
COLING 2014

The 25th International Conference
on Computational Linguistics

Proceedings of the Conference
the 5th Workshop on South and Southeast Asian NLP

WSSANLP - 2014

August 23, 2014
Dublin, Ireland

c© 2014 The Authors
The papers in this volume are licensed by the authors under a
Creative Commons Attribution 4.0 International License.

ISBN 978-1-873769-41-6
Proceedings of the Fifth Workshop on South and Southeast Asian Natural Language Processing
Christian Boitet and M.G. Abbas Malik (eds.)

ii

Preface

Welcome to the 5th Workshop on South and Southeast Asian Natural Language Processing (WSSANLP
- 2014), a collocated event at the 25th International Conference on Computational Linguistics (COLING
2014) , 23 - 29 August, 2014.

South and Southeast Asia comprise of the countries, Afghanistan, Bangladesh, Bhutan, India, Maldives,
Nepal, Pakistan and Sri Lanka. Southeast Asia, on the other hand, consists of Brunei, Burma, Cambodia,
East Timor, Indonesia, Laos, Malaysia, Philippines, Singapore, Thailand and Vietnam.

This area is the home to thousands of languages that belong to different language families like Indo-
Aryan, Indo-Iranian, Dravidian, Sino-Tibetan, Austro-Asiatic, Kradai, Hmong-Mien, etc. In terms of
population, South Asian and Southeast Asia represent 35 percent of the total population of the world
which means as much as 2.5 billion speakers. Some of the languages of these regions have a large
number of native speakers: Hindi (5th largest according to number of its native speakers), Bengali (6th),
Punjabi (12th), Tamil(18th), Urdu (20th), etc.

As internet and electronic devices including PCs and hand held devices including mobile phones have
spread far and wide in the region, it has become imperative to develop language technology for these
languages. It is important for economic development as well as for social and individual progress.

A characteristic of these languages is that they are under-resourced. The words of these languages show
rich variations in morphology. Moreover they are often heavily agglutinated and synthetic, making
segmentation an important issue. The intellectual motivation for this workshop comes from the need to
explore ways of harnessing the morphology of these languages for higher level processing. The task of
morphology, however, in South and Southeast Asian Languages is intimately linked with segmentation
for these languages.

The goal of WSSANLP is:

• Providing a platform to linguistic and NLP communities for sharing and discussing ideas and work on
South and Southeast Asian languages and combining efforts.
• Development of useful and high quality computational resources for under resourced South and
Southeast Asian languages.

We are delighted to present to you this volume of proceedings of the 5th Workshop on South and
Southeast Asian Natural Language Processing. We have received total 18 submission in the categories
of long paper and short paper. On the basis of our review process, we have competitively selected 7 long
(regular) papers for oral presentations and 7 short papers for poster presentations.

We look forward to an invigorating workshop.

Christian Boitet (Chair WSSANLP-2014),
University of Grenoble I, France

M.G. Abbas Malik (Co-Chair WSSANLP-2014),
Faculty of Computing and Information Technology (North Jeddah Branch),
King Abdulaziz University, Saudi Arabia

iii

The Fifth Workshop on
South and Southeast Asian Natural Language processing
WSSANLP-2014

WSSANLP Organizers

Workshop Chair

Christian Boitet, University of Grenoble I, France

Workshop Co-Chairs

M. G. Abbas Malik, King Abdulaziz University, Saudi Arabia

Organizing Committee

Amitava Das, University of North Texas, USA

Sadaf Abdul Rauf, Fatima Jinnah Women University, Pakistan

WSSANLP Invited Speaker

Vincent Berment, INaLCO, Paris, France (Lecturer)
LIG/GÉTALP, Grenoble, France (Associated Researcher)
Taranis Software, Paris, France (Director)

Program Committee
Sadaf Abdul Rauf, Fatima Jinnah Women University, Pakistan
Naveed Afzal, King Abdulaziz University, Saudi Arabia
Aasim Ali, University of the Punjab, Pakistan
M. Waqas Anwar, COMSATS Institute of Information Technology, Pakistan
Bal Krishna Bal, Kathmandu University, Nepal
Sivaji Bandyopadhyay, Jadavpur University, India
Vincent Berment, GETALP-LIG / INALCO, France
Laurent Besacier, GETALP-LIG, Université de Grenoble, France
Pushpak Bhattacharyya, IIT Bombay, India
Hervé Blanchon, GETALP-LIG, Université de Grenoble, France
Christian Boitet, GETALP-LIG, Université de Grenoble, France
Erik Cambria, National University of Singapore, Singapore
Eric Castelli, International Research Center MICA, Vietnam
Sandipan Dandapat, IIT Guwahati, India
Amitava Das, University of North Texas, USA
Alexander Gelbukh, Center for Computing Research, CIC, Mexico
Choochart Haruechaiyasak, NECTEC, Thailand
Sarmad Hussain, Al-Khawarizmi Institute of Computer Science, University of Engineering and

v

Technology, Pakistan
Aravind K. Joshi, University of Pennsylvania, USA
Abid Khan, University of Peshawar, Pakistan
Malhar Kulkarni, Indian Institute of Technology Bombay, India
Amba Kulkarni, Department of Sanskrit Studies, University of Hyderabad, India
A. Kumaran, Microsoft Research, India
Gurpreet Singh Lehal, Punjabi University, Patiala, India
M. G. Abbas Malik, King Abdulaziz University, Saudi Arabia
Bali Ranaivo-Malançon, University Malaysia Sarawak, Malaysia
Fuji Ren, University of Tokushima, Japan
Hammam Riza, Agency for the Assessment and Application of Technology (BPPT), Indonesia
Paolo Rosso, Universitat Politècnica de València, Spain
Huda Sarfraz, Beacon house National University, Pakistan
Dipti Mishra Sharma, IIIT Hyderabad, India
Sunil Sivadas, Institute for Infocomm Research, Singapore
L. Sobha, AU-KBC Research Centre, India
Virach Sornlertlamvanich, TCL, National Institute of Information and Communication Technol-
ogy, Thailand
Sriram Venkatapathy, Xerox Research Center Europe, France
Eric Wehrli, University of Geneva, Switzerland

vi

Table of Contents

Towards Identifying Hindi/Urdu Noun Templates in Support of a Large-Scale LFG Grammar
Sebastian Sulger and Ashwini Vaidya . 1

Konkanverter - A Finite State Transducer based Statistical Machine Transliteration Engine for Konkani
Language

Vinodh Rajan . 11

Integrating Dictionaries into an Unsupervised Model for Myanmar Word Segmentation
Ye Kyaw Thu, Andrew Finch, Eichiro SUMITA and Yoshinori Sagisaka. .20

A Framework for Learning Morphology using Suffix Association Matrix
Shilpa Desai, Jyoti Pawar and Pushpak Bhattacharyya . 28

English to Urdu Statistical Machine Translation: Establishing a Baseline
Bushra Jawaid, Amir Kamran and Ondrej Bojar . 37

A hybrid approach for automatic clause boundary identification in Hindi
Rahul Sharma and Soma Paul . 43

RBMT as an alternative to SMT for under-resourced languages
Guillaume de Malézieux, Amélie Bosc and Vincent Berment . 50

Developing an interlingual translation lexicon using WordNets and Grammatical Framework
Shafqat Mumtaz Virk, K.V.S Prasad, Aarne Ranta and Krasimir Angelov . 55

A Dictionary Data Processing Environment and Its Application in Algorithmic Processing of Pali Dic-
tionary Data for Future NLP Tasks

Jürgen Knauth and David Alfter . 65

Constituent structure representation of Pashto Endoclitics
Azizud Din, Bali Ranaivo-Malançon and M. G. Abbas Malik. .74

Real Time Early-stage Influenza Detection with Emotion Factors from Sina Microblog
Xiao Sun, Jiaqi Ye and Fuji Ren . 80

Building English-Vietnamese Named Entity Corpus with Aligned Bilingual News Articles
Quoc Hung Ngo, Dinh Dien and Werner Winiwarter . 85

Character-Cluster-Based Segmentation using Monolingual and Bilingual Information for Statistical Ma-
chine Translation

Vipas Sutantayawalee, Peerachet Porkeaw, Thepchai Supnithi, Prachya Boonkwan and Sitthaa Pha-
holphinyo. .94

A rule based approach for automatic clause boundary detection and classification in Hindi
Rahul Sharma . 102

vii

WSSANLP 2014 Program

Saturday August 23, 2014

(8:45 - 9:00) Openning Session

(9:00 - 10:15) Invited Talk

+ by Vincent Berment

(10:15 - 10:45) Coffee Break

Session Regular Papers 1: (10:45 - 12:30) WSSANLP Session 1

10:45 Towards Identifying Hindi/Urdu Noun Templates in Support of a Large-Scale LFG
Grammar
Sebastian Sulger and Ashwini Vaidya

11:10 Konkanverter - A Finite State Transducer based Statistical Machine Transliteration
Engine for Konkani Language
Vinodh Rajan

11:35 Integrating Dictionaries into an Unsupervised Model for Myanmar Word Segmen-
tation
Ye Kyaw Thu, Andrew Finch, Eichiro SUMITA and Yoshinori Sagisaka

12:00 A Framework for Learning Morphology using Suffix Association Matrix
Shilpa Desai, Jyoti Pawar and Pushpak Bhattacharyya

(12:30 - 14:00) Lunch break

ix

Saturday August 23, 2014 (continued)

Session Short Papers: (14:00 - 15:15) WSSANLP Session 2

English to Urdu Statistical Machine Translation: Establishing a Baseline
Bushra Jawaid, Amir Kamran and Ondrej Bojar

A hybrid approach for automatic clause boundary identification in Hindi
Rahul Sharma and Soma Paul

RBMT as an alternative to SMT for under-resourced languages
Guillaume de Malézieux, Amélie Bosc and Vincent Berment

Developing an interlingual translation lexicon using WordNets and Grammatical Frame-
work
Shafqat Mumtaz Virk, K.V.S Prasad, Aarne Ranta and Krasimir Angelov

A Dictionary Data Processing Environment and Its Application in Algorithmic Processing
of Pali Dictionary Data for Future NLP Tasks
Jürgen Knauth and David Alfter

Constituent structure representation of Pashto Endoclitics
Azizud Din, Bali Ranaivo-Malançon and M. G. Abbas Malik

Real Time Early-stage Influenza Detection with Emotion Factors from Sina Microblog
Xiao Sun, Jiaqi Ye and Fuji Ren

(15:15 - 15:45) Coffee Break

Session Regular Papers 2: (15:45 - 17:00) WSSANLP Session 3

15:45 Building English-Vietnamese Named Entity Corpus with Aligned Bilingual News Articles
Quoc Hung Ngo, Dinh Dien and Werner Winiwarter

16:10 Character-Cluster-Based Segmentation using Monolingual and Bilingual Information for
Statistical Machine Translation
Vipas Sutantayawalee, Peerachet Porkeaw, Thepchai Supnithi, Prachya Boonkwan and
Sitthaa Phaholphinyo

16:35 A rule based approach for automatic clause boundary detection and classification in Hindi
Rahul Sharma

x

Saturday August 23, 2014 (continued)

(17:00 - 17:15) Closing Remarks

xi

Proceedings of the 5th Workshop on South and Southeast Asian NLP, 25th International Conference on Computational Linguistics, pages 1–10,
Dublin, Ireland, August 23-29 2014.

Towards Identifying Hindi/Urdu Noun Templates in Support of a
Large-Scale LFG Grammar

Sebastian Sulger
Department of Linguistics

University of Konstanz
Germany

sebastian.sulger@uni-konstanz.de

Ashwini Vaidya
University of Colorado

Boulder, CO
80309 USA

vaidyaa@colorado.edu

Abstract

Complex predicates (CPs) are a highly productive predicational phenomenon in Hindi and Urdu
and present a challenge for deep syntactic parsing. For CPs, a combination of a noun and light
verb express a single event. The combinatorial preferences of nouns with one (or more) light
verb is useful for predicting an instance of a CP. In this paper, we present a semi-automatic
method to obtain noun groups based on their co-occurrences with light verbs. These noun groups
represent the likelihood of a particular noun-verb combination in a large corpus. Finally, in
order to encode this in an LFG grammar, we propose linking nouns with templates that describe
preferable combinations with light verbs.

1 Introduction

A problem that crops up repeatedly in shallow and deep syntactic parsing approaches to South Asian lan-
guages like Urdu and Hindi1 is the proper treatment of complex predicates (CPs). In CPs, combinations
of more than one element are used to express an event (e.g., memory + do = remember). In Urdu/Hindi,
only about 700 simple verbs exist (Humayoun, 2006); the remaining verbal inventory consists of CPs.
CPs are encountered frequently in general language use, as well as in newspaper corpora. Thus, any NLP
application, whether shallow or deep, whether its goal be parsing, generation, question-answering or the
construction of lexical resources like WordNet (Bhattacharyya, 2010) encounters CPs sooner rather than
later.

There is a range of different elements that may combine with verbs to form a CP: verbs, nouns, prepo-
sitions, adjectives all occur in CPs. The constraints and productive mechanisms in verb-verb CPs are
comparatively well-understood (e.g, see Hook (1974), Butt (1995), Butt (2010) and references therein).
The domain of noun-verb CPs (N-V CPs) is less well understood, the standard theoretical reference being
Mohanan (1994). It is only recently that researchers have tried to come up with linguistic generaliza-
tions regarding N-V CPs, some by using manual methods and linguistic introspection (Ahmed and Butt,
2011), others using a combination of manual and statistical methods (Butt et al., 2012).

Ahmed and Butt (2011) have suggested that the combinatory possibilities of N-V combinations are in
part governed by the lexical semantic compatibility of the noun with the verb. Similar observations have
been made for English (Barrett and Davis, 2003; North, 2005). If this is true, then lexical resources
such as WordNet could be augmented with semantic specifications or feature information that can then
be used to determine dynamically whether a given N-V combination is licit or not.

Knowledge about this kind of lexical-semantic information is essential in computational grammars.
For example,lexicon entries and templates are required to define predicational classes. Implementing
such a grammar for a language that makes heavy use of CPs calls for two requirements. First, the lexical
items taking part in CP formation need to be present in the lexicon of the grammar; and second, the
grammar needs to be engineered in a way that represents the correct linguistic generalizations. Any ap-

1Urdu is an Indo-Aryan language spoken primarily in Pakistan and parts of India, as well as in the South Asian diaspora. It
is structurally almost identical to Hindi, although the lexicon and orthography differs considerably.
This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

1

proach that is short of either of these requirements will result either in loss in coverage or overgeneration
of the grammar.

The Hindi/Urdu ParGram Grammar forms part of a larger international research effort, the ParGram
(Parallel Grammars) project (Butt et al., 1999; Butt et al., 2002; Butt and King, 2007). All of the gram-
mars in the ParGram project are couched within the LFG framework and are implemented using the
development platform XLE (Crouch et al., 2012). The grammars are developed manually and not via
learning methods, which allows for a theoretically sound analysis that is also efficient from a computa-
tional point of view. The Hindi/Urdu ParGram Grammar aims at covering both Hindi and Urdu, which is
a design decision that suggests itself due to the many structural conformities of the two languages (Butt
et al., 2002). One weakness of the grammar is its currently relatively small lexicon, compared to other
ParGram grammars. Adding to the lexicon is a critical step in extending the grammar coverage. This
is even more true for N-V CPs due to the high frequency of such constructions in running text. Thus,
we see the Hindi/Urdu ParGram Grammar as an ideal test bed for developing a lexical resource of Hindi
nouns.

This paper is a first step in terms of constructing such a lexical resource for Hindi nouns. Following
up on previous work, we assume that there are distinct groups of nouns; nouns that are part of a certain
group tend to co-occur with the same light verb(s) and differ in their usage from members of other
groups. Contrary to what has been done before, though, we do not dive into available corpora blindly to
identify the groupings. Instead, we make use of a manually annotated treebank for Hindi, the Hindi and
Urdu Treebank (HUTB, Bhatt et al. (2009)). Thus, we construct a seed list of nouns known to partake
in CP formation in the HUTB. Since the HUTB is limited in its coverage, we then turn to a large Hindi
corpus collected specifically for the present study and use clustering algorithms to put the nouns in the
seed list into groups, based on light verb co-occurrence.2

Our aim is to arrive at a broad notion of noun similarity. If we can find groups of nouns that be-
have alike with respect to their light verbs, these groups can be included in an application such as the
Hindi/Urdu ParGram Grammar to boost coverage as well as precision. Note that this notion of noun
similarity is not the same as semantic classes in the sense of Levin (1993); however, it can serve as input
for future research into semantic noun classification.

2 N-V Complex Predicates in Hindi and Urdu

As mentioned above, CPs are an important means of forming verbal predication in Hindi and Urdu.
There is no single way of forming CPs; it is possible to find V-V CPs (Butt, 1995), ADJ-V combinations,
P-V CPs (Raza, 2011) and N-V CPs (Mohanan, 1994) (see Ahmed et al. (2012) for some examples of
each CP type.). In the present paper, we focus on identifying patterns of N-V CP formation. Here,
the noun contributes the main predicational content. The verb in such constructions is usually called a
light verb (Mohanan, 1994; Butt, 2003). The term represents the fact that these verbs are semantically
bleached and specify additional information about the predication, such as whether the predicate has an
agentive, telic or stative flavor. The light verb also determines the case marking on the subject, controls
agreement patterns and contributes tense and aspect information. This is illustrated in (1).

(1) a. nadya=ne kAhani yad k-i
Nadya.F.Sg=Erg story.F.Sg memory.F.Sg do-Perf.F.Sg
‘Nadya remembered a/the story (agentively).’ (lit. ‘Nadya did memory of a/the story.’)

b. nadya=ko kAhani yad hE
Nadya.F.Sg=Dat story.F.Sg memory.F.Sg be.Pres.3.Sg
‘Nadya remembers/knows a/the story.’ (lit. ‘At Nadya is memory of a/the story.’)

2Note that despite the many structural conformities between Hindi and Urdu, the main difference between the two languages
is in the lexicon; Modern Standard Hindi vocabulary is based on Sanskrit, while Urdu draws from a Persio-Arabic lexicon.
This means that in principle, the methodology presented in this paper applied to Hindi needs to be applied to both languages
separately. The equivalent Urdu study is pending future work and currently faces two major obstacles. First, the Urdu portion
of the HUTB has not yet been released. Second, there is a major shortage of Urdu resources, with comparatively small corpora
becoming available only recently (Urooj et al., 2012). Readily available Urdu sources (e.g., Wikipedia) are of minor quality.

2

c. nadya=ko kAhani yad a-yi
Nadya.F.Sg=Dat story.F.Sg memory.F.Sg come-Perf.F.Sg
‘Nadya remembered a/the story.’ (lit. ‘The memory of a/the story came to Nadya.’)

In all of the examples in (1), it is evident that the noun and the verb form a single predicational element.
The object kAhani ‘story’ is thematically licensed by the noun yad ‘memory’, but it is not realized as a
genitive, as would be typical for arguments of nouns (and as in the English literal translations). Rather,
kAhani ‘story’ functions as the syntactic object of the joint predication (see Mohanan (1994) for details
on the argument structure and agreement patterns).

3 Previous Work

A recent study on the semantic classes of Persian N-V CPs using distributional vector-space methods
has shown that verb vectors are a very useful indicator of noun similarity (Taslimipoor et al., 2012). The
reported results are significantly better using the light verb dimension; Taslimipoor et al. (2012) state that
this affirms their original intuition that a verb-based vector space model can better capture similarities
across CPs. This finding is in agreement with our intuition that features based on light verbs best capture
generalizations about N-V CPs.

There have been two studies on noun similarity based on co-occurrence of noun and light verb. Ahmed
and Butt (2011) look at the light verbs kar ‘do’, ho ‘be’, hu- ‘become’ and identify three classes of nouns
based on co-occurrence patters. The first consists of psychological nouns that occur with all three light
verbs. The examples shown in (1) represent the class that is compatible with all of the light verbs
surveyed. Other CP classes may only be compatible with a subset of light verbs. The second and third
classes consist of nouns that are classified as more or less agentive in nature- based on their capacity to
form CPs with hu- ‘become’. For example, the noun tamir ‘construction’ is only compatible with the
light verb kar ‘do’ but disallows hu- ‘become’.

(2) a. bılal=ne mAkan tAmir kı-ya
Bilal.M.Sg=Erg house.M.Sg construction.F.Sg do-Perf.M.Sg
‘Bilal built a/the house.’

b. *bılal=ko mAkan tAmir hE/hu-a
Bilal.M.Sg=Dat house.M.Sg construction.F.Sg be.Pres.3.Sg/be.Part-Perf.M.Sg
‘Bilal built a/the house.’

In a follow-up study, Butt et al. (2012) attempted to identify Urdu N-V CPs automatically. After
filtering out the irrelevant combinations, they found that most nouns were either psychological nouns
(and occurred with all three light verbs) or nouns that were highly agentive and disallowed hu- ‘become’.
However, one of the drawbacks of their method was the use of an untagged corpus, which required
extensive filtering in order to separate the light and non-light instances of these verbs.

We will draw upon the results of these two studies to motivate this present work. The classes identified
by Ahmed and Butt (2011) seem promising, but the corpus work was done manually, and the total size
of their data set is limited to 45 nouns. This can hardly serve as input to the development of a large-scale
noun lexicon for a grammar. In constructing a lexical resource, we thus take a different route in that we
try to expand the search space by using an external, manually-crafted resource and a larger set of light
verbs to come up with more substantial noun groups.3 In addition, we circumvent the problems faced in
Butt et al. (2012)’s paper by filtering the list of nominal predicates in advance and by making use of a
tagged corpus.

3One might argue that there are other features, beyond the light verbs, that one could use in identifying noun classes/groups,
e.g., additional arguments licensed, case marking, etc. The reason why we (and other researchers before us) limit ourselves
to the light verb occurrences is that Hindi and Urdu make rampant use of pro-drop (Kachru, 2006; Schmidt, 1999; Mohanan,
1994), which means that often, not all arguments are present in a sentence. Thus, the only reliable source of information about
the noun is in fact the light verb, since this is the only obligatory element aside from the noun itself.

3

4 Methodology

In order to build a lexical resource of semantically similar nouns, we first need to identify whether these
occur as part of a N-V CP. As we want to improve upon previous work, our aim was to include a large
number of nouns. The Hindi portion of the Hindi and Urdu Treebank (Bhatt et al., 2009) includes N-V
CPs that have been manually tagged with the dependency label POF (which stands for “part of”). The
diagnostic criteria used for identifying CPs in the treebank is based on native speaker intuition. The POF

label is used for adjectives and adverbs as well as nouns. We extracted only POF cases that were nouns
only. This gave us an initial list of candidate nouns that were further filtered for spelling variations and
annotation errors. After this stage, we had a list of 1207 nouns, which we will refer to as our seed list.
The seed list consists of nouns that are a part of N-V CPs in the treebank.

Our aim was to include nouns that had at least 50 or more occurrences in order to ensure that we were
looking at the most well-attested noun and light verb co-occurrences. For this task, the Hindi Treebank
corpus (400,000 words) by itself would not be sufficient. For instance, if we applied our cutoff of 50
occurrences to the instances in the treebank, we would be left with only 20 nouns, which would not give
us any meaningful groups. Therefore, we chose to use a larger corpus (including the treebank) in order
to give us co-occurrence patterns for a noun from the seedlist. At the same time, we did not look at
co-occurrence patterns with any verb. Instead, we chose a list of the most frequent light verbs from the
treebank. This list is given below:

(3) ho ‘be’, kar ‘do’, de ‘give’, le ‘take’, rakh ‘put’, lag ‘attach’, a ‘come’

Given the seed list and a short list of light verbs, our next step was the extraction of co-occurrences
from a larger corpus.

4.1 Extracting Co-occurrences from a Large Corpus
In order to obtain a larger corpus, we scraped two large online sources of Hindi: the BBC Hindi website4

as well as the Hindi Wikipedia.5 Along with the Hindi Treebank, this corpus contains about 21 million
tokens (BBC Hindi: ∼7 million, Hindi Wikipedia: ∼10 million, Hindi Treebank ∼4 million); by includ-
ing the Wikipedia part, the resulting corpus extends beyond the newspaper domain. In a second step, the
corpus was automatically POS tagged using the tagger described in Reddy and Sharoff (2011).

We were interested in extracting co-occurrences that had the following pattern: seed list item + light
verb. A match would only occur if one of the light verbs occurred directly to the right of the noun (i.e.,
an item tagged as NN by the POS tagger). Our method therefore did not take into account any N-V CPs
that were syntactically flexible, i.e., when the noun and the light verb did not occur next to each other.
Those cases where the noun may be scrambled away from the light verb (e.g., topicalization of the noun)
are not numerous and occur rarely in the Hindi Treebank (only about 1% of the time).6

4.2 Clustering & Evaluation
In the next step, a clustering algorithm was applied to the data. This was done using the clustering tool
described in Lamprecht et al. (2013). At the moment, the tool features two clustering algorithms: the
k-means algorithm (MacQueen, 1967) as well as the Greedy Variance Minimization (GVM) algorithm.7

We made use of an automatic method using Hindi WordNet (Bhattacharyya, 2010) to choose the best
partition value. We followed the technique described in Van de Cruys (2006), which uses WordNet
relations to arrive at the most semantically coherent clusters. We define semantic coherence as the
similarity between items in a cluster, based on an overlap between their WordNet relations. Specifically,
for each k = 2−10, we iterated through the automatically generated clusters and performed the following
steps:

1. Using WordNet, we extracted synonyms, hypernyms and hyponyms for every word in a cluster.
4http://www.bbc.co.uk/hindi
5http://dumps.wikimedia.org/hiwiki
6Mohanan (1994) even goes so far as to call the topicalization of nouns in N-V CPs ungrammatical.
7http://code.google.com/p/tomgibara/

4

2 4 6 8 10

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Results with GVM and Kmeans, with varying cutoffs

Number of clusters

S
em

an
tic

 c
oh

er
en

ce

Kmeans;50
GVM;50
Kmeans;3
GVM;3

Figure 1: Choosing the best value for k. k-means with a frequency cutoff of 50 gives us the most
semantically coherent clusters for k = 5

2. A word that had the most semantic relations with every word in the cluster was chosen as its cen-
troid.

3. The co-hyponyms i.e., the hyponyms of the hypernyms for this centroid were extracted from Word-
Net (along with its synonyms, hypernyms and hyponyms).

4. In order to calculate precision for each cluster, we counted the number of words in that cluster that
overlapped with the words in the centroid’s relations.

We averaged the precision across all clusters for every k value. We found that precision for each
cluster gradually improved until we got the most semantically coherent partitions for k = 5 using k-
means, for 522 nouns occurring with a frequency of 50 and above. Table 1 shows the values for k using
our WordNet evaluation method, for k = 5− 9.

Frequency = 3 Frequency = 50
Size of k GVM k-means GVM k-means
5 0.049 0.060 0.107 0.122
6 0.066 0.055 0.121 0.119
7 0.089 0.056 0.104 0.110
8 0.084 0.089 0.108 0.109
9 0.082 0.081 0.095 0.097

Table 1: Semantic coherence values for k = 5− 9 for clustering algorithms GVM and k-means

In Figure 1, we have plotted the semantic coherence values against the number of clusters to show
the best results. The k-means algorithm performed only slightly better than GVM, and after k = 5, the
semantic coherence of the clusters declined again. As a point of comparison, we also plotted k-means
and GVM results for nouns that occurred more than 3 times in the data (i.e., using a far smaller cutoff).
In this configuration, the best results are achieved for a higher k value (i.e., between 7 or 8), but we
rejected this on the basis of a better semantic coherence value for k-means with a cutoff of 50.

5

Figure 2: Visualization for k = 5 clusters

5 Analysis

Lamprecht et al. (2013)’s tool is useful for visual cluster inspection; e.g., the tool created the visual
clustering in Figure 2 using the k-means algorithm with k = 5. The visualization enables the user to in-
spect the data points and derive initial generalizations. For example, Figure 2 shows a visualization with
colored circles that encode membership within a cluster. The larger circles represent cluster centroids.
The visualization enables us to see three most frequently occurring light verbs, viz. kar ‘do’, ho ‘be’ and
de ‘give’, represented by light green, dark blue and pink respectively. Many nouns alternate with ‘do’
and ‘be’, hence there is a visible continuum between the light green and dark blue data points. The two
clusters in the centre show a dark green cluster, consisting of only a handful of nouns that alternate with
the light verbs rakh ‘keep’, lag ‘attach’ and a ‘come’. The light blue cluster on the other hand is larger
and is dominated by the light verb le ‘take’.

In order to further interpret the results of our study, we also referred to a secondary result from our
WordNet evaluation. While extracting the extent of overlap of the semantic relations, we also extracted
the ‘semantic’ centroids i.e. words that had the most semantic relations with every other word in the
cluster (see Section 4.2). For our best result of k = 5, these centroids also revealed semantic similarities
in the five clusters that we found. For instance, dynamic events that are inanimate and abstract and take
an agentive argument will lend themselves to combinations with kar ‘do’. Similarly, events that include
the semantic property of ‘transfer’ will occur with de ‘give’ (although there is ostensibly an overlap here,
as these events invariably also require agentive arguments). The light verb ho ‘be’ occurs often with
nouns that denote mental states, resulting in an experiencer subject — but this group also includes nouns
that alternate with kar. Less frequently occurring light verbs, especially rakh ‘keep’, lag ‘to attach’ and
a ‘come’ show fewer alternations, as they do not occur in combination with all nouns and are grouped
together in this result. These light verbs often form N-V CPs with a more idiosyncratic meaning, in fact
Davison (2005) has argued that some of these light verbs may form ‘incorporation idioms’ (rather than
true N-V CPs).

The average figures of N-V CP co-occurrences for a certain cluster inform us about the likelihood of
a certain group of nouns to co-occur with a certain light verb. For instance, this noun grouping shows a
high likelihood of occurrence with kar ‘do’ and le ‘take’, but not very likely at all with lag ‘attach’. We
take this distribution to reflect a difference in the syntactic behavior of the nouns: While the productive
patterns indicate CP formation, the less productive patterns do not represent CPs at all. This is a finding
in line with Butt et al. (2012), who ended up deleting many low-frequency patterns which turned out
to be non-CP combinations. Similar tendencies can be derived for the five groups of nouns derived

6

from our clustering experiment above. This information is useful for a task like lexicon development
for a computational grammar. The following section therefore explores the possibility of encoding noun
group information in a computational Lexical Functional Grammar.

6 Noun Groups in Hindi/Urdu Grammar Development

Our experiments show that nouns appear with several different distributions, often with one dominant
light verb, but also with the possibility of occurring with one or two other light verbs. The clusters do
not represent absolute certainties about N-V CPs, but report tendencies of occurrences; e.g., the relative
frequencies of the cluster centroid for the noun group dominated by de ‘give’ is shown below.

(4) de ‘give’ 0.75, kar ‘do’ 0.08, le ‘take’ 0.06, ho ‘be’ 0.06, a ‘come’ 0.02, rakh ‘keep’ 0.02, lag
‘attach’ 0.01

In this section, we discuss the integration of our Hindi noun groupings into the grammar via the
construction of templates that can be augmented to model the relevant linguistic generalizations in terms
of constraints inspired by optimality theory (OT, Prince and Smolensky (2004)). A serious evaluation of
the effect on the grammar of adding in this lexical resource is planned for future work.

6.1 Templates in XLE

In XLE, grammar writers can define templates in a special section of the grammar that can be called
from the lexicon. Templates allow generalizations to be captured and, if necessary, changes to be made
only once, namely to the template itself (Butt et al., 1999; Dalrymple et al., 2004). Consider the template
in (5), which models intransitive verbs in English; these are represented in LFG terms as predicates that
apply to a single grammatical function, a subject. The lexical entry in (6) for the English intransitive
verb laugh calls up the INTRANS template; the argument supplied to the template is substituted for the
P(redicate) value inside the template definition.

(5) INTRANS(P) = (ˆ PRED) = ’ P<(ˆ SUBJ)>’

@NOPASS.

(6) laugh V @(INTRANS laugh).

In ParGram grammars, the lexicons are generally organized so that each verb subcategorization frame
corresponds to a different template. Similarly, templates can be defined to encode a given set of general-
izations about how certain groups of nouns combine with different light verbs. Consider the N-V CPs in
(7). The noun ısharA ‘signal’ forms part of the cluster dominated by de ‘give’ (i.e., the cluster with the
frequencies shown in (4)) and thus occurs most frequently with de ‘give’ as well as kar ‘do’.

(7) a. nadya=ne bılal=ko ıshara dı-ya
Nadya.F.Sg=Erg Bilal.M.Sg=Dat signal.M.Sg give-Perf.M.Sg
‘Nadya signaled Bilal.’ (lit. ‘Nadya gave a signal to Bilal.’)

b. nadya=ne bılal=ko ıshara kı-ya
Nadya.F.Sg=Erg Bilal.M.Sg=Acc signal.M.Sg do-Perf.M.Sg
‘Nadya signaled Bilal.’ (lit. ‘Nadya made a signal towards Bilal.’)

The lexical entry of the noun ıshara ‘signal’ is given in (8).8 The entry points to the template
NVGROUP2 which is defined as in (9). This version of the template constrains the verbal type of the
overall predication to be a CP either with the light verb de ‘give’ or with the light verb kar ‘do’, or to not
be a CP at all. Thus, only light verb options with relative frequencies equaling or above 0.08 (i.e., 8%)
are accepted, an arbitrary threshold.

8The transliteration scheme employed in the Hindi/Urdu ParGram Grammar is described in Malik et al. (2010).

7

(8) iSArA NOUN-S XLE (ˆ PRED) = ’iSArA<(ˆ OBJ)>’

@NVGROUP2.

(9) NVGROUP2 = { (ˆ VTYPE COMPLEX-PRED-FORM) =c dE

|(ˆ VTYPE COMPLEX-PRED-FORM) =c kar

| ∼ (ˆ VTYPE COMPLEX-PRED-FORM)}

6.2 Preferred CPs

The template in (9), however, misses out on the fact that for all the groups identified, there are N-V com-
binations that are more productive (and thus more likely to be CP constructions) than other combinations
(which are more likely to be non-CP constructions, e.g., plain objects). In XLE, grammar developers can
model statistical generalizations using special marks that were inspired by Optimality Theory (Prince
and Smolensky, 2004). On top of the classical constraint system of existing LFG grammars, a separate
projection, o-structure, determines a preference ranking on the set of analyses for a given input sentence.
A relative ranking is specified for the constraints that appear in the o-projection, and this ranking serves
to determine the winner among the competing candidates. The constraints are also referred to as OT
marks and are overlaid on the existing grammar (Frank et al., 1998).

OT marks can be added in the appropriate place in the grammar to punish or prefer a certain analysis.
For example, (10) states that Mark1 is a member of the optimality projection. The order of preference of
a sequence of OT marks can be specified in the configuration section of the grammar; an example pref-
erence ordering is given in (11). Here, the list given in OPTIMALITYORDER shows the relative importance
of the marks. In this case Mark5 is the most important, and Mark1 is the least important. Marks that have
a + in front of them are preference marks. The more preference marks that an analysis has, the better. All
other marks are dispreference marks (the fewer, the better).

(10) ... Mark1 $ o::* ...

(11) OPTIMALITYORDER Mark5 Mark4 Mark3 +Mark2 +Mark1.

Given the relative ordering of light verb tendencies in our noun groups, we can augment the templates
with OT marks that represent such tendencies. The noun template in (9) is changed in two ways. First,
all the light verbs are included; second, each disjunct is extended by two OT marks that represent the
statistical likelihood of this particular combination forming a CP or not.9 The ordering of the marks is
shown in (13), where the mark cp-dispref is most severely punished, and the mark +cp-pref is most
strongly preferred. With an ordering like this, a CP analysis for (7a) is preferred, while a compositional
analysis is dispreferred by XLE; the inverse will apply to ıshara lAg, which is not a CP.

