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Abstract

While reading times are often used to measure
working memory load, frequency effects (such
as surprisal or n-gram frequencies) also have
strong confounding effects on reading times.
This work uses a naturalistic audio corpus
with magnetoencephalographic (MEG) anno-
tations to measure working memory load dur-
ing sentence processing. Alpha oscillations
in posterior regions of the brain have been
found to correlate with working memory load
in non-linguistic tasks (Jensen et al., 2002),
and the present study extends these findings
to working memory load caused by syntactic
center embeddings. Moreover, this work finds
that frequency effects in naturally-occurring
stimuli do not significantly contribute to neu-
ral oscillations in any frequency band, which
suggests that many modeling claims could be
tested on this sort of data even without con-
trolling for frequency effects.

1 Introduction

Current accounts of sentence processing (e.g., Gib-
son, 2000; Lewis and Vasishth, 2005) usually in-
volve working memory: parts of sentences are
stored while unrelated material is processed, then re-
trieved when they can be integrated. But evidence
for the role of memory in sentence processing usu-
ally comes in the form of latency measurements in
self-paced reading or eye-tracking data, in which
frequency effects are a powerful potential confound
(Hale, 2001; Levy, 2008; Demberg and Keller, 2008;
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Roark et al., 2009; Smith and Levy, 2013; van
Schijndel et al., 2014). For example, the direction
of the correlation between memory load and reading
times has been shown to be highly sensitive to com-
plex frequency effects (Vasishth and Lewis, 2006;
Schuler and van Schijndel, 2014).

Experiments described in this paper therefore at-
tempt to find a clearer measure of variable mem-
ory usage in sentence processing, independent of
frequency influences. In particular, this paper fo-
cuses on the coherence of oscillatory neural activity
between anterior and posterior areas of left cortex.
Areas including the left inferior frontal gyrus and
the posterior left temporal cortex have been impli-
cated in language use, especially passive listening
tasks (Hagoort and Indefrey, 2014). Synchronous
firing among neurons in disparate parts of the brain
is thought to be a possible mechanism for the for-
mation of cued associations in memory by caus-
ing rapidly repeated communication between asso-
ciation cue neurons and association target neurons,
which strengthens their connection through a pro-
cess of long-term potentiation (von der Malsburg,
1995; Singer, 1999; Sederberg et al., 2003; Jensen
et al., 2007; Fell and Axmacher, 2011). During pe-
riods of high memory load, synchronous firing in
the alpha band is thought to be associated with in-
hibition of memory formation so as to protect ex-
isting cues from interference (Jensen et al., 2002;
Jensen et al., 2007). If this is correct, we should ex-
pect to find high alpha power and coherence among
brain regions responsible for language use when lan-
guage users are processing center embedded text
(e.g., the bracketed text in ‘The reporter [the senator
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met] left’). Magnetoencephalographic (MEG) imag-
ing results reported in this paper show that this does
indeed seem to be the case. Exploratory analyses
with the development partition of a dataset of MEG
recordings of subjects listening to narrative text re-
vealed a strong effect for memory load on alpha-
band coherence between an anterior and posterior
pair of left-hemisphere sensors. Follow-on valida-
tion with a larger test partition confirmed the signif-
icance of this effect. Moreover, these effects could
not be explained by frequency or sentence position
predictors, unlike effects on self-paced reading and
eye-tracking latencies (Demberg and Keller, 2008;
Roark et al., 2009; Wu et al., 2010).

The remainder of this paper is organized as fol-
lows: Section 2 provides a brief introduction to
magnetoencephalography, Section 3 describes the
MEG dataset used in these experiments, Section 4
describes the oscillatory coherence measure used
to evaluate phase-aligned activation, Section 5 de-
scribes the center-embedding depth predictor, Sec-
tion 6 describes the regression experiments and their
results, and Section 7 discusses implications of these
results for some open debates about hierarchic sen-
tence processing.

