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Abstract

A key aspect of cognitive diagnostic models
is the specification of the Q-matrix associat-
ing the items and some underlying student
attributes. In many data-driven approaches,
test items are mapped to the underlying, la-
tent knowledge components (KC) based on
observed student performance, and with little
or no input from human experts. As a result,
these latent skills typically focus on model-
ing the data accurately, but may be hard to
describe and interpret. In this paper, we fo-
cus on the problem of describing these knowl-
edge components. Using a simple probabilis-
tic model, we extract, from the text of the
test items, some keywords that are most rel-
evant to each KC. On a small dataset from the
PSLC datashop, we show that this is surpris-
ingly effective, retrieving unknown skill labels
in close to 50% of cases. We also show that
our method clearly outperforms typical base-
lines in specificity and diversity.

1 Introduction

Recent years have seen significant advances in auto-
matically identifying latent attributes useful for cog-
nitive diagnostic assessment. For example, the Q-
matrix (Tatsuoka, 1983) associates test items with
skills of students taking the test. Data-driven meth-
ods were introduced to automatically identify latent
knowledge components (KCs) and map them to test
items, based on observed student performance, cf.
Barnes (2005) and Section 2 below.

A crucial issue with these automatic methods is
that latent skills optimize some well defined objec-

tive function, but may be hard to describe and in-
terpret. Even for manually-designed Q-matrices,
knowledge components may not be described in
detail by the designer. In that situation, a data-
generated description can provide useful informa-
tion. In this short paper, we show how to extract
keywords relevant to each KC, from the textual con-
tent corresponding to each item. We build a simple
probabilistic model, with which we score possible
keywords. This proves surprisingly effective on a
small dataset obtained from the PSLC datashop.

After a quick overview of the automatic extrac-
tion of latent attributes in Section 2, we describe our
keyword extraction procedure in Section 3. The data
is introduced in Section 4, and we present our exper-
imental results and analysis in Section 5.

2 Extraction of Knowledge Component
Models

The Rule Space model (Tatsuoka, 1983; Tatsuoka,
1995) was introduced to statistically classify stu-
dent’s item responses into a set of ideal response
patterns associated with different cognitive skills. A
major assumption of Rule Space is that students only
need to master specific skills in order to successfully
complete items. Using the Rule Space model for
cognitive diagnostics assessment requires experts to
build and reduce an incidence or Q matrix encoding
the combination of skills, a.k.a. attributes, needed
for completing items (Birenbaum et al., 1992) and
generating ideal item responses based on the re-
duced Q matrix (Gierl et al., 2000). The ideal re-
sponse patterns can then be used to analyze student
response patterns.
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The requirement for extensive expert effort in the
traditional Q matrix design has motivated attempts
to discover the Q matrix from observed response
patterns, in effect reverse engineering the design
process. Barnes (2005) proposed a multi-start hill-
climbing method to create the Q-matrix, but experi-
mented only on limited number of skills. Desmarais
et al. (2011; 2014) refined expert Q matrices using
matrix factorization, Although this proved useful to
automatically improve expert designed Q-matrices,
non-negative matrix factorization is sensitive to ini-
tialization and prone to local minima. Sun et al.
(2014) generated binary Q-matrices using an alter-
nate recursive method that automatically estimates
the number of latent attributes, yielding high ma-
trix coverage rates. Others (Liu et al., 2012; Chen
et al., 2014) estimate the Q-matrix under the setting
of well known psychometric models that integrate
guess and slip parameters to model the variation be-
tween ideal and observed response patterns. They
formulate Q-matrix extraction as a latent variable
selection problem solved by regularized maximum
likelihood, but require to know the number of latent
attributes. Finally, Sparse Factor Analysis (Lan et
al., 2014) was recently introduced to address data
sparsity in a flexible probabilistic model. They re-
quire setting the number of attributes and rely on
user-generated tags to facilitate the interpretability
of estimated factors.

These approaches to the automatic extraction of
a Q-matrix address the problem from various angles
and an extensive comparison of their respective per-
formance is still required. However, none of these
techniques address the problem of providing a tex-
tual description of the discovered attributes. This
makes them hard to interpret and understand, and
may limit their practical usability.