(12) NVGROUP2 = { { (ˆ VTYPE COMPLEX-PRED-FORM) =c dE

cp-pref $::*

| ∼ (ˆ VTYPE COMPLEX-PRED-FORM)

non-cp-dispref $::* }
...

|(ˆ VTYPE COMPLEX-PRED-FORM) =c lag}.
cp-dispref $ o::*

| ∼ (ˆ VTYPE COMPLEX-PRED-FORM)

non-cp-pref $::* } }.

(13) OPTIMALITYORDER cp-dispref non-cp-dispref +cp-pref +non-cp-pref.

9For space reasons, only the disjuncts for de ‘give’ as well as lAg ‘attach’ are shown.

8

7 Conclusion

We have discussed a corpus study of Hindi/Urdu N-V CPs that makes use of a novel methodology in
terms of a noun seed list and an evaluation based on WordNet. We found that the k-means algorithm
with k = 5 and a frequency cutoff of 50 gave us the best result in terms of semantic coherence of the
resulting clusters. We are optimistic that the resulting noun groups can be used in different NLP settings
and have presented one such setting, the Hindi/Urdu ParGram Grammar, where lexical information about
nouns and their combinatory possibilities in CPs are vital for grammar extension.

Acknowledgements

We would like to thank the DAAD (Deutscher Akademischer Austausch Dienst) for sponsoring Ashwini
Vaidya’s research stay at the University of Konstanz and Dr Miriam Butt for hosting her. We are also
thankful to Dr Miriam Butt, Dr Martha Palmer and Christian Rohrdantz for their feedback on this paper.
Any errors that remain are our own.

References
Tafseer Ahmed and Miriam Butt. 2011. Discovering Semantic Classes for Urdu N-V Complex Predicates. In

Proceedings of the International Conference on Computational Semantics (IWCS 2011).

Tafseer Ahmed, Miriam Butt, Annette Hautli, and Sebastian Sulger. 2012. A Reference Dependency Bank for An-
alyzing Complex Predicates. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan,
Bente Maegaard, Joseph Mariani, Jan Odijk, and Stelios Piperidis, editors, Proceedings of the Eight Interna-
tional Conference on Language Resources and Evaluation (LREC’12). European Language Resources Associ-
ation (ELRA), May.

Leslie Barrett and Anthony R Davis. 2003. Diagnostics for determining compatibility in English support-verb-
nominalization pairs. In Proceedings of the 4th international conference on Computational Linguistics and
Intelligent text processing (CICLing 03).

Rajesh Bhatt, Bhuvana Narasimhan, Martha Palmer, Owen Rambow, Dipti Sharma, and Fei Xia. 2009. A Multi-
Representational and Multi-Layered Treebank for Hindi/Urdu. In Proceedings of the Third Linguistic Annota-
tion Workshop, pages 186–189, Suntec, Singapore, August. Association for Computational Linguistics.

Pushpak Bhattacharyya. 2010. IndoWordNet. In Proceedings of the Seventh Conference on International Lan-
guage Resources and Evaluation (LREC’10), pages 3785–3792.

Miriam Butt and Tracy Holloway King. 2007. Urdu in a Parallel Grammar Development Environment. Lan-
guage Resources and Evaluation: Special Issue on Asian Language Processing: State of the Art Resources and
Processing, 41.

Miriam Butt, Tracy Holloway King, Marı́a-Eugenia Niño, and Frédérique Segond. 1999. A Grammar Writer’s
Cookbook. CSLI Publications.

Miriam Butt, Helge Dyvik, Tracy Holloway King, Hiroshi Masuichi, and Christian Rohrer. 2002. The Parallel
Grammar Project. In Proceedings of the COLING-2002 Workshop on Grammar Engineering and Evaluation,
pages 1–7.

Miriam Butt, Tina Bögel, Annette Hautli, Sebastian Sulger, and Tafseer Ahmed. 2012. Identifying Urdu Complex
Predication via Bigram Extraction. In In Proceedings of COLING 2012, Technical Papers, pages 409 – 424,
Mumbai, India.

Miriam Butt. 1995. The Structure of Complex Predicates in Urdu. CSLI Publications.

Miriam Butt. 2003. The Light Verb Jungle. Harvard Working Papers in Linguistics, 9.

Miriam Butt. 2010. The Light Verb Jungle: Still Hacking Away. In Mengistu Amberber, Brett Baker, and Mark
Harvey, editors, Complex Predicates in Cross-Linguistic Perspective. Cambridge University Press.

Dick Crouch, Mary Dalrymple, Ronald M. Kaplan, Tracy Holloway King, John T. Maxwell III, and Paula Newman,
2012. XLE Documentation. Palo Alto Research Center.

9

Mary Dalrymple, Ronald M. Kaplan, and Tracy Holloway King. 2004. Linguistic Generalizations over De-
scriptions. In Miriam Butt and Tracy Holloway King, editors, Proceedings of the LFG04 Conference. CSLI
Publications.

Alice Davison. 2005. Phrasal predicates: How N combines with V in Hindi/Urdu. In Tanmoy Bhattacharya,
editor, Yearbook of South Asian Languages and Linguistics, pages 83–116. Mouton de Gruyter.

Anette Frank, Tracy Holloway King, Jonas Kuhn, and John T. Maxwell III. 1998. Optimality Theory Style Con-
straint Ranking in Large-scale LFG Grammars. In Proceedings of the LFG98 Conference. CSLI Publications.

Peter Hook. 1974. The Compound Verb in Hindi. Center for South and Southeast Asian Studies, University of
Michigan.

Muhammad Humayoun. 2006. Urdu Morphology, Orthography and Lexicon Extraction. Master’s thesis, Depart-
ment of Computing Science, Chalmers University of Technology.

Yamuna Kachru. 2006. Hindi. John Benjamins.

Andreas Lamprecht, Annette Hautli, Christian Rohrdantz, and Tina Bögel. 2013. A Visual Analytics System
for Cluster Exploration. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 109–114, Sofia, Bulgaria, August. Association for Computational
Linguistics.

Beth Levin. 1993. English Verb Classes and Alternations. A Preliminary Investigation. The University of Chicago
Press.

James B. MacQueen. 1967. Some Methods for Classification and Analysis of Multivariate Observations. In
Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pages 281–297. University
of California Press.

Muhammad Kamran Malik, Tafseer Ahmed, Sebastian Sulger, Tina Bögel, Atif Gulzar, Ghulam Raza, Sarmad
Hussain, and Miriam Butt. 2010. Transliterating Urdu for a Broad-Coverage Urdu/Hindi LFG Grammar. In
Proceedings of the Seventh Conference on International Language Resources and Evaluation (LREC 2010).

Tara Mohanan. 1994. Argument Structure in Hindi. CSLI Publications.

Ryan North. 2005. Computational Measures of the Acceptability of Light Verb Constructions. Ph.D. thesis,
University of Toronto.

Alan Prince and Paul Smolensky. 2004. Optimality Theory: Constraint Interaction in Generative Grammar.
Blackwell Publishing.

Ghulam Raza. 2011. Subcategorization Acquisition and Classes of Predication in Urdu. Ph.D. thesis, University
of Konstanz.

Siva Reddy and Serge Sharoff. 2011. Cross Language POS Taggers (and other Tools) for Indian Languages:
An Experiment with Kannada using Telugu Resources. In Proceedings of the Fifth International Workshop On
Cross Lingual Information Access, pages 11–19, Chiang Mai, Thailand, November. Asian Federation of Natural
Language Processing.

Ruth Laila Schmidt. 1999. Urdu: An Essential Grammar. Routledge.

Shiva Taslimipoor, Afsaneh Fazly, and Ali Hamzeh. 2012. Using Noun Similarity to Adapt an Acceptability
Measure for Persian Light Verb Constructions. In Nicoletta Calzolari (Conference Chair), Khalid Choukri,
Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph Mariani, Jan Odijk, and Stelios Piperidis,
editors, Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12),
Istanbul, Turkey, may. European Language Resources Association (ELRA).

S. Urooj, F. Jabeen, F. Adeeba, R. Parveen., and S. Hussain. 2012. Urdu Digest Corpus. In Proceedings of the
Conference on Language and Technology 2012, Lahore, Pakistan.

Tim Van de Cruys. 2006. Semantic Clustering in Dutch. In Proceedings of the Sixteenth Computational Linguis-
tics in Netherlands (CLIN), pages 17–32.

10

Proceedings of the 5th Workshop on South and Southeast Asian NLP, 25th International Conference on Computational Linguistics, pages 11–19,
Dublin, Ireland, August 23-29 2014.

11

XygZpIbr �`g¡f�Y8ī
OQG} >�`]§
qXg4Ly ě&¡`¬
XygpXayZ �`¡YGĩ�f
jøygaĘap W�`¶T�YÃä

12

V

C Cnj

D

M

si sf E Σ

S S−a

Snj Cnj Snj−a

S← C ∗ VD? S−a ← C ∗ (V− a)D? Snj ← Cnj?CVD? Snj−a ← Cnj?C(V− a)D?

Bi Bf Bi ←M|si Bf ←M|sf

φ → ψ/λ ρ φ ψ
λ ρ λ ρ

Pre

Suf

13

M

Bm = E →M/Pre Suf

Wf = a→ E/(BiS + C+) Bf | →
W3 = a→ E/(BiSC) (S−aBf) | →
W3vy = a→ E/(BiS(y|v)) (SBf) | →
W4 = a→ E/(BiSC) (SnjSBf) | →

W4y = a→ E/(BiSSy) (SnjBf) | →
W43 = a→ E/(BiSS−aC) (SnjBf) | →

WP2 = a→ E/(BiSC) (SnjSS + Bf) | →
WPl = a→ E/(BiSS(y|l|v)) (SnjSS + Bf) | →
WP3 = a→ E/(BiS−aS) (SnjSS + Bf) | →

Wtri = a→ E/(SC) Snj | →
Wgrm = a→ E/(BiSSS + (w|y)) lVD?) | →

Br

Wd = Bm ◦W3 ◦W3vy ◦W4y ◦W43 ◦WP2 ◦WPl ◦WP3 ◦Wtri ◦Wgrm ◦Wf ◦Br

? C ļa
ļk 0 3 O� X�

Rvc

Ri = ī→ i/(C + D?Bf | →
Ru = ū→ u/(C + D?Bf | →

Rvmk

Rkn = Wd ◦ Rvc ◦ Ri ◦ Ru ◦ Rvmk

I

Rknp = π2(Rkn ◦ I)

Rknp Rknm

ALkn

Tknl = Rknm ◦ALkn

14

0 1
<s>:<s>

2
s:s

3
a:a

4
r:r

5
a:�

6
p:p

7
a:a

8
:

9
✓:i

10
<\s>:<\s>

Rkn jb\er

0 1
<s>:<s>/2.1133e-05

2
t:t/3.1532

3✏:✏/9.4242

4

o:o/2.7203

5: /3.1051

6
: /2.7583

7u:u/3.4444

8
⌫:⌫/5.6025

9

u:u/1.4725
10

⌫:⌫/5.354

11: /1.3945

12
: /2.8013

13
: /-0.52867

: /2.8013

14k:k/0.45317

15
k:k/2.1108

16
k:k/-0.26705

17/-2.1753<\s>:<\s>/0.09499

18/-3.2288
<\s>:<\s>/0.28196

19/-2.1753
<\s>:<\s>/0.09499

Tdv2kn V}St 4G

Nkn

Tknl

Tdv2kn = Rknm ◦Nkn

Tdv2kn = Tknl ◦Nkn

Tdv2kn

Wd

ACdv ACdv

Ď6y±ŉ
çLGQtZ çLûQtZ

ûQ

TWy¶ gjVt gĞVt ĞV

Rkn

Reo

15

0 1
<s>:<s>

2
c:c

3
i:i

4
k:k

5
a:a

6
t:t

8✓:✓

7

u:u 9

n:n

n:n 10
a:a

11
<\s>:<\s>

Rdv Ď6y±ŉ

0 1
<s>:<s>

2
v:v

3
a:a

4
s:s

6t:t

5

a:a 9

⇣:⇣

8u:u

7
t:t

⇣:⇣

10u:u

11
<\s>:<\s>

<\s>:<\s>

<\s>:<\s>

Rdv TWy¶

Rdv

Rdv = R−1
kn ◦ (W−1

d ◦ACdv) ◦ Reo

Wir

Rdv = R−1
kn ◦Wir ◦ Reo

Tdv2kn Tkn2dv

Tkn2dv = (π2(Rdv ◦ I) ◦ALdv) ◦Ndv or

Tkn2dv = π2(Rdv ◦ I) ◦Ndv

→
→
→

→

16

0

12<s>:<s>

10<s>:<s>

8
<s>:<s>

6

<s>:<s>

1

<s>:<s>

13
o:o/3.7373

11a:a/8.8837

19o:o/5.4715

7
e:e/10.943

2
o:o/3.7373 3i:i/8.297

4k:k/2.8467 5i:i/6.6737
18</s>:</s>/2.7255

14
i:i/4.5017 15

k:k/2.84679
n:n/5.4715 i:i/4.0928

i:i/3.8662

i:i/8.297

16
i:i/6.6737

17
o:o/1.5448 </s>:</s>/-2.3985

Lp 26Àf

Nknrm I

Arm

Lp

Lp = π2(I ◦Nknrm) ◦Arm

ALrm Lp

Lp

Tkn2rm = Lp ◦ALrm or Tknr2rm = shortest(Lp)

→

Nknrm

Lp = π2(I ◦Nrmkn) ◦Aind

Tkn2rm = Lp ◦ALkn or Tkn2rm = shortest(Lp)

Wd

Tdv2rm

Lp = π2((Wd ◦ I) ◦Ndvrm) ◦Arm

Tdv2rm = Lp ◦ALrm or Tdv2rm = shortest(Lp)

17

Lp = π2((Wir ◦ I) ◦Nrmdv) ◦Aind

Trm2dv = Lp ◦ALdv or Trm2dv = shortest(Lp)

18

19

Proceedings of the 5th Workshop on South and Southeast Asian NLP, 25th International Conference on Computational Linguistics, pages 20–27,
Dublin, Ireland, August 23-29 2014.

Integrating Dictionaries into an Unsupervised Model for
Myanmar Word Segmentation

Ye Kyaw Thu
NICT

Keihanna Science City
Kyoto, Japan

yekyawthu@nict.go.jp

Andrew Finch
NICT

Keihanna Science City
Kyoto, Japan

andrew.finch@nict.go.jp

Eiichiro Sumita
NICT

Keihanna Science City
Kyoto, Japan

eiichiro.sumita@nict.go.jp

Yoshinori Sagisaka
GITI/Speech Science Research Lab.

Waseda Univerity
Tokyo, Japan

ysagisaka@gmail.com

Abstract

This paper addresses the problem of word segmentation for low resource languages, with the
main focus being on Myanmar language. In our proposed method, we focus on exploiting lim-
ited amounts of dictionary resource, in an attempt to improve the segmentation quality of an
unsupervised word segmenter. Three models are proposed. In the first, a set of dictionaries
(separate dictionaries for different classes of words) are directly introduced into the generative
model. In the second, a language model was built from the dictionaries, and the n-gram model
was inserted into the generative model. This model was expected to model words that did not
occur in the training data. The third model was a combination of the previous two models. We
evaluated our approach on a corpus of manually annotated data. Our results show that the pro-
posed methods are able to improve over a fully unsupervised baseline system. The best of our
systems improved the F-score from 0.48 to 0.66. In addition to segmenting the data, one pro-
posed method is also able to partially label the segmented corpus with POS tags. We found that
these labels were approximately 66% accurate.

1 Introduction

In many natural language processing applications, for example machine translation, parsing and tagging,
it is essential to have text that is segmented into sequences of tokens (these tokens usually represent
‘words’). In many languages, including the Myanmar language (alternatively called the Burmese lan-
guage), Japanese, and Chinese, words are not necessarily delimited by white space in running text. How-
ever, in some low-resource languages (Myanmar being one) broad-coverage word segmentation tools are
scarce, and there are two common approaches to dealing with this issue. The first is to apply unsuper-
vised word segmentation tools to a body of monolingual text in order to induce a segmentation. The
second is to use a dictionary of words in the language together with a set of heuristics to identify word
boundaries in text.

Myanmar language can be accurately segmented into a sequence of syllables using finite state au-
tomata (examples being (Berment, 2004; Thu et al., 2013a)). However, words composed of single or
multiple syllables are not usually separated by white space. Although spaces are sometimes used for
separating phrases for easier reading, it is not strictly necessary, and these spaces are rarely used in short
sentences. There are no clear rules for using spaces in Myanmar language, and thus spaces may (or
may not) be inserted between words, phrases, and even between a root word and its affixes. Myanmar
language is a resource-poor language and large corpora, lexical resources, and grammatical dictionaries
are not yet widely available. For this reason, using corpus-based machine learning techniques to develop
word segmentation tools is a challenging task.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

20

2 Related Work

In this section, we will briefly introduce some proposed word segmentation methods with an emphasis
on the schemes that have been applied to Myanmar.

Many word segmentation methods have been proposed especially for the Thai, Khmer, Lao, Chi-
nese and Japanese languages. These methods can be roughly classified into dictionary-based (Sorn-
lertlamvanich, 1993; Srithirath and Seresangtakul, 2013) and statistical methods (Wu and Tseng, 1993;
Maosong et al., 1998; Papageorgiou and P., 1994; Mochihashi et al., 2009; Jyun-Shen et al., 1991). In
dictionary-based methods, only words that are stored in the dictionary can be identified and the perfor-
mance depends to a large degree upon the coverage of the dictionary. New words appear constantly and
thus, increasing size of the dictionary is a not a solution to the out of vocabulary word (OOV) problem.
On the other hand, although statistical approaches can identify unknown words by utilizing probabilistic
or cost-based scoring mechanisms, they also suffer from some drawbacks. The main issues are: they
require large amounts of data; the processing time required; and the difficulty in incorporating linguistic
knowledge effectively into the segmentation process (Teahan et al., 2000). For low-resource languages
such as Myanmar, there is no freely available corpus and dictionary based or rule based methods are
being used as a temporary solution.

If we only focus on Myanmar language word segmentation, as far as the authors are aware there have
been only two published methodologies, and one study. Both of the proposed methodologies operate
according using a process of syllable breaking followed by Maximum Matching; the differences in the
approaches come from the manner in which the segmentation boundary decision is made. In (Thet et al.,
2008) statistical information is used (based on bigram information), whereas (Htay and Murthy, 2008)
utilize a word list extracted from a monolingual Myanmar corpus.

In a related study (Thu et al., 2013a), various Myanmar word segmentation approaches including
character segmentation, syllable segmentation, human lexical/phrasal segmentation, unsupervised and
semi-supervised word segmentation, were investigated. They reported that the highest quality machine
translation was attained either without word segmentation using simply sequences of syllables, or by
a process of Maximum Matching with a monolingual dictionary. In this study the effectiveness of ap-
proaches unsupervised word segmentation using latticelm (with 3-gram to 7-gram language models) and
supervised word segmentation using KyTea was evaluated, however, none of the approaches was able to
match the performance of the simpler syllable/Maximum Matching techniques.

In (Pei et al., 2013) an unsupervised Bayesian word segmentation scheme was augmented by using a
dictionary of words. These words were obtained from segmenting the data using another unsupervised
word segmenter. The probability distribution over these words was calculated from occurrence counts,
and this distribution was interpolated into the base measure.

3 Methodology

3.1 Baseline Non-parametric Bayesian Segmentation Model

The baseline system, and the model that forms the basis for all of the models is a non-parametric Bayesian
unsupervised word segmenter similar to that proposed in (Goldwater et al., 2009). The major differences
being the sampling strategy and the base measure. The principles behind this segmenter are described
below.

Intuitively, the model has two basic components: a model for generating an outcome that has already
been generated at least once before, and a second model that assigns a probability to an outcome that
has not yet been produced. Ideally, to encourage the re-use of model parameters, the probability of
generating a novel segment should be considerably lower then the probability of generating a previously
observed segment. This is a characteristic of the Dirichlet process model we use and furthermore, the
model has a preference to generate new segments early on in the process, but is much less likely to do so
later on. In this way, as the cache becomes more and more reliable and complete, so the model prefers to
use it rather than generate novel segments. The probability distribution over these segments (including an
infinite number of unseen segments) can be learned directly from unlabeled data by Bayesian inference
of the hidden segmentation of the corpus.

The underlying stochastic process for the generation of a corpus composed of segments sk is usually
written in the following from:

21

G|α,G0 ∼ DP (α, G0)
sk|G ∼ G (1)

G is a discrete probability distribution over the all segments according to a Dirichlet process prior
with base measure G0 and concentration parameter α. The concentration parameter α > 0 controls the
variance of G; intuitively, the larger α is, the more similar G0 will be to G.

3.1.1 The Base Measure
For the base measure G0 that controls the generation of novel sequence-pairs, we use a spelling model
that assigns probability to new segments according to the following distribution:

G0(s) = p(|s|)p(s||s|)

=
λ|s|

|s|! e
−λ|V |−|s| (2)

where |s| is the number of tokens in the segment; |V | and is the token set size; and λ is the expected
length of the segments.

According to this model, the segment length is chosen from a Poisson distribution, and then the el-
ements of the segment itself is generated given the length. Note that this model is able to assign a
probability to arbitrary sequences of tokens drawn from the set of tokens V (in this paper V is the set
of all Myanmar syllables). The motivation for using a base measure of this form, is to overcome issues
with overfitting when training the model; other base measures are possible for example the enhancement
proposed in Section 3.4.

3.1.2 The Generative Model
The generative model is given in Equation 3 below. The equation assignes a probability to the kth

segment sk in a derivation of the corpus, given all of the other segments in the history so far s−k. Here
−k is read as: “up to but not including k”.

p(sk|s−k) =
N(sk) + αG0(sk)

N + α
(3)

In this equation, N is the total number of segments generated so far, N(sk) is the number of times the
segment sk has occurred in the history. G0 and α are the base measure and concentration parameter as
before.

3.1.3 Bayesian Inference
We used a blocked version of a Gibbs sampler for training. In (Goldwater et al., 2006) they report
issues with mixing in the sampler that were overcome using annealing. In (Mochihashi et al., 2009)
this issue was overcome by using a blocked sampler together with a dynamic programming approach.
Our algorithm is an extension of application the forward filtering backward sampling (FFBS) algorithm
(Scott, 2002) to the problem of word segmentation presented in (Mochihashi et al., 2009). We extend
their approach to handle the joint segmentation and alignment of character sequences. We refer the reader
to (Mochihashi et al., 2009) for a complete description of the FFBS process. In essence the process uses
a forward variable at each node in the segmentation graph to store the probability of reaching the node
from the source node of the graph. These forward variables are calculated efficiently in a single forward
pass through the graph, from source node to sink node (forward filtering). During backward sampling, a
single path through the segmentation graph is sampled in accordance with its probability. This sampling
process uses the forward variables calculated in the forward filtering step.

In each iteration of the training process, each entry in the training corpus was sampled without re-
placement; its segmentation was removed and the models were updated to reflect this. Then a new
segmentation for the sequence was chosen using the FFBS process, and the models were updated with

22

the counts from this new segmentation. The two hyperparameters, the Dirichlet concentration parameter
α, and the Poisson rate parameter λ were set by slice sampling using vague priors (a Gamma prior in the
case of α and the Jeffreys prior was used for λ). The token set size V used in the base measure was set
to the number of types in the training corpus, and V = 3363.

3.2 Dictionary Augmented Model
The dictionary augmented model is in essence the same model as proposed by (Thu et al., 2013b), but
a different dictionary was used. Their method integrates dictionary-based word segmentation (similar to
the maximum matching approaches used successfully in (Thet et al., 2008; Htay and Murthy, 2008; Thu
et al., 2013a)) into a fully unsupervised Bayesian word segmentation scheme.

Dictionary-based word segmentation has the advantage of being able to exploit human knowledge
about the sequences of characters in the language that are used to form words. This approach is simple
and has proven to be a very effective technique in previous studies. Problems arise due to the coverage
of the dictionary. The dictionary may not be able to cover the running text well, for example in the case
of low-resource languages the dictionary might be small, or in the case of named entities, even though a
comprehensive dictionary of common words may exist, it is likely to fall far short of covering all of the
words that can occur in the language.

Unsupervised word segmentation techniques, have high coverage. They are able to learn how to
segment by discovering patterns in the text that recur. The weakness of these approaches is that they
have no explicit knowledge of how words are formed in the language, and the sequences they discover
from text may simply be sequences in text that frequently occur and may bear no relationship to actual
words in the language. As such these units, although they are useful in the context of the generative
model used to discover them, may not be appropriate for use in an application that might benefit from
these segments being words in the language. We believe that machine translation is one such application.

This method gives the unsupervised method a means of exploiting a dictionary of words in its training
process, by allowing the integrated method to use the dictionary to segment text when appropriate, and
otherwise use its unsupervised models to handle the segmentation. To do this a separate dictionary
generation process is integrated into the generative model of the unsupervised segmenter to create a
semi-supervised segmenter that segments using a single unified generative model.

3.3 Dictionary Set Augmented Model
In this model, the a set of subsets of the dictionary were extracted based on the part-of-speech labels
contained in the dictionary (Lwin, 1993). This set of subsets was not a partition of the original dictionary
since some of the types in the dictionary were ambiguous causing some overlap of the subsets. In the
previous model, during the generative process a decision was made, with a certain probability learned
from the data, as to whether the segment would be generated from the unsupervised sub-model or the
dictionary sub-model. In this model, the decision to generate from the dictionary model is refined into a
number of decisions to generate from a number of subsets of the dictionary, each with its own probability.
These probabilities were re-estimated from the sampled segmentation of the corpus at the end of each
iteration of the training (in a similar manner to the dictionary augmented model). A diagram showing
the generative process is shown in Figure 1.

3.4 Language Model Augmented Model
In (Theeramunkong and Usanavasin, 2001) dictionary approaches were deliberately avoided in order
to address issues with unknown words. Instead a decision tree model for segmentation was proposed.
Our approach although different in character (since a generative model is used), shares the insight that
knowledge of how words are constructed is key to segmentation when dictionary information is absent.

In this model we used the dictionary resource, but in a more indirect manner. We use a language model
to capture the notion of exactly what constitutes a segment. To do this words in the dictionary were first
segmented into syllables. Then, a language model was trained on this segmented dictionary. This model
will assign high probabilities to the words it has been trained on, and therefore in some sense is able
to capture the spirit of the dictionary-based methods described previously. However, it will also have
learned something about the way Myanmar words are composed from syllables, and can be expected to
assign a higher probability to unknown words that resemble the words it has been trained on, than to
sequences of syllables that are not consistent with its training data.

23

DP ModelP(unsupervised)

P(D1)

P(D2)

P(D
n)

D1 Model

D2 Model

Dn M
odel

Figure 1: Generative process with multiple dictionaries competing to generate the data alongside an
unsupervised Dirichlet process model.

This model can be naturally introduced directly into the Dirichlet process model as a component of
the base measure. Equation 2 decomposes into two terms:

1. A Poisson probability mass function: λ|s|
|s|! e

−λ

2. A uniform distribution over the vocabulary: 1
|V ||s| .

The first term above models the choice of length for the segment. The second term models the choice
of syllables that comprise the segment is in essence a unigram language model that provides little infor-
mation about segments are constructed, and serves simply to discourage the formation of long segments
that would lead to overfitting. We directly replace the part of the base measure with our more informative
language model built from the dictionary.

4 Experiments

4.1 Overview
In the experimental section we aim to analyze two aspects of the performance of the proposed segmen-
tation approaches. Firstly their segmentation quality and secondly for those approaches that are capable
of partially labeling the corpus, the accuracy of the labeling.

4.2 Corpora
For all our experiments we used a 160K-sentence subset of the Basic Travel Expression (BTEC) corpus
(Kikui et al., 2003), for the Myanmar language. This corpus was segmented using an accurate rule-based
approach into individual syllables, and this segmentation was used as the base segmentation in all our
experiments.

In addition a test corpus was made by sampling 150-sentences randomly from the corpus. This corpus
was then segmented by hand and the segments were annotated manually using the set of POS tags that
our system was capable of annotating, together with an ‘UNK’ tag to annotate segments that fell out of
this scope. The test sentences were included in the data used for the training of the Bayesian models.
These sentences were treated in the same manner the rest of the data in that they were initially syllable
segmented. At the end of the training, the test sentences together with the segmentation assigned by the
training, were extracted from the corpus, and their segmentation/labeling was evaluated with reference
to the human annotation.

4.3 Segmentation Performance
We used the Edit Distance of the Word Separator (EDWS) to evaluate the segmentation performance of
the models. This technique yields precision, recall and F-score statistics from the edit operations required
to transform one segmented sequence into another by means of the insertion, deletion and substitution of
segmentation boundaries. In this measure the substitution operator corresponds to an identity substitution
and therefore indicates a correct segment boundary. Insertions correspond to segmentation boundaries in

24

Method Precision Recall F-score Sub Ins Del
Unsupervised 82.27 33.82 0.48 348 681 75
Maximum Matching 78.39 99.42 0.88 1023 6 282
Dictionary 89.67 57.34 0.70 590 439 68
Dictionary Set 89.46 51.99 0.66 535 494 63
Language Model (LM) 88.15 31.10 0.46 320 709 43
Dictionary Set + LM 91.27 49.76 0.64 512 517 49

Table 1: Segmentation Performance.

the segmented output that do not correspond to any segmentation boundary in the reference. Deletions
correspond to segmentation boundaries in the reference that do not correspond to any segmentation
boundary in the segmented output. Precision recall and F-score are calculated as follows using the
Chinese Word Segmentation Evaluation Tookit (Joy, 2004):

precision =
#substitutions

#segment boundaries in output

recall =
#substitutions

#segment boundaries in reference

F-score =
2 ∗ precision ∗ recall

precision + recall

Table 1 shows the segmentation performance all of the systems. In terms of precision we see an im-
provement when the additional models are added to the baseline unsupervised model. The maximum
matching strategy has the lowest precision but the highest recall, this is due to the over-generation of
segmentation boundaries in regions where no dictionary matches are possible. In these regions the ref-
erence segmentation boundaries are always annotated (since the model defaults to syllable segmentation
in these regions), but at the expense of precision. This is reflected in the relatively low numbers of inser-
tions (6), and the relatively high number of deletions (282). As expected the dictionary set approach gave
similar performance to the Dictionary approach. The language model approach produced a respectable
level of precision, but a low value for recall. When integrated into the dictionary-based models however,
it was able to increase precision.

4.4 Labeling Accuracy
We evaluated the accuracy of the labeling on two methods: the first method used only a set of dictio-
naries (as described in Section 3.3). This method was able to label with an accuracy of 64.53%. The
second method consisted of the same technique, but with the addition of the language model trained on
the syllable segmented dictionaries (as described in Section 3.4). We found that the dictionary-based
language model was able to improved the labeling accuracy 1.2% to 65.73%.

5 Examples and Analysis

Figure 2 shows an example an unsupervised segmentation with a typical error. Frequent words are often
attached to neighboring words to form erroneous compound segments. In this example, taken from real
output of the segmenter, the word ‘De’ (this) has been attached to the word ‘SarOuk’ (book), and similar
the words in the phrase ‘KaBeMharLe’ (where is it) have all been segmented as a single segment (which
occurs frequently in the corpus).

In Figure 3, a typical segmentation from the maximum matcher is shown. In this example the word
‘BarThar’ (language) occurs in the dictionary but the word ‘JaPan’ (Japan) does not. The maximum
matcher defaults to segmenting the word for Japan into its component syllables, whereas the unsuper-
vised segmenter with dictionary has attempted an unsupervised segmentation on this part of the string.
The word ‘Japan’ occurs sufficiently frequently in the BTEC corpus that the segmenter has been able to

25

this book
ဒ"စ$အuပ(

DeSarOuk

where is it.
ကဘယ(မ-$လ/။
KaBeMharLe

Figure 2: An unsupervised segmentation.

learn the word during training and has thereby managed to successfully segment the word in the output.
The word for language was segmented by means of the embedded dictionary model.

Figure 4 shows an example of the partial labeling produced from the model that used a set of dictio-
naries in combination with a dictionary-based language model in the base measure. Due to the small
amount of resources available, substantial parts of the sequence are unable to be labeled (and are anno-
tated with the ‘U’ tag in the figure, indicating that they were segmented by the unsupervised component
of the model). The remainder of the words are annotated with POS tags corresponding to the dictionary
they were generated from.

Japan
ဂ"ပန%

Ja Pan

language
ဘ'သ'
BarThar

N/A
ဂ"
Ja

N/A
ပန%
Pan

language
ဘ'သ'
BarThar

Maximum Matching

Unsupervised with dictionary

Figure 3: A segmentation from maximum matching.

I
က"န$eတ'$/PRO

KyunDaw

manager
မန$eနဂ*'/NS

ManNayJar

phonecall
ဖuန$-ကiueခ0/U
PhoneGoKhaw

doing
 eနတ'ပ2/U
NayDarBar

.
။/P

Figure 4: A partially labeled segmentation.

6 Conclusion

In this paper we have proposed and investigated the effectiveness of several methods intended to exploit
limited quantities of dictionary resources available for low resource languages. Our results show that
by integrating a dictionary directly into an unsupervised word segmenter we were able to improve both
precision and recall. We found that attempting to model word formation using a language model on
its own was ineffective compared with the approaches that directly used a dictionary. However, this
language model proved useful when used in conjunction with the direct dictionary-based models, where
it served to assist the modeling of words that were not in the dictionary. In future work we intend to
develop the dictionary set approach by extending it to introduce basic knowledge of the morphological
structure of the language directly into the model.

References
Vincent Berment. 2004. Sylla and gmsword: applications to myanmar languages computerization. In Burma

Studies Conference.

26

Sharon Goldwater, Thomas L. Griffiths, and Mark Johnson. 2006. Contextual dependencies in unsupervised word
segmentation. In ACL-44: Proceedings of the 21st International Conference on Computational Linguistics and
the 44th annual meeting of the Association for Computational Linguistics, pages 673–680, Morristown, NJ,
USA. Association for Computational Linguistics.

Sharon Goldwater, Thomas L Griffiths, and Mark Johnson. 2009. A bayesian framework for word segmentation:
Exploring the effects of context. Cognition, 112(1):21–54.

Hla Hla Htay and Kavi Narayana Murthy. 2008. Myanmar word segmentation using syllable level longest match-
ing. In IJCNLP, pages 41–48.

Joy, 2004. Chinese Word Segmentation Evaluation Toolkit.

Chang Jyun-Shen, Chi-Dah Chen, and Shun-Der Chen. 1991. Chinese word segmentation through constraint
satisfaction and statistical optimization. In Proceedings of ROC Computational Linguistics Conference, pages
147–165.

G. Kikui, E. Sumita, T. Takezawa, and S. Yamamoto. 2003. Creating corpora for speech-to-speech translation. In
Proceedings of EUROSPEECH-03, pages 381–384.

San Lwin. 1993. Myanmar - English Dictionary. Department of the Myanmar Language Commission, Ministry
of Education, Union of Myanmar.

Sun Maosong, Shen Dayang, and Benjamin K. Tsou. 1998. Chinese word segmentation without using lexicon and
hand-crafted training data. In Proceedings of the 17th international conference on Computational linguistics -
Volume 2, COLING ’98, pages 1265–1271, Stroudsburg, PA, USA. Association for Computational Linguistics.

Daichi Mochihashi, Takeshi Yamada, and Naonori Ueda. 2009. Bayesian unsupervised word segmentation with
nested pitman-yor language modeling. In ACL-IJCNLP ’09: Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the
AFNLP: Volume 1, pages 100–108, Morristown, NJ, USA. Association for Computational Linguistics.

Papageorgiou and Constantine P. 1994. Japanese word segmentation by hidden markov model. In Proceedings of
the workshop on Human Language Technology, HLT ’94, pages 283–288, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Wenzhe Pei, Dongxu Han, and Baobao Chang. 2013. A refined hdp-based model for unsupervised chinese word
segmentation. In Maosong Sun, Min Zhang, Dekang Lin, and Haifeng Wang, editors, Chinese Computational
Linguistics and Natural Language Processing Based on Naturally Annotated Big Data, volume 8202 of Lecture
Notes in Computer Science, pages 44–51. Springer Berlin Heidelberg.

