
steps; the first is a moving weighted average of the
dictionary weights using an exponential function re-
lated to the normal curve as the weighting function.
It is a general statement that the mean of a moving
weighted average is equal to the mean of the orig-
inal function; however, the moving weighted aver-
age may have non-zero values at points where the
original function is not defined. That is, if we are
looking at dictionary values defined for the points,
0, . . . , N , and the weighting function is different
from 0 for the points −m < x < +m, then the
moving weighted average may have non-zero values
at the points −m + 1 ≤ x ≤ N +m − 1. The sec-
ond step in the construction of the density function
is a fold-over procedure that adjusts the values of the
moving weighted average to take these ’extra’ values
into account. After the second step is accomplished,
the density function is defined exactly for the words
0, . . . , N , and its mean is equal to the mean of the
original function.

The Weighting Function for the moving weighted
average is defined in terms of two parameters: a
’pointedness’ parameter q, and a ’support’ param-
eter m. We start with the function W0, which is zero
for all x outside the range −m < x < +m. Inside
this range

W0(x) = exp(−qm2 m2 + x2

(m2 − x2)2
). (1)

Let S =
∑m−1

x=−m+1W0(x). Then the weighting
function W (x) = W0(x)/S.

This weighting function has the following proper-
ties:

• ∑
W (x) = 1.

• W is centered at 0, where it attains its maxi-
mum; its graph is symmetric with respect to the
y-axis. (It is an even function.)

• W is strictly increasing from −m to 0 and
strictly decreasing from 0 to m.
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• W is equal to zero for all x outside the range
−m < x < +m.

For most purposes used here, the values of q and
m are taken to be q = 2 and m = 100. We assume
below that these are the values of q and m.

Using the same formula, we could have defined
W0 for all real numbers x, where it is positive ex-
actly in the range −m < x < m, and then replaced
the sum S by the corresponding integral. In this way
W would be defined for all x, would have the prop-
erties listed above, and would also have derivatives
of all orders at all points.

Let R denote some dictionary function defined
on the set of words numbered from 0 to N , where
R(x) ≥ 0 for all x in this range. We also set
R(x) = 0 for x outside this range. The first ap-
proximation to the R density function is the moving
weighted average (convolution product)

CR(x) =
m−1∑

y=−m+1

R(y − x)W (y). (2)

This is a finite sum for every x, and is equal to
zero for all x outside the range −100 < x < N +
100. As remarked above, the mean of CR, taken
inside this range, is equal to the mean of R in the
range 0 ≤ x ≤ N . As it is difficult to assign a
meaning to the value of CR outside the range 0 ≤
x ≤ N , some adjustments are needed to account for
these values. The adjustments described below are
equivalent to the idea that we ”fold over” the x-axis,
along with the graph of CR at the points x = −1/2
and x = N +1/2; then add these folded over values
to the original values of CR; and repeat this process
as often as necessary.

As a particular example, assume that N = 300.
Then CR is defined and non-negative for the points,
−99 ≤ x ≤ 399. For this example, we can write
down the density function DR as follows:

DR(0) = CR(0) + CR(−1),
DR(1) = CR(1) + CR(−2), . . . ,
DR(100) = CR(100), . . . ,
DR(200) = CR(200), . . . ,
DR(299) = CR(299) + CR(302),
DR(300) = CR(300) + CR(301).

To make this process precise, we first define the
auxiliary function C̃(R), by introducing the reflec-
tions: r1(x) = −x− 1, which is reflection about the

point x = −1/2, and r2(x) = −x+2N+1, which is
reflection about the point x = N+1/2. We consider
the group of motions G of the real line generated by
r1 and r2, and define the auxiliary function C̃R by

C̃R(x) =
∑
g∈G

CR(g(x)). (3)

This is a finite sum for every integer x. This func-
tion C̃R is invariant under the group G; that is, for
every x and for every g ∈ G, C̃R(x) = C̃R(g(x)).

Finally, the density function DR is defined by
DR(x) = C̃R(x) for 0 ≤ x ≤ N , and DR(x) =
0 for x outside this range. With this definition,
the mean of the density function DR is equal
to the mean of the dictionary values, R; that is∑N

x=0DR(x) =
∑N

x=0R(x).
Let DW be the density function for WRAD; once

this density function has been defined, it is easy to
describe the High WRAD Proportion (HWP) and the
Mean High WRAD (MHW).

Let V be the set of all integers x in the range 0 ≤
x ≤ N for which DW (x) > .5, and let Z be the
number of points in V ; so that 0 ≤ Z ≤ N + 1.
Then

HWP = Z/(N + 1), (4)

and

MHW =
∑
x∈V

(D(x)− .5)/Z. (5)

The covariation C(D1, D2) between two distinct
density functions, D1 and D2, both defined on the
same set of words labeled 0, . . . , N , is then defined
exactly as the Pearson correlation coefficient (pro-
vided both densities are not constant):

C(D1, D2) =
∑N

x=0(D1(x)−M1)(D2(x)−M2)√
V1V2)

,

where M1, respectively M2, is the mean of D1,
respectively D2, and V1, respectively V2, is the vari-
ance of D1, respectively D2.

The graph of the density function D for each turn
of speech appears as a smooth curve. This can be
explained by the underlying mathematical theory,
which uses the continuous version of the weight-
ing function W . Here, the dictionary values R(x)
are extended so as to be defined for all x in the
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range −1/2 ≤ x < N + 1/2, by requiring that,
for each integer n, where we already have R(n) de-
fined, we set R(x) = R(n) for all x in the interval
n−1/2 ≤ x < n+1/2. Then the moving weighted
average CR(x) is defined as in equation 2, replac-
ing the sum by an integral. The definitions of C̃R

and DR then follow exactly as above. One can use
this continuous definition of the density function to
define MHW, HWP and the covariations by appro-
priate modifications of the above formulae; that is,
by replacing sums with integrals, and by replacing
counts of words by sums of lengths of intervals.
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