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Abstract

Automated scoring systems used for the eval-
uation of spoken or written responses in lan-
guage assessments need to balance good em-
pirical performance with the interpretability
of the scoring models. We compare several
methods of feature selection for such scor-
ing systems and show that the use of shrink-
age methods such as Lasso regression makes
it possible to rapidly build models that both
satisfy the requirements of validity and in-
tepretability, crucial in assessment contexts as
well as achieve good empirical performance.

1 Introduction

In this paper we compare different methods of se-
lecting the best feature subset for scoring models
used in the context of large-scale language assess-
ments, with a particular look at the assessment of
spoken responses produced by test-takers.

The basic approach to automatically scoring writ-
ten or spoken responses is to collect a training cor-
pus of responses that are scored by human raters,
use machine learning to estimate a model that maps
response features to scores from this corpus , and
then use this model to predict scores for unseen re-
sponses (Page, 1966; Burstein et al., 1998; Landauer
et al., 2003; Eskenazi, 2009; Zechner et al., 2009;
Bernstein et al., 2010). While this method is often
quite effective in terms of producing scoring mod-
els that exhibit good agreement with human raters,
it can lend itself to criticism from the educational
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measurement community if it fails to address cer-
tain basic considerations for assessment design and
scoring that are common practice in that field.

For instance, Ramineni and Williamson (2013) ar-
gue that automated scoring not only has to be reli-
able (i.e., exhibiting a good empirical performance
as demonstrated, for example, by correlations be-
tween predicted and human scores), but also valid.
One very important aspect of validity is to what ex-
tent the automated scoring model reflects important
dimensions of the construct measured by the test (a
construct is the set of knowledge, skills, and abili-
ties measured by a test). For example, a speaking
proficiency test for non-native speakers may claim
that it assesses aspects such as fluency, pronunci-
ation, and content accuracy in a test-taker’s spo-
ken response(s). If the features that contribute to
the scoring models can be seen as measuring all of
these aspects of spoken language well, the model
would be considered valid from a construct point of
view. However, if certain dimensions of the con-
struct are not represented (well) by the feature set
used in the scoring model, and/or features contained
in the model address aspects not considered to be
relevant for measuring the test construct, the con-
struct validity of the scoring model would not be
considered ideal (cf. also Bernstein et al. (2010)
and Williamson et al. (2012) who make similar ar-
gument).

Furthermore, relative contributions by features to
each construct dimension should be easily obtain-
able from the scoring model. To satisfy this require-
ment, machine-learning approaches such as support
vector machines (SVMs) with non-linear kernels
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may be less ideal than a simple straightforward lin-
ear regression model, where the contribution of each
feature in the model is immediately obvious.

Finally, the contribution of each feature to the
final score should be consistent with the relevant
constructs: if all of the features in the model are
designed to be positively correlated with human
scores, the coefficients of all such features in the fi-
nal model should be positive as well.

Fulfilling all of these requirements when build-
ing automated scoring models is not trivial and has,
in the past, typically involved the participation and
advice of human content and measurement experts
whose role it is to optimize the feature set so that
it adheres to the aforementioned criteria as much as
possible, while still allowing for good empirical per-
formance of the resulting automated scoring model
(Zechner et al., 2009; Cheng et al., 2014). However,
there are certain limitations to this manual process
of scoring- model building, not the least of which
is the aspect of time it takes to build models with
iterative evaluations and changes in the feature set
composition.

Alternatively, one can compute a large number of
potential features and then use automatic feature se-
lection to identify the most suitable subset. This sec-
ond approach is commonly used in studies that aim
to maximize the performance of machine-learning
systems (cf. for example, Hönig et al. (2010) among
many others), but to our knowledge, it has not yet
been applied in the assessment context where model
performance needs to be balanced with model va-
lidity in terms of construct coverage and other con-
straints such as feature polarity.

