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Abstract

Multimodal semantic models attempt to ground distributional semantics through the integration
of visual or perceptual information. Feature norms provide useful insight into human concept acqui-
sition, but cannot be used to ground large-scale semantics because they are expensive to produce. We
present an automatic method for predicting feature norms for new concepts by learning a mapping
from a text-based distributional semantic space to a space built using feature norms. Our experimen-
tal results show that we are able to generalise feature-based concept representations, which opens up
the possibility of developing large-scale semantic models grounded in a proxy for human perceptual
data.

1 Introduction

Distributional semantic models (Turney and Pantel, 2010; Sahlgren, 2006) represent the meanings of
words by relying on their statistical distribution in text (Erk, 2012; Bengio et al., 2006; Mikolov et al.,
2013; Clark, 2015). Despite performing well in a wide range of semantic tasks, a common criticism is
that by only representing meaning through linguistic input these models are not grounded in perception,
since the words only exist in relation to each other and are not in relation to the physical world. This
concern is motivated by the increasing evidence in the cognitive science literature that the semantics
of words is derived not only from our exposure to the language, but also through our interactions with
the world. One way to overcome this issue would be to include perceptual information in the semantic
models (Barsalou et al., 2003). It has already been shown, for example, that models that learn from
both visual and linguistic input improve performance on a variety of tasks such as word association or
semantic similarity (Bruni et al., 2014).

However, the visual modality alone cannot capture all perceptual information that humans pos-
sess. A more cognitively sound representation of human intuitions in relation to particular concepts
is given by semantic property norms, also known as semantic feature norms. A number of property
norming studies (McRae et al., 2005; Vinson and Vigliocco, 2008; Devereux et al., 2013) have focused
on collecting feature norms for various concepts in order to allow for empirical testing of psycholog-
ical semantic theories. In these studies humans are asked to identify the most important attributes of
a concept; e.g. given AIRPLANE, its most important features could be to_fly, has_wings and
is_used_for_transport. These datasets provide a valuable insight into human concept repre-
sentation and have been successfully used for tasks such as text simplification for limited vocabulary
groups, personality modelling and metaphor processing, as well as a proxy for modelling perceptual in-
formation (Riordan and Jones, 2011; Andrews et al., 2009; Hill et al., 2014). Feature norms provide an
interesting source of semantic information because they capture higher level conceptual knowledge in
comparison to the low level perceptual information represented in images, for example.

Despite their advantages, semantic feature norms are not widely used in computational linguistics,
mainly because they are expensive to produce and have only been collected for small sets of words; more-
over there is no finite list of features that can be produced for a given concept. In Roller and Schulte im
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is edible, 19 a vegetable, 25 clothing, 21
is small, 17 eaten in salads, 24 worn by women, 15

lives in water, 12 is green, 23 is feminine, 10
is pink, 11 is long, 15 is formal, 10

tastes good, 9 eaten as pickles, 12 is long, 10
has a shell, 8 has skin, 9 different styles, 9

lives in oceans, 8 grows in gardens, 7 made of material, 9

Table 1: Examples of features and production frequencies for concepts from the McRae norms

Walde (2013), the authors construct a three-way multimodal model, integrating textual, feature and vi-
sual modalities. However, this method is restricted to the same disadvantages of feature norm datasets.
There have been some attempts at automatically generating feature norms using large text corpora (Kelly
et al., 2014; Baroni et al., 2010; Barbu, 2008) but the generated features are often a production of care-
fully crafted rules and statistical distribution of words in text rather than a proxy for human conceptual
knowledge. Our work focuses on predicting features for new concepts, by learning a mapping from
a distributional semantic space based solely on linguistic input to a more cognitively-sound semantic
space where feature norms are seen as a proxy for perceptual information. A precedent for this work has
been set in Johns and Jones (2012), but whilst they predict feature representations through global lexical
similarity, we infer them through learning a cross-modal mapping.

2 Mapping between semantic spaces

The integration of perceptual and linguistic information is supported by a large body of work in the
cognitive science literature (Riordan and Jones, 2011; Andrews et al., 2009) that shows that models that
include both types of information perform better at fitting human semantic data.