Steven L Scott. 2002. Bayesian methods for hidden markov models : Recursive computing in the 21st century.
Journal of the American Statistical Association, 97(457):337–351.

Virach Sornlertlamvanich. 1993. Word segmentation for thai in machine translation system. Machine Translation,
National Electronics and Computer Technology Center, Bangkok, pages 50–56.

A Srithirath and P. Seresangtakul. 2013. A hybrid approach to lao word segmentation using longest syllable level
matching with named entities recognition. In Electrical Engineering/Electronics, Computer, Telecommunica-
tions and Information Technology (ECTI-CON), 2013 10th International Conference on, pages 1–5, May.

W. J. Teahan, Rodger McNab, Yingying Wen, and Ian H. Witten. 2000. A compression-based algorithm for
chinese word segmentation. Comput. Linguist., 26(3):375–393, September.

Thanaruk Theeramunkong and Sasiporn Usanavasin. 2001. Non-dictionary-based thai word segmentation us-
ing decision trees. In In Proceedings of the First International Conference on Human Language Technology
Research.

Tun Thura Thet, Jin-Cheon Na, and Wunna Ko Ko. 2008. Word segmentation for the myanmar language. J.
Information Science, 34(5):688–704.

Ye Kyaw Thu, Andrew Finch, Yoshinori Sagisaka, and Eiichiro Sumita. 2013a. A study of myanmar word
segmentation schemes for statistical machine translation. Proceeding of the 11th International Conference on
Computer Applications, pages 167–179.

Ye Kyaw Thu, Andrew Finch, Eiichiro Sumita, and Yoshinori Sagisaka. 2013b. Unsupervised and semi-supervised
myanmar word segmentation approaches for statistical machine translation.

Zinmin Wu and Gwyneth Tseng. 1993. Chinese text segmentation for text retrieval: Achievements and problems.
Journal of the American Society for Information Science, 44(5):532–542.

27

Proceedings of the 5th Workshop on South and Southeast Asian NLP, 25th International Conference on Computational Linguistics, pages 28–36,
Dublin, Ireland, August 23-29 2014.

A Framework for Learning Morphology using Suffix Association
Matrix

Shilpa Desai
Department of Computer
Science and Technology

Goa University, Goa,
India

sndesai@gmail.com

Jyoti Pawar
Department of Computer
Science and Technology

Goa University, Goa,
India

jyotidpawar@gmail.com

Pushpak Bhattacharyya
Department of Computer
Science and Engineering

IIT, Powai,
Mumbai India

pb@cse.iitb.ac.in

|| �ी गणेशाय नम: ||

Abstract

Unsupervised learning of morphology is used for automatic affix identification, morphological segmentation of
words and generating paradigms which give a list of all affixes that can be combined with a list of stems.
Various unsupervised approaches are used to segment words into stem and suffix. Most unsupervised methods
used to learn morphology assume that suffixes occur frequently in a corpus. We have observed that for
morphologically rich Indian Languages like Konkani, 31 percent of suffixes are not frequent. In this paper we
report our framework for Unsupervised Morphology Learner which works for less frequent suffixes. Less
frequent suffixes can be identified using p-similar technique which has been used for suffix identification, but
cannot be used for segmentation of short stem words. Using proposed Suffix Association Matrix, our
Unsupervised Morphology Learner can also do segmentation of short stem words correctly. We tested our
framework to learn derivational morphology for English and two Indian languages, namely Hindi and Konkani.
Compared to other similar techniques used for segmentation, there was an improvement in the precision and
recall.

1 Introduction

Learning morphology by a machine is crucial for tasks like stemming, machine translation etc. Rule
based affix stripping approach, semi-supervised, unsupervised learning of morphology and finite state
approach as some of the well known methods used to learn morphology by a machine. Rule based
affix stripping approaches (Lovins, 1968; Porter, 1980; Paice, 1990; Loftsson, 2008; Maung et. al,
2008) depend heavily on linguistic input and require a lot of human effort, especially for
morphologically rich languages. Pure unsupervised approaches learn morphology from a corpus
(Freitag, 2005; Goldsmith, 2001; Hammarström, 2011). The accuracy of pure unsupervised methods is
relatively low. Semi-supervised approaches use minimal linguistic input and unsupervised methods to
automate morphology learning process (Forsberg, 2007; Lindén, 2008; Chan, 2008; Dreyer, 2011).
Semi-supervised approaches perform better than pure unsupervised approaches. Finite state
approaches (Koskenniemi, 1983; Beesley & Kartunnen, 2003) represent morphology using finite state
machines. Finite state approaches require linguistic input in the form of paradigm identification.
Unsupervised and semi-supervised methods can provide input to build finite state based morphology
systems reducing the time taken to build such systems.

In this paper we report the framework for an Unsupervised Morphology Learner. Most
unsupervised segmentation techniques (Freitag, 2005; Goldsmith, 2001; Hammarström, 2011) which
learn morphology from a corpus assume that suffixes are frequent in a corpus. We observed that for
morphologically rich Indian languages like Hindi and Konkani, the assumption that suffixes are
frequent does not hold true. These languages are morphologically rich and 31 percent of verb suffixes
are not frequent in the corpus. Thus, we choose not to make any such assumption about the frequency
of suffix occurrence in our unsupervised learning of morphology. One promising methodology for
unsupervised segmentation which does not make any suffix frequency assumptions is p-similar

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

28

technique for morpheme segmentation first proposed by Gaussier (1999). Researchers have used this
method for suffix identification and not for segmentation (Gaussier, 1999; Sharma, 2006). We
extended this less studied technique to segment words by introducing the concept of suffix association
matrix, thus giving us an unsupervised method which correctly identifies suffixes irrespective of their
frequency of occurrence in the corpus and also segments short stem words. To the best of our
knowledge, most reported work which uses p-similar technique for suffix identification (Gaussier,
1999; Sharma, 2006) enforce a restriction on stem-length that it should be at least five. This restriction
works well for suffix identification but not for segmentation. For Indian languages like Hindi and
Konkani, we observed that the restriction leads to an inability to segment many words with short stem-
length. Especially many verb stems in Indian languages have stem-length less than five. To overcome
this shortcoming, we have proposed an Unsupervised Morphology Learner (UML) framework.

We implemented UML framework for derivational morphology and tested our method for English
language and two Indian languages namely Konkani and Hindi. The rest of the paper is organized as
follows; section 2 is on related work. Section 3 provides the terminology used in the paper. The
motivation for this work is presented in section 4. Unsupervised Morphology Learner (UML)
framework is presented in section 5. Experimental results are discussed in section 6 and finally we
conclude the paper in section 7.

2 Related Work

Unsupervised learning of morphology is done at different levels, namely, affix list identification,
segmenting word into stem and affix, and generating a list of paradigms i.e. a list of all stems with
information of the suffixes that each stem combines with (Hammarström, 2011). In his survey paper,
Hammarström (2011) summarizes work related to unsupervised morphology. Most recent work in
morphology learning is semi-supervised. Such methods use a small set of example paradigms as input
to train the system and classify unseen words into paradigms or learn new paradigms (Lindén, 2009;
Dreyer, 2011).

A popular pure unsupervised morphology technique was first proposed by Goldsmith (2001) which
does not assume any linguistic input. Goldsmith (2001) introduced a set of heuristics that develops a
probabilistic morphological grammar, and used Minimum Description Length (MDL) as a tool to
evaluate it. The technique used for affix and paradigm identification was based on affix occurrence
frequency. Several different authors have appreciated MDL as the motivation for segmentation. Some
authors (Gelbukh et. al., 2004; Bacchin, 2005) have used random segmentation and picked the best
segmentation to minimize size or find splits where constituent morphemes occur in multiple splits.

Our work is inspired by a less studied p-similar technique proposed by Gaussier (1999). p-similar
techniques have been used for suffix identification rather than segmentation in most related
unsupervised morphology learners (Sharma, 2006). Here the restriction on stem-length first proposed
by Gaussier is upheld. Sharma’s (2006) work deals with neutral suffix only and does not capture non-
neutral suffixes. These studies are limited to suffix identification and do not generate paradigms.

3 Terminology Used

Let L be a language with alphabet set ∑.
W= {w| w ⊂ ∑*} be set of valid words in language L.
Let d: W→W denote a derivation function where d(wx)=wy iff words wx and wy are derivationally
related to each other in L.
Let wxsy denote concatenation of strings wx and sy where wx, sy ∈ ∑*.
Let SN be set of neutral derivational suffixes.
SN = {s|w2=w1s and w2,w1∈W and d(w1)=w2 and s∈ ∑*}
For example, when s=er, w1=farm and w2=farmer
Let SB be set of non-neutral derivational suffixes.
SB = {sx,sy|wsx=wsy and d(wsx)=wsy and w, sx, sy∈ ∑* and w∉W }
For example, when sx=ify, sy=ity and w=quant suffixes ify, ity are non neutral suffixes.

29

4 Motivation

Primarily, frequency based suffix identification techniques (Goldsmith, 2001; Hammarström, 2011)
commonly used in recent times, fail to identify suffixes with low frequency. We explored suffix
identification techniques which could identify suffixes irrespective of frequency of occurrence in the
corpus. We chose one such method p-similar technique. However p-similar technique (Gaussier, 1999)
cannot be used directly for segmentation as it results in a high number of false positives. Hence we
proposed a suffix association matrix to avoid the false positives. According to p-similar technique,
given two words x, y ∈ W, if ∃ b1 such that x=b1s1 and y=b1s2 where b1, s1, s2 ∈ ∑+, then b1 is a stem
and s1, s2 are suffixes, provided they satisfy the following conditions:

a. A suffix is valid only when it occurs with at least two different stems
b. A stem is valid when it occurs with at least two identified suffixes
c. Stem length should be five or more

The third condition on stem length was introduced to improve the precision of the suffix list
generated. However the aim was to only generate a suffix list and not segment word into stem + suffix.
We probed the possibility of applying this effective p-similar technique to segment words. We faced
the following issues when trying to use p-similar technique for segmentation:
• The technique failed for short-stem length words because of the restriction placed on stem-length.

Example words with stem like walk, talk are not segmented.
• When words like addiction, addictive, aggression and aggressive are part of the input, suffixes

identified are “on” and “ve” in place of “ion” and “ive” . This problem is called over-stemming.
• When words like cannon, cannot, America, American, agent, agency are part of the input, “n” and

“t” are identified as suffix. Although “n” and “t” are valid suffix for some words,
cannon=canno+n and cannot=canno+t are wrong segmentation.

We realize that the candidate stem-suffix pair bi+si identified using the p-similar technique falls under
one of the following cases:

Case 1: bi is a valid stem and si is a valid suffix for stem bi. For example, mistake+NULL,
mistake+n are valid. Suffixes NULL and n are valid for stem mistake.
Case 2: bi is an invalid stem and si is a invalid suffix. Example addicti+on and addicti+ve and
aggressi+on and aggressi+ve are invalid; addict+ion and addict+ive and aggress+ion and
aggress+ive are valid.
Case 3: bi is a valid stem and si is a invalid suffix for stem bi. For example year+n is invalid.
Suffix n is invalid for stem year while suffix NULL and ly are valid for stem year.
Case 4: bi is an invalid stem for any suffix and si is valid for some other stem. Example canno+n
and canno+t are invalid pairs; absen-ce and absen-t and valid; mistake+NULL and mistake+n are
valid.

To overcome the problems faced in cases 2, 3 and 4 we have proposed the following framework

5 Unsupervised Morphology Learner Framework

UML can be used to learn derivational morphology or inflectional morphology. When the input given
is a lexicon, the framework will learn derivational morphology. If a corpus is used as input it will learn
both derivational and inflectional morphology and not distinguish between the two. We have tested
our framework with lexicon as input to learn derivational morphology. The framework for the
proposed UML is shown below in Figure 1. UML has five modules. It uses a lexicon resource or a
corpus as input. It generates three final resources and two intermediate resources which are enhanced
into the final resources.
The resource used as input could be:
• Lexicon L: It is list of dictionary words found in the language. This resource is generated from a

WordNet of a language used to learn derivational morphology or
• Corpus C: A collection of un-annotated text used to learn both inflectional and derivational

morphology.

30

The intermediate resource generated:
• Candidate Stem-Suffix List: It is the initial list of stems and suffixes identified for an input

language using the p-similar technique. It consists of two sets namely set of suffix Ssuffix and set of
stem Sstem. Sample entries in these set for English language are Ssuffix = { er, ic, ly, ness, ment, …}
and Sstem= {adorn, attack,….}

• Initial Paradigms: This is a list of all stems with information of which suffixes combine with
which stems in the input lexicon L or Corpus. Sample entry in Initial Paradigms List is ic.y=
academ + allerg + geometr + homeopath + horrif + letharg + majest + prehistor + specif +
strateg where “ic” and “y” are suffixes which combine with the stems like adadem.

The final resources generated:
• Stem-Suffix List: This resource is generated from the Candidate Stem-Suffix List resource by

pruning invalid suffixes. It is a useful resource as it gives the stems of words from a lexicon which
could later be used for identifying stems in a corpus for stemming inflectional words.

• Suffix-Association Matrix: This resource helps us identify for how many instances a suffix s1 has
occurred with a suffix s2 in the Lexicon/Corpus. It is a crucial resource in eliminating the
shortcoming of p-similar technique to morphologically segment words with short stem length as
well as overcome chance association of suffix found.

• Morphology Paradigms: This resource contains paradigms extracted from the words found in the
input lexicon/corpus. It is a refined version of Initial Paradigm resource.

Figure 1: Unsupervised Morphology Learner (UML) Framework

UML comprises of five main modules, a brief description and algorithm for each of the module is
given below:

Module 1 - Suffix Identifier
Description: Identifies the Candidate suffixes using p-similar technique. It generates a temporary
resource namely Candidate Stem-Suffix List. For every word in the corpus, it checks if there is another
word with a common stem, adds common stem to stem list and rest to suffix list, provided that a stem
occurs with more than one suffix and a suffix occurs with more than one stem.

Input: Lexicon /Corpus

Suffix
Identifier

Output: Morphology Paradigms

Morphology Paradigm Generator

Stem-Suffix
Pruner

Suffix Association Matrix
Generator

Candidate Stem-Suffix
List

Stem-Suffix List

Primary Paradigm
Generator

Initial Paradigms

Suffix Association Matrix

31

Input: Lexicon of the language L (or raw un-annotated corpus for inflectional morphology C)
Output: Candidate Stem-Suffix List resource
Algorithm:

For each input word p ∈ L,
find q, r, s ∈ L, such that ∃ b1, b2, b3
where p=b1s1, q=b1s2, r=b2s1, s= b2s3 where b1, b2, b3, s1, s2, s3 ∈ ∑*..
Add b1 to set of stems Sstem,
Add s1 to set of suffixes Ssuffix,

EndFor

Module 2 - Stem-suffix pruner:
Description: This module applies heuristic H1 stated below. H1 is framed to correct the stem-suffix
list to fix the problem of over-stemming.
H1: Given suffix si for stem bi if ∃ a ∈ ∑* such that asi ∈ Ssuffix and bja=bi and bj∈ Sstem where Sstem is
set of stems and Ssuffix is set of suffixes then replace bi by bj and si by asi
Input: Candidate Stem-Suffix List resource
Output: Stem-Suffix List resource
Algorithm:

For each suffix s1 from suffix list,
If ∃ a ∈ ∑* such that as1 ∈ Ssuffix and b2a=b1 and b1, b2∈ Sstem then
replace b1 by b2 and s1 by as1.

EndIf
EndFor

Module 3 - Primary Paradigm Generator:
Description: Using Stem-Suffix List this module generates the Initial Paradigms list. A paradigm
is composed of suffixes that go together for a list of stems in the input lexicon/corpus.
Input: Stem-Suffix List resource
Output: Initial Paradigms resource
Algorithm:

For each input word p ∈ L, if p=b1s1 where b1∈ Sstem and s1∈ Ssuffix.
Set paradigm-string= s1.
For every q ∈ L such that q= b1s2 where b1∈ Sstem and s2 ∈ Ssuffix ,

Set paradigm-string = paradigm-string.s2.
Add paradigm-string to Sparadigm, set of paradigm.

EndFor
EndFor
For each paradigm-string p1 ∈ Sparadigm where p1 =”sx1.sx2 …sxn=b1”
 and sx1,sx2 , …, sxn∈ Ssuffix and b1∈ Sstem

Set collapse-paradigm-string = sx1.sx2 …sxn=b1
If ∃ paradigm-string p2∈ Sparadigm such that p2 =” sx1.sx2 …sxn =b2” and b2∈ Sstem

Set collapse-paradigm-string = collapse-paradigm-string + b2

Add collapse-paradigm-string to Sinitial-paradigm, set of Initial Paradigms
EndIf

EndFor

Module 4- Suffix Association Matrix Generator:
Description: From the Initial Paradigms, this module computes the Suffix Association Matrix
resource. Suffix association matrix is a square matrix where each row and column corresponds to a
suffix in suffix list. An entry in this matrix gives how many times a particular suffix occurs with
another suffix in the Initial Paradigms resource.
Input: Initial Paradigms resource
Output: Suffix Association Matrix resource

32

Algorithm:
Let M be suffix association matrix which is | Ssuffix| * | Ssuffix|. If Ssuffix = {s1, s2, …..sp} M
has dimension p X p.

Initialize M=0;
For each paradigm-string p1 ∈ Sinitial-paradigm where p1 =”sx1.sx2 …sxn=b1+ b2+ b3+…+ bm”

For i= 1 to n
For j= i+1 to n

 M[sxi][sxj]= M[sxi][sxj] + m; where sxi = sq and sxi = sr and 1<= q, r <=p
EndFor

 EndFor
EndFor

Module 5 - Morphology Paradigm Generator:
Description: Using Stem-Suffix List and Suffix Association Matrix this module generates
Morphology Paradigms List resource. It is a pruned version of Initial Paradigms resource which
uses Suffix Association matrix to remove less likely suffix combination in Initial Paradigms
Input: Stem-Suffix List resource
Output: Initial Paradigms resource
Algorithm:

For each input word p ∈ L, if p=b1s1 where b1∈ Sstem and s1∈ Ssuffix.
Set paradigm-string= s1.
For every q ∈ L such that q= b1s2 where b1∈ Sstem and s2 ∈ Ssuffix ,

If M[s1][s2] > threshold value
Set paradigm-string = paradigm-string.s2.
Add paradigm-string to Sparadigm, set of paradigm.

EndIf
EndFor

EndFor
For each paradigm-string p1 ∈ Sparadigm where p1 =”sx1.sx2 …sxn=b1”
 and sx1,sx2 , …, sxn∈ Ssuffix and b1∈ Sstem

Set collapse-paradigm-string = sx1.sx2 …sxn=b1
If ∃ paradigm-string p2∈ Sparadigm such that p2 =” sx1.sx2 …sxn =b2” and b2∈ Sstem

Set collapse-paradigm-string = collapse-paradigm-string + b2

Add collapse-paradigm-string to Sinitial-paradigm, set of Initial_Paradigms
EndIf

EndFor

5.1 Significance of Suffix Association Matrix

Suffix association matrix is a measure of how many times a particular suffix is associated with
another suffix in the input resource. It is an important contribution as it provides us an alternate
way to prune invalid stem-suffix pairs identified, rather than a restriction on the stem-length.
Suffixes which are associated with each other more frequently are more likely to provide a correct
paradigm than those where we find only a few chance instances of suffix associations.
Figure 2 illustrates an instance of suffix association matrix for the English language

 NULL er ing ly
NULL - 46 225 129

er 46 - 22 15
ing 225 22 - 0
ly 129 15 0 -

Figure 2: Instance of Suffix Association Matrix

This matrix helps handle valid stem with invalid suffix case. For instance wrong segmentation of
the word “bother” as “both+er” . From the Suffix Association Matrix we check with which

33

suffixes er is commonly associated. We then make a list of words with stem “both” and other
suffix which commonly associate with suffix “er” like suffix “ing” We search a corpus for
existence of such words like “bothing” . Thus rejecting the segmentation bother=both+er. This
matrix also provides a solution to invalid stem with valid suffix. For instance canno+n and
canno+t are invalid segmentations although the suffix “n” and “t” are valid in some other
context. In such a rare association of a suffix “n” and “t” the corresponding entry in the suffix
association matrix is found to be very low. We ran our algorithm for various values of threshold
and found five as an optimal value. Any suffix association below five were pruned as chance
associations.

5.2 Significance of heuristic H1

This heuristic is used to handle the problem of over-stemming that occurs in p-similar technique. For
example the p-similar technique identifies both “ion” and “on” as suffix. While segmenting a word
like “addiction” we need to decide if “addicti+on” or “addict+ion” is correct. H1 helps us in
correctly segmenting the word as “addict+ion” .

5.3 Limitations of UML

UML is restricted to identify concatenative morphology paradigms only. Presently it identifies
suffixes only and does not support irregular morphology wherein the stem undergoes a change before
suffixation.

6 Experimental Results

The implementation of UML is done in Java. After applying our method, the paradigms obtained were
compared to the paradigms obtained using p-similar method with minimum stem-size five. The
precision was computed as ratio of number of words correctly segmented to total number of words
segmented. Recall is computed as ratio of number of words correctly segmented to number of words
in given input which could be segmented. The results have been tabulated in Table 1 below.

Method Number of

Paradigms
Recall Precision F-Score

Language : English

Data Set: English lexicon with 21813 entries was obtained from the English WordNet1

p-similar with stems size >5 1163 0.85 0.93 0.89

UML for derivational morphology 413 0.92 0.93 0.92

Language : Hindi
Data Set: Hindi lexicon with 23807 entries was extracted from the Hindi WordNet2

p-similar with stems size >5 1127 0.83 0.87 0.85

UML for derivational morphology 332 0.87 0.94 0.90

Language : Konkani
Data Set: Konkani lexicon with 25838 entries was extracted from the Konkani WordNet3
p-similar with stems size >5 1088 0.75 0.77 0.75
UML for derivational morphology 274 0.87 0.87 0.87

Table 1: Results for English, Hindi and Konkani Language

1 http://wordnet.princeton.edu/wordnet/download/
2 http://www.cfilt.iitb.ac.in/wordnet/webhwn/
3 http://konkaniwordnet.unigoa.ac.in

34

6.1 Effect of stem length on recall

We list below in Table 2, a few examples of how recall is reduced as words with short stem length
are not segmented, when the minimum stem size is five.

Language Suffix for which
word not
segmented

Number of
words not
segmented

Few examples of words not segmented

English er 9 eater, farmer, owner...
Hindi ◌ी4

(I;;Hindi suffix)

35 अरबी (arabic; arab; name of a country),

आलसी (aalas; lazy;), आसानी (aasani;

easiness;)
Konkani ◌ी

(I;;Konkani
suffix)

43 आनदं� (anandi; being happy;), आरोपी

(aaropi; accused;)

Table 2: Effect of stem length

We observe that number of words not segmented in English is relatively very less as compared to the
Indian languages Hindi and Konkani. Thus the restriction on stem-length works efficiently for English
as compared to the Indian languages Hindi and Konkani.

6.2 Effect of stem length on precision

When we restrict the stem-length to five we observe that some wrong segmentation of words are
pruned. Listed below in Table 3, are some examples

Language Suffix for
which word not
segmented

Number of
words not
segmented

Few examples of words not segmented
(wrongly)

English er 32 bother, boxer, cater, sober …

Hindi ◌ी (I;;Hindi

suffix)

8 चाँद� (chandi; silver;), चोट� (choti;

peak;)

Konkani ◌ी (I;;Konkani

suffix)

6 आजी (Aaji; grandmother;), काळ�

(kaalli; black;)

Table 3: Effect of stem-length on precision

We observe that for English, many word segmentations with stems-length less than five, identified
by p-similar technique are correctly pruned by applying the restriction. We observe that wrong
segmentations in case of Indian languages Hindi and Konkani are less when compared to English.

7 Conclusion

Unsupervised Morphology Learner framework thus can be effectively used to generate paradigms for
Indian languages which have low frequency suffixes and words with short stem lengths. Suffix
Association Matrix and heuristics H1 is advantageous over p-similar technique with stem length
restriction for languages like Konkani and Hindi which have many short length valid stems. The
derivational suffixes obtained from UML with Lexicon as input can be used to distinguish from
inflectional morphology suffixes when the framework is used with a corpus as input.

4 A word in Indian language is followed by transliteration in Roman Script, translation in English and gloss in brackets

35

Reference

Bacchin, M., Ferro, N., and Melucci, M. (2005). A probabilistic model for stemmer generation. Information
Processing and Management, 41(1):121–137.

Beesley K & Karttunen Lauri. 2003. Finite State Morphology. Stanford, CA: CSLI Publications.

Chan, E. 2008. Structures and Distributions in Morphology Learning. Ph.D thesis, University of Pennsylvania.

Dreyer, M. 2011. A non-parametric model for the discovery of inflectional paradigms from plain text using
graphical models over strings. Ph.D thesis, The Johns Hopkins University, Baltimore, Maryland

Freitag, D. 2005. Morphology induction from term clusters. In Proceedings of the Ninth Conference on
Computational Natural Language Learning (CoNLL-2005), pages 128–135, Ann Arbor, Michigan.
Association for Computational Linguistics.

Gaussier Eric. 1999. Unsupervised learning of derivational morphology from inflectional lexicons. In ACL’99
Workshop Proceedings: Unsupervised Learning in Natural Language Processing : 24–30 ACL

Gelbukh, A. F., Alexandrov, M., and Han, S.-Y. (2004). Detecting inflection patterns in natural language by
minimization of morphological model. In Sanfeliu, A., Trinidad, J. F. M., and Carrasco-Ochoa, J. A., editors,
Proceedings of Progress in Pattern Recognition, Image Analysis and Applications, 9th Iberoamerican Congress
on Pattern Recognition, CIARP ’04, volume 3287 of Lecture Notes in Computer Science, pages 432–438.
Springer-Verlag, Berlin.

Goldsmith J A. 2001. Unsupervised learning of the morphology of a natural language. Computational
Linguistics 27(2): 153–198

Hammarstrom Harald and Lars Borin. 2011. Unsupervised learning of morphology. Computational Linguistics,
(2):309–350.

Koskenniemi, K. 1983. Two-level morphology: a general computational model for word-form recognition and
production. Helsinki, Department of General Linguistics, University of Helsinki.

Koskenniemi, K. 1996. Finite-state morphology and information retrieval. Proceedings of the ECAI-96
Workshop on Extended Finite State Models of Language ECAI, Budapest, Hungary : 42-56

Lindén, K. 2008. A probabilistic model for guessing base forms of new words by analogy. In Proceedings of
CICLing-2008: 9th International Conference on Intelligent Text Processing and Computational Linguistics,
volume 4919 of Lecture Notes in Computer Science, pages 106–116. Springer.

Lindén, K. and Tuovila, J. 2009 Corpus-based Paradigm Selection for Morphological Entries. In Proceedings of
NODALIDA 2009, Odense, Denmark, May 2009

Loftsson, H. 2008. Tagging Icelandic text: A linguistic rule-based approach. Nordic Journal of Linguistics 31(1).
47–72.

Lovins J. B. 1968. Development of a stemming algorithm. Mechanical Translation and Computer Linguistic.,
vol.11, no.1/2: 22-31.

Maung, Zin Maung & Yoshiki Mikami. 2008. A rule-based syllable segmentation of myanmar text. In
Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, 51–58. Hyderabad, India:
Asian Federation of Natural Language Processing.

Paice, C.D. 1990. Another stemmer. SIGIR Forum, 24: 56-61

Porter, M. F. 1980. An algorithm for suffix stripping. Program 14 : 130-7.

Sharma U, (2006). Unsupervised Learning of Morphology of a Highly Inflectional Language, Ph.D. thesis,
Tezpur University, Assam, India

36

Proceedings of the 5th Workshop on South and Southeast Asian NLP, 25th International Conference on Computational Linguistics, pages 37–42,
Dublin, Ireland, August 23-29 2014.

English to Urdu Statistical Machine Translation: Establishing a
Baseline

Bushra Jawaid, Amir Kamran and Ondřej Bojar
Charles University in Prague

Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

Malostranské nám. 25, Praha 1, CZ-118 00, Czech Republic
jawaid,kamran,bojar@ufal.mff.cuni.cz

Abstract
The aim of this paper is to categorize and present the existence of resources for English-
to-Urdu machine translation (MT) and to establish an empirical baseline for this task.
By doing so, we hope to set up a common ground for MT research with Urdu to allow
for a congruent progress in this field. We build baseline phrase-based MT (PBMT) and
hierarchical MT systems and report the results on 3 official independent test sets. On all
test sets, hierarchial MT significantly outperformed PBMT. The highest single-reference
BLEU score is achieved by the hierarchical system and reaches 21.58% but this figure
depends on the randomly selected test set. Our manual evaluation of 175 sentences
suggests that in 45% of sentences, the hierarchical MT is ranked better than the PBMT
output compared to 21% of sentences where PBMT wins, the rest being equal.

1 Introduction
Statistical Machine Translation (SMT) has always been a challenging task for language pairs with
significant word ordering differences and rich inflectional morphology. The language pair such
as English and Urdu, despite of descending from the same family of Indo-European languages,
differs heavily in syntactic strucure and morphological characteristics. English is relatively
fixed word order language and follows subject-verb-object (SVO) structure whereas Urdu uses
restricted free word order language and most commonly follows the SOV pattern. Urdu word
order is restricted for only few parts of speeches such as adjectives always precede nouns and
postpositions follow nouns. Unlike English, Urdu is a pro-drop language. The morphology of
Urdu is similar to other Indo-European languages, e.g. by having inflectional morphological
system.
To the best of our knowledge, the research on English-to-Urdu machine translation has been

very much fragmented, preventing the authors to build upon the works of others. Our underlying
motivation for this paper is to establish a common ground and provide a concise summary of
available data resources and set up reproducible baseline results of several available test sets.
With this basis, future Urdu MT research should be able to stepwise improve the state of the
art, in contrast with the scattered experiments done so far (Khan et al., 2013; Ali et al., 2013;
Ali and Malik, 2010).
In Section 2, the experimental setup and data processing tools are described. Existing corpora

are introduced in Section 3, automatic results are reported in Section 4 and manual evaluation
is discussed in Section 5.

2 Experimental Setup
This section briefly introduces the selection of SMT models that are used to build the baseline
English-Urdu SMT system and also explains the processing of parallel data before passing it to
the MT system.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and
proceedings footer are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.
0/

37

2.1 Two Models of SMT
The state-of-the-art MT toolkit Moses1 (Koehn et al., 2007), offers two mainstream models of
SMT: phrase-based (PBMT) and syntax-based (SBMT) that includes the hierarchical model.
The PBMT model operates only on mapping of source phrases (short sequences of words) to

target phrases. For dealing with word order differences, two rather weak models are available:
lexicalized and distance-based. The lexicalized reordering models (Tillmann, 2004) are consid-
ered more advanced as they condition reordering on the actual phrases, whereas the latter model
makes the reordering cost (paid when picking source phrases out of sequence) dependent only
on the length of the jump. The distance-based model is suited well for local reordering but it is
fairly weak in capturing any long distance reorderings.
The syntax-based model (SBMT) builds upon Synchronous Context-Free Grammar (SCFG)

that synchronously generates source and target sentences. The grammar rules can either consist
of linguistically motivated non-terminals such as NP, VP etc. or the generic non-terminal “X”
in which case the model is called “hierarchical phrase-based” (Chiang, 2005; Chiang, 2007). In
either case, the model is capable of capturing long-distance reordering much better than the
lexicalized reordering of PBMT.

2.2 Data Processing and MT Training
For the training of our en-ur translation systems, the standard training pipeline of Moses is used
along with the GIZA++ (Och and Ney, 2000) alignment toolkit and a 5-gram SRILM language
model (Stolcke, 2002). The source texts were processed using the Treex platform (Popel and
Žabokrtský, 2010)2, which included tokenization and lemmatization.
The target side of the corpus is tokenized using a simple tokenization script3 by Dan Zeman and

it is lemmatized using the Urdu Shallow Parser4 developed by Language Technologies Research
Center of IIIT Hyderabad.
The alignments are learnt from the lemmatized version of the corpus. In all other cases,

word forms (i.e. no morphological decomposition) in their true case (i.e. names capitalized but
sentence starts lowercased) are used. The lexicalized reordering model uses the feature set called
“msd-bidirectional-fe”.

3 Dataset
Parallel and monolingual data resources are very scarce for low-resource language pairs such as
English-Urdu. This section highlights the existing parallel and monolingual data resources that
can be utilized for training SMT models. The number of official test sets are also exhibited.

3.1 Parallel Corpus
Our parallel corpus consists of around 79K sentences collected from five different sources. The
collection comes from several domains such as News, Religion, Technology, Language and Culture
etc. 95% of the data is used for training, whereas the rest is evenly split into dev and test sets.

• Emille: EMILLE (Enabling Minority Language Engineering) (Baker et al., 2002) is a col-
lection of monolingual (written and spoken), parallel and annotated corpora of fourteen
South Asian languages which is distributed by the European Language Resources Associa-
tion (ELRA). The Urdu-English part are documents produced by the British Departments
of Health, Social Services, Education and Skills, and Transport, Local Government and the
Regions of British government translated into Urdu.
In this work, the manually sentence aligned version of English-Urdu Emille corpus Jawaid
and Zeman (2011) is used.

1http://statmt.org/moses/
2http://ufal.mff.cuni.cz/treex/
3The tokenization script can be downloaded from: http://hdl.handle.net/11858/00-097C-0000-0023-65A9-5
4http://ltrc.iiit.ac.in/showfile.php?filename=downloads/shallow_parser.php

38

• IPC: The Indic Parallel Corpus (Post et al., 2012)5 is a collection of Wikipedia documents
of six Indian sub-continent languages translated into English through crowdsourcing in the
Amazon Mechanical Turk (MTurk) platform.
The English-Urdu part generally contains four (in some cases three) English translations
for each Urdu sentence. In a separate MTurk task, the Turkers voted which of the English
translations is the best one. The official training, dev and devtest sets is first merged and
afterwards the voting list is used to retrieve only the winning English sentence ignoring
sentences with no votes altogether. The official testset is left unaltered to report our final
results on this data.

• Quran: The publicly available parallel English and Urdu translation of Quranic data6 is
used, which is collected by Jawaid and Zeman (2011) in their work. The data consists of
6K aligned parallel sentences.

• Penn Treebank: Penn Treebank (Marcus et al., 1993) is an annotated corpus of around
4.5 million words originating from Wall Street Journal (WSJ), Brown corpus, Switchboard
and ATIS. The entire treebank in English is released by the Linguistic Data Consortium
(LDC). A subset of the WSJ section whose Urdu translations are provided by Center for
Language Engineering (CLE)7 is used. Out of 2,499 WSJ stories in the Treebank, only 317
are available in Urdu.

• Afrl: Afrl, the largest of the parallel resources we were able to get, is not publicly available.
The corpus originally consists of 87K sentences coming from mix of several domains mainly
news articles. The sentence alignments are manually checked of almost two thirds of the
corpus, around 4K misaligned and 30K duplicate sentences are discarded.

The statistics shown in Table 1 are reported after removing duplicated sentences from each
source. Almost all parallel corpora contained at least tens or hundreds of duplicate sentences.
Afrl on the other hand contained larger chunks of Emille and also smaller subset of Penn Tree-
bank. Around 3K sentences from Afrl that were seen in Emille are discarded but the Penn
Treebank subset of Afrl is left intact because it provides different Urdu translations.
Each parallel corpus is randomly split into train, dev and test sets according to its relative

size.

Corpus Sentences Tokens % of Data Train Dev Test
EN UR

AFRL 50,313 960,683 1,022,563 63.6% 47,769 1,272 1,272
EMILLE 8,629 152,273 199,320 10.9% 8,193 218 218

IPC 7,478 118,644 132,968 9.46% 7,098 190 190
QURAN 6,364 251,387 269,947 8.05% 6,040 162 162
PENN 6,204 158,727 179,457 7.86% 5,888 158 158
TOTAL 78,988 - - 100% 74,988 2,000 2,000

Table 1: Statistics of English-Urdu parallel corpora.