2 MEG Background

Magnetoencephalography (MEG), like electroen-
cephalography (EEG), is a non-invasive means to
record the electrical activity of the brain, specifically
the aggregate of post-synaptic potentials produced
by individual neurons. MEG has certain advan-
tages over EEG, which is the most widely used neu-
roimaging technique in psycholinguistics, due to its
low cost, convenience and portability. While EEG’s
high temporal resolution (�100Hz) makes it suit-
able for examining the neural processing timeline
down to the level of individual words and phonemes,
its spatial resolution does not compare to other tech-
niques like fMRI (functional magnetic resonance
imaging). In addition, the signals recorded with
EEG (volume currents) are distorted as they pass
through the skull and tissues of the head, attenuating
higher frequencies, and blurring their spatial source.

MEG records magnetic fields from the same neu-
ral sources that generate the EEG-visible voltages
at the scalp. As the head is transparent to mag-

netic fields, MEG signals are less noisy, have finer
spatial resolution, and capture a wider range of fre-
quencies. The EEG signal components familiar to
psycholinguists (e.g., the N400 and P600) are also
visible but produce different scalp distributions in
MEG recordings (Pylkkänen and Marantz, 2003;
Salmelin, 2007; Service et al., 2007), because of dif-
fering spatial sensitivities: EEG and MEG are more
sensitive to radial and tangential sources respec-
tively, and MEG’s higher spatial resolution means
that it is not as sensitive to deep sources. And cor-
respondingly, any magnetic coherence between two
sensors can be more reliably traced to coherence be-
tween the two corresponding regions of the brain,
whereas the poor spatial resolution of EEG means
that coherence between sensors does not necessarily
reflect coherence between the corresponding regions
of the brain.

3 Data Collection

This study makes use of a naturalistic audio-book
listening task during MEG recording. This de-
sign allows us to examine language processing in a
more ecologically realistic manner (Brennan et al.,
2012; Wehbe et al., 2014a; Wehbe et al., 2014b), as
both the participant experience (reading/listening to
a story for enjoyment) and author’s aim are authentic
language acts.

Participants were asked to sit still in an upright
position with their eyes closed, while they listened to
an 80-minute excerpt of an English-language novel.
The listening task was split into 8 sections of ap-
proximately 10 minutes each, and participants had
the opportunity to rest between them.

The text used was the second chapter of the
novel Heart of Darkness by Joseph Conrad, con-
taining 628 sentences and 12,342 word tokens. The
plain-text and audio book recording used were both
sourced from the Gutenberg project.1

The data was recorded at 1000Hz on a 306-
channel Elekta Neuromag device at the UPMC
MEG Brain Mapping Center, Pittsburgh, USA. Dur-
ing the experiment, the audio track was recorded
in parallel to enable subsequent synchronization be-
tween the brain activity and audio-book content.

1http://www.gutenberg.org/cache/epub/219/pg219.txt;
http://www.gutenberg.org/ebooks/20270
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The 306 channels are distributed across 102 loca-
tions in the device helmet. Each position has a
magnetometer which measures the magnitude of the
magnetic flux entering or leaving the helmet at that
location. The two gradiometers measure gradients in
local flux (i.e. its first derivative), each in a direction
perpendicular to the other.

Informed consent was obtained from 3 healthy
right-handed participants, following ethical approval
provided by the Institutional Review Boards of both
the University of Pittsburgh, and Carnegie Mellon
University.

After recording, the MEG data was preprocessed
in the following way to normalize and clean the
signals. The Elekta custom MaxFilter software
was used to apply SSP, SSS and tSSS methods
(Taulu and Hari, 2009), correcting for head motion
on a run-wise basis, and removing signal compo-
nents which originated outside the recording hel-
met and other non-brain artefacts. The EEGlab
package was then used to apply a band-pass filter
between 0.01–50 Hz, down-sample to 125Hz, and
apply Independent Components Analysis (Delorme
and Makeig, 2003). The signal time-courses and
component scalp-maps were visually inspected for
eye-movement and line-noise components, but none
were identified.

The parallel audio recording channel was used
to identify the precise sample points at which each
of the 8 audio runs began and ended (these var-
ied as participants chose to take breaks of differ-
ent lengths). The eight excerpts were then spliced
together to form a continuous set of MEG signals
corresponding exactly to the complete audio-book
time-course. This allowed us to use speech recog-
nition forced alignment methods (MS HTK; Wood-
land et al., 1994) to precisely locate the onset and
offset times of each auditory word. These auto-
matically derived onset and offset times were sub-
sequently validated by hand.

