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Abstract 

We describe an approach to terminology extraction from patent corpora that follows from a view of pa-

tents as “positive reviews” of inventions.  As in aspect-based sentiment analysis, we focus on identify-

ing not only the components of products but also the attributes and tasks which, in the case of patents, 

serve to justify an invention’s utility.  These semantic roles (component, task, attribute) can serve as a 

high level ontology for categorizing domain terminology, within which the positive/negative polarity of 

attributes serves to identify technical goals and obstacles.  We show that bootstrapping using a very 

small set of domain-independent lexico-syntactic features may be sufficient for constructing domain-

specific classifiers capable of assigning semantic roles and polarity to terms in domains as diverse as 

computer science and health. 

1 Introduction 

Automated data mining of patents has had a long history of research, driven by the large volume of 

patents produced each year and the many tasks to which they are put to use, including prior art inves-

tigation, competitive analysis, and trend detection and forecasting (Tseng, 2007).  Much of this work 

has concentrated on bibliographic methods such as citation analysis, but text mining has also been 

widely explored as a way to assist analysts to characterize patents, discover relationships, and facilitate 

patent searches.  One of the indicators of new technology emergence is the coinage, adoption and 

spread of new terms; hence the identification and tracking of technical terminology over time is of par-

ticular interest to researchers designing tools to support analysts engaged in technology forecasting 

(e.g., Woon, 2009; deMiranda, 2006) 

For the most part, research into terminology extraction has either (1) focused on the identification of 

keywords within individual patents or corpora without regard to the roles played by the keywords 

within the text (e.g., Sheremetyeva, 2009) or, (2) engaged in fine-grained analysis of the semantics of 

narrow domains (e.g., Yang, 2008).  In this paper we strive towards a middle ground, using a high-

level classification suitable for all domains, inspired in part by recent work on sentiment analysis (Liu, 

2012). In aspect-based sentiment analysis, natural language reviews of specific target entities, such as 

restaurants or cameras, are analyzed to extract aspects, i.e., features of the target entities, along with 

the sentiment expressed toward those features.  In the restaurant domain, for example, aspects might 

include the breadth of the menu, quality of the service, preparation of the food, and cost. Aspects thus 

tend to capture the tasks that the entity is expected to perform and various dimensions and components 

related to those tasks.  Sentiment reflects the reviewer’s assessment of these aspects on a scale from 

negative to positive.   

A patent application is required by definition to do three things: describe an invention, argue for its 

novelty, and justify its utility.  The utility of a patent is typically defined by the accomplishment of a 

new task or an improvement to some existing task along one or more dimensions.  Thus, a patent can 

be thought of as a positive review of a product with respect to specific aspects of its task(s).  Indeed, 

the most commonly occurring verbs in patents include those indicative of components (“comprise”, 

“include”), attributes (“increase”, “reduce”), and tasks (“achieve”, “perform”).   Organizing keywords 

along these high-level distinctions, then, would allow patent analysts to explore terminological infor-
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mation from several different relevant perspectives.  Furthermore, given the interpretation of a patent 

as a positive review, it should be possible to identify the default polarity of measurable aspects in the 

context of a domain.  For example, if a patent makes a reference to increasing network bandwidth, 

then this should lend support to the notion that network bandwidth is not only a relevant attribute with-

in the patent’s domain but also a positive one.  Likewise, if a patent refers to reducing power con-

sumption, then we might interpret power consumption as an aspect with negative polarity.  For ana-

lysts trying to assess trends within a technology domain, tracking the occurrences of terms signifying 

tasks and attributes, along with their polarity, could help them characterize the changing goals and ob-

stacles for inventors over time. 

The US patent office receives over half a million patent applications a year.
1
  These are classified by 

subject matter within several standardized hierarchical schemes, which permits dividing up the corpus 

of patents both by application date and subfield (e.g., computer science, health, chemistry).  Since our 

goal is to support analysts across all domains, it is highly desirable to extract domain-specific aspects 

through semi-supervised machine learning rather than incur the cost of domain-specific knowledge 

engineering.  To this end, we employed a bootstrapping approach in which a small number of domain 

independent features was used to generate a much larger number of domain dependent features for 

classification.  We then applied naïve Bayes classification in a two-step classification process: first 

distinguishing attributes, components and tasks; and then classifying the extracted attribute terms by 

their polarity. 