3.2 Monolingual Corpus
Jawaid et al. (2014) release8 a plain and annotated Urdu monolingual corpus of around 95.4
million tokens distributed in around 5.4 million sentences. The monolingual corpus is a mix

5http://joshua-decoder.org/data/indian-parallel-corpora/
6http://ufal.mff.cuni.cz/legacy/umc/005-en-ur/
7http://www.cle.org.pk/software/ling_resources/UrduNepaliEnglishParallelCorpus.htm
8http://hdl.handle.net/11858/00-097C-0000-0023-65A9-5

39

of domains such as News, Religion, Blogs, Literature, Science, Education etc. Only plain text
monolingual data is used to build our language model.

3.3 Official Testsets
In addition to the testset that is created from the parallel corpora resources, results are reported
on three official testsets.
NIST 2008 Open Machine Translation (OpenMT) Evaluation9 has distributed test data from

2 domains: Newswire and Web. The Web data is collected from user forums, discussion groups
and blogs, whereas Newswire data is a mix of newswire stories and data from web. The test data
contain 4 English translations for each Urdu sentence, the first English translation is picked in
all cases. Because the majority of test sets are created in order to faciliatate Urdu-to-English
MT, most of them contain multiple English references against each Urdu source.
Another testset is released with the IPC. Only those sentences are used whose ids are present

in the voting list. The domain of the IPC test set is discussed in Section 3.1.
CLE10 has published small test set from News domain specifically for MT evaluation. The

test data contains 3 Urdu references against each source. All reference translations are used for
the evaluation.
Table 2 shows the number of sentences in each test set that are used for the final evaluation.

We also report the coverage of each test set (calculated on vocabulary size) i.e. how many source
words in a test set were seen in the training data. The notions used in Table 2 to introduce
coverage are explained in Section 4.

NIST 2008 IPC CLE
NewsWire Web Test

Sentences 400 600 544 400

Coverage ALL 84% 91% 90% 87%
Except-Afrl 80% 87% 88% 84%

Table 2: Statistics of official English-Urdu test sets.

4 Results
The BLEU metric (Papineni et al., 2002) has been used to evaluate the performance of the
systems. Models are trained on two different datasets: all parallel corpora (referred as “ALL”)
and parallel data excluding Afrl corpus (referred as “Except-Afrl”). The latter model is trained
due to the fact that Afrl corpus is publicly not available. The community working on English-
Urdu machine translation can thus have one common baseline that could be used to evaluate
their improved systems in the future. Including Afrl allows us to see the gains in performance
thanks to the additional data.
Table 3 shows the baseline results of phrase-based and hierarchical systems when trained on

both datasets. The results are reported on two test sets: the test set of 2,000 sentences (called
Large in Table 3) as shown in Table 1 and its subset of 728 sentences which excludes 1,272 test
sentences from Afrl (called Small in Table 3).
PBMT performs better when integrated with lexicalized reordering model but Hierarchical

MT outperforms both PBMT setups on both smaller and larger test sets. The absolute BLEU
scores drop by up to 6 points when Afrl is removed from the training data, however they return
back to ∼20 when Afrl is also removed from the test set. This highlights the importance of data
overall and the match in domain in particular, as supported by the differences in vocabulary
coverage (see the column “Coverage” in Table 3).
Table 4 shows the results of the best performing setups (i.e. phrase-based with lexicalized

reordering model and hierarchical model) trained on both training datasets and evaluated on the
9http://catalog.ldc.upenn.edu/LDC2010T21

10http://www.cle.org.pk/software/ling_resources/testingcorpusmt.htm

40

Parallel Corpora Test Set Phrase-based Phrase-based-LexReo Hierarchical Coverage
ALL Large 18.30±0.74 19.19±0.72 21.35±0.84 92%

Except-Afrl Large 12.85±0.74 13.78±0.73 15.11±0.82 78%
Except-Afrl Small 18.41±1.25 19.67±1.27 21.21±1.55 91%

Table 3: Results of Phrase-based, Phrase-based with Lexical Reordering and Hierarchical MT
systems.

official test sets. The BLEU score for CLE test set is reported using all 3 reference translations
at once as well as the average of single-reference BLEUs, taking each reference translation
separately. IPC and NIST2008 results are evaluated on a single reference.
The hierarchical MT performs significantly better than the phrase-based MT on all test sets.

The lowest scores were achieved on the NIST2008 test set but it is difficult to pinpoint any
specific reason (other than some domain difference) because the coverage is comparable to other
test sets (see Table 2). Across all the test sets, Afrl corpus brings about 2 points BLEU absolute.

CLE IPC NIST2008
3 refs 1 ref (avg.) 1 ref 1 ref

ALL Phrase-based-LexReo 18.19±1.19 11.12±1.02 15.82±1.36 15.13±0.95
Hierarchical 19.29±1.31 11.81±1.09 18.70±1.64 16.69±1.06

Except-Afrl Phrase-based-LexReo 16.53±1.13 9.92±0.96 13.82±1.20 11.65±0.87
Hierarchical 18.48±1.28 11.30±1.03 16.91±1.54 13.01±0.84

Table 4: Results of Phrase-based and Hierarchical systems on official test sets.

5 Manual Evaluation
To manually analyze the output of best performing models sample of 175 sentences is randomly
selected from the large test set translated using both PBMT with lexical reordering and hier-
archical models trained on “ALL” data sets. QuickJudge11 is used to rank the outputs. The
annotator is shown the source, reference and output from both machine translation systems, the
identity of the MT systems is not known. There are four permitted outcomes of the ranking:
both systems marked as equally good; both systems are equally bad or the output of one of the
systems is better than the other one. Here is the summary of annotation by a single annotator:

• Out of 175 sentences, 41 sentences received equally bad translations from both systems.

• 17 items are marked as equally good.

• In 79 cases, the hierarchical MT is ranked better than the phrase-based MT.

• In the remaining 38 cases, the phrase-based MT is ranked better than the hierarchical MT.

The results from the manual ranking show that the hierarchical systems wins twice more often
than PBMT. The two systems tie in about one third of input sentences, of which about 70%
are cases where the translations are bad.

6 Conclusion
In this work, a collection of sizeable English-Urdu corpora is summarized for statistical machine
translation. These resources are used to build baseline phrase-based and hierarchical MT systems
for translation into Urdu and the results are reported on 3 independent official test sets. This

11http://ufal.mff.cuni.cz/project/euromatrix/quickjudge/

41

can hopefully serve as a baseline for a wider community of researchers. The output of both
translation models is manually analyzed and it confirms that the hierarchical model is preferred
over phrase-based MT for English-to-Urdu translation.

Acknowledgments
This work has been using language resources developed and/or stored and/or distributed
by the LINDAT-Clarin project of the Ministry of Education of the Czech Republic (project
LM2010013). This work was also supported by the grant FP7-ICT-2011-7-288487 (MosesCore)
of the European Union.

References
Aasim Ali and Muhmmad Kamran Malik. 2010. Development of parallel corpus and english to urdu
statistical machine translation. Int. J. of Engineering & Technology IJET-IJENS, 10:31–33.

Aasim Ali, Arshad Hussain, and Muhammad Kamran Malik. 2013. Model for english-urdu statistical
machine translation. World Applied Sciences, 24:1362–1367.

Paul Baker, Andrew Hardie, Tony McEnery, Hamish Cunningham, and Robert J. Gaizauskas. 2002.
Emille, a 67-million word corpus of indic languages: Data collection, mark-up and harmonisation. In
LREC. European Language Resources Association.

David Chiang. 2005. A hierarchical phrase-based model for statistical machine translation. In Proc. of
ACL, pages 263–270.

David Chiang. 2007. Hierarchical phrase-based translation. Comput. Linguist., 33(2):201–228, June.

Bushra Jawaid and Daniel Zeman. 2011. Word-order issues in english-to-urdu statistical machine trans-
lation. Number 95, pages 87–106, Praha, Czechia.

Bushra Jawaid, Amir Kamran, and Ondřej Bojar. 2014. A Tagged Corpus and a Tagger for Urdu (to
appear). Reykjavík, Iceland. European Language Resources Association. In print.

Nadeem Khan, Waqas Anwar, Usama Ijaz Bajwa, and Nadir Durrani. 2013. English to urdu hierarchical
phrase-based statistical machine translation. In The 4th Workshop on South and Southeast Asian NLP
(WSSANLP), IJCNLP, pages 72–76, Nagoya, Japan.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open Source Toolkit for Statistical Machine Translation. In
Proc. of ACL Companion Volume, Demo and Poster Sessions, pages 177–180, Prague, Czech Republic.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Comput. Linguist., 19(2):313–330, June.

Franz Josef Och and Hermann Ney. 2000. A Comparison of Alignment Models for Statistical Machine
Translation. In Proc. of COLING, pages 1086–1090. ACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a Method for Automatic
Evaluation of Machine Translation. In Proc. of ACL, pages 311–318.

Martin Popel and Zdeněk Žabokrtský. 2010. TectoMT: Modular NLP Framework. In Lecture Notes in
Artificial Intelligence, Proceedings of the 7th International Conference on Advances in Natural Language
Processing (IceTAL 2010), volume 6233 of Lecture Notes in Computer Science, pages 293–304. Springer.

Matt Post, Chris Callison-Burch, and Miles Osborne. 2012. Constructing parallel corpora for six indian
languages via crowdsourcing. In Proc. of WMT, ACL, pages 401–409, Montréal, Canada.

Andreas Stolcke. 2002. Srilm - an extensible language modeling toolkit. In In Proceedings of the 7th
International Conference on Spoken Language Processing (ICSLP) 2002, pages 901–904.

Christoph Tillmann. 2004. A unigram orientation model for statistical machine translation. In Proc. of
HLT-NAACL Short Papers, pages 101–104.

42

Proceedings of the 5th Workshop on South and Southeast Asian NLP, 25th International Conference on Computational Linguistics, pages 43–49,
Dublin, Ireland, August 23-29 2014.

A hybrid approach for automatic clause boundary identification in Hindi

Rahul Sharma, Soma Paul
Language Technology Research Centre, IIIT-Hyderabad, India

rahul.sharma@research.iiit.ac.in, soma@iiit.ac.in

Abstract

A complex sentence, divided into clauses, can be analyzed more easily than the complex sen-
tence itself. We present here, the task of clauses identification in Hindi text. To the best of our
knowledge, not much work has been done on clause boundary identification for Hindi, which
makes this task more important. We have built a Hybrid system which gives 90.804% F1-scores
and 94.697% F1-scores for identification of clauses’ start and end respectively.

1 Introduction

Clause is the minimal grammatical unit which can express a proposition. It is a sequential group of
words, containing a verb or a verb group(verb and its auxiliary), and its arguments which can be explicit
or implicit in nature (Ram and Devi, 2008) . This makes clause an important unit in language grammars
and emphasis the need to identify and classify them as part of linguistic studies.
Analysis and processing of complex sentences is a far more challenging task as compared to a simple
sentence. NLP applications often perform poorly as the complexity of the sentence increases. “It is im-
possible, to process a complex sentence if its clauses are not properly identified and classified according
to their syntactic function in the sentence” (Leffa, 1998). Further, identifying clauses, and processing
them separately are known to do better in many NLP tasks. The performance of many NLP systems like
Machine Translation, Parallel corpora alignment, Information Extraction, Syntactic parsing, automatic
summarization and speech applications etc improves by introducing clause boundaries in a sentence (e.g.,
Ejerhed, 1988; Abney, 1990; Leffa, 1998; Papageorgiou, 1997; Gadde et al., 2010).
We present a hybrid method which comprises of Conditional random fields(CRFs) (Lafferty et al., 2001)
based statistical learning followed by some rules to automatically determine ‘clause’ boundaries (be-
ginnings and ends) in complex or compound sentences. CRFs is a framework for building undirected
probabilistic graphical models to segment and label sequence data (Lafferty et al., 2001). In past, this
framework has proved to be successful for sequence labeling task (Sha and Pereira, 2003; McCallum and
Li, 2003). Van Nguyen et al. (2007) used CRFs for clause splitting task with some linguistic information
giving 84.09% F1-score.

Our system has minimum dependency on linguistic resources,only part of speech (POS) and chunk
information of lexical items is used with a fair performance of the system. As far as we know, not much
work has been done on clause boundary identification for Hindi and this makes this task more significant.
This paper is structured as follows: In Section 2, we discuss the related works that has been done earlier
on clause identification. Section 3 describes the creation of dataset for various system use. In Section
4, we talk about methodology of our system. Section 5 outlines the system performance. In section 6,
some issues related clause identification are discussed. In Section 7, we conclude and talk about future
works in this area.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

43

2 Related works

Studies in identifying clauses date back to (Ejerhed, 1988) work, where they showed how automatic
clause boundary identification in discourse can benefit a parser’s performance. However her experiments
could detect only basic clauses. Later (Abney, 1990) used clause filter as part of his CASS parser.
(Papageorgiou, 1997) used hand crafted rules to identify clause boundaries in a text. (Leffa, 1998) is
another rule based method which was implemented in an English-Portuguese MT system.
Some more recent works in this area are: (Puscasu, 2004), in which she proposed a multilingual
method of combining language independent ML techniques with language specific rules to detect
clause boundaries in unrestricted texts. The rules identify the finite verbs and clause boundaries not
included in learning process. (Ram and Devi, 2008) proposed a hybrid based approach for detecting
clause boundaries in a sentence. They have used a CRF based system which uses different linguistic
cues. After identifying the clause boundaries they run an error analyzer module to find false boundary
markings, which are then corrected by the rule based system, built using linguistic clues. (Ghosh et
al., 2010) is another rule based system for clause boundary identification for Bengali, where they use
machine learning approach for clause classification and dependency relations between verb and its
argument to find clause boundaries. Dhivya et al. (2012) use dependency trees from maltparser and
the dependency tag-set with 11 tags to identify clause boundaries. Similar to (Dhivya et al., 2012),
Sharma et al. (2013) showed how implicit clause information present in dependency trees can be used to
extract clauses in sentences. Their system have reported 94.44% accuracy for Hindi.Gadde et al. (2010)
reported improvement in parser performance by introducing automatic clause information in a sentence
for Hindi in ‘Improving data driven dependency parsing using clausal information’. However their ap-
proach for identifying clause information has not been discussed. Thus a comparison is not possible here.

3 Dataset

In Hindi, We don’t have any data available annotated with clause boundary, So to generate clause anno-
tated corpora we have used (Sharma et al., 2013) technique where they have showed how implicit clause
information present in dependency trees can be used to extract clauses in sentences. By this technique
we have automatically generated 16000 sentences of Hindi treebank (Palmer et al., 2009) marked with
clause boudaries. Out of which, 14500 sentences were taken as training set, 500 for development set
and remaining 1000 sentences for testing set. As these sentences were generated automatically there are
chances of noises in form of wrongly marked clause boundaries, so for proper evaluation of the system,
we have manually corrected the wrongly marked clauses in development and testing sets.

4 Methodology

We propose a hybrid system which identifies the clause(s) in the input sentence and marks the ‘clause
start position’ (CSP) and ‘clause end position’ (CEP) with brackets.
Hindi usually follows the SOV word order, so ends of the clauses can be found by just using verb infor-
mation, in most of the cases. The language also has explicit relative pronouns, subordinating conjuncts,
coordinate conjunctions etc. which serve as cues that help to identify clause boundaries of the clauses.
Apart from the lexical cues we have also used POS tag and chunk information to built our system.
Our system comprise of two main modules; first modules is stochastic model which have been trained
on 14500 sentences, and second module which is built using hand crafted rules.

4.1 Stochastic Models
We have used two techniques to built two different models; 1) step-by-step model and 2) merged model,
using CRF machine learning approach. Both the models take word, word’s POS tag and its suffix as
word’s features for training. Table (1) shows the common features used for training models. These
feature are syntactic in nature, and relative pronoun, verb, conjunctions etc. plays important role in
identifying boundaries. suffixes help to learn morphological feature of the word.

44

Present word’s Lexicon, POS tag, last character, last two character, and last three character
Previous four words’ Lexicon and POS tags

Next four words’ Lexicon and POS tags
Next three words’ last character, last two character, last three character

Table 1: Features

4.1.1 step-by-step model
This model comprises of two models; end model and start model. First one identifies the end of a clause
and then later one takes the output of former model as input and identifies the start of the clause. In this
technique we can notice that both models have to only mark whether a word is a boundary of a clause or
not. For example ‘end model’ has to check whether a given word is a end(boundary) of a clause or not.
Below example (1) explains this further.

(1) raam
Ram

jisne
who

khaanaa
food

khaayaa
eat+past

ghar
home

gayaaa
go+past

’Raam who ate food, went home’

In example (1), end model first marks ‘gayaa’ and ‘khaayaa’ as the end of clause. Then start model takes
this additional information also as the feature, and marks ‘raam’ and ‘jisne’ as the start of clause.

4.1.2 Merged Model
This model marks the clauses’ start and end in one go. Unlike the step-by-step model, it check whether
a word is clause’s start, clause’s end or none. For above example (1), it will mark ‘gayaa’ and ‘khaayaa’
as the end of clause, and ‘raam’ and ‘jisne’ as the start of clause respectively in one go.

-- Keeping post-processing module(discussed below) same, we have evaluated our system using both
stochastic models separately, and observed, system with step-by-step model gives high F1-score value
than the system with merged model.

4.2 Post-processing Module
This module processes the output from stochastic model, and mark the boundaries of clauses in sen-
tences. As we know, in a sentence CSPs should always be equal to CEPs. So on the basis of difference
between CSPs and CEPs, we have formalized our rules. Below is the description of rules used in this
module.

1. Rules, when CSPs are greater than CEPs are:

(a) Check for ‘ki’ complement clause: The verb in a sentence which contain ‘ki’ compliment
clause is not the end of its clause whereas its end is same as of end of ‘ki’ complement clause.
Below example (2) will make this rule more clearer.

(2) raam ne
Ram+arg

kahaa
say+past

ki
that

vaha
he

ghar
home

gayaa
go+past

’Raam said that he went home’

In this example (2), Stochastic models will mark ‘raam’ and ‘ki’ as the start of clause, and
‘gayaa’ as the end of clause, making CSPs more than the CEPs. We can notice that ‘gayaa’
is the end for both the clauses in a sentence, so using this rule, we will add one more end of
clause to ‘gayaa’ word. The resultant sentence with clauses marked will be:
(raam ne kahaa (ki vaha ghar gayaa))

(b) Check for finite verb: If a verb is finite and does not have any ‘ki’ complement clause in it
then that verb should be marked as the end of clause. So if this type verb is unmarked by the
stochastic model then this rule will handle this.

(c) Check for non-finite verb: If a non-finite verb is present in a sentence and word next to it does
not mark start of another clause then this rule will mark that word as the start of that clause.

45

–It should be noted that rules are applied in specific order, and once the number of CSPs and CEPs
become same at any point of rule we stop applying more rules from this type where CSPs and CEPs
are not same.

2. Rules, When CEPs are greater than CSPs are:

(a) If there is a ‘non-finite’ verb in a sentence then we check for its start and mark them using
regular expressions if not marked by stochastic models. for example:

(3) raam
Ram+arg

khaanaa
food

khakara
having eaten

ghar
home

gayaa
go+past

’having eaten food, Ram wen home’

In example (3), if stochastic models does not able to mark ‘khaanaa’ as the start of non-finite
clause ‘khaanaa khakara’. Then this rules will capture these type of situations and add a new
CSP in a sentence.

(b) If a word before conjunction, not a verb, is marked as end of a clause then this rule will remove
that end, reducing number of CEP.

3. Rules, when CSPs and CEPs are same:

(a) If there are more than one clauses in one single ‘ki’ complement clause than this rules marks
one bigger boundary as clause which will contain all the embedded clauses. For example:

(4) raam ne
Ram+arg

kahaa
say+past

ki
that

shaam ne
Shaam+arg

khaanaa
food

khaayaa
eat+past

aur
and

paani
water

piyaa
drink+past

’Raam said that Shaam ate food and drank water’

The situation discussed in this rule can be observed in example (4). The system output before
this rule may be,
“(raam ne kahaa (ki shaam ne khaanaa khaayaa) aur (paani piyaa))”, Which this rule will
convert to
“(raam ne kahaa (ki (shaam ne khaanaa khaayaa) aur (paani piyaa)))”

– Having these rules applied, the output sentence will contain start and end of clauses in a sentence.

5 Evaluation and Results

As mentioned earlier we have used (Sharma et al., 2013) technique to automatically generate 16000
sentences of Hindi treebank marked with clause boundaries. Out of these 16000 sentences, a set of 1500
sentences with average length of 16 words was randomly selected. This set was then manually corrected
at the level of clause boundary for accurate evaluation of the system. It should be noted that this set
was not used in training of the models. Further we have divided this set into two set; development set
which consist of 500 sentences and testing set which consist of 1000 sentences. We have evaluated the
system with both models (step-by-step and merged) along with post-processing module, and we have
noticed system with step-by-step model performs better than the system with merged model. Table (2)
and Table (3) show the results on development set and testing set respectively.

Model Type Start of clause End of clause
Precision Recall F1-measure Precision Recall F1-measure

Step-by-step model 91.493 89.816 90.646 95.129 93.482 94.298
Merged Model 92.171 89.918 91.030 90.927 92.871 91.888

Table 2: Results on development set.

46

Model Type Start of clause End of clause
Precision Recall F1-measure Precision Recall F1-measure

Step-by-step model 92.051 89.590 90.804 95.969 93.458 94.697
Merged Model 91.779 88.907 90.320 90.919 92.263 91.586

Table 3: Results on testing set.

6 Error Analysis and Discussion

While evaluating our both systems (system with step-by-step model and system with merged model), we
come across some constructions which were not handled by them. which are:

1. Ellipses of verb: when a verb is omitted in a sentence then it is not possible for our system to mark
boundaries correctly. For example:

(5) raam ne
Ram+erg

kitaab
book

<V>
<read+past>

aur
and

maine
I+erg

kavitaa
poem

padhii
read+past

‘Ram read a book and I read a poem’

In example (5), there is an ellipses of the verb ‘padhi’ in the clause ‘raam ne kitaab’. Thus, though
the sentence has two clauses–‘raam ne kitaab’ and ‘maine kavitaa padhii’, our system incorrectly
identifies the whole sentence as one clause due to the ellipses of the verb (denoted by <V>).

2. Scrambling in the usual word order, which is SOV in Hindi, is likely to induce incorrect identifica-
tion of the clauses in our system. For Example:

(6) ghar
home

gayaa
go+past

raam,
Ram,

vaha
he

bolaa.
say+past

‘He said Ram went home’

In example (6), Our system is unable to identify the clause boundaries correctly for any of the two
clauses, ‘ghar gayaa raam’ and ‘ghar gayaa raam,vaha bolaa’, due to scrambling in the word order.
Its output for the sentence is ‘(ghar) (gayaa raam, vaha bolaa)’, though the output should be ‘((ghar
(gayaa raam,) vaha bolaa)’.

3. Missing subordinate conjunction ‘ki’ in a sentence also leads to incorrect identification of clause
boundaries by our system. For example:

(7) raam ne
Ram+erg

kahaa
say+past

tum
you

ghar
home

jaao
go

‘Ram said you go home’

The missing subordinate conjunction ‘ki’ in example (7) leads to incorrect marking of the clause
boundaries as: ‘(raam ne kahaa) (tum ghar jaao)’. The correct clause boundaries for the sentence
are ‘(raam ne kahaa (tum ghar jaao))’.

4. Start of non-finite clause: As we don’t find any syntactic cues for start of non-finite clause, our
systems does not perform much efficiently in finding start of non-finite clauses. For example:

(8) ab
now

hum
we

alag
different

maslon
matters/topics

para
on

khulkara
openly

baatchit
discussion

kar rahe hain
do+conti+present

‘Now we are discussing openly on different matters’

47

Both system marks ‘khulkara’ and ‘kar rahe hain’ verbs as the end of clauses accurately but start of
non-finite clause which is ‘alag’ is not identified correctly. Output by the systems is, ‘(ab hum alag
maslon para khulkara) (baatchit kar rahe hain)’ , where as the correct output is, ‘(ab hum (alag
maslon para khulkara) baatchit kar rahe hain)’

-- Overall we observed that the system with step-by-step model which statistically first identifies end and
then start, followed by rules performs better than the system with merged model.

7 Conclusion and Future Work

We have discussed our work on clause boundary identification in Hindi and the issues pertaining to them,
in the course of this paper. Clausal information in a sentence is known to improve the performance of
many NLP systems, thus the need for this task. We observed that the system with step-by-step model
which statistically, first identifies end and then start of clauses, followed by rules, performs better than the
system with merged model. The step-by-step model system, showing a satisfactory performance in terms
of F1 scores of 91.53% for clause boundary identification, and the merged model system showing 80.63%
for the same. Since this task is a promising resource for NLP systems such as Machine Translation, Text-
to-Speech and so on, and can contribute to their better performance, applying this system for betterment
of NLP tools seems quite a favorable prospect as a future work. (Gadde et al., 2010) report that even
minimal clause boundary identification information leverages the performance of their system. We would
like to test the performance of our system in terms of leveraging the performance of other NLP systems

References
Steven Abney. 1990. Rapid incremental parsing with repair. pages 1–9.

R Dhivya, V Dhanalakshmi, M Anand Kumar, and KP Soman. 2012. Clause boundary identification for tamil
language using dependency parsing. pages 195–197. Springer.

Eva I Ejerhed. 1988. Finding clauses in unrestricted text by finitary and stochastic methods. pages 219–227.
Association for Computational Linguistics.

Phani Gadde, Karan Jindal, Samar Husain, Dipti Misra Sharma, and Rajeev Sangal. 2010. Improving data driven
dependency parsing using clausal information. pages 657–660. Association for Computational Linguistics.

Aniruddha Ghosh, Amitava Das, and Sivaji Bandyopadhyay. 2010. Clause identification and classification in
bengali. In 23rd International Conference on Computational Linguistics, page 17.

John Lafferty, Andrew McCallum, and Fernando CN Pereira. 2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data.

Vilson J Leffa. 1998. Clause processing in complex sentences. volume 1, pages 937–943.

Andrew McCallum and Wei Li. 2003. Early results for named entity recognition with conditional random fields,
feature induction and web-enhanced lexicons. In Proceedings of the seventh conference on Natural language
learning at HLT-NAACL 2003-Volume 4, pages 188–191. Association for Computational Linguistics.

Martha Palmer, Rajesh Bhatt, Bhuvana Narasimhan, Owen Rambow, Dipti Misra Sharma, and Fei Xia. 2009.
Hindi syntax: Annotating dependency, lexical predicate-argument structure, and phrase structure. pages 14–17.

Harris V Papageorgiou. 1997. Clause recognition in the framework of alignment. pages 417–426.

Georgiana Puscasu. 2004. A multilingual method for clause splitting.

R Vijay Sundar Ram and Sobha Lalitha Devi. 2008. Clause boundary identification using conditional random
fields. In Computational Linguistics and Intelligent Text Processing, pages 140–150. Springer.

Fei Sha and Fernando Pereira. 2003. Shallow parsing with conditional random fields. In Proceedings of the
2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human
Language Technology-Volume 1, pages 134–141. Association for Computational Linguistics.

48

Rahul Sharma, Soma Paul, Riyaz Ahmad Bhat, and Sambhav Jain. 2013. Automatic clause boundary annotation
in the hindi treebank.

Vinh Van Nguyen, Minh Le Nguyen, and Akira Shimazu. 2007. Using conditional random fields for clause split-
ting. Proceedings of The Pacific Association for Computational Linguistics, University of Melbourne Australia.

49

Proceedings of the 5th Workshop on South and Southeast Asian NLP, 25th International Conference on Computational Linguistics, pages 50–54,
Dublin, Ireland, August 23-29 2014.

RBMT as an alternative to SMT for under-resourced languages

Guillaume de Malézieux
INaLCO, Paris

guillaume2l2m@gmail.com

Amélie Bosc
INaLCO, Paris

amelie.bosc@gmail.com

Vincent Berment
INaLCO, Paris

LIG/GÉTALP, Grenoble
Vincent.Berment@imag.fr

Abstract

Despite SMT (Statistical Machine Translation) recently revolutionised MT for major language pairs, when
addressing under-resourced and, to some extent, mildly-resourced languages, it still faces some difficulties
such as the need of important quantities of parallel texts, the limited guaranty of the quality, etc. We thus
speculate that RBMT (Rule Based Machine Translation) can fill the gap for these languages.

1 Introduction

In this paper, we present an ongoing work that aims at assessing the relevance of specific methods to reach
“quick and quality” machine translation for under-resourced languages. These methods include working in
parallel on several languages, reusing software and linguistic resources, relying on a pivot architecture,
opening our linguistic sources and letting any group of users the possibility to “do it themselves”. We also
chose to adopt the old fashioned RBMT approach.

More concretely, we are applying Vauquois’ methodology [Vauquois and Chappuy, 1985] to the
development of analysers for Khmer, Lao, Thai and Hindi, which we plan to “connect” to existing and open
source syntheses of French and English through three means: deep transfer, deep hybrid transfer and UNL
pivot representation. In order to elaborate easy-to-understand guidelines for new comers, we chose to create
a primer methodological step involving the small novel of Saint-Exupéry “The Little Prince”, which has
been translated into 270 languages and dialects. Doing so, the principles for developing dictionaries and
grammars that follow Vauquois’ methodology become much simpler to understand.

2 Tools and methodology

2.1 The Heloise RBMT framework

The RBMT framework we are using is called
Heloise. It has been presented at COLING
2012 [Berment and Boitet, 2012]. Heloise is an
online environment available to anyone
wishing to design his or her own operational
expert MT system, especially for under-
resourced pairs of languages. It is upward-
compatible with Ariane-G5’s languages, so the
open-source modules developed under this
environment can be reused in any new system.
For example, in order to add a new language
X, an existing generation of French language
can be taken as such for a new X-French
system, limiting the effort to an analyser of
language X and to a transfer from X to French.
Figure 1 represents the usual phases involved
in a development under Ariane-G5.

FIGURE 1 – Ariane-G5 phases.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer are added
by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

50

2.2 GÉTA’s methodology

The approach of the GÉTA group of Grenoble (France), who created Ariane-G5, is a second generation MT,
in which the text to be translated is first transformed into an abstract representation, as independent of any
language as possible, so this abstract representation can then be translated in any other language. The abstract
representation is a multi-level structure (m-structure) ideally containing the logic (predicate-argument) and
semantic data that are the most language-independent computed in this approach. As this deep level is not
always reached, two other (lower) levels are borne by the m-structure: the syntagmatic level and the syntactic
dependency level, so the translation system will output the best it can do.

As one can see in Figure 1, the development is made of modules corresponding to the different steps of the
translation. If we concentrate on the analysis (the systems we are working on are X-French and X-English
systems so firstly on analysers for the X languages), the work consists in developing monolingual
dictionaries containing all the information necessary for the analysis, as well as structural analysers. As such
linguistic descriptions are rather complex, one first needs to specify what will be programmed, especially for
the structural part. GÉTA’s answer to this issue consists in making a list of the different structural phenomena
found in the language, each one being represented as a correspondence between a string and its abstract
representation (“charts”), and establishing links between the charts so the charts can include references to
other charts. One can think it roughly as derivation rules in formal grammars in which terminal elements are
classes of words and non-terminal elements are charts. For example, a noun phrase (the string) such as
[adjective+noun] can be represented as NP(AP,noun) where AP refers to a chart of general adjective phrases,
possibly containing adverbs as in “a very cute cat”. The formalism for those charts has initially been called
“static grammar” and later SCSG (Static Correspondence Specification Grammar).

3 Parallel work on Khmer, Hindi, Lao and Thai languages

This work aims at elaborating an efficient and simple methodology for developing MT systems for groups of
under-resourced languages. We are using for that purpose a small corpus consisting in Saint-Exupéry’s Little
Prince in Khmer, Hindi, Lao and Thai which are our source languages, and our target languages are French
and English. Two of the authors, Guillaume de Malézieux and Vincent Berment, are working on Khmer and
Lao, as two other persons, Jennifer Wong and Satenik Mkhitaryan, are working on Thai and Hindi.

3.1 Reuse of existing linguistic modules

The systems developed under Ariane-G5 are made of linguistic module dedicated to each step of the
translation process (analysis, transfer, generation). In GÉTA’s approach, analyses are independent from
generations so an analyser for a specific language can be used with a generation of any other language. As
French an English modules are available under BSD licence (among many others), we are using them for our
work so the analysers and the transfers have to be developed.

3.2 Segmentation and POS tagging

In the case of Khmer, Lao and Thai, one needs to segment into words first, as the writing systems do not
include spaces between words. This is done by Motor, a segmenter performing a maximum matching
algorithm. It is currently available for Burmese, Khmer, Lao, Thai and Tibetan. Within the limits of our small
corpus, the obtained segmentation is 100% correct (the figure reached for general corpora is significantly
lower). In order to create the first step called “morphological analysis” in Figure 1, we need a list of words
with a number of features that will be used for the analysis. To achieve that, we fill an Excel file with the
required data. The following figure is an extract of the Excel file that describe a noun phrase with a
possessive attribution. Note that Hindi is not completed and was not included is this paper.

FIGURE 2 – Khmer, Lao and Thai data used in the “morphological analysis”

We used parts of speech often found in GÉTA systems: V verb, N noun, A adjunct, R pronoun, S

51

subordination (preposition, subordinating conjunction and linking word), C coordinating conjunction. In
Figure 2, LU stands for Lexical Unit, which is a generalisation of lemma that groups together words deriving
from the same base such as build, building, builder, etc. That notion is very useful, for example during
transfers where it eases paraphrasing.

The example in Figure 2 is an ideal case
where the three languages involved are
aligned word for word. When it is not the
case, we have different lines for the parts in
the different languages that are not aligned
and we mark them as “similar” thanks to a
colour given to those parts. That is used later
when specifying the structural analysers as
blocks of words that are not aligned may
share common structures (see the next
section).

After the Excel file is completed, we can then
generate automatically the “morphological
analysis” source code written in ATEF
language, thanks to a tool we developed for
that aim. Note that segmenting and POS
tagging have their own dictionaries so a
special care is needed to ensure their
consistency.

FIGURE 3 – Result of the morphological analysis for

គំនូររបស់ខ្ញុ ំ(Khmer)

3.3 Structural analysis

In order to perform the structural analysis of a text, one needs a formal description of the language. This
description, that we call a specification, will be written according to the formalism given by Bernard
Vauquois and Sylviane Chappuy [Vauquois et Chappuy, 1985] and mentioned in section 2.2: the static
grammars. After we get such specification, we can start programming the analyser in the Ariane-G5 language
called ROBRA, which performs tree transformations.
Now let us have a closer look at what a static grammar is like. It is a series of charts, each chart describing a
family of strings by associating it to a tree. The charts may refer to each other. For example in order to
recognise a complex noun phrase such as “gaz reaction”, the two nouns have to be first recognised as
separate valid noun phrases (for example, “gaz” is a word that makes sense on its own) so that then they can
be gathered into the same tree in order to take a new meaning. So that means the chart describing complex
noun phrases refers to the chart describing simple noun phrases. As a consequence, all the charts have to be
organised in the grammar so that the ones describing elementary phrases, that are the ones that do not need
referring to another chart, come first. Then come the charts describing simple phrases, because they can only
refer to lower charts in this hierarchy. At last come the charts for complex groups, they can refer to any chart
in the grammar.
Now to write the charts, we need a list of variables to gather all the information we need. They can be of
different types, but for the purpose of our study, we will only need basic information. Because we use the
limited vocabulary of the Little Prince, we won't have to work much on disambiguation. So for now we are
only using POS information, with some refinements to recognise mass nouns from countable nouns, and
some subcategories of verbs. As an example, we will present the chart describing the possession noun
phrases, that are built identically in the three languages: noun + particle “of ” + personal pronoun. Here in
order to write a chart that could apply to Lao, Thai and Khmer languages at a time, we will use the variable

OF to refer to របស់ in Khmer, ของ in Thai, and ຂອງ in Lao. A static chart is divided into three zones. The
first one is a string-tree correspondence, describing the structure to be recognised. Each node and leaf
receives a number. In FIGURE 4, the root node of our noun phrase is the number 1. Numbers 2, 3 and 4 are
the leaves, and each cross below represents a word of the string. The square brackets around number 3 mean
that it is optional. The last two lines at the bottom of the tree give information about the words. For example
leave 2 is a noun, and more precisely a common noun, leave 3 is a subordinating and its LU is the particle
OF, and at last, leave 4 is a personal pronoun. One particularity in this tree is the fact that the node 3 is not

52

linked to the root. This is because although the particle needs to be taken into account during the analysis, we
chose not to have it appear into the tree. All the information it carries will be transferred into other nodes.
Zone 2 of the static chart provides complementary information on the condition necessary for the structure to
be correct. This could be semantic information on one of the nodes, or the presence of one node excluding
another, etc. But we do not need any information of this type in the chart we are studying. At last, it is in
zone 3 that we present the actions to be taken on the tree. In our case, we store in a variable the possession
relation. We also assign the noun of leave 2 to be the governor, that is to say the head, of the phrase.