3 Probabilistic Keyword Extraction

We focus on the textual content associated with each
item in order to identify the salient terms as key-
words. Textual content associated with an item may
be for example the body of the question, optional
hints or the text contained in the answers (Figure 1).

For each item i, we denote by di its textual content
(e.g. body text in Figure 1). We also assume a bi-
nary mapping of items to K skills ck, k = 1 . . . K.

Skills are typically latent skills obtained automati-
cally (unsupervised) from data. They may also be
defined by a manually designed Q-matrix for which
skill descriptions are unknown. In analogy with text
categorization, textual content is a document di and
each skill is a class (or cluster) ck. Our goal is to
identify keywords from the documents that describe
the classes.

For each KC ck, we estimate a unigram language
model based on all text di associated with that KC.
This is essentially building a Naive Bayes classifier
(McCallum and Nigam, 1998), estimating relative
word frequencies in each KC:

P (w|ck) =
∑

i,di∈ck
nwi∑

i,di∈ck
|di| , ∀k ∈ {1 . . . K}, (1)

where nwi is the number of occurrences of word w
in document di, and |di| is the length (in words) of
document |di|. In some models such as Naive Bayes,
it is essential to smooth the probability estimates (1)
appropriately. However more advanced multinomial
mixture models (Gaussier et al., 2002), or for the
purpose of this paper, smoothing has little impact.
Conditional probability estimates (1) may be seen
as the profile of ck. Important words to describe a
KC c ∈ {c1, . . . cK} have significantly higher prob-
ability in c than in other KCs. One metric to evalu-
ate how two distributions differ is the (symmetrized)
Kullback-Leibler divergence:

KL(c, /c) =
∑
w

(P (w|c)−P (w|/c)) log
P (w|c)
P (w|/c)︸ ︷︷ ︸

k(w)

,

(2)
where /c means all KCs except c, and P (w|/c) is esti-
mated similarly to Eq. 1, P (w|/c) ∝∑

i,di 6∈c nwi.
Note that Eq. (2) is an additive sum of posi-

tive, word-specific contributions k(w). Large con-
tributions come from significant differences either
way between the profile of a KC, P (w|c), and the
average profile of all other KCs, P (w|/c). As we
want to focus on keywords that have significantly
higher probability for that KC, and diregard words
that have higher probability outside, we will use a
signed score:

sc(w) = |P (w|c)− P (w|/c)| log
P (w|c)
P (w|/c) , (3)
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Figure 1: Test item body text, hints and responses.

body hint response Total
# tokens 31,132 11,505 41,207 83,844

Table 1: Dataset statistics, (# tokens).

where the log ensures that the score is positive if and
only if P (w|c) > P (w|/c).

Figure 2 illustrates this graphically. Some words
(blue horizontal shading) have high probability in c
(top) but also outside (middle), hence s(w) close to
zero (bottom): they are not specific enough. The
most important keywords (green upward shading,
right) are more frequent in c than outside, hence a
large score. Some words (red downward shading,
left) are less frequent in c than outside: they do con-
tribute to the KL divergence, but are atypical in c.
They receive a negative score.

4 Data

In order to test and illustrate our method, we focus
on a dataset from the PSLC datashop (Koedinger et
al., 2010). We used the OLI C@CM v2.5 - Fall 2013,
Mini 1.1 This OLI dataset tests proficiency with the
CMU computing infrastructure. It is especially well
suited for our study because the full text of the items
(cf. Fig. 1) is available in HTML format and can be
easily extracted. Other datasets only include screen-
shots of the item, making text extraction more chal-
lenging.

There are 912 unique steps in that dataset, and less
than 84K tokens of text (Table 1), making it very

1https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=827

Knowledge Component c:

0.
00

0.
06

0.
12

All other KCs:

0.
00

0.
03

0.
06

KL score s(w)

−
0.

2
0.

0
0.