The idea of learning a mapping between semantic spaces appears in previous work; for example
Lazaridou et al. (2014) learn a cross-modal mapping between text and images and Mikolov et al. (2013)
show that a linear mapping between vector spaces of different languages can be learned by only relying
on a small amount of bilingual information from which missing dictionary entries can be inferred. Fol-
lowing the approach in Mikolov et al. (2013), we learn a linear mapping between the distributional space
and the feature-based space.

2.1 Feature norm datasets

One of the largest and most widely used feature-norm datasets is from McRae et al. (2005). Participants
were asked to produce a list of features for a given concept, whilst being encouraged to write down
different kinds of properties, e.g. how the concept feels, smells or for what it is used (Table 1). The dataset
contains a total of 2526 features for 541 concrete concepts, with a mean of 13.7 features per concept.
More recently, Devereux et al. (2013) collected semantic properties for 638 concrete concepts in a similar
fashion. There are also other property norms datasets which contain verbs and nouns referring to events
(Vinson and Vigliocco, 2008). Since the semantic property norms in the McRae dataset have been used
extensively in the literature as a proxy for perceptual information, we will report our experimental results
on this dataset.

2.2 Semantic spaces

A feature-based semantic space (FS) can be represented in a similar way to the co-occurrence based
distributional models. Concepts are treated as target words, features as context words and co-occurrence
counts are replaced with production frequencies, i.e. the number of participants that produced the feature
for a given concept (Table 2). We build two such feature-based semantic spaces: one using all the 2526
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has fur has wheels an animal a pet
cat FS 22 0 21 17

dog black book animal
cat DS 4516 3124 1500 2480

Table 2: Example representation of CAT in the feature-based and distributional spaces

features in the McRae dataset as contexts (FS1) and one obtained by reducing the dimensions of FS1 to
300 using SVD (FS2).

For the distributional spaces (DS), we experimented with various parameter settings, and built four
spaces using Wikipedia as a corpus and sentence-like windows together with the following parameters:

• DS1: contexts are the top 10K most frequent content words in Wikipedia, values are raw co-
occurrence counts.

• DS2: same contexts as DS1, counts are re-weighted using PPMI and normalised as detailed in
Polajnar and Clark (2014).

• DS3: perform SVD to 300 dimensions on DS2.

• DS4: same as DS3 but with row normalisation performed after dimensionality reduction.

We also use the context-predicting vectors available as part of the word2vec1 project (Mikolov et al.,
2013) (DS5). These vectors are 300 dimensional and are trained on a Google News dataset (100 billion
words).

2.3 The mapping function

Our goal is to learn a function f : DS→ FS that maps a distributional vector for a concept to its feature-
based vector. Following Mikolov et al. (2013), we learn the mapping as a linear relationship between
the distributional representation of a word and its featural representation. We estimate the coefficients
of the function using (multivariate) partial least squares regression (PLSR) as implemented in the R pls
package (Mevik and Wehrens, 2007), with the latent dimension parameter of PLSR set to 50.

3 Experimental results

We performed all experiments using a training set of 400 randomly selected McRae concepts and a test
set of the remaining 138.2 We use the featural representations of the concepts in the training set in order
to learn a mapping between the two spaces, and the featural representations of the concepts in the test set
as gold-standard vectors in order to analyse the quality of the learned transformation.

For each item in the test set, we computed the concept’s predicted vector, f(~x), by applying the
learned mapping, f , to the concept’s representation in DS, ~x. We then retrieved the top neighbours
of the predicted vector in FS using cosine similarity. We were interested in observing, for a given
concept, whether the gold-standard featural vector was retrieved in the topN neighbours of the predicted
featural vector. Results averaged over the entire test set are summarised in Table 3. We also report the
performance of a random baseline (RAND), where a concept’s nearest neighbours are randomly ranked,
and we note that our model outperforms chance by a large margin.

For the experiments in which the feature space dimensions are interpretable, i.e. not reduced (FS1),
we also report the MAP (Mean Average Precision). This allows us to measure the learnt mapping’s
ability to assign higher values to the gold features of a McRae concept (those properties that have a non-
zero production frequency for a particular concept in the McRae dataset) than to the non-gold features.