The paper is structured as follows.  In section 2, we describe the system architecture.  Section 3 

shows results for two domains (computer science and health).  In section 4, we present an evaluation 

of results and discuss issues and shortcomings of the current implementation.  In section 5, we present 

related research and in section 6, our conclusions and directions for future work. 

2 System architecture 

2.1 Corpus processing 

Our patent collection is a set of 7,101,711 US patents in XML-markup form from Lexis-Nexis.  We 

divided the collection into subcorpora by application year and high-level domain using the patents’ 

classification within the USPTO hierarchy.  The XML markup was then used to extract the relevant 

portions of patents for further analysis.  These sections included title, abstract, background, summary, 

description and claims. References, other than those embedded in the sections above, were omitted, as 

they contain many entity types (people, publications, and organizations) that are not particularly useful 

for our current task.  The text of each section was extracted and broken into sentences by the Stanford 

tagger (Toutanova, 2003) which also tokenized and tagged each token with a part of speech tag.   

We then chunked adjacent tokens into simple noun phrase chunks of the form (ADJECTIVE)? 

(NOUN)* NOUN.
2
  We will hereafter refer to these chunks as terms.  The majority of these patent 

terms fall into one of three major categories:  

Components: the physical constituents or processes that make up an invention, as well as the ob-

jects impacted, produced by or used in the invention.   

Tasks: the activities which inventions, their components or beneficiaries perform or undergo.   

Attributes: the measureable dimensions of tasks and components mentioned in the patent. 

 

To generate features suitable for machine learning of these semantic categories, we used a small set 

of lexico-syntactic relationships, each defined with respect to the location of the term in a sentence: 

prev_V: the closest token tagged as a verb appearing to the left of the term, along with any preposi-

tions or particles in between.  (cached_in, prioritizing, deal_with) 

prev_VNpr: a construction of the form <verb><NP><prep> appearing to the left of the term.  Only 

the head noun in the NP is retained (inform|user|of, provides|list|of, causes|increase|in) 

prev_Npr: a construction of the form <noun><prep> appearing to the left of the term. (re-

striction_on, applicability_of, time_with) 

                                                 
1 http://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_stat.htm 
2 We blocked a set of 246 general adjectival modifiers (e.g., other, suitable, preferred, entire, initial,…) from participating in 

terms. 
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prev_Jpr: a construction of form <adjective> <prep> appearing to the left of the term. (free_from, 

desirable_in, unfamiliar_with) 

prev_J: a construction of form <adjective> <prep> appearing to the left of the term. (excessive, con-

siderable, easy) 

 

These features were designed to capture specific dependency relations between the term and its pre-

modifiers and dominant verbs, nouns, and adjective phrases.  We extracted the features using localized 

rules rather than create a full dependency parse.
3
  One additional feature internal to the term itself was 

also included: last_word.  This simply captured the head term of the noun phrase, which often carries 

generalizable semantic information about the phrase.  Each feature instance was represented as a string 

comprising a prefix (the feature type) and its value (a token or concatenation of tokens).   

 

2.2 Classification 

 

For each term appearing in a subcorpus, the collection of co-occurring features across all documents 

was assembled into a single weighted feature vector in which the weight captured the number of doc-

uments for which the feature occurred in conjunction with the given term.  We also calculated the 

document frequency for each term, as well as its “domain specificity score”, a metric reflecting the 

relative frequency of the term in specialized vs. randomized corpora (see section 3).   

In order to avoid the need to create manually labeled training data for each patent domain, we em-

ployed bootstrapping, a form of semi-supervised learning in which a small number of labeled features 

or seed terms are used in an iterative fashion to automaticaly identify other likely diagnostic features 

or category exemplars.  Bootstrapping approaches have previously shown considerable promise in the 

construction of semantic lexicons (Riloff, 1999; Thelen, 2002, Ziering, 2013).  By surveying common 

prev_V features in a domain-independent patent subcorpus, we selected a small set of domain-

independent diagnostic lexico-syntactic features (“seed features”) that we felt were strong indicators 

for each of the three semantic categories.  The set of seed features for each category is shown below.  