4 Coherence

There are a variety of measures available that reflect
the connectivity between two brain regions. This
study makes use of ‘spectral coherence,’ which is
sensitive both to power/energy increases registered
by the relevant sensors and to the degree of phase

synchronization observed by those sensors. Spectral
coherence is computed with the following formula:

coherence(x, y) =
E[Sxy]√

E[Sxx] · E[Syy]
(1)

where x and y are waveform signals from two sen-
sors, and Sij is the spectral density of waveforms i
and j. When i = j, S is the power spectral density
of i, and when i 6= j, S is the cross-spectral density
between i and j. The expectations in the numerator
and the denominator must be obtained by averaging
over multiple frequency bands, multiple instances
of the same frequency band in different epochs, or
over both frequency bands and epochs.2 The present
work adopts the second approach of averaging each
frequency band over multiple epochs (see Section 6
for details), which enables higher frequency resolu-
tion than if multiple frequencies had been averaged
together, though it necessarily reduces the number of
trials in the dataset. This work uses the MNE-python
package to compute spectral coherence (Gramfort et
al., 2013; Gramfort et al., 2014).3

As a measure of the correlation between two sig-
nals, coherence can be between 0 and 1. When two
signals have a constant phase difference and are of
the same amplitude, their coherence is 1. As ei-
ther the amplitudes diverge or the phase difference
changes, the coherence approaches 0.

5 Center Embedding Depth

This study evaluates a measure of syntactic work-
ing memory load as a predictor of MEG coherence.
A canonical means of calculating syntactic working
memory load is to count the number of center em-
beddings in a sentence. For example, the sentence
in Figure 1, ‘The cart that the horse that the man
bought pulled broke,’ is thought to induce greater
working memory load than the same sentence with-
out the depth 3 region: ‘The cart that the horse
pulled broke,’ (Chomsky and Miller, 1963).4 The in-
creased memory load stems from an incomplete de-
pendency (a subject lacking a predicate in the above

2If multiple instances are not averaged in Equation 1, coher-
ence is simply 1 (Benignus, 1969).

3http://martinos.org/mne/stable/mne-python.html
4In fact, this is an example of self embedding, the most dif-

ficult form of center embedding, which was chosen for ease of
exposition.

81



d1 The cart broke.
d2 that the horse pulled
d3 that the man bought

Figure 1: Center embeddings in ‘The cart that the horse
that the man bought pulled broke.’ Each lexeme is asso-
ciated with the given embedding depth on the left.

example) that must be retained in working mem-
ory until the dependency can be completed (Gibson,
2000). The load should increase every time there is a
right branch from a left branch in a syntactic binary-
branching tree.5

Experiments described in this paper estimate syn-
tactic memory load when processing a particular
word of a sentence as the center-embedding depth
of that word, which is the number of incomplete
categories maintained while processing that word
using a left-corner parser (Aho and Ullman, 1972;
Johnson-Laird, 1983; Abney and Johnson, 1991;
Gibson, 1991; Resnik, 1992; Stabler, 1994). To ob-
tain an accurate estimate of center-embedding depth,
this study uses the van Schijndel et al. (2013) left-
corner PCFG parser trained on the Penn Treebank
(Marcus et al., 1993) reannotated into a Nguyen et
al. (2012) generalized categorial grammar (GCG),6

which makes PCFG probabilities sensitive to filler-
gap propagation. This parser achieves a linguis-
tic accuracy comparable to the Petrov and Klein
(2007) parser, and the PCFG surprisal estimates it
outputs using this grammar provide a state-of-the-art
fit to psycholinguistic measures like self-paced read-
ing times and eye-tracking fixation durations (van
Schijndel and Schuler, 2015).

The experiments described in Section 6 run this
parser on transcripts of the Heart of Darkness
dataset described in Section 3, calculating center-
embedding depth for each word epoch based on its
position in the best output parse. This parser is also
used to calculate PCFG surprisal as a potentially
confounding predictor.

5In fact, there are conditions where a post-modifier can cre-
ate a complex left-branching structure that does not cause an
associated increase in memory load, but that effect is beyond
the scope of this paper.