FIGURE 4 – String-tree correspondence

FIGURE 5 – Example of structural analysis for a Lao phrase

3.4 Lexical transfer

In transfers, we transform the Lexical Units and their variables from the source to the target lexical spaces.
As we found lexical similarities between Thai, Lao and Khmer languages — ULs are between 50% and 70%
common —, a large part of the transfers is also common to those languages.

4 Conclusion

In this paper, we presented an ongoing work. A lot remains to be done but we already observe that working
in parallel on several languages brings a lot of advantage. For example, when a question raises on the
methodology, on how we can build a specific static chart, etc., people working on any language can answer.
For this purpose, the Ariane/Heloise community has set-up a Web site and enriches it continuously:
lingwarium.org. Also, as for the structural phases, we noted that many structures were common between
Khmer Lao and Thai (Hindi development is late because of the few common features shared with the other
languages), thus reducing the effort for making the static grammars. We also noted that the time to develop
the transfers were dramatically reduced as a large part of them were common to the three languages. That
remains to be further evaluated but we are already convinced it is a way that will help reaching Christian
Boitet’s prediction that 600 languages will have access to machine translation [Boitet, 2013].

Acknowledgements

We would like to thank Jennifer Wong and Satenik Mkhitaryan for their contribution, as well as Michel
Antelme who helped a lot for the work on the Khmer language.

53

References

Bachut D., Le projet EUROLANG : une nouvelle perspective pour les outils d’aide à la traduction, TALN 1994
Proceedings ,PRC-CHM Days, Marseille University, April 7-8th 1994.

Bachut D., Verastegui N., Software tools for the environment of a computer aided translation system, COLING-1984,
Stanford University, pages 330 to 333, July 2-6th 1984.

Berment V., Méthodes pour informatiser des langues et des groupes de langues « peu dotées », PhD Thesis, Grenoble,
May 18th 2004.

http://portal.unesco.org/ci/fr/files/16735/10914394223these_Berment.pdf/these_Berment.pdf

Berment V., Boitet C.: Heloise — A reengineering of Ariane-G5 SLLPs for application to π-languages, COLING 2012,
Bombay, December 2012

Boitet C., Le point sur Ariane-78 début 1982 (DSE-1), vol. 1, partie 1, le logiciel, ADI Contract report n° 81/423, April
1982.

Boitet C., Guillaume P., Quézel-Ambrunaz M., A case study in software evolution: from Ariane-78.4 to Ariane-85,
Proceedings of the Conference on Theoretical and Methodological Issues in Machine Translation of Natural
Languages, Colgate University, Hamilton, New York, August 14-16th 1985.

Boitet C., Current machine translation systems developed with GETA’s methodology and software tools, Translating
and the Computer 8, November 13-14th 1986.

Boitet C., La TAO à Grenoble en 1990, 1980-90 : TAO du réviseur et TAO du traducteur, LATL and CNET, Lannion,
1990.

Boitet C., A research perspective on how to democratize machine translation and translation aids aiming at high quality
final output, MT Summit VII, Kent Ridge Digital Labs, Singapour, pages 125 to 133, September13-17th 1999.

Boitet C., A roadmap for MT: four « keys » to handle more languages, for all kinds of tasks, while making it possible to
improve quality (on demand), International Conference on Universal Knowledge and Language (ICUKL 2002), Goa,
November 25-29th 2002.

Boitet C., Les architectures linguistiques et computationnelles en traduction automatique sont indépendantes, TALN
2008, Avignon, June 9-13th 2008.

Boitet C., Les logiciels traduiront 600 langues dans dix ans, Les dossiers de la Recherche, n°4, June-July 2013.

Chappuy S. Formalisation de la description des niveaux d'interprétation des langues naturelles, Thesis, 1983

Delavennat E., Comparaison des systemes de décoration des linguiciels traitant les langues FRA, ENG, ALD, RUS,
final report, Traouiero project, 2010

Del Vigna C., Berment V., Boitet C., La notion d’occurrence de formes de forêt (orientée et ordonnée) dans le langage
ROBRA pour la traduction automatique, Approches algébrique, logique et algorithmique, ATALA, ENST Paris,
December 1st 2007.

Collective work, Maquette Pédagogique du BEX FEX, GETA Document, 1983

Guillaume P., Ariane-G5 : Les langages spécialisés TRACOMPL et EXPANS, GÉTA document, June 1989.

Guilbaud J.-P., Ariane-G5 : Environnement de développement et d’exécution de systemes (linguiciels) de traduction
automatique, GDR I3 ATALA, Paris, November 1999.

Tang E.K., Natural languages Analysis in machine translation (MT) based on the STCG, PhD thesis, Sains Malaysia
University, Penang, March 1994

Vauquois B., Aspects of mechanical translation in 1979, Conference for Japan IBM Scientific program, July 1979.

Vauquois B., Computer aided translation and the Arabic language, First Arab school on science and technology, Rabat,
October 1983.

 Vauquois B., Chappuy S., Static grammars, A formalism for the description of linguistic models, Proceedings of the
Conference on Theoretical and Methodological Issues in Machine Translation of Natural Languages, Colgate
University, Hamilton, New York, August 14-16, 1985.

Zaharin Yusoff, Strategies and heuristics in the analysis of a natural language in machine translation, PhD thesis, Sains
Malaysia University, Penang, March 1986.

54

Proceedings of the 5th Workshop on South and Southeast Asian NLP, 25th International Conference on Computational Linguistics, pages 55–64,
Dublin, Ireland, August 23-29 2014.

Developing an interlingual translation lexicon using WordNets
and Grammatical Framework

Shafqat Mumtaz Virk
University of Gothenburg,

University of Eng. & Tech. Lahore
virk.shafqat@gmail.com

K.V.S. Prasad
Chalmers University of Technology

prasad@chalmers.se

Aarne Ranta
University of Gothenburg

aarne@chalmers.se

Krasimir Angelov
University of Gothenburg
krasimir@chalmers.se

Abstract

The Grammatical Framework (GF) offers perfect translation between controlled subsets
of natural languages. E.g., an abstract syntax for a set of sentences in school mathematics
is the interlingua between the corresponding sentences in English and Hindi, say. GF
“resource grammars” specify how to say something in English or Hindi; these are re-
used with “application grammars” that specify what can be said (mathematics, tourist
phrases, etc.). More recent robust parsing and parse-tree disambiguation allow GF to
parse arbitrary English text. We report here an experiment to linearise the resulting
tree directly to other languages (e.g. Hindi, German, etc.), i.e., we use a language-
independent resource grammar as the interlingua. We focus particularly on the last part
of the translation system, the interlingual lexicon and word sense disambiguation (WSD).
We improved the quality of the wide coverage interlingual translation lexicon by using
the Princeton and Universal WordNet data. We then integrated an existing WSD tool
and replaced the usual GF style lexicons, which give one target word per source word,
by the WordNet based lexicons. These new lexicons and WSD improve the quality of
translation in most cases, as we show by examples. Both WordNets and WSD in general
are well known, but this is the first use of these tools with GF.

1 Introduction
1.1 Translation via an interlingua
Interlingual translation scales easily up to a large number of languages. Google translate, for
example, deals with all pairs of 60 languages mostly by using English as a pivot language. In
this way, it can do with just 2 * 59 = 118 sets of bilingual training data, instead of 60 * 59 =
3540 sets. It would be hard to collect and maintain so many pairs, and in many cases, there is
very little data to be found.

The roots of an inter-lingua are perhaps in the medieval idea of a universal grammar (Lyons,
1968), in which a universal representation of meaning can be expressed. Translating via this
interlingua then also means that meaning is conserved in going from the source to the tar-
get language. In recent decades, this idea appears in (Curry, 1961) where the interlingua is
called tectogrammar, in the Rosetta project (Rosetta, 1994), building on the semantic models
of (Montague, 1974), and in the UNL (Universal Networking Language) project.

Incidentally, interlingua is also the heart of modern compiler technology. For instance, the
GNU Compiler Collection (Stallman, 2001) uses a shared tree representation to factor out the
majority of compilation phases between a large number of source and target languages. Compiler
writers save work, and semantics is preserved by design. A compiler, then, is built as a pipeline
with parsing from a source language to an abstract syntax tree, which is analyzed and
optimized in the language-independent phases, and finally linearized to a target language.
This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and
proceedings footer are added by the organizers. License details: http://creativecommons.org/licenses/by/4.
0/

55

It is easy to see an analogy between this pipeline and the way a human language translator
could work. But how to make it real? How to scale up to the full size of natural languages?

1.2 WordNets

In current machine translation research, interlingual methods are marginal, despite the wide use
of pivot languages in systems like Google translate. Closest to the mainstream perhaps is the
development of linked WordNets. The original Princeton Wordnet for English (Miller, 1995) de-
fines a set of word senses, which many other wordnets map to other languages. Implementations
of this idea are Finnish (Lindén and Carlson., 2010) and Hindi (Hindi-WordNet, 2012).

In the linked Wordnet approach, the Princeton WordNet senses work as an interlingua, albeit
only on the level of the lexicon. (Lindén and Carlson., 2010) give strong arguments why in fact
this is a good way to go, despite the often emphasized fact that different languages divide the
world in different ways, so that the senses of their word don’t map one to one. The evidence from
the English-Finnish case shows that 80% of the mappings are one-to-one and un-problematic.
As this part of the lexicon can be easily reused, linguists and system builders can concentrate
their effort on the remaining 20%.

The Universal WordNet (de Melo and Weikum, 2009) works on the same lines. Building on
the Princeton WordNet, it populates the mappings to over 200 different languages by collecting
data from different sources (such as the Wikipedia) and using supervised machine learning
techniques to propagate the knowledge and infer more of it. What makes it a particularly
interesting resource is that it is freely available under the most liberal licenses, as is the original
Princeton WordNet,

1.3 GF

Grammatical Framework (GF)(Ranta, 2004) is a grammar formalism tool based on Martin
Löf’s type theory (Martin-Löf, 1982). It can be seen as a tool to build interlingua based trans-
lation systems. GF works like a compiler: the source language is parsed to an abstract syntax
tree, which is then linearized to the target language. The parsing and linearization component
are defined by using Parallel Multiple Context-Free Grammars (PMCFG, (Seki et al., 1991),
(Ljunglöf, 2004)), which give GF an expressive power between mildly and fully context-sensitive
grammars. Thus GF can easily handle with language-specific variations in morphology, word
order, and discontinuous constituents, while maintaining a shared abstract syntax.

Historically, the main use of GF has been in controlled language implementations, e.g., (Ranta
and Angelov, 2010; Angelov and Enache, 2010; Ranta et al., 2012) and natural language
generation, e.g., (Dymetman et al., 2000), both applied in multilingual settings with up to 15
parallel languages. In recent years, the coverage of GF grammars and the processing performance
has enabled open-domain tasks such as treebank parsing (Angelov, 2011) and hybrid translation
of patents (Enache et al., 2012). The general purpose Resource Grammar Library (RGL)(Ranta,
2011) has grown to 30 languages. It includes the major European languages, South Asian
languages like Hindi/Urdu (Prasad and Shafqat, 2012), Nepali and Punjabi (Shafqat et al.,
2011), the Southeast Asian language Thai, and Japanese and Chinese.

However, GF has yet not been exploited for arbitrary text parsing and translation. To do
this, we have to meet several challenges: robust parsing, parse-tree disambiguation, word sense
disambiguation, and development of a wide-coverage interlingual translation lexicon. This paper
focuses on the latter two. We report first a method of using the WordNets (Princeton and
Universal) to build an interlingual full-form, multiple sense translation lexicon. Then, we show
how these lexicons together with a word sense disambiguation tool can be plugged in a translation
pipeline. Finally, we describe an experimental setup and give many examples to highlight the
effects of this work.

56

1.4 South Asian languages
While the work described here can apply to any language, it is particularly interesting for South
Asian languages. In these languages, statistical tools do not have much bilingual training data to
work on, so Google translate and similar tools are not as useful as they are with better resourced
languages. At the same time, there is an urgent and widely recognised need for translations from
English to the various languages of South Asia. Fortunately, word nets are being built for many
of them, so that the techniques described here can be applied.

2 From Universal WordNet to a GF Lexicon
The original Princeton WordNet (Miller, 1995) defines a set of word senses, and the Universal
WordNet (de Melo and Weikum, 2009) maps them to different languages. In this multilingual
scenario, the Princeton WordNet senses can be seen as an abstract representation, while the
Universal WordNet mappings can be seen as concrete representation of those senses in different
languages. GF grammars use very much the same technique of one common abstract and
multiple parallel concrete representations to achieve multilingualism. Due to this compatibility,
it is easy to build a multilingual GF lexicon using data from those two resources (i.e. Princeton
and Universal WordNets). This section briefly describes the experiment we did to build one
abstract and multiple concrete GF lexicons for a number of languages including German, French,
Finnish, Swedish, Hindi, and Bulgarian. The method is very general, so can be used to build a
similar lexicon for any other language for which data is available in the Universal WordNet.

2.1 GF Abstract Lexicon
The Princeton WordNet data is distributed in the form of different database files. For each of
the four lexical categories (i.e. noun, verb, adjective, and adverb), two files named ‘index.pos’
and ‘data.pos’ are provided, where ‘pos’ is noun, verb, adj and adv. Each of the ‘index.pos’
files contains all words, including synonyms of the words, found in the corresponding part of
speech category. Each of the ‘data.pos’ files contains information about unique senses belonging
to the corresponding part of speech category. For our purposes, there were two possible choices
to build an abstract representation of the lexicon:

1. To include all words of the four lexical categories, and also their synonyms (i.e. to build
the lexicon from ‘index.pos’ files)

2. To include only unique senses of the four categories with one word per sense, but not the
synonyms (i.e. to build the lexicon from the data.pos’ files)

To better understand this difference, consider the words ‘brother’ and ‘buddy’. The word
‘brother’ has five senses with sense offsets ‘08111676’, ‘08112052’, ‘08112961’, ‘08112265’ and
‘08111905’ in the Princeton WordNet 1.7.11, while the word ‘buddy’ has only one sense with the
sense offset ‘08112961’. Choosing option (1) means that we have to include the following entries
in our abstract lexicon.
brother_08111676_N
brother_08112052_N
brother_08112961_N
brother_08112265_N
brother_08111905_N
buddy_08112961_N

We can see that the sense with the offset ‘08112961’ is duplicated in the lexicon: once with
the lemma ‘brother’ and then with the lemma ‘buddy’. However, if we choose option (2), we
end up with the following entries.

1We choose WordNet 1.7.1, because the word sense disambiguator that we are using in our translation pipeline
is based on WordNet 1.7.1

57

brother_08111676_N
brother_08112052_N
brother_08112265_N
brother_08111905_N
buddy_08112961_N

Since the file ‘data.noun’ lists the unique senses rather than the words, their will be no
duplication of the senses. However, the choice has an obvious effect on the lexicon coverage, and
depending on whether we want to use it as a parsing or as a linearization lexicon, the choice
becomes critical. Currently, we choose option (2) for the following two reasons:

1. The Universal WordNet provides mappings for synsets (i.e. unique senses) but not for the
individual synonyms of the synsets. If we choose option (1), as mentioned previously, we
have to list all synonyms in our abstract representation. But, as translations are available
only for synsets, we have to put the same translation against each of the synonyms of the
synset in our concrete representations. This will not gain us anything (as long as we use
these lexicon as linearization lexicons), but will increase the size of the lexicon and hence
may have reduce the processing speed of the translation system.

2. At the current stage of our experiments we are using these lexicons as linearization lexicons,
so one translation of each unique sense is enough.

Our abstract GF lexicon covers 91516 synsets out of around 111,273 synsets in the WordNet
1.7.1. We exclude some of the synsets with multi-word lemmas. We consider them more of a
syntactic category rather than a lexical category, and hence deal with them at the syntax level.
Here, we give a small segment of our abstract GF lexicon.

abstract LinkedDictAbs = Cat ** {
fun consecutive_01624944_A : A ;
fun consequently_00061939_Adv : Adv ;
fun conservation_06171333_N : N ;
fun conspire_00562077_V : V ;
fun sing_01362553_V2 : V2 ;
........
}
The first line in the above given code states that the module ‘LinkedDictAbs’ is an abstract

representation (note the keyword ‘abstract’). This module extends (achieved by ‘**’ operator)
another module labeled ‘Cat2’ which, in this case, has definitions for the morphological categories
‘A’, ‘Adv’, ‘N’ and ‘V’. These categories correspond to the ‘adjective’, ‘adverb’, ‘noun’, and ‘verb’
categories in the WordNet respectively. However, note that in GF resource grammars we have
a fine-grained morphological division for verbs. We sub-categorize them according to their
valencies i.e ‘V’ is for intransitive, and ‘V2’ for transitive verbs. We refer to (Bringert et al.,
2011) for more details on these divisions.

Each entry in this module is of the following general type:
fun lemma_senseOffset_t : t ;

Keyword ‘fun’ declares each entry as a function of the type ‘t’. The function name is composed
of lemma, sense offset and a type ‘t’, where lemma and sense offset are same as in the Princeton
WordNet, while ‘t’ is one of the morphological types in GF resource grammars.

This abstract representation will serve as a pivot for all concrete representations, which are
described next.

2This module has definitions of different morphological and syntactic categories in the GF resource grammar
library

58

2.2 GF Concrete Lexicons
We build the concrete representations for different languages using the translations obtained
from the Universal WordNet data and GF morphological paradigms (Détrez and Ranta, 2012;
Bringert et al., 2011). The Universal WordNet translations are tagged with a sense offset from
WordNet 3.03 and also with a confidence score. As, an example consider the following segment
form the Universal WordNet data, showing German translations for the noun synset with offset
‘13810818’ and lemma ‘rest’ (in the sense of ‘remainder’).
n13810818 Rest 1.052756
n13810818 Abbrand 0.95462
n13810818 Ruckstand 0.924376

Each entry is of the following general type.
posSenseOffset translation confidence-score

If we have more than one candidate translation for the same sense (as in the above case),
we select the best one (i.e. with the maximum confidence score) and put it in the concrete
grammar. Next, we give a small segment from the German concrete lexicon.
concrete LinkedDictGer of LinkedDictAbs = CatGer ** open
ParadigmsGer, IrregGer,Prelude in {
lin consecutive_01624944_A = mkA "aufeinanderfolgend" ;
lin consequently_00061939_Adv = mkAdv "infolgedessen" ;
lin conservation_06171333_N = mkN "Konservierung" ;
lin conspire_00562077_V = mkV "anzetteln" ;
lin sing_01362553_V2 = mkV2 (mkV "singen") ;
......
}
The first line declares ‘LinkedDictGer’ to be the concrete representation of the previously

defined abstract representation (note the keyword ‘concrete’ at the start of the line). Each entry
in this representation is of the following general type:
lin lemma_senseOffset_t = paradigmName "translation" ;

Keyword ‘lin’ declares each entry to be a linearization of the corresponding function in the
abstract representation. ‘paradigmName’ is one of the morphological paradigms defined in the
‘ParadigmsGer’ module. So in the above code, ‘mkA’, ‘mkAdv’, ‘mkN’, ‘mkV’ and ‘mkV2’ are
the German morphological paradigms4 for different lexical categories of ‘adjective’, ‘adverb’,
‘noun’, ‘intransitive verb’, and ‘transitive verb’ respectively. “translation” is the best possible
translation obtained from the Universal WordNet. This translation is passed to a paradigm as
a base word, which then builds a full-form inflection table. These tables are then used in the
linearization phase of the translation system (see section 3)

Concrete lexicons for all other languages were developed using the same procedure. Table 1
gives some statistics about the coverage of these lexicons.

Language Number of Entries Language Number of Entries
Abstract 91516 German 49439
French 38261 Finnish 27673
Swedish 23862 Hindi 16654
Bulgarian 12425

Table 1: Lexicon Coverage Statistics

3However, in our concrete lexicons we match them to WordNet 1.7.1 for the reasons mentioned previously
4See (Bringert et al., 2011) for more details on these paradigms

59

3 System architecture

Figure 1 shows an architecture of the translation pipeline. The architecture is inter-lingual
and uses the Resource Grammar Library (RGL) of Grammatical Framework (Ranta, 2011) as
the syntax and semantics component, Penn Treebank data for parse-tree disambiguation and
IMS(It Makes Sense)(Zhong and Ng, 2010) as a word sense disambiguation tool. Even though
the syntax, semantics and parse-tree disambiguation are not the main topics of this paper,
we give the full architecture to show where the work reported in this paper fits. Internal GF
resources (e.g. resource grammars and dictionaries) are shown in rectangles while the external
components (e.g. PennTreebank and IMS(Zhong and Ng, 2010): a wide coverage word sense
disambiguation system for arbitrary text.) are shown in double-stroked rectangles.

With reference to Figure 1: The input is parsed using English resource grammar (EngRG)
and a comprehensive English dictionary (DictEng). If the input is syntactically ambiguous the
parser will return more than one parse-tree. These trees are disambiguated using a statistical
model build from the PennTreebank data. The best tree is further processed using the input
from the IMS to tag the lexical nodes with best sense identifiers. This tree is finally linearized
to the target language using the target language resource grammar (TLRG) together with the
target language lexicon (LinkedDict) discussed in section 2.

Input Parsing

EngRG+DictEng

Parse-Trees Parse Tree
Disambigu

ation
Best-Tree

Word
Sense

Disambigu
ation

Linearizati
on

Sense-Tagged-Tree

IMS

TLRG+LinkedDict

Output

Penn Treebank

EngRG: English Resource Grammar
TLRG: Target Language Resource Grammar

Figure 1: The translation pipeline.

4 Experimental Setup and Evaluation

Our experimental setup is as follows: We take some English text as source, and translate it to a
target language (German and Hindi in these experiments) by passing it through the translation
pipeline described in section 3. To show the usefulness of the lexicons described in section 2 and
for comparison, we translate the same source twice: with and without word sense disambiguation.

For the first attempt, we used exactly the same translation pipeline as shown in Figure 1,
except that to overcome the deficiencies of our existing parse-tree disambiguator, for some of
the examples, we used trees directly from the PennTreebank, which are supposed to be correct.
However, this should not damage the claims made in this paper which is about developing
wide coverage interlingual translation lexicons and then using them for WSD in an interlingual
translation pipeline.

For the second attempt, we plugged out the word sense disambiguation form the translation
pipeline and used our old GF style lexicons (one target word per source word irrespective of its
sense) in the linearization phase.

Finally, we compared both candidate translations to see if we have gained anything. We did
both manual and automatic evaluations to confirm our findings.

For a set of 25 sentences for English-German pair we got marginal BLEU score improvements
(from 0.3904 to 0.399 with ‘old’ and ‘new’ dictionaries). Manual inspection, however, was much
more encouraging, and explained the reasons for very low improvements in the BLEU scores in
some cases. The reason was that even if the word sense disambiguation, and hence, our new

60

lexicon gives a better lexical choice, it will still be considered ‘wrong” by the evaluation tool if the
gold-standard has a different choice. It was also observed that there were cases where the ‘old’
lexicon produced a much better translation than the ‘new’ one. The reasons for this are obvious.
The word sense disambiguator has its own limitations and is known to make mistakes. Also, as
explained in Section 5, the lexicon cannot be guaranteed to always give the right translation.

Next, we give a number of example sentence with comments5 to show that how the new
lexicons improved the quality of translations, and also give some examples where it worked the
other way around.

4.1 German
1. Source He increases the board to seven

Without WSD er erhöht das Brett nach einigen sieben
With WSD er vergrößert die Behörde nach einigen sieben
Comments das Brett is a wooden board (wrong); erhöht means “to raise”. while

vergrößert means “increases the size”. Note the wrong preposition choice (“to” should
be zu rather than nach). Also, an indefinite determiner (einige, some) has been
wrongly added to the cardinal number is used as a noun phrase.

2. Source the index uses a base of 100 in 1,982
Without WSD das Verzeichnis verwendet eine Base nach einige 100 in einigen

1982
With WSD der [index_11688271_N] nutzt einen Operationsbasis von einigen

100 in einigen 1982
Comments Note the untranslated word in the WSD version. Base means a chemical base,

the wrong meaning here. Operationsbasis is not the best choice, but acceptable.

3. Source fear is the father of panic
With WSD Angst ist der Papa von Angst
Comment The traditional hilarious example, saying “fear is fear’s daddy”.

4.2 Hindi
To represent Hindi, we use an IPA style alphabet, with the usual values and conventions.
Retroflexed sounds are written with a dot under the letter: ṭ, ḍ, and ṛ (a flap) are com-
mon, while ṇ and ṣ occur in Sanskritised Hindi (though many dialects pronounce them n and
š). The palatalised spirant is shown š and aspirated stops are shown thus: kh. A macron over a
vowel denotes a long vowel, and ˜, nasalisation. In Hindi, e and o are always long, so the macron
is dropped. Finally, we use ñ to mean the nasal homorganic with the following consonant.

Here are examples from our evaluation showing that the WSD system works well; the versions
without WSD merely pick the first synonym in the lexicon.

1. Source Mr Baris is a lawyer in New York .
Without WSD Mr Baris New York mẽ kānūn kā pañḍit hæ
With WSD Mr Baris New York mẽ vakīl hæ
Word order Mr Baris New York in lawyer is
Comments kānūn kā pañḍit is “expert/teacher in law”, while vakīl means “lawyer”.

2. Source we don’t depend on pharmaceutical companies for our support
Without WSD ham auṣadhīya sahyōgī par hamāre bharaṇ pōṣaṇ ke liye nahī̃

nirte hæ̃.
5For the comments on German, we are indebted to Erzsebet Galgoczy and Wolfgang Ahrendt, our colleagues

and German informants.

61

With WSD ham auṣadhīya kañpanī par hamāre nirvāh vyay ke liye nahī̃ ūte hæ̃.
Word order We pharmaceutical companies on our subsistence expenditure for

not ??? do
Comments sahyōgī means “company” in the sense of “colleagues”, nirvāh vyay means

“subsistence expenditure” , while bharaṇ pōṣaṇ means “weight bearing”. The penul-
timate word in both versions is nonsense, and the lexicons need to be debugged.

3. Source you may recall that a triangle is also a polygon
Without WSD tum "recall may" ho ki ṭrāyengl "also" bahubhuj hæ
With WSD tum smaraṇ kar sakte ho ki trikoṇ bhī bahubhuj hæ
Word order You recall do can that triangle also polygon is
Comments The version without WSD has several missing words. The WSD version of

“recall” is not idiomatic, but understandable.
It should be noted that the coverage of the Hindi lexicon is lowest of all the lexicons given
in Table 1. The result is that many sentences have missing words in the translations. Also,
there is considerable interference with Urdu words (some stemming from the shared base
grammar (Prasad and Shafqat, 2012)). Further, some mappings coming from the Universal
WordNet data are in roman, as opposed to Devanagari (the usual script for Hindi, and what
the grammar is based on), so these need to be transcribed. Finally, idiomatic phrases are
a problem (“before the law” is likely to be rendered “(temporally) before the law” rather
than “in the eyes of the law”).

5 The next steps
Since the Universal WordNet mappings are produced from parallel data by machine learning
techniques, the translations are not always accurate and do not always make the best possible
choice. This leaves a window for improvement in the quality of the reported lexicons. One
way of improvement is the manual inspection/correction, not an easy task for a wide-coverage
lexicon with around 100 thousand entries, but not impossible either. This would be a one-time
task with a strong impact on the quality of the lexicon. Another way is to use manually built
WordNets, such as the Finnish and Hindi WordNets. In our work, the availability of some of
these resources was an issue, so we leave it for the future. Further, as mentioned in Section 4,
the Hindi lexicon has some script-related issues which should be fixed in future.

When it comes to interlingua-based arbitrary machine translation, an important concern is
the size of lexicons. We are aware of the fact that the size of our lexicons is not comparable to
some of the other similar systems such as ATLAS-II (Fujitsu), where the size of lexicons is in
millions. We have plan to extend the size of lexicons using some of the other publicly available
resources (such as Hindi WordNet) and/or using parallel corpus. The development of bilingual
lexicons form parallel corpus have been previously explored (Delpech et al., 2012; Qian et al.,
2012), and the same ideas can be applied in our case.

6 Conclusion
We have shown how to use existing lexical resources such as WordNets to develop an interlingual
translation lexicon in GF, and how to use it for the WSD task in an arbitrary text translation
pipeline. The improvements in the translation quality (lexical), shown by examples in Section
4, are encouraging and motivate further work in this direction. However, it should be noted
that there is still a lot of work to be done (especially in the open domain text parsing and
parse-tree disambiguation phases of the translation pipeline) to bring the translation system to
a competitive level. For the reasons noted in the introduction, we expect our techniques to be
particularly useful for South Asian languages.

62

References
Angelov, K. (2011). The Mechanics of the Grammatical Framework. PhD thesis, Chalmers University

Of Technology. ISBN 978-91-7385-605-8.

Angelov, K. and Enache, R. (2010). Typeful Ontologies with Direct Multilingual Verbalization. In Fuchs,
N. and Rosner, M., editors, CNL 2010, Controlled Natural Language.

Bringert, B., Hallgren, T., and Ranta., A. (2011). GF resource grammar library synopsis.
www.grammaticalframework.org/lib/doc/synopsis.html.

Curry, H. B. (1961). Some logical aspects of grammatical structure. In Jakobson, R., editor, Structure of
Language and its Mathematical Aspects: Proceedings of the Twelfth Symposium in Applied Mathematics,
pages 56–68. American Mathematical Society.

de Melo, G. and Weikum, G. (2009). Towards a Universal Wordnet by learning from combined evidence.
In Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM 2009),
pages 513–522, New York, NY, USA. ACM.

Delpech, E., Daille, B., Morin, E., and Lemaire, C. (2012). Extraction of domain-specific bilingual lexicon
from comparable corpora: Compositional translation and ranking. In Proceedings of COLING 2012,
pages 745–762, Mumbai, India. The COLING 2012 Organizing Committee.

Détrez, G. and Ranta, A. (2012). Smart paradigms and the predictability and complexity of inflectional
morphology. In EACL, pages 645–653.

Dymetman, M., Lux, V., and Ranta, A. (2000). XML and multilingual document authoring: Conver-
gent trends. In Proc. Computational Linguistics COLING, Saarbrücken, Germany, pages 243–249.
International Committee on Computational Linguistics.

Enache, R., España-Bonet, C., Ranta, A., and Márquez, L. (2012). A hybrid system for patent translation.
In Proceedings of the 16th Annual Conference of the European Association for Machine Translation
(EAMT12), Trento, Italy.

Hindi-WordNet (2012). Hindi Wordnet. 2012. Universal Word—Hindi Lexicon.
http://www.cfilt.iitb.ac.in.

Lindén, K. and Carlson., L. (2010). Finnwordnet—wordnet på finska via översättning. Lexi-
coNordica—Nordic Journal of Lexicography, 17:119–140.

Ljunglöf, P. (2004). The Expressivity and Complexity of Grammatical Framework. PhD thesis, Dept. of
Computing Science, Chalmers University of Technology and Gothenburg University. http://www.cs.
chalmers.se/~peb/pubs/p04-PhD-thesis.pdf.

Lyons, J. (1968). Introduction to theoretical linguistics. Cambridge: Cambridge University Press.

Martin-Löf, P. (1982). Constructive mathematics and computer programming. In Cohen, Los, Pfeif-
fer, and Podewski, editors, Logic, Methodology and Philosophy of Science VI, pages 153–175. North-
Holland, Amsterdam.

Miller, G. A. (1995). Wordnet: A lexical database for English. Communications of the ACM, 38:39–41.

Montague, R. (1974). Formal Philosophy. Yale University Press, New Haven. Collected papers edited
by Richmond Thomason.

Prasad, K. V. S. and Shafqat, M. V. (2012). Computational evidence that Hindi and Urdu share a
grammar but not the lexicon. In The 3rd Workshop on South and Southeast Asian NLP, COLING.

Qian, L., Wang, H., Zhou, G., and Zhu, Q. (2012). Bilingual lexicon construction from comparable
corpora via dependency mapping. In Proceedings of COLING 2012, pages 2275–2290, Mumbai, India.
The COLING 2012 Organizing Committee.

Ranta, A. (2004). Grammatical Framework: A Type-Theoretical Grammar Formalism. The Journal of
Functional Programming, 14(2):145–189. http://www.cse.chalmers.se/~aarne/articles/gf-jfp.
pdf.

Ranta, A. (2011). Grammatical Framework: Programming with Multilingual Grammars. CSLI Publica-
tions, Stanford. ISBN-10: 1-57586-626-9 (Paper), 1-57586-627-7 (Cloth).

63

Ranta, A. and Angelov, K. (2010). Implementing Controlled Languages in GF. In Proceedings of CNL-
2009, Athens, volume 5972 of LNCS, pages 82–101.

Ranta, A., Détrez, G., and Enache, R. (2012). Controlled language for everyday use: the MOLTO
phrasebook. In CNL 2012: Controlled Natural Language, volume 7175 of LNCS/LNAI.

Rosetta, M. T. (1994). Compositional Translation. Kluwer, Dordrecht.

Seki, H., Matsumura, T., Fujii, M., and Kasami, T. (1991). On multiple context-free grammars. Theo-
retical Computer Science, 88:191–229.

Shafqat, M., Humayoun, M., and Aarne, R. (2011). An open source Punjabi resource grammar. In Pro-
ceedings of the International Conference Recent Advances in Natural Language Processing 2011, pages
70–76, Hissar, Bulgaria. RANLP 2011 Organising Committee. http://aclweb.org/anthology/R11-1010.

Stallman, R. (2001). Using and Porting the GNU Compiler Collection. Free Software Foundation.

Zhong, Z. and Ng, H. T. (2010). It makes sense: A wide-coverage word sense disambiguation system
for free text. In Proceedings of the ACL 2010 System Demonstrations, pages 78–83, Uppsala, Sweden.
Association for Computational Linguistics. http://www.aclweb.org/anthology/P10-4014.

64

Proceedings of the 5th Workshop on South and Southeast Asian NLP, 25th International Conference on Computational Linguistics, pages 65–73,
Dublin, Ireland, August 23-29 2014.

A Dictionary Data Processing Environment and Its Application in
Algorithmic Processing of Pali Dictionary Data for Future NLP Tasks

Dipl. Inf. Jürgen Knauth

Trier Center for Digital Humanities
Universitätsring 15

54296 Trier
Germany

knauth@uni-trier.de

David Alfter
Trier Center for Digital Humanities

Bollwerkstrasse 10
54290 Trier
Germany

s2daalft@uni-trier.de

Abstract

This paper presents a highly flexible infrastructure for processing digitized dictionaries and
that can be used to build NLP tools in the future. This infrastructure is especially suitable for
low resource languages where some digitized information is available but not (yet) suitable

for algorithmic use. It allows researchers to do at least some processing in an algorithmic way
using the full power of the C# programming language, reducing the effort of manual editing
of the data. To test this in practice, the paper describes the processing steps taken by making

use of this infrastructure in order to identify word classes and cross references in the
dictionary of Pali in the context of the SeNeReKo project. We also conduct an experiment to

make use of this data and show the importance of the dictionary. This paper presents the
experiences and results of the selected approach.