Semantically equivalent inflectional variants were also included as features.   

 

Attribute: improve, optimize, increase, decrease, reduce 

Component: comprise, contain, encompass, incorporate, use, utilize, consist_of, assembled_of, com-

posed_of 

Task: accomplish, achieve, enhance, facilitate, assisting_in, employed_in, encounter_in, perform, 

used_for, utilized_for 

 

We then utilized these manually labeled generic features to bootstrap larger feature sets F for do-

main-specific subcorpora.  For each term t in a domain-specific subcorpus, we extracted all the manu-

ally labeled features that the term co-ocurred with. Any term which co-occurred with at least two la-

beled feature instances and for which all of its labeled features were of the same class was itself la-

beled with that class for subsequent use as a seed term s for estimating the parameters of a multinomial 

naïve Bayes classifier (Manning et al, 2008).  Each seed term so selected was represented as a bag of 

its co-occurring features.   

 

The prior probability of each class and conditional probabilities of each feature given the class were 

estimated as follows, using Laplace “add one” smoothing to eliminate 0 probabilities: 

 

 ̂(  )   
      

     
 

 

 ̂(   )   
     (   )   

     ( )       
 

                                                 
3 The compute time required to produce dependency parses for the quantity of data to be analyzed led to the choice of a 

“leaner” feature extraction method. 
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where    is the set of seed terms with class label j, S is the set of all seed terms, count(f,c) is the count 

of co-occurrences of feature f with seed terms in class c, count(c) is the total number of feature co-

occurrences with seed terms in class c, and F is the set of all features (used for Laplace smoothing).  

Using the naïve Bayes conditional independence assumption, the class of each term in a subcorpus 

was then computed by maximizing the product of the prior probability for a class and the product of 

the conditional probabilities of the term’s features: 

         
    

 ( ) ∏ (   )

   

 

 

Terms for which no diagnostic features existed were labeled as “unknown”.   

Once the terms in a subcorpus were categorized as attribute, component, or task, the terms identi-

fied as attributes were selected as input to a second round of classification.
4
  We used the same boot-

strapping process as described for the first round, choosing a small set of features highly diagnostic of 

the polarity of attributes.  For positive polarity, the seed features were: increase, raise, maximize. For 

negative polarity: avoid, lower, decrease, deal_with, eliminate, minimize, reduce, resulting_from, 

caused_by.  Based on co-occurrence with these features, a set of terms was produced from which pa-

rameters for a larger set of features could be estimated, as described above.  We then used naïve Bayes 

classification to label the full set of attribute terms. 

3 Results 

We present results from two domains, health and computer science, using a corpus consisting of all 

US patent applications submitted in the year 2002. The health subcorpus consisted of 19,800 docu-

ments, while the computer science subcorpus contained 51,058 documents.  A “generic” corpus com-

posed of 38,482 patents randomly selected from all domains was also constructed for the year for use 

in computing a “domain specificity score”.  This score was designed to measure the degree to which a 

term could be considered part of a specific domain’s vocabulary and was computed as the 

log(probability of term in domain corpus / probability of term in generic corpus).  For example, in 

computer science, the term encryption technology earned a domain specificity score of 4.132, while 

speed earned .783 and color garnered .022.  Using a combination of term frequency (# of documents a 

term occurs in within a domain) thresholds and domain specificity, one can extract subsets of terms 

with varying degrees of relevance within a collection.
5
 

 

3.1 Attribute/Component/Task (ACT) Classification 

The bootstrapping process generated 1,644 features for use in the health domain and 3,200 in com-

puter science. Kullback-Leibler divergence is a commonly used metric for comparing the difference 

between two probability distributions (Kullback and Leibler, 1951).  By computing Kullback-Leibler 

divergence    (    ) between the distribution P of classes predicted by each feature (i.e., the proba-

bility of the class given the feature alone based on the term seed set labels) and the prior class distribu-

tion Q, we could estimate the impact of individual features in the model.  Table 1 shows some of the 

domain-specific features in the health and computer science domains, along with the category each 

tended to select for.
6
   

Using the features generated by bootstrapping, the classifier was able to label 61% of the 1,335,240 

terms in health and 81% of the 1,391,402 terms in computer science.  The majority of unlabeled terms 

were extremely low frequency (typically 1).  Higher frequency unlabeled terms were typically from 

categories other than those under consideration here (e.g., john wiley, j. biochem, 2nd edition).  The 

distribution of category labels for the health and computer domains is shown in Table 2. 