6http://sourceforge.net/projects/modelblocks/

6 Methodology

In this section we describe how we establish a reli-
able effect of sentence embedding depth on alpha-
band coherence in the MEG recordings. While our
analysis is motivated by experimental results using
non-linguistic stimuli (e.g., Jensen et al., 2002), we
do not expect the scalp topology of EEG effects to
be exactly replicated in MEG recordings, and we
do not necessarily expect coherence observations
during skilled behavior like sentence comprehen-
sion to exactly match observations while processing
word lists. This, and the possibility of frequency-
based confounds, requires an exploratory analysis of
a range of sensor-pairs, frequency bands, and time
windows. To avoid the danger of selection biases
we partition one third of the data into a development
set and the rest of the data into a test set. The devel-
opment data gives an indication of which sensor pair
best reflects a stable correlation between embedding
depth and MEG coherence, which is later confirmed
using the test partition.

The van Schijndel et al. (2013) parser is used to
obtain estimates of the embedding depth of each
word in the corpus according to the best output parse
of the sentence. As described in Section 5, these es-
timates are used as a measure of the memory load
that is present as each word is processed.

The data is divided into epochs, which extend
from one second pre-onset to two seconds post-onset
for each word. This window extends beyond the av-
erage auditory duration of a word (∼0.4s), and as-
sumes that the processing timeline for each word is
time-locked to its auditory onset (Hagoort, 2008).
In order to clean up extraneous noise in the signal,
words are omitted if they are in a sentence that fails
to parse, if they are in an extremely short or an ex-
tremely long sentence (<4 or >50 words), or if they
follow a word at a different depth, which could in-
troduce a possible confound due to storage or inte-
gration effects (Gibson, 2000). The remaining sen-
tences should provide regions where the parser is
confident about its depth estimates, where sentence
length is unexceptional, and where linguistic mem-
ory load is not changing. Every third sentence is put
into the exploratory development dataset, and the
rest are put into the test set. For each dataset, the
epochs are grouped based on their associated em-
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Figure 2: Top-down depiction of sensor locations in the
Elekta Neuromag helmet. The front of the helmet is at
the top of the figure. The sensors in blue are those used
in this study.

bedding depths. Each depth grouping is further clus-
tered into sets of four epochs; these sets are used to
calculate the expectations necessary to compute co-
herence.7 Continuous wavelet decomposition (Ga-
bor, 1946) is employed to decompose the waveform
signal recorded by each sensor into its component
frequencies.

The memory load of a given epoch should be rel-
atively constant throughout the duration of a given
word, so the dependent variable tested in this study
is the average coherence from 0-500 ms after the
onset of each word. If the average coherence of a
frequency is high due to a brief spike in coherence
during that window rather than due to repeated syn-
chronous firing of the neural clusters under investi-
gation, the increased variance will penalize the sig-

7The choice to cluster into sets of four epochs was driven by
the data. In order to obtain valid statistical significance in the
development data regarding embeddings at an embedding depth
of one, the data could only be divided by 4 before n dropped
below 30. While statistical significance is not needed for ex-
ploration, a less-than-representative sample in the development
set would negate the purpose of having a development set for
exploration.
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Figure 3: A time-frequency depiction of the mean coher-
ence in the depth = 1 condition subtracted from the mean
coherence in the depth = 2 condition in development data.
An overlay conveys the variance of different frequency
bands. Faded regions have higher variance than clearer
regions.

nificance of that frequency. Although this work ini-
tially averaged over epochs during computation of
coherence in order to obtain good frequency reso-
lution, exploration using development data revealed
that coherence often appears across several adjacent
frequency bands, so to boost the signal-to-noise ra-
tio, the dependent variable was recast as the average
coherence within ±2 Hz of each frequency band.
Since this study is focused on linguistic process-
ing, the development data was searched for two sen-
sors in the anterior and posterior regions of the left
hemisphere with a high degree of depth-sensitive al-
pha coherence. In analysis of the development set,
gradiometer sensors 0132 and 1712 (anterior and
posterior sensors, respectively; shown in Figure 2)
showed a high coherence, so these were used in the
evaluation on the test set. This was the only sensor
pair evaluated on the test data.