We consider several methods of automatic fea-
ture selection commonly applied to linear models
(Hastie et al., 2013). These include subset selec-
tion methods such as step-wise feature selection as
well as shrinkage methods such as Lasso regression
(Tibshirani, 1996). We focus on feature selection
methods that can be scaled to a large number of fea-
tures which exclude, for example, the best-subset
approach, which becomes unfeasible for more than
30–40 features. We also exclude methods that use
derived input such as principal component regres-
sion or partial least squares because the contribu-
tion of each feature in the final model would be
more difficult to interpret. Finally, we consider fea-

ture selection methods which make it possible to re-
strict the coefficients to positive values. Such restric-
tion is not specific to automated scoring and there-
fore various algorithms have been developed to ad-
dress this requirement (see, for example, Lipovet-
sky (2009) for further discussion). We consider sev-
eral of such methods including non-negative least
squares regression Lawson and Hanson (1981) and
a constrained version of Lasso regression (Goeman,
2010).

In this paper we address the following questions:
(a) What methods of automatic feature selection can
address all or most of the requirements of automated
scoring and therefore are most suitable for this pur-
pose? (b) Does more constrained selection affect the
performance of such scoring models? (c) How do
models based on automated feature selection com-
pare to models based on human expert feature selec-
tion in terms of empirical performance and construct
coverage?

The paper is organized as follows: Section 2 pro-
vides a description of the data used in this study, fur-
ther details about the feature-selection methods, and
the parameter setting for these methods. Section 3
presents the comparison between different feature-
selection methods in terms of performance, coeffi-
cient polarity, and construct coverage of the selected
feature subset. Finally, Section 4 summarizes the re-
sults of our experiments.

2 Data and Methodology

2.1 Data

The study is based on spoken responses to an En-
glish language proficiency test. During the original
test administration, each speaker provided up to six
responses. Two of the items required test takers to
listen to an audio file and respond to a prompt about
the conversation or lecture they heard. For the other
two items, the test takers were required to read a
short passage and listen to an audio file, and then
integrate information from both sources in their re-
sponses to that prompt. The remaining two items
asked the speakers to discuss a particular topic. All
responses consisted of unscripted speech and were
no longer than 1 minute each.

Both the training and evaluation sets included re-
sponses from about 10,000 speakers. With few ex-
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ceptions, the training set included one response from
each speaker, for a total of 9,956 responses and
9,312 speakers. The evaluation set included a simi-
lar number of speakers (8,101), but we used all avail-
able responses for each speaker, for a total of 47,642
responses1 . There was no overlap of speakers or
prompts between the two sets.

All responses were assigned a holistic proficiency
score by expert raters. The scores ranged from 1
(low proficiency) to 4 (high proficiency). The raters
evaluated the overall intelligibility of responses,
grammar, the use of vocabulary, and topic develop-
ment. About 10% of the responses in the evaluation
set and all responses of the training set were scored
by two raters. The agreement between the two raters
was Pearson’s r = 0.63 for the training set and r =
0.62 for the evaluation set.

2.2 Features
For each response, we extracted 75 different features
which covered five aspects of language proficiency:
fluency, pronunciation accuracy, prosody, grammar,
and vocabulary. Some examples of such features
include speech rate (fluency), normalized acous-
tic model score (pronunciation accuracy), language
model score (grammar), and average lexical fre-
quency of words used in the response(vocabulary).
Several features were closely related: for example,
the speech rate was measured in both words per sec-
ond and syllables per second.

All features are designed to be positively corre-
lated with human proficiency scores. For features
that have a negative correlation with a proficiency
score (such as the number of disfluencies), the val-
ues are multiplied by -1 so that the final correlation
is always positive.

The features for the baseline EXPERT model were
manually selected by an expert in English language
learning to fulfill the criteria described in 1. The
expert only had access to the training set while do-
ing the feature selection. The model included 12
features which represented the five dimensions of
language proficiency described above. The features
were then used as independent variables in an ordi-
nary least squares (OLS) linear regression using the

1A small number of responses originally collected from
these speakers were not included in the evaluation set due to
their low audio quality or other problems.

proficiency score assigned by the first rater as the
dependent variable.

We also built scoring models using all 75 features
and several methods of automatic feature selection,
following (Hastie et al., 2013). These are listed in
Table 1.

Table 1: The methods used for automatic feature selec-
tion in this study

Name Description
ALL No feature selection. This model uses

OLS regression and all 75 available
features.