                                                 
4 We found relatively little evidence of explicit sentiment targeted at component and task aspects in patents and therefore 

focused our polarity analysis on attributes.  
5 Similar to Velardi’s use of “domain relevance” and “consensus” (Velardi, 2001). 
6 Although it is possible to use KL-Divergence for feature selection, it is applied here solely for diagnostic purposes to verify 

that feature distributions match our intuitions with respect to the classification scheme. 
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Table 1.  Features highly associated with classes (a[ttribute], c[omponent], t[ask]) in the health and com-

puter science domains, along with an example of a term co-occurring with each feature in some patent. 

Health                                                                              Computer Science 

Feature Class Term Feature Class Term 

prev_V=performed_during                  t biopsy prev_V=automates                t retrieval 

prev_V=undergone                     t angioplasty last_word=translation            t axis translation 

prev_V=suffer                            a hypertension prev_Npr=reduction_in         a power usage 

prev_Npr=monitoring_of           a alertness Prev_Npr=degradation_in                  a audio quality 

prev_V=binds_to                        c cytokines prev_V=displayed_on           c oscillograph 

prev_Npr=salts_of                      c saccharin last_word=information          c customer infor-

mation 

 

Table 2. Number and percentage of category labels for health and computer domains (2002) 

Category Health Computer Science 

attribute 88,860   (10.8 %) 56,389   (6.5%) 

component 680,034  (83.2%) 716,688  (83.2%) 

task 48,002  (5.8 %) 88,786   (10.3%) 

 

Tables 3a and 3b show examples of machine-labeled terms for the health and computer science do-

mains.  When terms were ranked by frequency, given a relatively relaxed domain specificity threshold 

(e.g., .05 for health), the top terms tended to capture broad semantic types relevant to the domain.   As 

this threshold was increased (e.g., to 1.0 for health), the terms increased in specialization within each 

class.
7
 As the table entries show, while the classification is not perfect, most terms fit the definitions of 

their respective classes.  Note that in the health domain in particular, many of the “components” reflect 

objects acted upon by the invention, not just constituents of inventions themselves.  Symptoms and 

diseases are interpreted as attributes because they are often measured according to severity and are 

targets for reduction.  

 

Table 3a. Examples  of ACT category results for health domain at two levels of domain specificity (ds). 

Component 

(ds .05) 

  

(ds 1.0) 

Attribute 

(ds .05) 

  

(ds 1.0) 

Task 

(ds .05) 

  

(ds 1.0) 

patients, 

tissue, 

blood, 

diseases, 

drugs, 

skin, 

catheter, 

brain, 

tablets, 

organs 

mitral valve, 

arterial blood, 

small incisions, 

pulmonary 

veins, 

anterior cham-

ber, 

intraocular 

lens, 

ultrasound sys-

tem, 

ultrasound en-

ergy, 

adenosine tri-

phosphate, 

bone fragments 

disease, 

infection, 

symptoms, 

pain, 

efficacy, 

side effects, 

inflammation, 

severity, 

death, 

blood flow 

cosmetic prop-

erties, 

cardiac activity, 

urination, 

tissue tempera-

ture, 

gastric empty-

ing, 

arousal 

neurotransmitter 

release, 

atrial arrhyth-

mias, 

thrombogenicity 

ventricular pac-

ing 

treatment, 

administration, 

therapy, 

surgery, 

diagnosis, 

oral admin-

istration, 

implantation, 

stimulation, 

parenteral 

administration, 

surgical pro-

cedures 

invasive proce-

dure, 

ultrasound imag-

ing, 

systole, 

anastomosis, 

spinal fusion, 

tissue ablation, 

image, recon-

struction, 

cardiac pacing, 

mass analysis, 

spinal surgery 

 

  

                                                 
7 The domain specificity thresholds chosen here differ between domains in order to compensate for the influence of the size 

of each domain’s subcorpus on the terminology mix in the “generic” domain corpus against which domain specificity is 

measured.   In the future, we plan to compensate directly for these size disparities in the score computation.  
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Table 3b. Examples of ACT category results for computer domain at two levels of domain specificity. 