2

Figure 2: KL score illustration: KC profile (top), profile
for all other KCs (middle) and scores (bottom).

small by NLP standards. We picked two KC models
included in PSLC for that dataset. The noSA model
has 108 distinct KCs with minimally descriptive la-
bels (e.g. “vpn”), assigning between 1 and 52 items
to each KC. The C75 model is fully unsupervised
and has the best BIC reported in PSLC. It contains
44 unique KCs simply labelled Cxx, with xx between
-1 and 91. It assigns 5 to 78 items per KC. In both
models there are 823 items with at least 1 KC as-
signed.

We use a standard text preprocessing chain. All
text (body, hint and responses) in the dataset is to-
kenized and lowercased, and we remove all tokens
appearing in an in-house stoplist, as well as tokens
not containing at least one alphabetical character.

5 Experimental Results

From the preprocessed data, we estimate all KC pro-
files using Eq. (1), on different data sources:

1. Only the body of the question (“body”),

2. Body plus hints (“b+h”),

3. Body, hints and responses (“all”).

For each KC, we extract the top 10 keywords ac-
cording to sc(w) (Eq. 3).
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KC label #items Top 10 keywords
identify-sr 52 phishing email scam social learned indicate legitimate engineering anti-phishing
p2p 27 risks mitigate applications p2p protected law file-sharing copyright illegal
print quota03 12 quota printing andrew print semester consumed printouts longer unused cost
vpn 11 vpn connect restricted libraries circumstances accessing need using university
dmca 9 copyright dmca party notice student digital played regard brad policies
penalties dmca 2 penalties illegal possible file-sharing fines 80,000 $ imprisonment high years
penalties bandwidth 1 maximum limitations exceed times long bandwidth suspended network access

Table 2: Top 10 keywords extracted from the body only of a sample of knowledge components of various sizes.

We first illustrate this on the noSA KC model, for
which we can use the minimally descriptive KC la-
bels as partial reference. Table 2 shows the top key-
words extracted from the body text for a sample of
knowledge components. Even for knowledge com-
ponents with very few items, the extracted keywords
are clearly related to the topic suggested by the label.

Although the label itself is not available when es-
timating the model, words from the label often ap-
pear in the keywords (sometimes with slight mor-
phological differences). Our first metric evaluates
the quality of the extraction by the number of times
words from the (unknown) label appear in the key-
words. For the model in Table 2, this occurs in 44
KCs out of the 108 in the model (41%). These KCs
are associated with 280 items (34%), suggesting that
labels are more commonly found within keywords
for small KCs. This may also be due to vague labels
for large KCs (e.g. identify, sr in Table 2), although
the overall keyword description is quite clear (phish-
ing, email, scam).

We now focus on two ways to evaluate keyword
quality: diversity (number of distinct keywords) and
specificity (how many KC a keyword describes). De-
sirable keywords are specific to one or few KCs. A
side effect is that there should be many different key-
words. We therefore compute 1) how many distinct
keywords there are overall, 2) how many keywords
appear in a single KC, and 3) the maximum number
of KCs sharing the same keyword. As a baseline,
we compare against the simple strategy that consists
in simply picking as keywords the tokens with max-
imum probability in the KC profile (1). This base-
line is common practice when describing probabilis-
tic topic models (Blei et al., 2003).

Table 3 compares KL score (“KL-*” rows) and
maximum probability baseline (“MP-*” rows) for

the two KC models. The total number of keywords
is fairly stable as we extract up to 10 keywords per
KC in all cases (some KCs have a single item and
not enough text). The KL rows clearly show that
our KL-based method generates many more differ-
ent keywords than MP, implying that MP extracts
the same keywords for many more KCs.

• With KL, we have up to 727 distinct keywords
(out of 995) for noSA and 372 out of 440 for
C75, i.e. an average 1.18 to 1.37 (median 1)
KC per keyword. With MP the keywords de-
scribe on average 3.1 KC of noSA, and 2.97 of
C75.

• With KL, as many as 577 (i.e. more than half)
keywords appear in a single noSA KC. By con-
trast, only as few as 221 MP keywords have
a unique KC. For C75, the numbers are 316
(72%) vs, 88 to 131.