STEP Features were identified by hybrid
stepwise selection with search in both
directions

NNLS Features were identified by fitting the
non-negative least squares regression
model. (Lawson and Hanson (1981)
as implemented by Mullen and Van
Stokkum (2012))

LASSO Used features that were assigned non-
zero coefficients after fitting a Lasso re-
gression (Tibshirani, 1996). All esti-
mated coefficients were restricted to be
non-negative (Goeman, 2010; Goeman
et al., 2012). See 2.3 for details about
parameter tuning.

We used 10-fold cross-validation on the training
set to estimate model performance and tune the pa-
rameters for the Lasso regression. The allocation
of responses between the folds was the same for all
models. In all cases, the feature selection was ap-
plied separately to each fold.

The models were evaluated by the correlation be-
tween predicted and observed scores, the number of
features in the final model, the percentage of fea-
tures with positive coefficients, and by the number
of constructs that were represented in the automati-
cally selected subset model.

2.3 Setting parameters for LASSO model

We trained two versions of the LASSO models:
LASSO where λ parameter for L1-regularization was
tuned empirically to achieve the best model fit and
LASSO* where λ was set to obtain the smallest pos-

14



sible set of features without a substantial loss in per-
formance.

To set λ for LASSO*, we used the algorithm de-
scribed in Park and Hastie (2007) to identify the val-
ues of λ that corresponded approximately to changes
in feature sets. This was done separately for each
fold.

We then computed the model performance for
each feature set and identified the best performing
set of each size (in many cases different values of λ
produced several different feature sets with the same
number of features). Figure 1 shows the perfor-
mance obtained for models with different numbers
of features selected by LASSO across the ten folds.

The figure shows that the number of features (12)
in the EXPERT model may be insufficient to include
all information covered by the features.2 The aver-
age correlation for models with this number of fea-
tures was r = 0.63. The optimal number of fea-
tures for this dataset appeared to be around 21–25
features. We therefore set λ to

√
n ∗ lg(p), where n

is the number of cases and p is the total number of
features. For this dataset, this rule-of-thumb value
forced a more aggressive feature selection and pro-
duced a model with approximately 25 features.

3 Results

3.1 Model performance

Figure 2 and Table 2 show that the models with au-
tomatic feature selection consistently outperformed
the baseline EXPERT model (paired t-test with
Holm’s adjustment for multiple comparisons: p <
0.00001 for all models). Note that all of these mod-
els also used a higher number of features than what
was included in the EXPERT model.

The models that did not have restrictions on pos-
itive coefficients achieved the highest performance.
However, half of the coefficients in both STEP and
ALL were negative. This is partially due to the fact
that many features were highly correlated which re-
sulted in what is known as “multicollinearity distor-
tion of regression coefficients” (cf. also Lipovetsky
(2009) for further discussion). Therefore the mod-
els created using these feature-selection methods vi-

2The figure shows the performance of the best performing
set consisting of 12 features as identified by LASSO. These were
not the same features as selected by the expert
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Figure 1: The performance of models based on LASSO
feature selection by the number of features. The boxplots
show the results across 10 folds of the training set. The
horizontal line shows the performance at Nfeat = 12 (r =
0.63), the size of the subset in the EXPERT model.

olated the criterion that the coefficient assigned to
each feature must have the same sign as the marginal
correlation between that feature and human score.

The methods which restricted feature selection to
positive coefficients (NNLS, LASSO and LASSO*)
addressed this problem, but the performance of these
models was somewhat lower (r = 0.65 vs. r = 0.67,
p < 0.001) which suggests that there is further in-
teraction between different features that are not cur-
rently captured by a model restricted to positive co-
efficients.

There was no significant difference in perfor-
mance between NNLS, LASSO and LASSO* but the
NNLS and LASSO models included more features
than LASSO* model, making them more difficult to
interpret. LASSO* appeared to reach the best com-
promise between model complexity and model per-
formance.

Finally, we evaluated the extent to which the per-
formance of LASSO models was due to the different
methods of coefficient estimation. We used the fea-
ture set selected by LASSO* to fit an OLS regression
and compared the performance of the two models.
There was no difference in performance between the
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models with coefficients estimated by OLS or penal-
ized coefficients, but the two-step approach resulted
in models with small negative coefficients in four out
of ten folds. Therefore we used the original LASSO*
with penalized coefficients for final evaluation.