1 Introduction

Pali (also written Pāli, Paḷi or Pāḷi) is a dead language from the group of Middle Indo-Aryan languages
(Burrow, 1955: 2). Despite its status as dead language, Pali is still widely studied because many of the
early Buddhist scriptures were written in Pali (Bloch, 1970: 8). It is also said that Buddha himself
spoke Pali or a closely related dialect (Pali Text Society; Thera, 1953: 9).

SeNeReKo is a joint research project of the Trier Center for Digital Humanities (TCDH) and the
Center of Religious Studies in Bochum (CERES), Germany. This project aims to process the Pali
Canon – which at the same time is the only texts left of Pali – in order to research religious contacts
between the early Buddhists and other religious groups and cultures.

To achieve this we aim to develop NLP tools and process this data as we believe that the concepts
of interest will be found in direct verbal expressions within this corpus. From the information we aim
to extract we intend to create networks that allow analysis of these concept.

Until now such an attempt has never been made. Even processing Pali using computer algorithms
has not been in the focus of the scientific community yet. As we researchers in SeNeReKo try to
change this we now focus on a basic building block for NLP tools: Building a machine readable
dictionary that allows building sophisticated NLP tools in the long run. To attempt this a digitized
copy of the dictionary of William and Davids (1997) has been provided to our team by the University
of Chicago.

2 Related Work

As Pali is a low resource language not much work has yet been done in this field, especially not with
the dictionary data. The only researchers we know of that have tried to use this data is a team of the
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

65

University of Copenhagen. Their goal was to create a new digitized version of this dictionary.
Unfortunately they did not succeed and stopped after having edited three letters of the Pali alphabet.
To our knowledge we are the first to work with this data again.

With good success a language somehow similar to Pali has been addressed in the past: Sanskrit
(Hellwig 2009). Nevertheless attempts to adapt these tools to Pali have not been possible due to the
lack of a suitable dictionary.

Regarding NLP tools addressing Pali some experiments have already been performed by the
members of the SeNeReKo project team and especially by David Alfter. Nevertheless no work could
yet reach a state of publication due to the lack of a suitable digital dictionary that would serve as a
basis for NLP tasks.

3 Technical infrastructure

As it is the nature of digital humanities projects like SeNeReKo a variety of researchers is involved
into the process of processing and editing data and developing methods for the research intended. In
SeNeReKo this involves Pali experts, Sociologists, Computer Linguists and Scientists (and
Egyptologists for performing work with other text corpora not addressed by this paper.) An
infrastructure that aims at enabling collaboration is therefore mandatory. This section describes key
aspects of the infrastructure developed.

3.1 Dictionary Server

Each dictionary entry is to be understood as a single document which is self-contained and structured.
A dictionary is considered to be a collection of documents.

Being self-contained all information relevant to each individual entry is stored in the same
document. Each of these entries must be structured to provide information in a clearly defined way for
NLP tools in the future.

To store the dictionary data a MongoDB data base is used. This NoSQL data base not only supports
such kind of data model it also provides the necessary flexibility to define and change the internal
structure of such dictionary document in the future as needed.

For ease of use a NodeJS-based dictionary server has been implemented that provides user
authentication and high level data base operations addressing searching, inserting, updating and
deleting specific to the requirements of a dictionary.

The pairing of NodeJS and MongoDB is reasonable because of performance reasons: MongoDB
receives and returns data not in XML, but in JSON notation; and as NodeJS provides its functionality
through a highly efficient JavaScript engine JSON data can directly be processed without any need of
conversion.

For collaboration purposes a REST-API has been implemented with compatibility and
interoperability in mind. As we aim for algorithmic processing of data and want to enable researchers
to easily implement custom NLP tools that make use of the dictionary data independently from each
other. To support this as best as possible a Java and C# library has been implemented as well as an R
module for convenience.

As it is the nature of dictionary data to consist of a larger amount of individual entries, classical
request-response communication models, as they would be imposed by HTTP, are unsuitable for
processing (in the sense of algorithm based editing). Following that approach would result in notable
performance degradation. Fortunately single processing steps as we intend them for pattern matching
and enriching of dictionary entries have largely no relation between individual entries. Therefore the
dictionary server provides an interface for bulk communication: A large amount of individual protocol
function calls can be packed into a single package. As the server processes them in parallel and returns
the response to all requests again in a single response we are capable of overcoming the problem of
summation of network latencies and end up with good performance in updating data.

3.2 Data Processing Tool

In SeNeReKo we need to process the original - near plaintext - dictionary entries. This data is inserted
into the dictionary server beforehand and then various analysing and processing steps need to be taken.
To perform these, we implemented a processing environment that makes developing of individual

66

processing units very easy, gives high performance and great transparency about data modifications
intended by these units.

Our data processing tool is a programming environment for creating small processing units in C#.
Data management issues do not need to be addressed: This is done by the programming environment
automatically. The individual units are compiled to native .Net code for speed of processing. On
execution data from the dictionary server is retrieved and passed through these units and – if necessary
– sent back to the server after modifications have been applied. Together with the bulk processing
supported by the dictionary server the compilation of the code units speeds up any processing. By
directly making use of C# this approach we achieve great flexibility: It allows making use of all kinds
of existing libraries if desired and enables researchers to implement all kinds of data specific pattern
matching and processing for research tasks.

As it is the nature of dictionary data to consist of a large amount of individual entries, applying
pattern matching and transformation tasks require a great deal of transparency. Researchers
performing these tasks need to be able to identify which rule is applied to which entry in what form
and see what modification an entry will receive. To achieve this transparency our data processing tool
collects information about all modifications applied to each individual data record and presents them
in a large list that can be filtered by some criteria. Thus our tool aids in debugging by allowing insight
into every details of the tasks a researcher is going to perform.

4 Processing of Pali Dictionary Data

Prior to any processing we converted the original digitized dictionary entries we received from the
University of Chicago into JSON data structures and inserted them into our dictionary server. In the
next sections we present our processing steps applied to the individual dictionary data records within
the infrastructure described above.

4.1 Transliteration of Lemmas

As it turned out the digitized version of the Pali Dictionary we received was not entirely in accordance
with the current transliteration conventions. Therefore to be able to use the Pali dictionary for research
the lemmas had to be adjusted.

To achieve a valid transformation we first had to verify that no accidental errors had been
introduced by the original digitization process done by the Pali Text Society. We therefore
implemented an alphabet model that follows the old transliteration schema used to represent glyphs of
the Sinhalese alphabet. For these single letters one or two Latin ligatures (with diacritics) are used
today. Modelling each word with the original alphabet is mandatory to be able to identify possible
errors. We checked all lemmata against our model and were able to identify 14 of 16280 lemmata
violating our model. The errors could be identified to be printing errors or misinterpretation during
digitalization and were then corrected manually before continuing processing.

The next step was to perform substitutions of the letters ‘ŋ’. To ensure correct processing this was
not done on the Unicode based character representation of the data directly but on the original letters
modelled by our alphabet model. Substitution is performed on that basis taking the phonetic context
into account as necessary:

ŋ followed by j, c, h or e => ñ
ŋ followed by k or kh => ṅ
ŋ followed by d, dh or n => n
ŋ followed by m, p, bh or b => m
ŋ followed by s => ṃ
ŋ followed by ṭ, ṭh => ṇ
ŋ followed by l => l
ŋ followed by v, y or r => ṃ
ŋ followed by a, e, i, o, u, ā, ī, ū => ṃ
ŋ not followed by any character => ṃ

67

5 Pattern Recognition and Enriching Dictionary Entries

5.1 Pattern Matcher

In processing Pali we had to take our own pattern matching approach in order to avoid problems
encountered with regular expressions in C#. We found that some Pali specific diacritics did not get
processed as the official regular expression syntax specification suggested. To overcome these
limitations we implemented an own pattern matcher.

Nevertheless we were not interested in dealing with space characters as they do not provide any
valuable information to our pattern recognition tasks. And for easy communication with Indologists a
pattern syntax was required that would be easy to understand. So these requirements specific to our
field of application were taken into account in building the pattern matcher.

The pattern matching system we designed does not process character streams but token streams.
The system can distinguish between the following concepts:

• A whitespace – which is automatically left out during tokenizing the dictionary articles
• A word – which is an alphanumeric character including all diacritics
• A delimiter – which is any kind of character not being to a word or whitespace

As we aimed for an iterative process in order to identify relevant pattern it helped greatly to be able

to express patterns to be matched in the form of expressions that are easy readable by non-computer
experts. Our syntax supports the following forms:

• Match a specific word token
• Match any word token
• Match a specific delimiter token
• Match any delimiter token

Examples of this syntax are given in the next sections which address specific pattern recognition

tasks individually.

5.2 Cross References

As Pāli grammar is not standardized to the same extent as, e.g., Sanskrit, various alternative word
forms occur. The Pali dictionary at hand addresses this problem to some extent by containing several
versions of some lemmas. These entries then contain purely textual information of a reference to the
dictionary entry having more information about the selected lemma. In the Pali dictionary this is
expressed in forms like this:

... in general see buddha ...

Such a form is matched by a pattern like this:

'in' 'general' 'see' < 'b' > W*! < / 'b' >

The pattern specified is easy to understand: This is a sequence of individual patterns matching

specific tokens. Words in inverted commas express an exact match of a single word. “W*! ” indicates
that a word of any kind is expected here (and it should be available for further use after a match has
been found). Other characters match specific delimiter tokens.

Two real world examples of dictionary entries:

anumatta
 see a ṇu° .

ano
 is a frequent form of comp<superscript>n.

68

 </superscript>an--ava , see ava .

As there exist various different forms of patterns like this in the dictionary specifying multiple

possible variants was required. Within an iterative process we were able to identify 46 different kinds
of patterns which we could make use of for automatic identification.

To further help manual processing of the dictionary we implemented a verifier that tries to identify
the lemmas each cross reference refers to within the dictionary. This is done by direct dictionary
lookup. References that do not seem to point to a valid lemma are listed together with candidates
based on Levenshtein distance for manual processing later by Indologists.

5.3 Extracting word class information

As we aim for lemmatizing and part of speech tagging of the Pali Canon, in the long run having
information about the word class of each lemma is mandatory. Therefore we used pattern matching to
aid the generation of data for this purpose.

Our algorithmic approach of classification is basically performed in three steps described next.
Word class information mainly manifests itself in expressions enclosed in rounded brackets. E.g.:

 ap āra
 (nt.) [a + p āra] 1. the near bank of a river ...

 s īhaḷa
 Ceylon; (adj.) Singhalese ...

 susira
 (adj.--nt.) [Sk. śuṣira] perforated, full
 of holes, hollow ...

 p ītika
 (--°) (adj.) [fr. p īti] belonging to joy; ...

Unfortunately round bracket expressions are used in different semantic contexts within dictionary

entries. In a first step we therefore extracted all content enclosed in round brackets and identified
expressions that represent word class information. Though an old printed edition of the dictionary
contained a clear definition of these word class expressions used we encountered some variety of
writing, of combination and of misspelling: Building a list of relevant expressions was the only way to
address all phenomena in sufficient quality.

Secondly we know from Pali grammars that verb lemmata typically end with “-ti” in the dictionary.
But not all lemmata ending with “-ti” are verbs. Therefore we implemented the following algorithm
that was able to clearly identify lemmata correctly as verbs:

for all lemmas do
 if lemma does not end with “-ti” -> reject it
 if bracket expression in data matches a pattern cl early
 classifiable as non-verb -> reject it
 if entry does not contain the (English) word “to” -> reject it
 otherwise -> recognize this lemma as being a verb

After having identified verbs successfully we then were able to address dictionary entries of other

word forms purely according to expressions in round brackets. The following list gives an overview of
how many kinds of patterns have been identified and were involved in this process:

Word Class Number of Patterns
adjective 26 incl. one misspelling
indeclinable 1
adverbs 4 incl. one misspelling

69

pronouns 1
numerals and ordinals 2
nouns 8

6 Word class recognition

In order to evaluate the importance of the dictionary, we designed the following task: for each word in
a manually tagged subset of the Pali Canon, we tried to recognize the word class using a generation-
based and a heuristic approach. We then compared the results of both approaches.

For the generation-based approach, we generated all possible word forms, including morphological
information, for every word in the dictionary using the morphological generator. The generator uses
paradigms to generate regularly inflected word forms. Furthermore, the generator uses the dictionary
to look up morphological information about a word and, if present, uses this information to restrict the
generation to grammatically adequate forms. However, since the dictionary entries do not always
present this information, or because it’s not always possible to easily extract this information, we over-
generated in cases where no information can be retrieved from the dictionary. We also generated rare
forms according to information presented in available grammars on Pali. In total, we were able to
generate 11447206 word forms for all words. This averages to about 702 word forms per dictionary
entry. In compact notation, this resulted in about 1.5 GByte of data.

As we generated possible morphological forms from lemmas, we then reversed the data structure to
arrive at a morphological form lookup table. We saved these results locally for later efficient lookup.

As a test corpus for our word class recognition task we used a manually annotated set of 500
sentences (about 4600 words). These sentences have been extracted earlier in the SeNeReKo project,
choosing three consecutive sentences at random from the whole Pali corpus. This preparatory step has
been started about a year ago to assist future computational linguistic tasks (a further 500 sentences are
work in progress). Thus, the data is representative of the whole corpus and is not biased.

We then stepped through our corpus and checked for each word whether one or more of the
generated forms corresponded to the word at hand. If this was the case, we retrieved the relevant
entries including all attached morphological information. From these entries, we then retrieved the
word class information for the word.

For the heuristic approach, we built a morphological analyzer. The analyzer can only rely on its
internal heuristic for guessing the word class of a word. The heuristic is ending based and uses
paradigms to determine to which word class a word could belong. The analyzer tries to identify and
separate possible endings occurring in different paradigms. Based on these analyses, the word class is
guessed.

Before we could start the experiment, we had to map the word classes used by the
generator/analyzer and the word classes used in the annotated corpus onto a common set of classes.
The reference corpus uses a fine-grained tag set that’s standardized for use in more than one corpus in
the SeNeReKo project. The dictionary uses a simple tag set, which has been created independently of
the SeNeReKo tag set many decades ago. The tag sets follow different principles and goals. It is
therefore not always straightforward to map one tag set onto the other.

We tried to assign each word of the reference corpus a word class and checked the results against
the manual annotations. The results of this algorithmic output are evaluated in the result section below.

7 Discussion

7.1 Performance of the processing environment

As a server we use an older 32 bit Linux machine with an Intel Core Duo at 2.4 GHz and 4 GByte of
memory which runs the dictionary server with its data base.

Due to bulk processing of requests we were able to bring down the average time for a single write
operation to about 0.7ms per dictionary entry from a client’s point of view under ideal circumstances.
In a real world application such as our data processing tool this enables us to process all 16280
dictionary entries within about 10 seconds if no changes are applied and to about 20 seconds if all

70

entries must be read and written back to server. We found this delay very acceptable during our design
and implementation of individual processing units for the dictionary data.

The following performance measurement chart for data write requests gives an insight into how
performance is affected by network latency:

(If the above chart is displayed in black and white: The top line represents the client duration

measured per operation, the bottom line measures the server duration per individual insert operation.)
This measurement is taken by inserting all Pali dictionary data 10 times with different chunk sizes

and averaging the duration as measured by the test software. For convenience the server performs
performance measurements on his own and sends his results 9together with the response to the client,
so that such a kind of analysis can be performed easily. The difference between both measurements
indicate the overhead introduced (mainly) by network latencies.

Please note that the chart starts at a chunk size of 10. This is for a reason: It turned out that lower
values will introduce significantly more delay.

7.2 Results of pattern matching

Our attempts to process the 16280 dictionary entries resulted in being able to recognize word forms in
10016 of all entries. This is about 61.5% of all dictionary data.

Regarding cross references we were able to extract 457 cross references to existing lemmas within
the dictionary, 52 references to lemmas not in the dictionary and 75 references containing only
incomplete information and cannot be resolved automatically.

At first hand these values do not seem to be very high. But as we can only rely on clearly
identifiable patterns within the dictionary entries these values are even better than we hoped at the
beginning of our work. It has been clear right from the start that a greater amount of dictionary entries
would need to be the centre of manual work in the future by Pali experts: Many entries simply do not
contain any information that can be recognized by the algorithmic approaches taken.

As Pali is a largely dead language we have to consider that our data processing described in this
paper is a one-time task. The only relevant dictionary at hand is the one we used, containing exactly
those words we have. We successfully identified word classes for lemmas leaving 6264 for manual
processing for our Indological colleagues. If even more time would be spent in finding even more
patterns within the dictionary entries, we might improve our performance by a few percent, but there is
no real reason to do this: We have come to a point where finding more patterns will take considerably
more time than identifying word classes and assigning them manually to the dictionary entries.

7.3 Results of Word Class recognition

We tried to recognize word classes based on the generation-based approach and on the heuristic
approach as described above. We faced the problem that word forms can be analysed in more than one
way, even by using paradigms, which represent regular inflections. This degree of ambiguity cannot
be resolved currently due to the particularities of Pali, such as a high degree of homonymy.
Furthermore, different paradigms yield the same surface form, even though they belong to totally
different word classes.

Therefore, we evaluated the resulting data in two different ways. First, we used “is-any” matching.
If a test corpus word has been assigned more than one word class by our algorithms, we consider the

71

word classes to match if the two sets share at least one common element. This way we address the
problem of ambiguities. Second, we used “exact” matching. In this case, we consider the result to be a
positive match if and only if the proposed word class corresponds exactly to the assigned word class.
By using this approach, we try to determine the degree of unambiguousness with which we can
propose a word class. If a word is assigned a word class and the program suggests two word classes, of
which one corresponds to the assigned word class, we count this as a failure.

Please note that, since it’s not always possible to distinguish clearly between nouns and adjectives
in Pali, we aggregated these word classes into one class. To this class we also counted words tagged as
ordinal adjectives, since they are inflected like regular adjectives.

The following tables illustrate our results:

“is any” matching
 Generation based Heuristic
Noun-adjective-
ordinalAdjective

63.30% 99.96%

Numeral 61.04% 76.62%
Pronoun 82.75% 88.57%
Verb 51.24% 63.37%

As you can gather from the table, the performance of the word form generation based approach did

not match the performance of our heuristic approach in the first experiment. Further investigation
showed that this is mainly due to the fact that not all necessary word forms encountered in the
reference corpus could be generated. There are several reasons for this: First, the exact ways to
generate word forms are not yet completely covered by literature and in some areas are still under
research: e.g. at least regarding verb forms, there is still ongoing research. Second, our generation
process was not able to handle irregular forms well because this information is not yet represented in
the dictionary. This data will probably be entered by Pali experts next year. Third, most of the forms
we could not recognize are sandhi and other compound forms. This is a task the generation process
cannot handle well in general. A heuristic approach does not encounter these problems.

To better judge our algorithms, we therefore evaluated the results only for word forms that could be
addressed by these algorithms. The following tables give an overview about these results:

“is any” matching (processable words)

 Generation based Heuristic
Noun-adjective-
ordinalAdjective

97.31% 99.96%

Numeral 81.03% 76.62%
Pronoun 86.61% 88.57%
Verb 76.25% 63.37%

As you can see, on word forms that could be processed, both approaches work similarly well.
With the current state of the dictionary, these results are as good as can be. Please note that while

the heuristic approach must be considered to be final the generation based approach will improve over
time as the dictionary will be improved by the Pali experts in the next years.

Our “exact” evaluation operator revealed that word forms in the reference corpus that uniquely
belong to a single word class can be recognized much better by the generation based approach than by
the heuristic approach. Interestingly, though we are still lacking information about irregular verb
forms in the dictionary, we achieved up to 60.37% precision on verbs in exact word class recognition,
while the heuristic approach surprisingly did not succeed very well.

The approaches we took can surely be improved. However, these approaches rely heavily on a
dictionary, which is more detailed and even more complete. Pali experts will provide this data in the
future but this is an ongoing process which will take a few years.

72

7.4 Conclusion and Future Work

In this paper we have addressed the task of extracting cross references and word class information
from dictionary entries in a Pali dictionary. For this task as well as for future computer linguistic tasks,
we have built an infrastructure suitable for data management and processing. We have experienced
that even if the individual articles are not written in a consistent and clear way, some information still
can be extracted. We therefore propose that similar approaches might be taken with dictionaries of
other dead languages as well in the future based on the technical infrastructure we created.

We tried to complement our approach with taking the English translations, contained in most of the
dictionary entries, into consideration. Unfortunately this did not work well due to the nature of our
data: Most of the dictionary entries do contain a discussion of a lemma in English, but as the
individual dictionary entries don’t follow a clearly defined structure and even discuss various related
words within these entries it turned out this approach is too incomplete and too error prone to be
usable in practice.

We found the processing environment to be of great help in order to shorten the time consuming
manual processing of data. Three aspects we like to point out in this context: The concept of having an
integrated development environment that takes data management work off the shoulders of researchers
and allows writing small units of code for processing turned out to aid in this process. Furthermore the
transparency given by the system about processing details for every single word helps greatly to avoid
mistakes and therefore saves time of researchers.

Our experiment concerning word class recognition showed that the dictionary is essential. While the
dictionary data is still relatively incomplete, we were able to get good results. Future work needs to be
done in this area, especially the correction of lemmas and part of speech tags in the future. However,
this is a future task that goes beyond the scope of this paper.

A custom dictionary editor has been built that connects to the dictionary infrastructure at hand. With
this tool our Indological collegues intend to perform the unavoidable manual improvement in the next
years. If this process is completed at some point in the future we intend to address lemmatizing and
part of speech tagging again, something that can not yet been done to a fully satisfying extent right
now. Nonetheless, as our word class experiment showed, we were able to achieve good results despite
the problems encountered. It is to be expected that with the improvement of the dictionary, the results
will also improve in the future.

Reference

Alfter, David. 2014. Morphological analyzer and generator for Pali.

Critical Pāli Dictionary. Web.

Collins, Steven. 2006. A Pali grammar for students. Chiang Mai: Silkworm Books. Print.

Geiger, Wilhelm. 1943. A Pali Grammar. Pali Text Society. Print.

Helwig, Oliver. 2009. SanskritTagger, a stochastic lexical and POS tagger for Sanskrit.

Stede, William and Davids , Rhys. 1997. Pali-English Dictionary. 2nd ed, Motilal Banarsidass. Print.

Pali Text Society. Web.

Thera, Nārada. 1953. An elementary Pāḷi course. 2nd ed. Colombo: Associated Newspapers of Ceylon.
BuddhaNet eBooks. Web. N.d.

73

Retraction Note: Constituent structure representation of Pashto
Endoclitics

The Coling 2014 Publication Chairs
CNGL Centre for Gobal Intelligent Content

School of Computing, Dublin City University, Dublin, Ireland
coling.publications@gmail.com

Notice of Retraction

25th of September 2014

Retraction to: Proceedings of the Fifth Workshop on South and Southeast Asian Natural
Language Processing, pages 74–79

The Coling 2014 Publication Chairs,1 in consultations and agreement with the organisers of the
Fifth Workshop on South and Southeast Asian Natural Language Processing and not challenged by
the authors, who have been notified on the 6th of September 2014, hereby retract the workshop paper
entitled “Constituent structure representation of Pashto Endoclitics”, which appeared in Proceedings
of the Fifth Workshop on South and Southeast Asian Natural Language Processing (2014), pages
74–79, as Din et al. (2014) have copied substantial parts from a prior workshop paper published in
Proceedings of LFG10 and from a PhD thesis from 2007 without citing the source (Rizvi, 2007; Bögel,
2010). Furthermore, substantial parts of the introduction have been copied from a prior workshop
paper published in Proceedings of CAASL3: Third Workshop on Computational Approaches to Arabic-
Script-based Languages without marking the parts taken from the earlier paper as quotations (Kopris,
2009).

We thank Tina Bögel for bringing this serious violation of publication ethics to our attention.

On behalf of the Coling 2014 Publication Chairs,
Joachim Wagner,
Dublin City University, Dublin, Ireland

References
Tina Bögel. 2010. Pashto (Endo-)Clitics in a Parallel Architecture. In Miriam Butt and Tracy Holloway King,

editors, Proceedings of LFG10, pages 85–105, CSLI Publications, Stanford, CA, USA.

Azizud Din, Bali Ranaivo-Malancon and M. G. Abbas Malik. 2014. Constituent structure representation of Pashto
Endoclitics. In Proceedings of the Fifth Workshop on South and Southeast Asian Natural Language Processing,
pages 74–79, Association for Computational Linguistics.

Craig Kopris. 2009. Endoclitics in Pashto. Can they really do that? In Proceedings of CAASL3: Third Workshop
on Computational Approaches to Arabic- Script-based Languages, Machine Translation Summit XII, Ottawa,
Ontario, Canada. http://www.mt-archive.info/MTS-2009-Kopris.pdf

Syed Muhamar Jafat Rizvi. 2007. Development of Algorithms and Computational Grammar for Urdu. PhD thesis,
Pakistan Institute of Engineering and Applied Science, Islamabad, Pakistan. http://prr.hec.gov.pk/
chapters/2072-0.pdf to http://prr.hec.gov.pk/chapters/2072-11.pdf

1Excluding Lorraine Goeuriot, who left CNGL end of August 2014.

(This	 page	 is	 intentionally	 left	 blank)	

(This	 page	 is	 intentionally	 left	 blank)	

(This	 page	 is	 intentionally	 left	 blank)	

(This	 page	 is	 intentionally	 left	 blank)	

(This	 page	 is	 intentionally	 left	 blank)	

Proceedings of the 5th Workshop on South and Southeast Asian NLP, 25th International Conference on Computational Linguistics, pages 80–84,
Dublin, Ireland, August 23-29 2014.

Real Time Early-stage Influenza Detection with Emotion Factors from
Sina Microblog

Xiao SUN
School of Computer and In-

formation
Hefei University of Technol-

ogy
Hefei, Anhui, China

Anhui Province Key Labora-
tory of Affective Computing

and Advanced Intelligent
Machine

suntian@gmail.com

Jiaqi YE
School of Computer and In-

formation
Hefei University of Technol-

ogy
Hefei, Anhui, China

Anhui Province Key Labora-
tory of Affective Computing

and Advanced Intelligent
Machine

lane_3000@163.com

Fuji REN
School of Computer and In-

formation
Hefei University of Technol-

ogy
Hefei, Anhui, China

Faculty of Engineering, Uni-
versity of Tokushima

Tokushima, Japan
ren2fuji@gmail.com

Abstract

Influenza is an acute respiratory illness that occurs every year. Detection of Influenza in its
earliest stage would reduce the spread of the illness. Sina microblog is a popular microblog-
ging service, provides perfect sources for flu detection due to its real-time nature and large
number of users. In this paper we investigate the real-time flu detection problem and describe
a Flu model with emotion factors and sematic information (em-flu model). Experimental re-
sults show the robustness and effectiveness of our method and we are hopeful that it would
help health organizations in identifying flu outbreak and take timely actions to control.

1 Introduction

Influenza is a highly contagious acute respiratory disease caused by influenza virus. As the highly
genetic variation, influenza can cause global epidemic, which not only brought huge dis-asters to peo-
ple’s life and health, but also have significant disruptions to economy. There are about 10-15% of
people who get influenza every year and results in up to 50 million illnesses and 500,000 deaths in the
world each year. Influenza is a worldwide public health problem and there are no effective measures
to control its epidemic at present. The prevalence of influenza in China is one of the most notable
problems.

The epidemic of SARS, H1N1 and H5N9 influenza make us realized that people really need to ex-
pand surveillance efforts to establish a more sensitive and effective precaution indicator system for
infectious disease forecasting. In order to detect influenza epidemic timely and im-prove the ability of
early precaution, the research of early forecasting technique is urgently needed.

Nowadays influenza surveillance systems have been established via the European Influenza Surveil-
lance Scheme (EISS) in Europe and the Centre for Disease Control (CDC) in the US to collect data
from clinical diagnoses. The research of forecasting methods started relatively late in China and these
systems have about two-week delay. The need for efficient sources of data for forecasting have in-
creased due to the Public health authorities’ need to forecast at the earliest time to ensure effective
treatment. Another surveillance system is Google’s flu trends service which is web-based click flu re-
porting system. Google’s flu trend uses the linear model to link the influenza-like illness visits.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

80

Sina Weibo is a Chinese popular microblog service that can potentially provide a good source for
early stage flu detection due to its large data scale and real-time features. When flu breaks out, infect-
ed users might post related microblog with corresponding emotions in a timely way which can be re-
garded as indicators or sensors of Influenza. Based on the real-time data of mi-croblog, there has been
many applications such as earthquake detection (Sakaki T et al., 2010), public health tracking (Collier
N, 2012; Paul M J et al., 2011) and also flu detection (Achrekar H et al., 2011; Culotta A,2010).

The measures of collecting clinical diagnoses and web-based clicks on key word with linear model
are quite good but not fair enough. Our research tries to use the big real-time data as re-sources and
design a machine learning mode with the emotional factors and sematic information to help find the
break point of influenza.

The rest of this paper is organized as follows: In section 2, we describe our Flu model with emotion
factors (em-flu model). We describe the preparation of our dataset in Section 3. Exper-imental results
are illustrated in Section 4. We conclude this paper in Section 5.

2 Em-flu Model

Existing works on flu prediction suffer the following limitations: Spatial information is seldom con-
sidered and sematic or emotion factors are out of consideration. To address this problem, in this paper,
we try to introduce an unsupervised approach called Em-flu Markov Network for early stage flu detec-
tion. Spatial information are modelled in a four-phase Markov switching model, i.e. non-epidemic
phase (NE), rising epidemic phase (RE), stationary epidemic phase (SE) and declining epidemic phase
(DE). Our approach assumes microblog users as "sensors" and collective posts containing flu key-
words as early indicators. Our algorithm can capture flu outbreaks more promptly and accurately
compared with baselines. Based on our proposed algorithm, we create a real-time flu surveillance sys-
tem. For early stage flu detection, we use a probabilistic graphical Bayesian approach based on Mar-
kov Network. The key of the flu detection task is to detect the transition time from non-epidemic
phase to epidemic phase.

Basically, our model is based on a segmentation of the series of differences into an epidemic and a
non-epidemic phase using a four-stage Markov switching model. Suppose we collect flu related mi-
croblog data from N location. For each location i∈[1,N], we segment the data into a time series. Zi,t
denotes the phase location i takes on at time t. Zi,t=0,1,2,3 correspond to the phase NE, RE SE and DE.
Yi,t is the observant variable, which denotes the number of flu related microblog at time t, join in loca-
tion i. ΔYi,t =(Yi,t – Yi,t-1)/ Yi,t-1. The underlying idea of Markov switching models is to associate each
Yi,t with a random variable Zi,t that determines the conditional distribution of Yi,t given Zi,t. In our case,
each Zi,t. is an unobserved random variable that indicates which phase the system is in. Moreover, the
unobserved sequence of Zi,t. follows a four-stage Markov chain with transition probabilities. For loca-
tion i, N(i) denotes the subset containing its neighbors. We simplify the model by only considering
bordering states in N(i).

We model the spatial information in a unified Markov Network, where the phase for location i at
each time is not only dependent upon its previous phase, but its neighbors. In this work, for simplifica-
tion, we only treat bordering States as neighbors. Since the influence from non-bordering States can be
transmitted through bordering ones, such simplification makes sense and experimental results also
demonstrate this point. A Generalized Linear Model is used to integrate the spatial information in a
unified framework. For location i at time t, the probability that Zi,t takes on value Z is illustrated as
follows:

, 1 , , , 1 , ,
, , 1 , 1

, , , 1 , , , 1

exp(, , ,)
P Pr(| , , ()

exp(, , ,)
i t i t i t i t j t i t

i t j t i t
j t i t i t i t i t i tz

Z Z Z Z Z
Z Z Z j N i

Z Z Z Z Z

 (1)

Where and respectively correspond to parameters that control temporal and spatial influence.
We give a non-informative Gaussian prior for each element in and :

2
, ,~ (0,)i j i jN

2
, ,~ (0,)i j i jN (2)

Next, we describe the characteristics for the dynamics of different phases. Generally speaking, the
course of influenza may last a week or two, for a single microblog user, we believe his or her mi-
croblog contents will record a series of feelings when user is sick or catching flu. When a person got
the flu, he will go through NE, RE, SE, DE phases; the main emotion in these four phases would natu-

81

rally change by the phase change to another phase. All these individuals’ data could be combined into
datasheet segmented by time. From the statistics theories, the dynamics for NE, RE, DE and SE can be
characterized as Gaussian process:

,
2

() ()|Pr() ~ (E ,)day t dai t y tNY z (3)
Where Eday(t) corresponds to the average microblog records’ number every day, and 2

()day t corre-

sponds to the variance of the records.

3 Data Preparation

We extend our earlier work on Sina microblog data acquisition and developed a crawler to fetch data at
regular time intervals. We fetched microblog records containing indicator words shown in Table 1 and col-
lect about 4 million flu-related microblog starting from January 2013 to January 2014. Location details can
be obtained from the profile page. We select tweets whose location are in China and discard those ones with
meaningless locations.

Indicator words 止咳药(pectoral),输液(transfusion),伤风(cold),流涕(running nose),流感(flu),咳嗽

(cough),抗生素(antibiotic),喉咙疼(Sore throat),感冒(influenza),发烧(fever),发高烧

(high fever),鼻涕(snot)
Table 1: Indicator seed words set for data collection

Not all microblog containing indicator keywords indicate that the user is infected. Meanwhile the indi-

cator words list may not be perfect, so the indicator words list needs to expand from the data we have and
the dataset needs to be processed before be used for our task.

The words in Table 1 will be used as seed words to find the initial dataset and then computing vector in
the dataset to find other keyword which can be the representations of seed words. In this way, words list
could be expanded and adapt the changes of cyber word. The necessity of filtering in real-time task has
been demonstrated in many existing works (Aramaki E et al., 2011; Sakaki T et al., 2010).To filter out these
bias tweets, we first prepared manually labeled training data, which was comprised of 3000 microblog rec-
ords containing key words. We manually annotate them as positive examples and negative ones.

We built a classifier based on support vector machine. We use SVMlight with a polynomial kernel, and
employ the following simple text-based features.

Feature A: Collocation features, representing words of the query word within a window size of three.
Feature B: unigrams, denoting the presence or absence of the terms from the dataset.
Performances for different combinations of features are illustrated at Table 2. We observe that A+B is

much better than A or B. So in our following experiments, microblog are selected according to a classifier
based on feather A+B.

Features Accuracy Precision Recall

A 84.21% 82.31% 89.40%
B 85.10% 84.92% 87.00%

A+B 87.40% 88.75% 89.64%
Table 2: Result of different combinations of features for filtering

We briefly demonstrate the relatedness between microblog data and CNIC (Chinese National Influenza

Center) surveillance weekly report data, which would support the claim that microblog data can be used for
the flu detection task. We observe that performing svm filtering and microblog selection would definitely
make microblog data more correlated with real world CNIC data.

For these flu-related microblog records, we generate another microblog web crawler to deal with
every record. For every record’s user, we use this tool to backup user’s microblog content and cut rec-
ords by a window of time with one week before and after the flu-related microblog record which we
had captured. Then the emotional SVM is established to help get the trend of these series of microblog
records.

82

4 Experiments and Data Analysis

The main goal of our task is to help raise an alarm at those moments when there is a high probability
that the flu breaks out. In real time situations, for each time, available data only comes from the previous
days, and there is no known information about what will happen in the following days or week. By adding
the data day by day, we calculate the posterior probability for transiting to epidemic states based on previ-
ous observed data. The sum over parameter Zi,t-1 and Zj,t makes it infeasible to calculate. We use Gibbs
Sampling by first sampling Zi,t-1 and Zj,t first and then attain the value of Zi,t given Zi,t-1,Zi,t-1,…:

, , , , 1 , , 1arg max (Z z | Z , Z ,...,Y ,Y ,...)i t i t j t i t j t i tZ P (3)

Figure 1 shows the global distribution of DE, SE and RE in the year of 2013. The left hand side figure
corresponds to number of flu-related microblog records overtime. Purple symbols denote the phase of RE,
red symbols denote the phase of SE and white symbols denote the phase of DE.