• With KL, no keyword is used to describe more
than 9 to 19 noSA KCs and 6 to 12 C75 KCs.
With MP, some keywords appear in as many as
87 noSA KCs and all 44 C75 KCs. This shows
that they are much less specific at describing
the content of a KC.

These results all point to the fact that the KL-based
method provides better diversity as well as speci-
ficity in naming the different KCs.

Source of textual content: Somewhat surpris-
ingly, using less textual content, i.e. body only,
consistently produces better diversity (more distinct
keywords) and better specificity (fewer KC per key-
word). The hint text yields little change and the
response text seriously degrades both diversity and
specificity, despite nearly doubling the amount of
textual data available. This is because responses are
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model total diff. uniq. max
KL-body 995 727 577 9
KL-b+h 1005 722 558 10

noSA KL-all 1080 639 480 19
MP-body 995 534 365 42
MP-b+h 1005 521 340 34
MP-all 1080 352 221 87
KL-body 440 372 316 6

C75 KL-all 440 328 254 12
MP-body 440 203 131 33
MP-all 440 148 88 44
KL-body 440 377 325 4

C75 KL-all 440 332 261 11
(+sw) MP-body 440 76 43 43

MP-all 440 68 32 44

Table 3: Statistics on various keyword extraction meth-
ods. KL (Kullback-Leibler score) and MP (maximum
probability) are tested on body only, body+hints (b+h)
or all text. We report the total number of keywords ex-
tracted (Total), the number of different keywords (diff.),
keywords with unique KC (unique) and maximum num-
ber of KC per keyword (max). “+sw” indicates stopwords
are included (not filtered).

very similar across items. They add textual informa-
tion but tend to smooth out profiles. This is shown in
the comparison between “KL-body” and “MP-all”
in Table 4. The latter extracts “correct” and “incor-
rect” as keywords for most KCs in both models, be-
cause these words frequently appear in the response
feedback (Fig. 1). KL-based naming discards these
words because they are almost equally frequent in
all KCs and are not specific enough. Table 4 also
shows that MP selects the same frequent words for
both KC models. By contrast, the most used KL
keywords for noSA are not so frequently used to de-
scribe C75 KCs, suggeting that the descriptions are
more specific to the models.

Impact of stopwords: The bottom panel of table
3 (indicated by “(+sw)”) shows the impact of not
filtering stopword on the keyword extraction met-
rics (i.e. keeping stopwords). For KL the impact is
small: filtering out stopwords actually degrades per-
formance slightly. The impact on MP is massive:
there are up to three times less different keyword
(76 vs. 203), and most are high-frequency function
words (“to”, “of”, etc.). The extreme case is “the”,

KL-body MP-all
Keyword #no #C Keyword #no #C
use 9 1 incorrect 87 44
following 8 1 correct 67 41
access 7 - review 49 22
andrew 7 2 information 30 20
account 7 - module 29 9
search 7 2 course 26 9

Table 4: Keywords associated with most KCs in noSA,
with number of associated KC in noSA (#no) and C75
(#C). Left: KL score on item body; Right: max. proba-
bility on all text.

extracted for all 44 KCs. Results on noSA are simi-
lar and not included for brievity.

6 Discussion

We described a simple probabilistic method for
knowledge component naming using keywords.
This simple method is effective at generating de-
scriptive keywords that are both diverse and spe-
cific. We show that our method clearly outperforms
the simple baseline that focuses on most probable
words, with no impact on computational cost.

Although we only extract key words from the tex-
tual data, one straightforward improvement would
be to identify and extract either multiword terms,
which may be more explanatory, or relevant snip-
pets from the data. A related perspective would be to
combine our relevance scores with, for example, the
output of a parser in order to extract more compli-
cated linguistic structure such as subject-verb-object
triples (Atapattu et al., 2014).

Our data-generated descriptions could also be
useful in the generation or the refinement of Q-
Matrices. In addition to describing knowledge com-
ponents, naming KCs could offer significant infor-
mation on the consistency of the KC mapping. This
may offer a new and complementary approach to
the existing refinement methods based on functional
models optimization (Desmarais et al., 2014). It
could also complement or replace human input in
student model discovery and improvement (Stamper
and Koedinger, 2011).
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