Table 2: Maximum and minimum number of features se-
lected by each model (Nmin and Nmax), average ratio of
features assigned positive coefficients to the total N fea-
tures (P/N ) and average Pearson’s r between predicted
and observed scores rresp across 10 folds

Nmin Nmax P/N rresp

EXPERT 12 12 1 0.606
ALL 75 75 0.55 0.667
STEP 37 43 0.62 0.667
NNLS 32 37 1.00 0.655
LASSO 32 36 1.00 0.655
LASSO* 22 27 1.00 0.649
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Figure 2: Model performance (Pearson’s r) across 10
folds. Feature selection was performed separately at each
fold. The horizontal line indicates the agreement between
two human raters.

3.2 Model performance on unseen data
We then applied these feature selection methods
to the whole training set and evaluated their per-
formance on the unseen evaluation set. The re-
sults were consistent with the results of the cross-
validation and are shown in Table 3.

The LASSO* model trained on the entire training
set included 25 features, all of which had positive
coefficients. The correlation between the predicted
and observed scores was rresp = 0.653, which was
above the EXPERT baseline (rresp = 0.607).

In addition to response-level agreement, we also
computed the agreement for scores aggregated by
speaker. During the test administration, the scores
for all six responses given by each speaker are
summed to compute an overall speaking proficiency
score. Therefore, speaker-level agreement rsp was
calculated as the correlation coefficient (Pearson’s
r) between the summed observed scores and the
summed predicted scores for each speaker. Fol-
lowing operational practice, this was only done for
7,390 speakers, where scores were available for 5
or more responses.3 . We found that the model cre-
ated using the LASSO* feature selection also outper-
formed the EXPERT model for speaker-level agree-
ment with rsp increasing from 0.78 to 0.84.

Table 3: Model performance on the unseen evalua-
tion set using different feature- selection methods. The
agreement between two human raters for this data is
rresp=0.62 for single responses. The human-human
agreement for the aggregated speaker-level score, rsp,
was not available for this particular data since only a
small subset of responses were scored by two human
raters. Based on other data from the same test, rsp be-
tween two human raters is expected to be around 0.9

Nfeat P/N rresp rsp

EXPERT 12 1 0.61 0.78
ALL 75 0.55 0.67 0.86
STEP 40 0.65 0.67 0.86
NNLS 37 1 0.66 0.85
LASSO 36 1 0.66 0.85
LASSO* 25 1 0.65 0.84

3.3 Construct coverage

All methods of automatic feature selection pro-
duced feature subsets that represented the five sub-
constructs covered by the expert model: fluency,
pronunciation accuracy, prosody, grammar, and vo-
cabulary sophistication. In the rest of this section we

3If only 5 responses were available for a given speaker, the
mean of these scores was added to their sum in order to estimate
the overall speaker score.
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Table 4: Relative weights of features representing differ-
ent constructs covered by the scoring models.

Construct EXPERT LASSO*
Delivery
Fluency 0.580 0.527
Pronunciation accuracy 0.098 0.151
Prosody 0.080 0.035
Total for delivery: 0.759 0.712
Language use
Grammar 0.155 0.103
Vocabulary 0.086 0.183
Total for Language Use: 0.241 0.286

only consider in detail the features included in the
LASSO* model which was selected in 3.1 as the best
compromise between model complexity and model
performance.

The selected model included 25 features covering
all of the constructs currently represented by the ex-
pert model. To evaluate the construct coverage of
each model we first computed standardized weights
for each features. We then scaled the standardized
weights for each model so that their sum equaled 1
and refer to them as “relative weights.” Finally, we
computed the sum of relative weights of all features
representing a given construct or sub-construct. The
results are shown in Table 4.

The two models, EXPERT and LASSO* closely
matched in terms of construct coverage: delivery
features in both models accounted for about 70-
75% of the final score, with most weight given to
fluency features, followed by pronunciation accu-
racy and rhythm. Language-use features accounted
for 25% of the final score, but the relative weights
of sub-constructs differed between the two models:
while the EXPERT model assigned more weight to
grammar features, the LASSO* model assigned more
weight to vocabulary features.