To avoid making the statistical analyses vulnera-
ble to assumptions about data distribution, statistical
significance of depth as a predictor in the develop-
ment and test datasets is calculated using the Mann-
Whitney U-test, a non-parametric alternative to the
t-test for testing differences between two unpaired
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Factor Coef p-value
Unigram 5.1 · 10−5 0.941
Bigram 5.6 · 10−4 0.257
Trigram 4.3 · 10−4 0.073
PCFG Surprisal 2.8 · 10−4 0.482
Sentence Position −5.1 · 10−4 0.031
Depth 3.6 · 10−2 0.005

Table 1: Development data results using each factor to
predict alpha coherence from 0-500ms at 10±2Hz.

samples. The U-test is used to see whether the dis-
tribution of coherence at a given depth is the same
as the distribution of coherence at another depth.

Development analysis finds that the depth 1 data
(n = 40) and the depth 2 data (n = 1118) have sig-
nificantly different coherence distributions around
10 Hz (p = 0.005; see Figure 3), which is in
the middle of the alpha frequency range (8-12Hz).
This finding suggests that alpha coherence between
these two regions are predictive of linguistic work-
ing memory load. To ensure that this finding was not
caused by a single subject, the same analysis was re-
peated over the development data after omitting each
subject in turn, with similar results.

It may be, however, that these alpha coherence ef-
fects are driven by confounding factors like sentence
position (alpha coherence may be more likely to oc-
cur near the beginnings or ends of sentences) or fre-
quency (alpha coherence may tend to increase when
processing rare or common words), which may be
collinear with depth. In order to check for these
possible confounds, the data must be re-ordered by
sentence position or frequency predictors, then re-
grouped into sets of four before computing coher-
ence, in order to avoid computing coherence over
unrelated factor levels.8

To rule out the confounds of sentence position
and frequency, a variety of independent predictors
are separately linearly regressed against the depen-
dent variable of coherence. Four different frequency
predictors are used: unigrams, bigrams, trigrams,
and PCFG surprisal. The n-gram factors are all log-
probabilities computed from the Corpus of Contem-

8Since only two values of depth are tested in the present
study, depth is always tested using a U-test, while the more con-
tinuous variables are tested using linear regression.

Factor Coef p-value
Unigram −2.2 · 10−4 0.6480
Bigram −9.8 · 10−5 0.7762
Trigram 3.7 · 10−4 0.0264
PCFG Surprisal 2.9 · 10−4 0.3295
Sentence Position 1.3 · 10−4 0.4628
Depth 4.6 · 10−2 0.00002

Table 2: Test data results using each factor to predict al-
pha coherence from 0-500ms at 10±2Hz. Note that the
trigram factor is not a significant predictor after applying
Bonferroni correction.

porary American English (COCA; Davies, 2008)
and PCFG surprisal is computed by the van Schijn-
del et al. (2013) incremental parser. While sentence
position is significant on the development partition
(Table 1), none of the frequency-based effects are
significant in the development set, but this may be
due to having too little data in the development set,
so all factors are tested again in the larger test set.9

To retain an α-level of 0.05 with six statistical
tests, the threshold for significance must be Bonfer-
roni corrected to 0.008. As shown in Table 2, sen-
tence position fails to be a significant predictor of al-
pha coherence on the test data (even without Bonfer-
roni correction), but embedding depth remains a sig-
nificant predictor of alpha coherence. The marginal
effect of trigram predictability observed in the de-
velopment set remains in the test set, but the effect
is not significant after correcting for multiple com-
parisons.