1https://code.google.com/p/word2vec/
2Out of the 541 McRae concepts, we discarded three (AXE, ARMOUR and DUNEBUGGY) because they were not available in

the pre-trained word2vec vectors.
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DS FS top1 top5 top10 top20 MAP
RAND - 0.37 0.74 1.85 3.70 -
DS1 FS1 0.72 14.49 29.71 49.28 0.30
DS2 FS1 2.90 12.32 23.91 47.10 0.29
DS3 FS1 2.90 13.04 24.64 49.28 0.37
DS3 FS2 2.17 15.22 26.09 50.00 -
DS4 FS2 3.62 15.22 25.36 49.28 -
DS5 FS1 1.45 14.49 24.64 44.20 0.29
DS5 FS2 1.45 19.57 26.09 46.38 -

Table 3: Percentage (%) of test items that retrieve their gold-standard vector in the topN neighbours of
their predicted vector.

Word Nearest neighbours of predicted vector Result Top weighted predicted features

JAR bucket, strainer, pot, spatula not top20 made of plastic, is round*, made of metal, found in kitchens*
JEANS shawl, shirt, blouse, sweater not top20 clothing, different colours, worn by women*
BUGGY skateboard, truck, scooter, cart in top20 has wheels, made of wood*, is large*, used for transportation
SEAWEED shrimp, perch, trout, salmon in top20 is edible, lives in water*, is green, swims*, is small*
HORSE cow, ox, sheep, donkey in top10 an animal, has 4 legs, is large, has legs, lives on farms
PLATYPUS otter, salamander, turtle, walrus in top10 an animal, is small*, lives in water, is long*,
SPARROW starling, finch, partridge, sparrow in top5 a bird, flies, has feathers, has a beak, has wings
SPATULA strainer, spatula, grater, colander in top5 made of metal, found in kitchens, made of plastic
HATCHET hatchet, machete, sword, dagger in top1 made of metal, is sharp, has a handle, a tool, a weapon*
GUN gun, rifle, bazooka, shotgun in top1 used for killing, a weapon, made of metal, is dangerous

Table 4: Qualitative analysis of predicted vectors (obtained by mapping from DS3 to FS1) for 10 concepts
in the test set. Features annotated with an asterix(*) are not listed in the gold standard feature vector for
the given concepts.

We compute the MAP score as follows: for each concept in the test set, we rank the features from the
predicted feature vector in terms of their values, and measure the quality of this ranking with IR-based
average precision, using the gold-standard feature set as the “relevant” feature set. The MAP score is
then obtained by taking the mean average precision over the entire test set. Overall, the model seems to
rank gold features highly, but the MAP score is certainly affected by the features which have not been
seen in training (these account for 18.8% of the total number of features), because these will have a zero
weight assigned to them, and so will be found at the end of the ranked feature list for that concept.