4 Discussion

Building automated scoring models for constructed
responses, such as spoken or written responses in
language assessments, is a complex endeavor. Aside
from the obvious desire for high empirical perfor-
mance, as measured in terms of agreement between
predicted and human scores, a number of impor-

tant considerations from educational measurement
should be taken into account as well. They include,
foremost, the validity of the scoring model and, in
particular, to what extent features that measure cer-
tain aspects of the construct are represented in the
model, and features that are not related to the con-
struct are not. Additionally, the relative contribu-
tion of each feature to the score based on the model
should be transparent to the test taker and score user.
Finally, each feature’s contribution to the score must
be in the same polarity as its marginal correlation
with the criterion score (human score or dependent
variable).

Because of this complexity, scoring models for
constructed responses were typically built in the past
using human experts who selected features based
on these criteria in an iterative fashion, training and
evaluating scoring models after each feature set was
chosen.

In this paper, we applied different methods of
feature selection in order to select the best feature
set for the automated scoring of spoken responses
to an English language proficiency test. We aimed
to simultaneously achieve optimal construct cover-
age, maximal interpretability of the resulting scoring
model, and good empirical performance.

For research question (a), what methods of feature
selection are most suitable for the automated scoring
of spoken responses, we found that a model based
on Lasso regression fine-tuned to enforce more ag-
gressive feature selection reaches a good compro-
mise between relatively small number of features
and good agreement with human scores. In addition,
this model could also satisfy the requirement that all
coefficients are positive. Finally, the LASSO* model
represented all constructs included into the EXPERT

model.
Our results showed that some of the constraints

imposed by the requirements to model interpretabil-
ity decrease model performance in comparison to
unconstrained models (research question b). Thus,
the requirement to keep all coefficients positive in
line with feature interpretation reduced response-
level performance of the model from 0.667 to 0.65.
While the difference is relatively small, it is statisti-
cally significant. More research is needed to explore
whether the information lost due to this constraint
may be relevant to the constructs covered by the
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model and can be incorporated into a future model
by developing new combined features.

Finally, for research question (c), how automatic
and expert feature selection compare in terms of
empirical performance and construct coverage, we
found that in comparison to expert feature selec-
tion, computing a large number of features with sub-
sequent automatic selection leads to higher perfor-
mance (for LASSO*: r = 0.84 vs. r = 0.78 on
the evaluation set for aggregated scores for each test
taker) while maintaining construct validity and inter-
pretability of the resulting models. Furthermore, the
feature subset produced by LASSO* closely matched
the EXPERT model in terms of the relative contribu-
tion of each construct.

To summarize, the application of Lasso regression
to feature selection for automated speech scoring
made it possible to rapidly build models which both
achieved higher performance than the expert base-
line and also satisfied the requirements of construct
coverage and interpretability of the model posed by
the assessment context. In this respect, Lasso re-
gression was superior to other common methods of
feature selection such as step-wise selection, which
could not satisfy all of these requirements.

In this study, the features selected by LASSO*
showed consistently good construct coverage across
10 folds of the training set. Yet it is possible that
for a different dataset the LASSO* method may lead
to a feature subset which is considered sub-optimal
by an expert. In this case, the automatically selected
feature set can be adjusted by the expert to ensure
appropriate construct coverage by adding additional
features to the model or removing unwanted fea-
tures from the original feature set and re-running the
model to estimate the coefficients. Of course, such
adjustments may lead to a loss in performance, in
which case the optimal balance between construct
validity and model performance will be determined
by other considerations such as the nature of the as-
sessment or the role of the automated scoring system
in determining the final score.

5 Conclusion

In this paper we compared a range of different
methods for the purpose of feature selection for the
automated scoring models of spoken language in

the context of language assessment and educational
measurement.

Based on a number of criteria as to what consti-
tutes scoring models that have not only high empir-
ical performance, are valid from a construct point
of view, and interpretable for the test taker or score
user, we demonstrated that in using the LASSO*
method all criteria can be satisfied: the resulting
scoring model has construct coverage commensu-
rate to that built by a human expert and its empirical
performance is, at the same time, superior.

In future work, we plan to refine the automated
feature selection process by using construct con-
straints directly in the feature selection procedure.
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