Component 

(ds 1.5) 

 

(ds 3.0) 

Attribute 

(ds 1.5) 

  

(ds 3.0) 

Task 

(ds 1.5) 

  

(ds 3.0) 

data, 

information, 

network, 

computer, 

users, 

memory, 

internet, 

software, 

program, 

processor 

web applica-

tions, 

object access 

protocol, 

loans, 

memory sub-

system, 

function call, 

obligations, 

source file, 

file formats, 

lender 

centralized 

database 

errors, 

security, 

real time, 

traffic, 

overhead, 

delays, 

latency, 

burden, 

sales, 

copyright, 

protection 

interest rate, 

resource utiliza-

tion, 

resource con-

sumption, 

temporal locali-

ty, 

system errors, 

transport layer 

security, 

performance 

bottleneck, 

processor ca-

pacity, 

cpu utilization, 

shannon limit 

access, 

communication, 

execution, 

implementation, 

communications, 

management, 

task, 

tasks, 

stores, 

collection 

network envi-

ronments, 

business activi-

ties, 

database access, 

server process, 

search operation, 

client 's request, 

backup opera-

tion, 

project man-

agement, 

program devel-

opment, 

document man-

agement 

 

3.2 Polarity Classification 

For the polarity classification task, the system assigned positive or negative polarity to 80,870 

health and 73,289 computer science attributes. While not all the system labeled attributes merited their 

designation as attributes, the large quantity so labeled in each domain illustrates the vast number of 

conditions and dimensions for which inventions are striving to “move the needle” one way or the oth-

er, relative to attributes in the domain.  Examples of the system’s polarity decisions are shown in Ta-

ble 4.  The system’s labels suggest that the default polarity of attributes in both domains is nearly 

evenly split. 

 

Table 4.  Examples of (pos)itive and (neg)ative polarity terms in health and computer science domains 

Domain # attributes % of total Examples 

health   

          pos 

43807 54% ambulation, hemodynamic performance, atrial rate, antico-

agulant activity, coaptation, blood oxygen saturation 

 

          neg 

37063 46% bronchospasm, thrombogenicity, ventricular pacing, with-

drawal symptoms, fibrin formation, cardiac dysfunction 

computer 

science                     

          pos 

32291 44% transport layer security, processor capacity, cpu utilization, 

routability, network speeds, microprocessor performance 

 

          neg 

40998 56% identity theft, deadlocks, system overhead, memory frag-

mentation, risk exposure, bus contention, software devel-

opment costs, network latencies, data entry errors 

 

4 Evaluation and discussion 

In order to evaluate the classification output, we first selected a subset of terms within each domain 

as candidates for evaluation based on the twin criteria of document frequency and domain specificity.  

That is, we wished to concentrate on terms with sufficient presence in the corpus as well as terms that 

were likely to express concepts of particular relevance to the domain.  Using a frequency threshold of 

10 this yielded 19,088 terms for the health corpus and 35,220 for computer science with domain speci-

ficity scores above .05 and 1.5 respectively.  For each domain, two judges annotated approximately 

150 random term instances with ACT judgments and approximately 100 machine-labeled attributes for 

polarity. The annotation tool displayed each term along with five random sentences from the corpus 

that contained the term, and asked the judge to choose the best label, given the contexts provided.  An 
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“other” option was available if the term fit none of the target categories.  For the polarity task, the 

“other” label included cases where the attribute was neutral, could not be assigned a polarity, or was 

improperly assigned the category “attribute”.   An adjudicated gold standard was compared to system 

labels to measure precision and recall, as shown in table 5.  

 

Table 5a. Health domain: precision, recall and F-score for ACT and polarity classification tasks 

Task      Category Precision Recall F-score 

ACT attribute .70 .44 .54 

 component .76 1.0 .86 

 task .86 .29 .43 

Polarity  positive  .53 .85 .65 

                 negative .77 .93 .84 

 

 Table 5b. Computer domain: precision, recall and F-score for ACT and polarity classification tasks 

Task      Category Precision Recall F-score 

ACT attribute .80 .62 .70 

 component .86 .96 .90 

 task .43 .33 .38 

Polarity  positive  .67 .88 .76 

                 negative .75 .86 .80 

 

 Although the size of the evaluation set is small, we can make some observations from this sample. 