Figure 2 shows the result of searching key words like influenza on Baidu Index platform. Compared to
Figure 1 seems our influenza curve matches well. The interesting thing we observe from figure 1 is that if
the percentage of RE > 0.5, there is strong possibility to convince the flu alarm is coming.

Figure 1: Predictions of the year 2013

Figure 2: Searching Resutl on Baidu Index platform

For comparison, we employ the following baseline in this paper:
Average: Uses the averager frequency of micrblog records containing keywords based on previous

years as the threshold.
Two-Phase: A simple version of our approach but using a simple two-phase in Markove network.
We only report partial experimental results for one province. As we can see from figure 3, our

model can best fit the actual microblog data and semms stable. The other two measures also represent
the actual truth but not stable enough.

Figre 3: Prediction of Anhui province of the year 2013

83

5 Conclusions

In this paper, we introduced an unsupervised Bayesian model based on Markov Network based on four
phases and microblog emotional factors are appended in the model to help detect early stage flu detection
on Sina Microblog. We test our model on real time datasets for multiple applications and experiments re-
sults demonstrate the effectiveness of our model. We are hopeful that our approach would help to facilitate
timely action by those who want to decrease the number of unnecessary illnesses and deaths. At present, the
method also has a few shortcomings; we will continually develop it for further research and exploration.

ACKNOWLEDGMENT

The work is supported by National Natural Sci-ence Funds for Distinguished Young Schol-
ar(No.61203315) and 863 National Advanced Tech-nology Research Program of China (NO.
2012AA011103), and also supported by the Funding Project for AnHui Province Key Laboratory of Affec-
tive Computing and Advanced Intelligent Machine, HeFei University of Technology.

Reference

Sakaki T, Okazaki M, Matsuo Y. 2010. Earthquake shakes Twitter users: real-time event detection by so-cial
sensors[C]//Proceedings of the 19th international conference on World wide web. ACM, 851-860.

Collier N. 2012. Uncovering text mining: A survey of current work on web-based epidemic intelli-gence[J].
Global public health, 7(7): 731-749.

Paul M J, Dredze M. You are what you Tweet: Analyzing Twitter for public health[C]//ICWSM. 2011.

Achrekar H, Gandhe A, Lazarus R, et al. 2011. Predicting flu trends using twitter data[C]//Computer Communi-
cations Workshops (INFOCOM WKSHPS), 2011 IEEE Conference on. IEEE, 702-707.

Culotta A. 2010. Towards detecting influenza epidemics by analyzing Twitter messag-es[C]//Proceedings of the
first workshop on social media analytics. ACM, 115-122.

Aramaki E, Maskawa S, Morita M. 2011. Twitter catches the flu: detecting influenza epidemics using Twit-
ter[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Asso-ciation
for Computational Linguistics, 1568-1576.

Lamb A, Paul M J, Dredze M. 2013. Separating fact from fear: Tracking flu infections on twit-
ter[C]//Proceedings of NAACL-HLT.789-795.

Sakaki T, Okazaki M, Matsuo Y. 2010. Earthquake shakes Twitter users: real-time event detection by so-cial
sensors[C]//Proceedings of the 19th international conference on World wide web. ACM, 851-860.

Achrekar H. 2012. ONLINE SOCIAL NETWORK FLU TRACKER A NOVEL SENSORY APPROACH TO
PREDICT FLU TRENDS[D]. University of Massachusetts,

Aschwanden C. 2004.Spatial Simulation Model for Infectious Viral Diseases with Focus on SARS and the
Common Flu[C]//HICSS.

84

Proceedings of the 5th Workshop on South and Southeast Asian NLP, 25th International Conference on Computational Linguistics, pages 85–93,
Dublin, Ireland, August 23-29 2014.

Building English-Vietnamese Named Entity Corpus
with Aligned Bilingual News Articles

Quoc Hung Ngo
University of Information Technology

Vietnam National Universiry - HCM City
Ho Chi Minh City, Vietnam
hungnq@uit.edu.vn

Dinh Dien
University of Sciences

Vietnam National Universiry - HCM City
Ho Chi Minh City, Vietnam

ddien@fit.hcmus.edu.vn

Werner Winiwarter
University of Vienna

Research Group Data Analytics and Computing
Währinger Straße 29, 1090 Wien, Austria

werner.winiwarter@univie.ac.at

Abstract

Named entity recognition aims to classify words in a document into pre-defined target entity
classes. It is now considered to be fundamental for many natural language processing tasks such
as information retrieval, machine translation, information extraction and question answering.
This paper presents a workflow to build an English-Vietnamese named entity corpus from an
aligned bilingual corpus. The workflow is based on a state of the art named entity recognition
tool to identify English named entities and map them into Vietnamese text. The paper also
presents a detailed discussion about several mapping errors and differences between English and
Vietnamese sentences that affect this task.

1 Introduction

Named entity recognition (NER) is a basic task in natural language processing and one of the most
important subtasks in Information Extraction. It is really essential to identify objects and extract relations
between them. Moreover, recognizing proper names from news articles or newswires is also useful in
detecting events and monitoring them. The NER task aims to identify and classify certain proper nouns
into some pre-defined target entity classes such as person (PER), organization (ORG), location (LOC),
temporal expressions (TIME), monetary values (MON), and percentage (PCT).

Several previous works in NER have been done on languages such as English (J. Sun et al., 2002;
C.W. Shih et al., 2004), Japanese (R. Sasano and S. Kurohashi, 2008), Chinese (J. Sun et al., 2002;
C.W. Shih et al., 2004), and Vietnamese (N.C. Tu et al., 2005; T.X. T. Pham et al., 2007; Q.T. Tran et
al., 2007); and NER systems have been developed using supervised learning methods such as Decision
Tree, Maximum Entropy model (D. Nadeau and S. Sekine, 2007), and Support Vector Machine (Q.T.
Tran et al., 2007), which achieved high performance. Moreover, there are several studies for bilingual
named entity recognition (C.J. Lee et al., 2006; D. Feng et al., 2004; F. Huang and S. Vogel, 2002).
However, for the English-Vietnamese pair, this task still presents a significant challenge in a number of
important respects (R. Sasano and S. Kurohashi, 2008). Firstly, words in Vietnamese are not always
separated by spaces, so word segmentation is necessary and segmentation errors will affect the level
of NER performance. Secondly, some proper names of foreign persons and locations are loanwords or
represented by phonetic symbols, so we can expect wide variations in some Vietnamese terms. Thirdly,
there are considerably fewer available existing resources such as lexicons, parsers, word nets, etc. for
Vietnamese that have been used in previous studies.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

85

In this study, we suggest a process to build a bilingual named entity corpus from aligned news express
articles. In fact, this process is applied to build an English-Vietnamese Named Entity Corpus by using
available English named entity recognition to tag entities in the English text, and then map them into
Vietnamese text based on word alignments. The mapping results are also corrected manually by using a
visualization tool.

The remainder of this paper describes the details of our work. Firstly we address the data source for
building the corpus in Section 2. Next, we present a procedure to build an English-Vietnamese Named
Entity Corpus by using a bilingual corpus and mapping English entities into Vietnamese entity tags in
Section 3. Experimental results and conclusion appear in Sections 4 and 5, respectively.

2 Tagset and Data Source

2.1 Tagset for Named Entities

There are many tagsets for the NER task, such as the hierarchical named entity tagset with 150 types (S.
Sekine et al., 2002), the biological named entity tagset (Y. Tateisi et al., 2000; J-D Kim et al., 2003), or
common named entity tagsets with 3 types and 7 tags (N. Chinchor and P. Robinson, 1998). According
to the definition of the MUC-7 conference (N. Chinchor and P. Robinson, 1998), we will identify six
types of named entities:

• PERSON (PER): Person entities are limited to humans identified by name, nickname or alias.

• ORGANIZATION (ORG): Organization entities are limited to corporations, institutions, govern-
ment agencies and other groups of people defined by an established organizational structure.

• LOCATION (LOC): Location entities include names of politically or geographically defined
places (cities, provinces, countries, international regions, bodies of water, mountains, etc.). Lo-
cations also include man-made structures like airports, highways, streets, factories and monuments.

• TIME (TIM): Date/Time entities are complete or partial expressions of time of day, or date expres-
sions.

• PERCENTAGE (PCT): Percentage entities are percentage expressions, including percentage range
expressions.

• MONEY (MON): Money entities include monetary expressions.

We have developed a guide for bilingual named entity tagging and published it as EnVnNEguide at
http://code.google.com/p/evbcorpus/downloads/list.

2.2 Data Source

The data source for building the English-Vietnamese named entity corpus is a part of the EVBCorpus1,
which consists of both original English text and its Vietnamese translations. It contains 1,000 news
articles defined as the EVBNews part of the EVBCorpus (as shown in Table 1) (Q.H. Ngo et al., 2013).
This corpus is also aligned semi-automatically at the word level.

In particular, each article was translated one to one at the whole article level, so we align sentence to
sentence. Then, sentences are aligned semi-automatically at the word level, including automatic align-
ment by class-based method (D. Dien et al., 2002) and use of the BiCAT tool (Q.H. Ngo and W. Wini-
warter, 2012) to correct the alignments manually. The details of the corpus are listed in Table 1.

Parallel documents are also chosen and classified into categories, such as economy, entertainment
(art and music), health, science, social, politics, and technology (percentage of each category is shown
in Table 2 and Figure 1). The wide range of categories ensures that named entities in the corpus are
diversified enough for other following tasks.

86

Figure 1: The distribution of articles and sentences in each topic in EVBNews

Table 1: Characteristics of EVBNews part

English Vietnamese

Files 1,000 1,000

Paragraphs 25,015 25,015

Sentences 45,531 45,531

Words 740,534 832,441

Words in Alignments 654,060 768,031

3 Building Named Entity Corpus

3.1 Model of Building EVNECorpus from EVBCorpus

Figure 2 shows the main modules of bilingual named entity corpus building, including three main mod-
ules: pre-processing, named entity recognition, bilingual entity mapping, and bilingual entity correction.
According to this workflow, the bilingual corpus will be tagged with named entities on the English text,
then, named entities are mapped from English to Vietnamese text. Finally, annotators will correct both
English and Vietnamese named entities by using the BiCAT tool (Q.H. Ngo and W. Winiwarter, 2012).

At the first stage, a Named Entity Recognition system is used to tag English entities in the English
sentence. Several Named Entity Recognition systems for English text are available online. For traditional
NER, the most popular publicly available systems are: OpenNLP NameFinder 2 , Illinois NER3 system
by Lev Ratinov (L. Ratinov and D. Roth, 2009), Stanford NER4 system by Jenny Rose Finkel (J.R.
Finkel et al., 3005), and Lingpipe NER5 system by Baldwin, B. and B. Carpenter (B. Carpenter, 2006).
The Stanford NER reports 86.86 F1 on the CoNLL03 NER shared task data. We chose the Stanford NER
to provide for the ability of our corpus for tagging with multi-type, such as 3 classes, 4 classes, and 7
classes.

The following example is the result of the Stanford NER for the English sentence “Prime Minister
Gordon Brown resigned as Britain ’s top politician on Tuesday evening, making way for Conservative

1http://code.google.com/p/evbcorpus/
2http://sourceforge.net/apps/mediawiki/opennlp/
3http://cogcomp.cs.illinois.edu/page/software view/4
4http://nlp.stanford.edu/ner/index.shtml
5http://alias-i.com/lingpipe/index.html

87

Table 2: Number of files and sentences for each topic
Topic File Sentence

Economy 125 4,326
Entertainment 11 365

Health 336 21,107
Politics 141 4,253
Science 34 1,692
Social 110 3,699
Sport 22 838

Technology 104 2,609
Misc 117 117
Total 1,000 45,531

Figure 2: Architecture of building EVNECorpus from EVBCorpus

leader David Cameron.” :

Prime Minister [Gordon Brown]PER resigned as [Britain]LOC ’s top politician on [Tuesday]TIM
evening, making way for [Conservative]ORG leader [David Cameron]PER .

and its mapped named entities in the Vietnamese sentence:

Thủ tướng [Gordon Brown]PER đã từ giã chức vụ cao nhất trên chính trường [Anh]LOC vào tối
[thứ ba]TIM , nhường chỗ cho [David Cameron]PER nhà lãnh đạo [Đảng Bảo thủ]ORG .

3.2 Mapping English to Vietnamese Named Entities
At the next stage, every alignment will be mapped from English into Vietnamese tokens. Every named
entity tag on linked English words is mapped to Vietnamese tokens on the target sentence. Left and right
boundaries are also detected to re-build named entity chunks on the Vietnamese sentence (as shown in
Figure 3):

• Remove all alignments which are not related to English named entity tokens

• Map English named entity tokens to Vietnamese text by using alignments

88

• Identify the boundaries of named entities and rebuild named entity script text.

Figure 3: Mapping named entities

However, there is a difference between the number of tagged English named entities and mapped
Vietnamese named entities (as shown in Table 3). Several English entities in the English sentences are
not translated into the Vietnamese text, therefore, these entities are not mapped.

Table 3: Number of entities at the first stage
Tag Name Tagged English Entity Mapped Vietnamese Entity Unmapped Entity
LOC Location 10,418 10,354 64
ORG Organization 8,197 8,120 77
PER Person 7,217 7,153 64
TIM Time 4,474 4,437 37
MON Money 1,003 992 11
PCT Percent 1,201 1,193 8

Total 32,510 32,249 261

There are several common errors of the mapping stage. The most frequent error is caused by the
separation of entities from English text in Vietnamese. It means that there are several cases of one tagged
English named entity being separated into two distinct Vietnamese named entities in the Vietnamese
text. On the other hand, for example, the phrase “President [Bill Clinton]PER between [1994]TIM and
[1997]TIM” has one PER entity and two TIM entities whereas the Vietnamese translated text “Tổng
thống [Bill Clinton]PER trong giai đoạn [1994-1997]TIM” has one PER entity and only one TIM entity.

Three common reasons which lead to mapping errors (these cases are discussed in the next section by
analysing unmatched cases) are:

• The differences between English and Vietnamese characteristics.

• The splitting of an English named entity to two Vietnamese entities.

• The entities are replaced by pronouns and possessive pronouns in the target sentences or the other
way around.

89

3.3 Correcting Named Entities

As shown in Figure 4, we use the BiCAT tool (Q.H. Ngo and W. Winiwarter, 2012) for correcting named
entities in both English and Vietnamese sentences. The BiCAT tool is a visualization tool based on drag,
drop, and edit label operations (actions) to correct the sentence pairs. It is designed for annotators to
review whole phrase structures of English and Vietnamese sentences. They can compare the English
named entity result with the Vietnamese named entity result and correct them in both sentences. The
comparison is also used to detect incorrect named entities in both English and Vietnamese text.

Figure 4: Screenshot of BiCAT with the named entity map

Moreover, several additional information, such as POS tagger, chunker, is also shown for building
further linguistic tags. Several features are implemented on the entity matrix at the right panel of the
BiCAT tool:

• Show the sentence where named entities occur.

• Highlight the pairs which have imbalance in number of entities between source sentence and target
sentence.

• Quick jump to the sentence pair on which the user clicks.

4 Experiment and Results

Named entities include six tags: Location (LOC), Person (PER), Organization (ORG), Time including
date tags (TIM), Money (MON), and Percentage (PCT). English text is tagged with English NER tags by
Stanford NER and then mapped to Vietnamese text. Next, Vietnamese entity tags are corrected manually.

In total, the English-Vietnamese Named Entity Corpus (EVNECorpus) has 32,454 English named
entities and 33,338 Vietnamese named entities in the EVBNews corpus (see Table 4 for details and its
comparison in Figure 5).

90

Table 4: Number of entities in the EVNECorpus
Tag Name English Entity Vietnamese Entity Unmatched Entity
LOC Location 10,406 11,343 998
ORG Organization 8,177 8,218 189
PER Person 7,201 7,205 199
TIM Time 4,408 4,417 136
MON Money 1,003 993 32
PCT Percent 1,194 1,170 27

Total 32,454 33,338 1,581

There are several common unmatched named entities in English-Vietnamese named entity corpus: the
English-Vietnamese Named Entity Corpus (EVNECorpus) has 32,454 English named entities and 33,338
Vietnamese named entities in the EVBNews corpus (see Table 5). Moreover, to classify the unmatched
named entities, we also tag part-of-speech for English sentences by the POS Tagger6 of the Stanford
Natural Language Processing Group (K. Toutanova and C. D. Manning, 2000).

As shown in Table 5, a large number of English adjectives (tagged JJ tag) are not tagged as named en-
tities while their translations are tagged as locations. Most of them are coming from country names, such
as French, English, and Vietnamese, and they refer to people or languages. In the English text ”Cuban
missile crisis”, the word Cuban is not tagged as a location because Cuban is an adjective (”Cuban/JJ
missile/NN crisis/NN”), while, in its Vietnamese translation, ”Khủng khoảng tên lửa [Cu Ba]LOC”, ”Cu
Ba” is tagged as a location. Moreover, there are several English named entities that are split into two
entities in the Vietnamese sentences. For example, ”[Thailand]LOC ’s [Ministry of Public Health]ORG”
has two entities while its translation is [Bộ Y tế Thái Lan]ORG. Finally, there are several named entities
that are replaced by pronouns and possessive pronouns (30 cases for PRP and 11 cases for PRP$) in the
translated sentences and the inverse direction (38 cases).

Figure 5: English entities and Vietnamese entities in the EVNECorpus

6http://nlp.stanford.edu/software/tagger.shtml

91

Table 5: Common Unmatched Named Entities
Description/Examples POS Count

1 English named entities without alignments to Vietnamese words 190

2 Vietnamese named entities without alignments to English source words 106

3
English named entities with alignments to Vietnamese words rather than

NNP 38
Vietnamese entities

4
Vietnamese named entities with alignments to English words rather than

English entities

- Eurobond, NN 10

- Democrats, Eurobonds, Socialists NNS 45

- Kenyan, French, NNP 229

- Russians, Danish, Philippines NNPS 107

- They, he, she, it PRP 36

- Him, His, her, them PRP$ 11

- French, English, and Fuji-based JJ 797

- other cases Others 12

Total 1,581

5 Conclusion

In this paper, we have shown a workflow of building an English-Vietnamese named entity corpus. This
workflow is based on an aligned bilingual corpus. In addition, we built a Vietnamese word segmen-
tation corpus for training and evaluating the system. As result, the corpus is built semi-automatically
with over 45,000 sentences, and totally 32,454 English named entities and 33,338 Vietnamese named
entities. Moreover, we also pointed out several differences in named entity tagging between English and
Vietnamese text. These differences can be used to map named entity tags, linguistic information, and in
machine translation systems.

However, adding to the six common named entity types additional names (such as product, disease,
and event names) is also necessary, and we need further research for identifying them in bilingual corpora
because they affect the named entity recognition process as well as the corpus.

References

Bob Carpenter 2006. Character Language Models for Chinese Word Segmentation and Named Entity Recognition,
In Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing, pp. 169-172.

Chun-Jen Lee, Jason S. Chang, and Jyh-Shing R. Jang. 2006. Alignment of Bilingual Named Entities in Parallel
Corpora Using Statistical Models and Multiple Knowledge sources, ACM Transactions on Asian Language
Information Processing (TALIP) 5, no. 2 (2006): 121-145.

Cheng-Wei Shih, Tzong-Han Tsai, Shih-Hung Wu, Chiu-Chen Hsieh, and Wen-Lian Hsu. 2004. The Construction
of a Chinese Named Entity Tagged Corpus: CNEC1.0., In Proceedings of Conference on Computational Lin-
guistics and Speech Processing (ROCLING). Association for Computational Linguistics and Chinese Language
Processing (ACLCLP).

92

Dinh Dien, Hoang Kiem, Thuy Ngan, Xuan Quang, Nguyen V. Toan, Hung Ngo, and Phu Hoi. 2002. Word Align-
ment in English – Vietnamese Bilingual Corpus, In Proceedings of the 2nd East Asian Language Processing
and Internet Information Technology (EALPIIT’02), pp. 3-11.

Donghui Feng, Yajuan Lü, and Ming Zhou. 2004. A New Approach for English-Chinese Named Entity Align-
ment, In Proceedings of Conference of the European Chapter of the Association for Computational Linguistics
(EMNLP), vol. 2004, pp. 372-379. Association for Computational Linguistics.

David Nadeau, and Satoshi Sekine. 2007. A Survey of Named Entity Recognition and Classification, Lingvisticae
Investigationes 30, no. 1 (2007): 3-26.

Fei Huang, and Stephan Vogel. 2002. Improved Named Entity Translation and Bilingual Named Entity Extraction,
In Proceedings of the Fourth IEEE International Conference on Multimodal Interfaces, pp. 253-258. IEEE.

J-D Kim, Tomoko Ohta, Yuka Tateisi, and Jun’ichi Tsujii. 2003. GENIA Corpus - a Semantically Annotated
Corpus for Bio-Textmining, Bioinformatics 19 (suppl. 1), pp. 80-82. Oxford University Press.

Jenny R. Finkel, Trond Grenager, and Christopher Manning. 2005. Incorporating Non-local Information into
Information Extraction Systems by Gibbs Sampling, In Proceedings of the 43nd Annual Meeting of the Associ-
ation for Computational Linguistics (ACL 2005), pp. 363-370. Association for Computational Linguistics.

Jian Sun, Jianfeng Gao, Lei Zhang, Ming Zhou, and Changning Huang. 2002. Chinese Named Entity Identification
Using Class-based Language Model, In Proceedings of the 19th International Conference on Computational
Linguistics - Volume 1, pp. 1-7. Association for Computational Linguistics.

Kristina Toutanova, and Christopher D. Manning, 2000. Enriching the Knowledge Sources Used in a Maximum
Entropy Part-of-Speech Tagger, In Proceedings of the Joint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Corpora (EMNLP/VLC-2000), pp. 63-70. Association for Com-
putational Linguistics.

Lev Ratinov, and Dan Roth. 2009. Design Challenges and Misconceptions in Named Entity Recognition, In
Proceedings of the Thirteenth Conference on Computational Natural Language Learning (CoNLL ’09), pp.
147-155. Association for Computational Linguistics.

Nguyen C. Tu, Tran T. Oanh, Phan X. Hieu, and Ho Q. Thuy. 2005. Named Entity Recognition in Vietnamese Free-
Text and Web Documents Using Conditional Random Fields, The 8th Conference on Some Selection Problems
of Information Technology and Telecommunication. Hai Phong, Vietnam.

Nancy Chinchor, and Patricia Robinson. 1997. MUC-7 named entity task definition, In Proceedings of the 7th
Conference on Message Understanding.

Quoc Hung Ngo, and Werner Winiwarter. 2012. A Visualizing Annotation Tool for Semi-Automatically Building a
Bilingual Corpus, In Proceedings of the 5th Workshop on Building and Using Comparable Corpora, LREC2012
Workshop, pp. 67-74. Association for Computational Linguistics.

Quoc Hung Ngo, Werner Winiwarter, and Bartholomäus Wloka. 2013. EVBCorpus - A Multi-Layer English-
Vietnamese Bilingual Corpus for Studying Tasks in Comparative Linguistics, In Proceedings of the 11th Work-
shop on Asian Language Resources (11th ALR within the IJCNLP2013), pp. 1-9. Asian Federation of Natural
Language Processing Associations.

Quoc Tri Tran, TX. Thao Pham, Quoc Hung Ngo, Dien Dinh, and Nigel Collier. 2007. Named Entity Recognition
in Vietnamese Documents, Progress in Informatics, No.4, March 2007, pp. 5-13.

Ryohei Sasano, and Sadao Kurohashi. 2008. Japanese Named Entity Recognition Using Structural Natural Lan-
guage Processing, In Proceedings of the International Joint Conference on Natural Language Processing (IJC-
NLP), pp. 607-612. Asian Federation of Natural Language Processing Associations.

Satoshi Sekine, Kiyoshi Sudo, and Chikashi Nobata. 2002. Extended Named Entity Hierarchy, In Proceedings of
the Language Resources and Evaluation Conference, pp. 1818-1824. Association for Computational Linguis-
tics.

TX. Thao Pham, Quoc Tri Tran, Dinh Dien, and Nigel Collier. 2007. Named Entity Recognition in Vietnamese Us-
ing Classifier Voting, ACM Transactions on Asian Language Information Processing (TALIP) 6, no. 4 (2007):
3.

Yuka Tateisi, Tomoko Ohta, Nigel Collier, Chikashi Nobata, and Jun-ichi Tsujii. 2000. Building an Annotated
Corpus in the Molecular-Biology Domain. In Proceedings of the COLING-2000 Workshop on Semantic Anno-
tation and Intelligent Content, pp. 28-36. Association for Computational Linguistics.

93

Proceedings of the 5th Workshop on South and Southeast Asian NLP, 25th International Conference on Computational Linguistics, pages 94–101,
Dublin, Ireland, August 23-29 2014.

Character-Cluster-Based Segmentation using Monolingual and
Bilingual Information for Statistical Machine Translation

Vipas Sutantayawalee Peerachet Porkeaw Thepchai Supnithi
Prachya Boonkwan Sitthaa Phaholphinyo

National Electronics and Computer Technology Center, Thailand

{vipas.sutantayawalee, peerachet.porkeaw,prachya.boonkwan,

sitthaa.phaholphinyo,thepchai}@nectec.or.th

 Abstract

We present a novel segmentation approach for Phrase-Based Statistical Machine Translation
(PB-SMT) to languages where word boundaries are not obviously marked by using both
monolingual and bilingual information and demonstrate that (1) unsegmented corpus is able to
provide the nearly identical result compares to manually segmented corpus in PB-SMT task
when a good heuristic character clustering algorithm is applied on it, (2) the performance of
PB-SMT task has significantly increased when bilingual information are used on top of
monolingual segmented result. Our technique, instead of focusing on word separation, mainly
concentrate on character clustering. First, we cluster each character from the unsegmented
monolingual corpus by employing character co-occurrence statistics and orthographic insight.
Secondly, we enhance the segmented result by incorporating the bilingual information which
are character cluster alignment, co-occurrence frequency and alignment confidence into that
result. We evaluate the effectiveness of our method on PB-SMT task using English-Thai
language pair and report the best improvement of 8.1% increase in BLEU score. There are two
main advantages of our approach. First, our method requires less effort on developing the
corpus and can be applied to unsegmented corpus or poor-quality manually segmented corpus.
Second, this technique does not only limited to specific language pair but also capable of
automatically adjust the character cluster boundaries to be suitable for other language pairs.

1 Introduction

Nowadays, it is admitted that word segmentation is a crucial part of Statistical Machine Translation
(SMT) especially in the languages where there are no explicit word boundaries such as Chinese,
Japanese or Thai. The writing system of these languages allow each word can be written continuously
with no space appearing between words. Consequently, word ambiguities will arise if word boundary
has been misplace which finally lead to an incorrect translation. Thus, the effective word segmentator
is required to disambiguate each word separator before processing another task in SMT. Several word
segmentators which focusing on word, character [1] or both [2] and [3] have been implemented to
accomplish this goal.

In order to retrieve a useful information to segment or cluster the word, most of word
segmentators are trained on a manually segmented monolingual corpus by using various approaches
such as dictionary-based, Hidden Markov Model (HMM), support vector machine (SVM) or
conditional random field (CRF). Although, a number of segementators are able to yield very
promising results, certain of them might be unsuitable for SMT task due to the influence of
segmentation scheme [4]. Therefore, instead of solely rely on monolingual corpus, various researches
make use of either manually segmented [4] or unsegment1ed bilingual corpus [5] as a guideline
information to perform a word segmentation task and improve the performance of SMT system.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http:// creativecommons.org/licenses/by/4.0/

94

In this paper, we propose a novel segmentation approach for Phrase-Based Statistical Machine
Translation (PB-SMT) to languages where word boundaries are not obviously marked by using both
monolingual and bilingual information on English-Thai language pair and demonstrate that (1)
unsegmented corpus is able to provide the nearly identical result to manually segmented corpus in PB-
SMT task when the good heuristics character clustering algorithm is applied on it, (2) the performance
of PB-SMT task has significantly increased when bilingual information are used on top of
monolingual segmented result. Our technique, instead of focusing on word separation, mainly
concentrate on character clustering. First, we cluster each character from the unsegmented
monolingual corpus by employing heuristic algorithm and language insight. Secondly, we enhance the
segmented result by incorporating the bilingual information which are character cluster (CC)
alignment, CC co-occurrence frequency and alignment confidence into that result. These two tasks can
be performed repeatedly.

The remainder of this paper is organized as follows. Section 2 provides some information related
to our work. Section 3 describes the methodology of our approach. Section 4 present the experiments
setting. Section 5 present the experimental results and empirical analysis. Section 6 and 7 gives a
conclusion and future work respectively.

2 Related Work

2.1 Thai Character Clustering

In Thai writing system, there are no explicit word boundaries as in English, and a single Thai character
does not have specific meanings like Chinese, Japanese and Korean. Thai characters could be
consonants, vowels and tone marks and a word can be formed by combining these characters. From
our observation, we found that the average length of Thai words on BEST2010 corpus (National
Electronics and Computer Technology Center, Thailand 2010) is 3.855. This makes the search space
of Thai word segmentation very large.
To alleviate this issue, the notion of Thai character cluster (TCC), is introduced [1] to reduce the
search space with predetermined unambiguious constraints for cluster formation. A cluster may not be
meaningful and has to combine with other consecutive clusters to form a word. Characters in the
cluster cannot be separated according to the Thai orthographic rules. For example, a vowel and tone
mark cannot stand alone and a tone marker is always required to be placed next to a previous character
only. [6] applied TCC to word segmentation technique which yields an interesting result.

2.2 Bilingually Word Segmentation

Bilingual information has also been shown beneficial for word segmentation. Several methods have
used the information from bilingual corpora to perform word segmentation. As in [5], it focuses on
unsegmented bilingual corpus and builds a self-learned dictionary using alignment statistics between
English and Chinese language pair. On the other hands, [4] is based on the manually segmented
bilingual corpus and then try to “repack” the word from existing alignment by using alignment
confidence. Both works evaluated the performance in BLEU metric and reported the promising result
of PB-SMT task.

3 Methodology

This paper aim to compare translation quality based on SMT task between the systems trained on
bilingual corpus that contains both segmented source and target, and on the same bilingual corpus with
segmented source but unsegmented target. First, we make use of monolingual information by
employing several character cluster algorithms on unsegmented data. Second, we use bilingual-guided
alignment information retrieved from alignment extraction process for improving character cluster
segmentation. Then, we evaluate our performance based on translation accuracy by using BLEU
metric. We want to prove that (1) the result of PB-SMT task using unsegmented corpus (unsupervised)

95

is nearly identical result to manually segmented (supervised) data and (2) when bilingual information
are also applied, the performance of PB-SMT is also improved.

3.1 Notation

Given a target 𝑇ℎ𝑎𝑖 sentence 𝑡!
! consisting of 𝐽 clusters 𝑡!,… , 𝑡! , where 𝑡! ≥ 1. If 𝑡! = 1, we

call 𝑡!as a single character 𝑆. Otherwise, we call is as a character cluster 𝑇 . In addition, given a
English sentence 𝑒!! consisting of 𝐼 words 𝑒,… , 𝑒! , 𝐴!→! denotes a set of English-to-Thai language
word alignments between 𝑒!! and 𝑡!

!. In addition, since we concentrate on one-to-many alignments,
𝐴!→! , can be rewritten as a set of pairs 𝑎! and 𝑎! = < 𝑒! , 𝑡! > noting a link between one single
English word and several Thai characters that are formed to one cluster 𝑇
	

3.2 Monolingual Information

Due to the issue mentioned in section 2.1, we apply character clustering (CC) technique on target text
in order to reduce the search space. After performing CC, it will yield several character clusters
𝑇which can be grouped together to obtain a larger unit which approaches the notion of word.
However, for Thai and Lao, we do not only receive 𝑇 but also 𝑆 which usually has no meaning by
itself. Moreover, Thai, Burmese and Lao writing rule does not allow 𝑆 to stand alone in most case.
Thus, we are required to develop various adapted versions of CC by using orthographic insight and
heuristic algorithm to automatically pack the characters that reside in a pre-defined grammatical word
list handcrafted by linguists. Then, all of single consonants in Thai Burmese, and Lao are forced to
group with either left or right cluster due to the Thai writing system. The decision has been made by
consulting on character co-occurrence statistics (unigram and bigram frequency).
Eventually, we obtain different character cluster alignments from the system trained on various CC
approaches which effect to translation quality as shown in section 5.1

3.3 Bilingually-Guided Alignment Information

We begin with the sequence of small clusters resulting from previous character clustering process.
These small clusters can be grouped together in order to form “word” using bilingually-guided
alignment information. Generally, small consecutive clusters in target side which are aligned to the
same word in source data should be grouped together. Therefore, this section describes our one-to-
many alignment extraction process.

For one-to-many alignment, we applied processes similar to those in phrase extraction
algorithm [7] which is described as follows.

With English sentence 𝑒!! and a Thai character cluster 𝑇!, we apply IBM model 1-5 to extract
word-to-cluster translation probability of source-to-target 𝑃(𝑡|𝑒) and target-to-source 𝑃(𝑒|𝑡). Next,
the alignment points which have the highest probability are greedily selected from both 𝑃(𝑡|𝑒) and
𝑃(𝑒|𝑡). Figure 1.a and 1.b show examples of alignment points of source-to-target and target-to-source
respectively. After that we selected the intersection of alignment pairs from both side. Then, additional
alignment points are added according to the growing heuristic algorithm (grow additional alignment
points, [8])

(a)

(b)

96

(c)

(d)

Figure 1. The process of one-to-many alignment extraction (a) Source-to-Target word alignment (b) Target-to-Source word
alignment (c) Intersection between (a) and (b). (d) Result of (c) after applying the growing heuristic algorithm.

Finally, we select consecutive clusters which are aligned to the same English word as candidates.
From the Figure 1.d, we obtain these candidates (red, สีแดง) and (bicycle, จัก ร ยา น).

3.4 Character Cluster Repacking

Although the alignment information obtained from the previous step is very helpful for the PB-SMT
task, there is still plenty of room to enhance the PB-SMT performance. One way of doing that is by
using word repacking [4]. However, in this paper, we perform a character cluster repacking (CCR)
instead of word. The main purpose of repacking technique is to group all small consecutive clusters
(or word) in target side that frequently align with one word in source data. Repacking approaches uses
two simple calculations which are a co-occurrence frequency (𝐶𝑂𝑂𝐶 (𝑒! ,𝑇!)) and alignment
confidence (𝐴𝐶(𝑎!)). (𝐶𝑂𝑂𝐶 (𝑒! ,𝑇!)) is the number of times 𝑒! and 𝑇! co-occurr in the bilingual
corpus [4] [9] and 𝐴𝐶(𝑎!) is a measure of how often the aligner aligns 𝑒! and 𝑇! when they co-occur.
AC is defined as

𝐴𝐶(𝑎!) =
𝐶(𝑎!)

𝐶𝑂𝑂𝐶 (𝑒! ,𝑇!)

where 𝐶(𝑎!) denotes the number of alignments suggested by the previous-step word aligner.

Unfortunately, due to the limited memory in our experiment machine, we cannot

find 𝐶𝑂𝑂𝐶 (𝑒! ,𝑇!)) for all possible < 𝑒! ,𝑇! > pairs. We, therefore, slightly modified the above
equation by finding 𝐶(𝑎!) first. Secondly, we begin searching 𝐶𝑂𝑂𝐶 (𝑒! ,𝑇!)) from all possible
alignments in 𝑎! instead of finding all occurrences in corpus. By applying this modification, we
eliminate < 𝑒! ,𝑇! > pairs that co-occur together but never align to each other by previous-step aligner
(𝐴𝐶 𝑎! equals to zero) so as to reduce the search space and complexity in our algorithm. Thirdly, we
choose 𝑎! with the highest 𝐴𝐶(𝑎!) and repack all character clusters in target side that similar to 𝑇! to
be a new single cluster unit. This process can be done repeatedly. However, we have run this task less
than twice since there are few new cluster unit appear after two iterations have passed. The running
example of this algorithm is described as follows

Suppose previous step aligner (GIZA++) produce two alignments 𝑎! = < 𝑒!,𝑇!,! > and 𝑎! = <
𝑒!,𝑇!,!,! > CCR will find the frequency of each aligment and number of times 𝑒! and 𝑇! co-occurr in
the bilingual corpus (𝐶𝑂𝑂𝐶 𝑒!,𝑇!,! and 𝐶𝑂𝑂𝐶 𝑒!,𝑇!,!,!). Then, we will have 𝐴𝐶(𝑎!) score for
each alignment and the aligment with the highest 𝐴𝐶 will be selected. The CCR will group these
cluster (e.g. 𝑇!,!) to be a new single cluster unit.