While Bonferroni correction would rule out tri-
gram probability as a significant predictor even if
it was the only non-depth predictor tested in this
work, the fact that it is marginally significant in both
datasets is suggestive of a true underlying effect.
To determine whether trigram probability is actually
predictive of MEG coherence, we increase the reso-
lution of the coherence by using six epochs (rather
than the previous four) to compute the expectations
in Equation 1. The increase in resolution further

9In development testing, ‘significance’ is merely a conve-
nient tool for summarizing how strongly correlated the inde-
pendent and dependent variables are. The general lack of corre-
lation between MEG coherence and position/frequency predic-
tors in development data suggests this is a promising dependent
variable for our purposes.
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Factor Coef p-value
Trigram 1.6 · 10−4 0.3817
Depth 3.2 · 10−2 0.0046

Table 3: Test data results after increasing coherence res-
olution to six epochs.

shrinks the dataset, but the larger test set can absorb
the loss and still provide valid significance results.10

The results (Table 3) show that, with greater coher-
ence resolution, embedding depth remains a signif-
icant predictor of MEG coherence, and that trigram
probability is not even a marginally significant pre-
dictor. These results reinforce the theory that alpha
coherence reflects memory load and further shows
that alpha coherence between the anterior and pos-
terior regions of the left hemisphere may specifically
reflect linguistic memory load.

7 Discussion

This study found that alpha coherence between the
anterior and posterior regions of the left hemisphere
of the brain is significantly correlated with embed-
ding depth, which suggests that alpha coherence
may reflect an effect of memory load on linguis-
tic processing in those regions. This correlation
was found in an exploratory study using develop-
ment data and subsequently confirmed by general-
izing to held-out test data. These results are consis-
tent with patterns observed in fMRI experiments: a
large survey (Hagoort and Indefrey, 2014) identifies
activation of the left inferior frontal gyrus (LIFG, in-
cluding “Broca’s area”) and posterior parts of the
left temporal cortex (including “Wernicke’s area”),
during both passive listening and passive reading
tasks. Their findings indicate that, with listening
tasks in particular, the anterior region of the right
hemisphere is also active, and the results of Weiss
et al. (2005) suggest that EEG coherence between
the left and right hemispheres of the brain increases
with embedding depth. Future study is needed to
determine if rightside coherence or left-right coher-
ence in MEG data is also associated with embedding
depth.

Importantly, the alpha coherence found in this
10After increasing coherence resolution, trigram n = 1933,

depth 1 n = 57, and depth 2 n = 1428.

study did not correlate with sentence position or fre-
quency effects. The lack of influence of position and
frequency effects on MEG coherence could greatly
facilitate future research on sentence processing,
since these effects often present large confounds
in predicting other psycholinguistic measures. The
cost associated with collecting MEG data may limit
the immediate widespread application of the present
findings, but since MEG and EEG signals are pro-
duced by electrical activity from the same under-
lying brain sources, this gives hope that anterior-
posterior left hemisphere alpha coherence in EEG
may be able to provide a similarly clear signal for
future studies.

The present data support findings like those of van
Schijndel and Schuler (2015), who claim hierarchic
structure must be used during linguistic process-
ing because hierarchic structure improves the fit to
reading times over competitive non-hierarchic mod-
els. A potential criticism of that finding is that hu-
mans may make use of linear sequences of part-of-
speech tags but not hierarchic structure during lin-
guistic processing (Frank and Bod, 2011). In that
case, the improved fit of the hierarchic grammars in
van Schijndel and Schuler (2015) may simply stem
from the fact that hierarchic grammars also happen
to contain part-of-speech information as well as hi-
erarchic structure. The findings of the present study
support the theory that hierarchic structure is used
during linguistic processing since this study finds a
clear effect of alpha coherence conditioned on hier-
archic embedding depth.

Having identified a working-memory based signal
that is seemingly free of many of the confounding
influences associated with reading times, it should
be interesting to use the same procedure to study
linguistic regions where embedding depth changes.
Such studies could tell us what activation patterns
arise due to storage and integration of linguistic el-
ements in working memory. Contrary to the previ-
ous studies of such influences, which relied on in-
direct measures such as reading time latencies, if
coherence is construed as attentional focus (Jensen
et al., 2007), the present methods could directly in-
vestigate theoretical claims such as those made by
Gibson (2000) and Lewis et al. (2006) regarding the
attentional resources required for storage and inte-
gration of incomplete dependencies under different
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conditions. That is, it permits direct measurement of
whether and how much attentional resources must
be expended in cohering disparate regions of the
brain in those conditions. Such resource expendi-
tures could manifest themselves in reading times in
a variety of ways, but the present work has outlined
a technique, seemingly independent of frequency ef-
fects, of directly testing the underlying theoretical
linguistic claims in naturalistic data.
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