Precision in most cases is strong, which is important for the intended use of this data to characterize 

trends along each dimension using terminology statistics over time.  The lower scores for tasks within 

the ACT classification may reflect the fact that the distinction between component and task is not al-

ways clear cut.  The term “antivirus protection”, for example, describes a task but it is classified by the 

system as a component because it occurs with features like “prev_V=distribute” and 

“prev_V=provided_with”, which outweigh the contribution of the feature “last_word=protection” to 

select for the type task.  To capture such cases of role ambiguity, it may be reasonable to assign some 

terms to multiple classes when the conditional probabilities for the two most probable classes are very 

close (as they are in this case).  It may also be possible to integrate other forms of evidence, such as 

syntactic coordination patterns (Zierning, 2013) to refine system decisions. 

 One shortcoming of the current polarity classifier is that it does not attempt to identify attributes for 

which the polarity is neutral or dependent upon further context within the domain.  For example, the 

attribute “body weight gain” is labeled as a negative.  However, in the context of premature birth or 

cancer recovery, it may be actually be a positive attribute.  Testing whether an attribute co-occurs with 

conflicting features (e.g., prev_V=increase and prev_V=decrease) could help spot such cases. 

5 Related work 

Text mining from patents has focused on identifying domain keywords and terminology for analyt-

ics (Tseng, 2007).  Velardi’s (2001) approach, using statistics to determine domain relevance and con-

sensus is very similar to that adopted here. We have also drawn inspiration from sentiment analysis, 

proposing an ontology for patents that reflects their review-like qualities (Liu, 2012).  Most relevant is 

the work on discovering aspects and opinions relating to a particular subject such as a camera or res-

taurant (Kobayashi, 2007).  There are many subtleties that have been studied in opinion mining re-

search that we have finessed in our research here, such as detecting implicit sentiment and attributes 

not expressed as noun phrases.  Wilson et al (2005, 2009) addressed the larger problem of determining 

contextual polarity for subjective expressions in general, putting considerable effort into the compila-

tion of subjectivity clues and annotations.  In contrast, our aim was to test whether we could substan-

tially reduce the annotation effort when the task is focused on polarity labeling of attributes within pa-

tents.  We hypothesized that the specialized role of patents might permit a more lightweight approach 

amenable to bootstrapping from a very small set of annotations and feature types.   
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Bootstrapping has been successfully applied to developing semantic lexicons containing a variety of 

concept types (Riloff, 1999; Thelen, 2002).  It is often applied iteratively to learn new discriminative 

features after a set of high probability categorized terms are identified during an earlier round.  While 

this increases recall, it also runs the risk of semantic drift if some terms are erroneously labeled.  Giv-

en that the majority of unlabeled terms after a single round in our system are either extremely low fre-

quency or not relevant to our ontology, we have not felt a need to run multiple iterations.  Zierning 

(2013) used bootstrapping to identify instances of the classes substance and disease in patents, exploit-

ing the tendency of syntactic coordination to relate noun phrases of the same semantic type.  Given the 

general nature of coordination, a similar approach could be used to find corroborating evidence for the 

classifications that our system produces. 

  

6 Conclusion 

We have described an approach to text data mining from patents that strikes a middle ground be-

tween undifferentiated keywords and rich, domain specific ontologies.  Motivated by the interpretation 

of patents as “positive reviews”, we have made use of generic lexico-syntactic features common 

across patent domains to bootstrap domain-specific classifiers capable of organizing terms according 

to their roles as components, tasks and attributes with polarity.  Although the majority of keywords in 

a domain are categorized as components, the ontology puts tasks and attributes on an equal footing 

with components, thereby shifting the emphasis from devices and processes to the goals, obstacles and 

targets of inventions, information which could be valuable for analysts attempting to detect trends and 

make forecasts. In addition to more rigorous evaluation and tuning, future research directions include 

testing the approach across a wider range of technology domains, incorporation into time series analy-

sis for forecasting, and mining relationships between terms from different categories to provide an 

even richer terminological landscape for analysts to work with. 
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