A qualitative evaluation of the top neighbours for predicted featural vectors can be found in Table
4. Overall, the mapping results look promising, even for items that do not list the gold feature vector
as one of the top neighbours. However, overall the mapping looks too coarse. One reason could be the
fact that the feature-based space is relatively sparse (the maximum number of features for a concept is
26, whereas there are over 2500 dimensions in the space). The reason why, for example, the predicted
vector for JAR does not contain its gold standard in the top 20 neighbours might simply be that there are
not enough discriminating features for the model to learn that a jar usually has a lid and a bucket does
not; or that jeans are worn on the lower body, as opposed to shawls which are worn on the shoulders. It
is important to note that a production frequency of zero for a concept-feature pair in the McRae dataset
does not necessarily mean that the feature is not a plausible property of the concept, but only that it is
not one of the most salient features, since it was not produced by any of the human participants (e.g. the
feature has_teeth has not been listed as a property of CAT in the McRae dataset, but it is clearly a
plausible property of the CAT concept). Many of the top-predicted features for the concepts in the test
set are plausible, even if they are not listed in the gold data (e.g lives_in_water for SEAWEED).
This is yet another indication that the concept-feature pairs listed in the McRae dataset are not complete,
meaning that there are salient features that apply to some concepts which have not been spelled out by
the participants.
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The ability to generalise feature representations to unseen concepts also means that these can now be
evaluated on standard NLP tasks since we can obtain full coverage on the evaluation datasets. In order
to show that the quality of the predicted vectors is in line with the state of the art on modelling concept
similarity and relatedness, we computed the correlation on a subset of 1288 noun-noun pairs (485 words)
from the MEN dataset (Bruni et al., 2014), leaving it to future work to test such transformations on dif-
ferent parts of speech like verbs or adjectives. It is important to mention that in the construction of this
subset we also excluded all McRae concepts from MEN, because we didn’t want any of that training data
to occur in the test set. The mapping function was trained on all the concepts in the McRae dataset and
then used to predict featural vectors for words in the MEN subset described above. A qualitative anal-
ysis of the predicted vectors show that they contain highly plausible features for words that are highly
perceptual (e.g. the top predicted features for COOKIE are is_round, is_edible, tastes_good,
eaten_by_baking), as opposed to words that are more abstract or don’t rely on perceptual informa-
tion (e.g. the top predicted features for LOVE are an_animal, made_of_metal, is_sharp). We
obtain the best Spearman correlation (0.71) for the predicted featural vectors by training the mapping
on the Mikolov vectors (DS5), the Spearman correlation of these vectors on the MEN subset being 0.75.
The high correlation with the MEN scores shows that the featural vectors capture lexical similarity well,
but suggest that rather than using them in isolation to construct a semantic model, they would be most
helpful as an added modality in a multimodal semantic model.

4 Conclusion

Feature norms have shown to be potentially useful as a proxy for human conceptual knowledge and
grounding, an idea that has been the basis of numerous psychological studies despite the limited avail-
ability of large-scale data for various semantic tasks. In this paper, we present a methodology to auto-
matically predict feature norms for new concepts by mapping the representation of the concept from a
distributional space to its feature-based semantic representation.

Clearly much experimental work is yet to be done, but in this initial study we have demonstrated
the promise of such a mapping. We see two major advantages to our approach. First, we are no longer
limited to the sparse datasets and expensive procedures when working with feature norms, and second,
we can gain a better understanding of the relationship between the distributional use of a word and our
cognitive and experiential representation of the corresponding concept. We envisage a future in which
a more sophisticated computational model of semantics, integrating text, vision, audio, perception and
experience, will encompass our full intuition of a concept’s meaning.

In future work, we plan to pursue this research in a number of ways. First, we aim to investigate
ways to improve the mapping between spaces by exploring different machine learning approaches, such
as other types of linear regression or canonical-correlation analysis. We are also interested in comparing
the performance of non-linear transformations such as neural network embeddings with that of linear
mappings. In addition, we wish to perform a more qualitative investigation of which distributional di-
mensions are particularly predictive of which feature norms in feature space.

Acknowledgments

LF is supported by an EPSRC Doctoral Training Grant. EMV is supported by ERC Starting Grant
DisCoTex (306920). SC is supported by EPSRC grant EP/I037512/1 and ERC Starting Grant DisCoTex
(306920). We thank Douwe Kiela and the anonymous reviewers for their helpful comments.

References
Andrews, M., G. Vigliocco, and D. Vinson (2009). Integrating experiential and distributional data to learn semantic represen-

tations. Psychological review 116(3), 463.

56



Barbu, E. (2008). Combining methods to learn feature-norm-like concept descriptions. In Proceedings of the ESSLLI Workshop
on Distributional Lexical Semantics, pp. 9–16.

Baroni, M., B. Murphy, E. Barbu, and M. Poesio (2010). Strudel: A corpus-based semantic model based on properties and
types. Cognitive Science 34(2), 222–254.

Barsalou, L. W., W. Kyle Simmons, A. K. Barbey, and C. D. Wilson (2003). Grounding conceptual knowledge in modality-
specific systems. Trends in cognitive sciences 7(2), 84–91.
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