97

4 Experimental Setting

4.1 Data

The bilingual corpus1 we used in our experiment is constructed from several sources and consists of
multiple domains (e.g news, travel, article, entertainment, computer, etc.). We divided this corpus into
three sets plus one additional test set as shown below

Table 1. Information of bilingual corpus

4.2 Tools and Evaluation

We evaluate our system in term of translation quality based on phrase-based SMT. Source
sentences are sequence of English words while target sentences are sequences of Thai character
clusters and each cluster size depends on which approach used in the experiment.

Translation model and language model are train based on the standard phrase-based SMT.
Alignments of source (English word) and target (Thai Character Cluster) are extracted using GIZA++
[8] and the phrase extraction algorithm [7] is applied using Moses SMT package. We apply SRILM
[10] to train the 3-gram language model of target side. We use the default parameter settings for
decoding.

In testing process, we use another two test sets difference to the training data. Then we compared
the translation result with the reference in term of BLEU score instead of F-score because of two main
reasons. First, it is cumbersome to construct a reliable gold standard since their annotation schemes are
different. Second, there is no strong correlation with SMT translation quality in terms of BLEU score
[11]. Therefore, we re-segment the reference data (manually segmented) and the translation result data
based on TCC. Some may concern about using TCC will lead to over estimation (higher than actual)
due to the BLEU score is design based on word and not based on character. However, we used this
BLEU score only for comparing translation quality among our experiments. Comparing to other SMT
system still require running BLEU score based on the same segmentation guideline.

5 Results and Discussion

We conducted all experiments on PB-SMT task and reported the performance of PB-SMT system
based on the BLEU measure. First, we use a method proposed in section 3.2 followed by the approach
in section 3.3 in order to the receive first translation result set (without CCR). Then, we perform a
method describe in 3.4 and also follow by approach in section 3.3 in order to receive another
translation result set (with CCR). Table 1 shows the number of character clusters that are decreasing
over time when several different character clustering approaches are applied.

1 Currently, the corpus we used is a proprietary of NECTEC and does not available to public yet due to the licensing issue.
However, for the educational purpose, this corpus is available upon by request.

 Data Set No. of sentence pairs
Train 633,589
Dev 12,568
Test #1 3,426
Test #2 500

98

Table 2. Number of character clusters when different character clustering approaches are applied on the bilingual corpus	

Next, we present all translation results of PB-SMT task that using different character clustering
approaches. Each training set is trained with only one character clustering method which are (1) TCC
(baseline), (2) TCC with CCR, (3) TCC with only orthographic insight (TCC-FN), (4) TCC-Fn with
CCR, (5) TCC with language insight and heuristic algorithm (TCC-FN-B) and (6) TCC-FN-B with
CCR. The results are shown in Table 3.

 No. of Character Clusters (or word in original data)

Approaches Without CCR With CCR
TCC

(baseline) 9,862,271 7,187,862

TCC with language insight
(TCC-FN) 8,953,437 6,636,305

TCC with language insight
and heuristic algorithm

(TCC-FN-B)
6,545,617 5,448,437

Manually segmented corpus
(Upper bound) 5,311,648 N/A

Table 3. BLEU score of each character clustering method

and the percentage of the improvement when we applied CCR to the data

 Test #1 BLEU
% of BLEU

Improvement

Test #2 BLEU
% of BLEU

Improvement Approaches Without
CCR With CCR Without

CCR With CCR

Baseline 37.12 40.13 8.11 36.78 38.87 5.68

TCC-FN 40.23 41.90 4.15 38.36 39.09 1.90

TCC-FN-B 44.69 44.43 -0.58 40.45 40.81 0.89

Upper bound 47.04 N/A N/A 40.73 N/A N/A

(a)

35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	

Upperbound	

No	 CCR	

With	 CCR	

Upperbound	

99

(b)

Figure 2. The BLEU score of (a) test set no.1 and (b) test set no.2

As seen from Table 3, when we apply the enhanced version of TCCs into the data with no CCR,
BLEU score have gradually increased and almost reached the same level as original in test set #2.
Furthermore, when CCR have been also deployed on each training dataset, the results of BLEU are
also rise in the same manner with Without CCR method. There are certain significant points that
should be noticed. First, CCR method is able to yield maximum of 8.1 % BLEU score increase.
Second, when we apply the CCR methods and reach at some point, few improvement or minor
degradation is received as shown in TCC-FN-B without and with CCR result. This is because the
number of clusters produced by this character clustering algorithm is almost equal to number of words
in original data as shown in Table 2 and this approach might suffer from the word boundary
misplacement problem. Third, character clustering that use TCC with orthographic insight and
heuristic algorithm combined with CCR approach is able to overcome the translation result from
original data for the first time.

6 Conclusion

In this paper, we introduce a new approach for performing word segmentation task for SMT. Instead
of starting with word level, we focus on character cluster level because this approach can perform on
unsegmented corpus or multiple-guideline manually segmented corpus. First, we apply several
adapted versions of TCC on unsegmented data. Next, we use a bilingual corpus to find alignment
information for all < 𝑒! ,𝑇! > pairs and then employ character cluster repacking method in order to
form the large cluster of Thai characters.
 We evaluate our approach on translation task on several sources and different domain corpus
and report the result in BLEU metric. Our technique demonstrates that (1) we can achieve a
dramatically improvement of BLUE as of 8.1% when we apply adapted TCC with CCR and (2) it is
possible to overcome the manually segmented corpus by using TCC with orthographic insight and
heuristic algorithm character clustering method combined with CCR. The advantage of our approach
is a reduction in time and effot for construct a billinugal corpus because we are no longer required to
manually segment all sentences in target side. In addition, our approach is able to cope with larger data
information (e.g. 1 million sentences pairs) and adaptable to other language pairs (e.g. English-
Chinese, English-Japanese or English-Lao)
	

35	

36	

37	

38	

39	

40	

41	

42	

Baseline	 TCCAFn	 TCCAFnB	

No	 CCR	

With	 CCR	

Upperbound	

100

7 Future Work

There are some tasks that can be added into this approaches. Firstly, we can make use of trigram (and
n-gram) statistics, maximum entropy or conditional random field on heuristic algorithm in adapted
version of TCC. Secondly, we might report the result from another language pair in order to confirm
our approach.Thirdly, we can modify CCR process to be able to rerank the alignment confidence by
using discriminative approach. Lastly, name entity recognition system can be integrated with our
approach in order to improve the SMT performance.

Reference
	
[1] T. Teeramunkong, V. Sornlertlamvanich, T. Tanhermhong and W. Chinnan, “Character cluster based Thai

information retrieval,” in IRAL '00 Proceedings of the fifth international workshop on on Information
retrieval with Asian languages, 2000.

[2] C. Kruengkrai, K. Uchimoto, J. Kazama, K. Torisawa, H. Isahara and C. Jaruskulchai, “A Word and
Character-Cluster Hybrid Model for Thai Word Segmentation,” in Eighth International Symposium on
Natural Lanugage Processing, Bangkok, Thailand, 2009.

[3] Y. Liu, W. Che and T. Liu, “Enhancing Chinese Word Segmentation with Character Clustering,” in Chinese
Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data,
China, 2013.

[4] Y. Ma and A. Way, “Bilingually motivated domain-adapted word segmentation for statistical machine
translation,” in Proceeding EACL '09 Proceedings of the 12th Conference of the European Chapter of the
Association for Computational Linguistics, pp. 549-557, Stroudsburg, PA, USA, 2009.

[5] J. Xu, R. Zens and H. Ney, “Do We Need Chinese Word Segmentation for Statistical Machine
Translation?,” ACL SIGHAN Workshop 2004, pp. 122-129, 2004.

[6] P. Limcharoen, C. Nattee and T. Theeramunkong, “Thai Word Segmentation based-on GLR Parsing
Technique and Word N-gram Model,” in Eighth International Symposium on Natural Lanugage
Processing, Bangkok, Thailand, 2009.

[7] P. Koehn, F. J. Och and D. Marcu, “Statistical phrase-based translation,” in NAACL '03 Proceedings of the
2003 Conference of the North American Chapter of the Association for Computational Linguistics on
Human Language Technology, Stroudsburg, PA, USA, 2003.

[8] F. J. Och and H. Ney, “A systematic comparison of various statistical alignment models,” Computational
Linguistics, vol. 29, no. 1, pp. 19-51, 2003.

[9] I. D. Melamed, “Models of translational equivalence among words,” Computational Linguistics, vol. 26, no.
2, pp. 221-249, 2000.

[10] “SRILM -- An extensible language modeling toolkit,” in Proceeding of the International Conference on
Spoken Language Processing, 2002.

[11] P.-C. Chang, M. Galley and C. D. Manning, “Optimizing Chinese word segmentation for machine
translation performance,” in Proceedings of the Third Workshop on Statistical Machine Translation,
Columbus, Ohio, 2008.

101

Proceedings of the 5th Workshop on South and Southeast Asian NLP, 25th International Conference on Computational Linguistics, pages 102–111,
Dublin, Ireland, August 23-29 2014.

A rule based approach for automatic clause boundary detection and
classification in Hindi

Rahul Sharma, Soma Paul
Language Technology Research Centre, IIIT-Hyderabad, India

rahul.sharma@research.iiit.ac.in, soma@iiit.ac.in

Abstract

A complex sentence, divided into clauses, can be analyzed more easily than the complex sentence
itself. We present here, the task of identification and classification of clauses in Hindi text. To
the best of our knowledge, not much work has been done on clause boundary identification for
Hindi, which makes this task more important. We have built a rule based system using linguistic
cues such as coordinating conjunct, subordinating conjunct etc. Our system gives 91.53% and
80.63% F1-scores for identification and classification for finite clauses respectively, and 60.57%
accuracy for non-finite clauses.

1 Introduction

A Clause is the minimal grammatical unit which can express a proposition. It is a sequential group of
words, containing a verb or a verb group(verb and its auxiliary), and its arguments which can be explicit
or implicit in nature (Ram and Devi, 2008). This makes a clause an important unit in language grammars
and emphasis the need to identify and classify them as part of linguistic studies.
Analysis and processing of complex sentences is a far more challenging task as compared to a simple
sentence. NLP applications often perform poorly as the complexity of the sentence increases. “It is im-
possible, to process a complex sentence if its clauses are not properly identified and classified according
to their syntactic function in the sentence” (Leffa, 1998). The performance of many NLP systems like
Machine Translation, Parallel corpora alignment, Information Extraction, Syntactic parsing, automatic
summarization and speech applications etc improves by introducing clause boundaries in a sentence (e.g.,
Ejerhed, 1988; Abney, 1990; Leffa, 1998; Papageorgiou, 1997; Gadde et al., 2010).
We present a rule based method to automatically determine ‘clause’ boundaries (beginnings and ends) in
complex or compound sentences, and further categorize the identified clauses according to their types.
Thus our system is made up of two parts, the first determines the boundaries of the clauses (clause iden-
tification) and the second part determines the type of the clause (Clause Classification). Rules for the
system were framed by thoroughly analyzing the Hindi-Urdu treebank (Palmer et al., 2009). This pro-
vides significant insights for the task as clause boundaries can be inferred from the dependency relations
marked in dependency trees. The rules devised for our system have minimum dependency on linguistic
resources, only part of speech (POS) and chunk information of lexical items is used with a fair perfor-
mance of the system. As far as we know, not much work has been done on clause boundary identification
for Hindi and this makes this task more significant.
This paper is structured as follows: In Section 2, we talk about clause and its types. In Section 3, we
discuss the related works that has been done earlier on clause identification and classification. Section 4
describes the data flow of our system and rules for identifying and classification of a clause. Section 5
outlines the system performance. In section 6, some issues related clause identification are discussed. In
Section 7, we conclude and talk about future works in this area.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

102

2 Clause and its Types
As defined in introduction, a clause is a group of words consisting of a verb (or a verb group) and its
arguments(explicit and implicit), and forms part of a sentence. Depending on the type of the verb,
a clause is classified as a finite clause that contains a finite verb and non-finite clause that contains a
non-finite verb. For example:

(1) raam
Ram

khaanaa
food

khaakar
having+eaten

soyaa
sleep+past

‘Having eaten food, Ram slept.’

In example (1), ‘raam soyaa’ is a finite clause; contains ‘soyaa’ finite verb, and ‘khaanaa khaakar’ is a
non-finite clause; contains ‘khaakar’ non-finite verb.
We come across two types of clauses in a complex sentence:

1. Main clause, which is an independent clause, is also called Superordinate clause. It is always a
finite clause in a sentence.

2. Subordinate clause, which is dependent on the main clause. It can be both finite and non-finite in a
sentence.

For our task we have divided subordinate clause into five different types, which are complement clause,
adverbial clause, relative clause, coordinate clause and non-finite clause (discussed shortly). Subordinate
clauses can be nested or non-nested depending on a sentence. Nested here means one clause is embedded
in another clause. For example,

(2) raam
Ram

jo
who

khela
play+past

,
,

ghar gayaa
home go+past

‘Ram who played , went home.’

In example (2) the two clauses are: 1) raam ghar gayaa 2) jo khela. The second clause is embedded in
‘raam ghar gayaa’.
Various kinds of subordinate clauses are discussed below:

(a) Complement Clause: These clauses are introduced by the subordinator ‘ki’ (that) and generally
follow the verb of main clause (Koul, 2009) and occur as a finite clause in a sentence. For example:

(3) yaha
It

sach
true

hai
is

ki
that

mohan
Mohan

bimaara
sick

hai
is

‘It is true that Mohan is sick’

‘ki mohan bimaar hai’ is a Complement Clause and ‘ki’ is a complementizer in example (3). It must
be noted that ‘complement clause’ is also an argument of the main clause verb. So, in example (3),
the main clause is ‘yaha sach hai ki mohan bimaara hai’, which contains the complement clause
‘ki mohan bimaara hai’, in it. This is considered to be a special case where a clause comes as an
argument of a verb and becomes a part of that verb clause. We have handled this type of construction
separately (discussed in section 4).

(b) Relative Clause: Relative clauses which are also finite in nature occur as a modifier of verb’s argu-
ment and contain a relative pronoun (Koul, 2009). Such clause can be either nested or non-nested.

(4) vaha
that

ladkaa
boy

jo
who

khel rahaa thaa
play+past+conti.

ghar
home

gayaa
go+past

‘That boy who was playing went home’

In example (4), the nested relative clause is ‘jo khel rahaa thaa’ (who was playing) with ‘jo’ as a
relative marker. ‘jo’ modifies ‘vo’, the argument of the verb ‘gayaa’.
Another example of this, is:

(5) raam
Ram

ghar
home

gayaa
go+past

jo
who

khel rahaa thaa
play+past+conti

‘Raam who was playing went home’

103

In example (5) relative clause ‘jo khel rahaa thaa’ is a non-nested one.
(c) Adverbial Clause: These clauses are determined based on their adverbial markers/function in a

sentence (Koul, 2009). Manner, purpose, cause, condition etc. form the types of adverbial clauses.
We take this type of clauses as the modifier of the verb’s modifier. These clauses are present as a
finite clause in sentence. For example:

(6) jaise
the way

vaha
he

jaaegaa
go+fut.

waise
that way

main
I

jaaungaa
go+fut

‘I will go the way he will go’

In example (6) ‘jaise vaha jaaegaa’ is an Adverbial Clause with ’jaise’ as the (manner) Adverbial
Marker. Here ‘waise’ is the modifier of the verb ‘jaaungaa’ and ‘jaise vaha jaaegaa‘ modifies it.
It may be noted that we consider clauses that are modifiers of verb’s modifiers as adverbial clauses
and clauses that are modify arguments of verbs as relative clauses.

(d) Coordinate Clause: It is one of the independent finite clauses in a sentence that has the same status
as the other clauses, and is introduced by a coordinating conjunction (Koul, 2009). For example:

(7) main
I

ghar
home

jaaungaa
go+fut.

aur raam
and Ram delhi

dillii
go+fut

jaayegaa

‘I will go home and Raam will go to Delhi’

‘mai ghar jaaungaa‘ and ‘raam dillii jaayegaa‘ are two independent clauses with the same status in
example (7). And for our work we consider both clause as coordinate clauses, and the coordinating
conjunct is not taken to be part of any of the two clauses. There is thus no hierarchy in these clauses.
When there are more than one coordinating conjunct in a sentence, clause boundary identification
becomes more complex because of nesting of the coordinate clause. This is illustrated using example
(8).

(8) raam ne
Ram+erg

kaam
work

kiyaa
do+past

aur
and

khaanaa
food

khaayaa
eat+past

lekin
but

siitaa
Sita

khelii
play+past

‘Ram did the work and ate food but Sita played’

In such examples there is more than one way to mark the coordinate clauses:
- ((raam ne kaam kiyaa) aur (khaanaa khaayaa)) lekin (siitaa khelii)

- (raam ne kaam kiyaa) aur ((khaanaa khaayaa) lekin (siitaa khelii))

- ((raam ne kaam kiyaa) aur (khaanaa khaayaa) lekin (siitaa khelii))

‘(’ and ‘)’ are symbols to denote the start and end of the clause. As we can see there is more than
one output possible for the given example. Our system only marks the linear boundary of the clause
in a sentence. Nesting in more than two coordinate clauses is not handled by it. So for the example
(8), our output is: (raam ne kaam kiyaa) aur (khaanaa khaayaa) lekin (siitaa khelii)
- -It must be noted that we do not take coordinating conjuncts as part of any of the clauses, it is
conjoining. However subordinate marker are taken to be part of clause.

(e) Non-finite Clause: These clauses are dependent clause in a sentence which contain non-finite verb.

(9) raam
Ram

khaanaa
food

khaakar
eat

aur
and

paani
water

peekar
drink

ghar
home

gayaaa
go+past

’Raam after eating food and drinking water, went home’

In above example (9), two clauses, ‘khaanaa khaakar’ and ‘paani peekar’ are non-finite as they
contain non-finite verbs.

- -In Hindi, We come across some complex cases where one type of clause is embedded in another type
clause. For example:

(10) raam
Ram

jisne
who

khaanaa
food

khaayaa
eat+past

aur
and

paani
water

piyaa,
drink+past

ghar
home

gayaaa
go+past

’Raam who ate food and drank water, went home’

104

In example (10) relative clause and coordinate clause overlap with each other. The coordinate clauses
are: (jisne khaanaa khaayaa) and (paani piyaa), and relative clause is : (jisne khaanaa khaayaa aur paani
piyaa). So our system will mark the clause boundaries as: (raam ((jisne khaanaa khaayaa) aur (paani
piyaa)) ghar gayaaa).

3 Related works

Studies in identifying clauses date back to (Ejerhed, 1988) work, where they showed how automatic
clause boundary identification in discourse can benefit a parser’s performance. However her experiments
could detect only basic clauses. Later (Abney, 1990) used clause filter as part of his CASS parser. Papa-
georgiou (1997) used hand crafted rules to identify clause boundaries in a text. (Leffa, 1998) is another
rule based method which was implemented in an English-Portuguese MT system.
Some more recent works in this area are: (Puscasu, 2004), in which she proposed a multilingual method
of combining language independent ML techniques with language specific rules to detect clause bound-
aries in unrestricted texts. The rules identify the finite verbs and clause boundaries not included in learn-
ing process. Ram and Devi (2008) proposed a hybrid based approach for detecting clause boundaries in
a sentence. They have used a CRF based system which uses different linguistic cues. After identifying
the clause boundaries they run an error analyzer module to find false boundary markings, which are then
corrected by the rule based system, built using linguistic clues. (Ghosh et al., 2010) is another rule based
system for clause boundary identification for Bengali, where they use machine learning approach for
clause classification and dependency relations between verb and its argument to find clause boundaries.
Dhivya et al. (2012) use dependency trees from maltparser and the dependency tag-set with 11 tags to
identify clause boundaries. Similar to (Dhivya et al., 2012), Sharma et al. (2013) showed how implicit
clause information present in dependency trees can be used to extract clauses in sentences. Their system
have reported 94.44% accuracy for Hindi.Gadde et al. (2010) reported improvement in parser perfor-
mance by introducing automatic clause information in a sentence for Hindi in ‘Improving data driven
dependency parsing using clausal information’. However their approach for identifying clause informa-
tion has not been discussed. Thus a comparison is not possible here.
Our work is similar to that of (Leffa, 1998) in that both first mark clause boundaries and then classify
the clauses into various types. Both use linguistic cues such as coordinating conjuncts, subordinating
conjunction, surrounding context, however , while (Leffa, 1998) use POS information and valency of the
verbs , we use POS tags and chunks as the only linguistic information.

4 Methodology

We propose a rule based system which first identifies the clause(s) in the input sentence and marks the
‘clause start position’ (CSP) and ‘clause end position’ (CEP) with brackets and then it classifies the
identified clauses into one of the proposed types mentioned in section 2. Hindi usually follows the SOV
word order, so ends of the clauses can be found by just using verb information, in most of the cases.
The language also has explicit relative pronouns, subordinating conjuncts, coordinate conjunctions etc.
which serve as cues that help to identify clause boundaries and the type of the clauses. Thus our system
uses lists of coordinate conjunctions, relative markers and adverbial clause markers (see Appendix A
and Appendix B for the lists). These lists were created using (Kachru, 2006). Further, the rules for our
system have been framed based on our in depth analysis of a section of the Hindi treebank (Palmer et
al., 2009). Apart from the lexical cues we have also used POS tag and chunk information to frame these
rules.

4.1 Algorithm

Our system consists of two parts, the first part determines the boundaries of the clauses (clause
identification) and the second part determines the type of the clause (clause classification). Identification
of clause boundaries is further divided into two tasks, i.e. to find the beginnings and the ends of clauses.
Then, the sentences with the clause boundaries marked are processed by the clause classification
component, and are assigned to one of the clause types--main clause, complement clause, adverbial

105

clause, relative clause, coordinate clause and non-finite clause. Figures 1 shows the data flow of our
system, components of which have been discussed in detail, further in this section.

Input
Sentence

preprocessing

CEP Identification

CSP Identification

is E
equal to

S?

Sanity
Checker

‘ki’ subordinating handler

Coordination handler

Clause Classification

Output

no

yes

In this Data flow of our system, E represents number of
‘clause end position’ and S represents number of ‘clause
start position’ marked by our system.

Figure 1: Data Flow

4.1.1 Preprocessing
In this module, input sentences are processed and each lexical item is assigned a POS tag, and chunk
information . For example:
Input sentence:

(11) raam
Ram

soyaa.
sleep+past

‘Ram slept.’

Output:
1 ((NP
1.1 raam NNP

))
2 ((VGF
2.1 soyaa VM
2.2 . SYM

))
- -Here ‘NP’ and ‘VGF’ are the chunk tags, and POS tags ‘NNP’ and ‘VM’ stand for Noun and Verb
respectively (Bharati et al., 2007; Bharati et al., 2009) .

4.1.2 CEP Identification
The unmarked word order of Hindi mainly being SOV, the verb is taken to be the end of the clause. In
cases where a sentence does not end with a verb , the end of sentence is taken as end of the clause. This
helps to handle instances of scrambling and ellipses. For example:

(12) siitaa
Sita

ghar
home

jaa rahii hai
go+present+cont

aur
and

giitaa
Gita

bhii.
also

‘Sita is going home and so does Gita.’

In example (12), there is an ellipses of the verb ‘jaa rahii hai’ in the second clause ‘giitaa bhii’. In
cases like this, our system marks the verb as end of the first clause and sentence end as end of the second

106

clause. The marked boundaries in the sentence after this module will be: ‘siitaa ghar jaa rahii hai) aur
gitaa bhi)’.

4.1.3 CSP Identification
We have made two modules to find the start of the clauses; one identifies the start of finite clauses and
the other identifies the start of non-finite clauses. As we have mentioned a clause is a finite or non-finite,
depending on the verb in that clause. So we have used chunk information which gives the verb type
(finite or non-finite). Both these modules are independent of each other, so running them parallel will
not affect the system, and this helps to speed up the system processing.

4.1.3.1 CSP for finite clause
This module uses linguistic cues such as relative markers (jo ‘that/who’, jisane ‘who’), coordinating
conjuncts (aur ‘and’, lekin ‘but’) and so on, to identify the start of clauses. It may be noted that the
immediate context of cues is also taken into account at times. For instance, a coordinating conjunct
‘aur’ (and) in a sentence marks the start of the clause only if it is preceded by a verb, whereas the
subordinating conjunct ‘ki’ (that) always marks the start of a clause. After the start/s of clause/s in a
sentence are identified, the module checks whether the beginning of the sentence is marked as a clause
start, and marks it as clause beginning if it is not already marked. For example:

(13) raam
Ram

jo
who

khel rahaa tha
play+past+conti.

nahii
not

aayaa.
come+present

‘Ram who was playing did not come.’

In example (13), first our module identifies ‘jo’ relative marker and marks it as a start of the clause ‘jo
khel rahaa tha’, and then, marks the beginning of the sentence as the start of the other clause ‘raam nahii
aayaa’. After this, the boundaries marked in example (12) will be : (raam (jo khel rahaa tha) nahii
aayaa.)
It needs a mention here that the boundaries marked in the previous module are also included in the current
module’s output.

4.1.3.2 CSP for non-finite clause
Non-finite verbs do not have Tense-Aspect-Mood(TAM) information, they take optional arguments
which are not specific in number. In Hindi, we don’t find any cues to detect where a non-finite clause
starts. So to identify the start of a non-finite clause, we have built templates/regular expressions on
chunks in a sentence, and whenever a pattern in a sentence matches the template, we mark that as a start
of the clause. Following example shows the working of this module:

(14) raam
Ram

ghar para
home

jaakar
to

khaanaa
after going

khaayega.
food eat+future

‘After going to home, Ram will eat food.’

In the example (14), ‘ghar para’ and ‘raam’ are two separate chunks that precede the non-finite verb
‘jaakar’. As per the template, if a ‘para’ marked NP chunk follows the nominative NP and immediately
precedes the ‘jaakar’ type non-finite verb, the NP chunk marks the start of the ‘jaakar’ non-finite clause.

4.1.4 Sanity Checker
In case the number of CSPs is not equal to the number of CEPs in a sentence, the Sanity Checker module
comes into play. It iterates through the CSP identifier’s output for the sentence and marks the omitted
CSPs. For example:

(15) raam
Ram

ghar
home

gayaa,
go+past,

shyaam
Shyam

nahii
not

gayaa.
go+past.

‘Ram went home, Shyam did not go.’

The absence of a coordinator between the two clauses ‘raam ghar gayaa’ and ‘shyaam nahii gayaa’,
in Example (15) can lead to potential error of ommision of the CSP for the second clause ‘shyaam nahii
gayaa’. The output of such a sentence would be:
‘(raam ghar gayaa) shyaam nahii gayaa.)’
As we can see here, the CSP for the clause ‘shyaam nahii gayaa’ is omitted. On detecting such an error,
the sanity checker would iterate the sentence and mark the omitted CSP, and the output would then be:
‘(raam ghar gayaa) (shyaam nahii gayaa.)’

107

4.1.5 ‘ki’ complementizer handler
As mentioned earlier, ‘ki’ complement clause is an argument of the main verb and part of its main verb
clause. Thus this modules executes, and identifies ‘ki’ complementizer and its clause in the sentence,
and modifies the CEP of its parent clause. Example (16) explains this further.

(16) raam ne
ram+erg

kahaa
say+past

ki
that

tum
you

ghar
home

jaao
go

‘Ram said that you go home.’

The input for the sentence ‘raam ne kahaa ki tum ghar jaao’ that this module receives would be:
‘(raam ne kahaa) (ki tum ghar jaao)’
The ‘ki’ complementizer module iterates this input and identifies the ‘ki’ complement clause and its CEP.
It then modifies this input by moving the CEP, immediate before ‘ki’ complementizer to the position
immediate after the CEP of ‘ki’ complement clause. The modified sentence will be:
‘(raam ne kahaa (ki tum ghar jaao))’

4.1.6 Coordination handler
This module handles embedded coordinated clauses in complex sentence where they fall within the scope
of a complementizer, a relative marker or an adverbial marker. It makes a new CSP for these clauses
immediately before the complementizer, relative marker or adverbial marker and a new CEP after the
CEP of the last embedded coordinate clause. For example:

(17) raam
Ram

jisne
who+rel.

khaanaa
food

khaayaa
eat+past

aur
and

khel
game

khelaa
play+past

ghar
home

gayaa
go+past

‘Ram who ate food and played a game, went home.’

Given the output for the example (17), this module identifies the ‘jisne’ the relative marker and inserts
a new CSP immediately before it. It also inserts the CEP for their coordinate clauses after the CEP of the
last embedded coordinate clause ‘khel khelaa’. The output would be:
(raam ((jisne khaanaa khaayaa) aur (khel khelaa)) ghar gayaa.)

4.1.7 Clause Classification
Once the clause boundaries are identified, the output is passed on to the clause classifier where it assign
them to one of the clause classes--main clause, complement clause, adverbial clause, relative clause,
coordinate clause and non-finite clause. If a sentence has only one clause, it is classified as the main
clause. However given more than one clause in a sentence, it iterates the sentence and assign classes to
the clauses based on cues such as relative markers, coordinating conjuncts etc. Verb type also helps to
deduce whether a clause is non-finite or not. It then checks for potential omission and marks the omitted
clauses as main clause, since they fail to fall under any of the other five classes.
In example (17) ,conjunction ‘aur’ helps to mark the two adjacent clauses--‘jisne khaanaa khaayaa’ and
‘khel khelaa’ as coordinate clauses. Relative marker ‘jisne’ helps to identify ‘jisne khaanaa khaayaa aur
khel khelaa’ as a relative clause and the clause that remained ‘raam ghar gayaa’ is taken as main clause.

5 Evaluation and Results

As mentioned earlier identification of clause boundary for finite and non-finite clauses are independent,
we have evaluated them separately. Finite clause mainly have 5 types; Main clause, Complement Clause,
Adverbial Clause, Relative Clause and Coordinate clause and evaluation has been done on them.

5.1 Results for Finite Clause

A fresh set of 100 sentences average length of 16 words is randomly selected from a section of the Hindi
treebank. This section is different from the section from which the sentences were chosen for analysis.
The selected sentences have 217 clauses. An analysis of the category of these clauses is presented in
Table 1. This evaluation set was annotated manually at the level of clause boundary and their type, to
evaluate performance of the system. As mentioned earlier, five types of tags ; Main clause, Complement
Clause, Adverbial Clause, Relative Clause and Coordinate clause, were used to annotate them.

108

Clause Type %
Main Clause 33.79
Coordinate Clause 31.48
Complement Cl ause 24.07
Relative Clause 9.72
Adverbial Clause 0.9

Table 1: Clause distribution table.

5.1.1 Results of Clause Boundary Identification
For the evaluation of Clause Boundary identification, a clause is taken to be marked correctly iff its
CSP and CEP are marked correctly. A sentence with more than one clause may have correctly marked
clauses as well as incorrectly marked clauses. We evaluate the task at clause level, not at sentence level.
The precision and Recall for clause boundary identification are 91.30% and 91.78% respectively.

5.1.2 Results of Clause Classification
For the evaluation of Clause Classification, we take a clause to be correctly classified if its boundaries as
well as type is marked correctly. So, clauses with incorrectly marked boundaries are considered wrongly
classified. The precision and Recall for clause classification are 80.28% and 81.04% respectively. Table
(2) shows the results for different clause categories.

Clause Type Precision% Recall% F1 score%
Main Clause 77.90 91.78 84.27
Coordiante Clasue 80.00 70.58 74.99
Complement Clause 92.30 92.30 92.30
Relative Clause 93.33 66.66 77.77
Adverbial Clause 100 50 66.66

Table 2: Results of Clause Classification

5.2 Results for Non-finite Clause
A set of 96 sentences containing 104 non-finite clauses was taken for the evaluation. It was found that end
of all non-finite clause were identified but there were 63 clauses whose start boundary were identified.
The accuracy of the system in identifying non-finite clauses is 60.57%.

6 Error Analysis and Discussion

While evaluating our system, we come across some constructions which were not handled by it. which
are:

1. Ellipses of verb: when a verb is omitted in a sentence then it is not possible for our system to mark
boundaries correctly. For example:

(18) raam ne
Ram+erg

kitaab
book

<V>

<read+past>
aur
and

maine
I+erg

kavitaa
poem

padhii
read+past

‘Ram read a book and I read a poem’

In example (18), there is an ellipses of the verb ‘padhi’ in the clause ‘raam ne kitaab’. Thus, though
the sentence has two clauses–‘raam ne kitaab’ and ‘maine kavitaa padhii’, our system incorrectly
identifies the whole sentence as one clause due to the ellipses of the verb (denoted by <V>).

2. Scrambling in the usual word order, which is SOV in Hindi, is likely to induce incorrect identifica-
tion of the clauses in our system. For Example:

(19) ghar
home

gayaa
go+past

raam,
Ram,

vaha
he

bolaa.
say+past

‘He said Ram went home’

109

In example (19), Our system is unable to identify the clause boundaries correctly for any of the two
clauses, ‘ghar gayaa raam’ and ‘ghar gayaa raam,vaha bolaa’, due to scrambling in the word order.
Its output for the sentence is ‘(ghar) (gayaa raam, vaha bolaa)’, though the output should be ‘((ghar
(gayaa raam,) vaha bolaa)’.

3. Missing subordinate conjunction ‘ki’ in a sentence also leads to incorrect identification of clause
boundaries by our system. For example:

(20) raam ne
Ram+erg

kahaa
say+past

tum
you

ghar
home

jaao
go

‘Ram said you go home’

The missing subordinate conjunction ‘ki’ in example (20) leads to incorrect marking of the clause
boundaries as: ‘(raam ne kahaa) (tum ghar jaao)’. The correct clause boundaries for the sentence
are ‘(raam ne kahaa (tum ghar jaao))’.

4. Templates used for identification of non-finite clauses are not much efficient. They are more specific
and need to be more general.

7 Conclusion and Future Work

We have discussed our work on clause boundary identification and classification in Hindi and the issues
pertaining to them, in the course of this paper. Clausal information in a sentence is known to improve
the performance of many NLP systems, thus the need for this task. While a larger section of the Hindi
dependency treebank from the HUTB project was analyzed to formulate the rules for the task. The
system, showing a satisfactory performance for finite clauses in terms of F1 scores of 91.53% for clause
boundary identification and 80.63% for clause Classification, while giving inadequate results for non-
finite clauses with 60.57% accuracy. We would like to mention that at present our system doesn’t handle
classification of different instances of ‘to’ (else, then, or etc.) and of coordination where a punctuation
serves as a coordinator. In the future we intend to incorporate this in our system. Further, since this task
is a promising resource for NLP systems such as Machine Translation, Text-to-Speech and so on, and
can contribute to their better performance, adopting an ML approach for this task seems quite a favorable
prospect as a future work. (Gadde et al., 2010) report that even minimal clause boundary identification
information leverages the performance of their system. We would like to test the performance of our
system in terms of leveraging the performance of other NLP systems.

References
Steven Abney. 1990. Rapid incremental parsing with repair. pages 1–9.

Akshar Bharati, Rajeev Sangal, and Dipti M Sharma. 2007. Ssf: Shakti standard format guide. pages 1–25.

Akshara Bharati, Dipti Misra Sharma, Samar Husain, Lakshmi Bai, Rafiya Begam, and Rajeev Sangal. 2009.
Anncorra: Treebanks for indian languages, guidelines for annotating hindi treebank.

R Dhivya, V Dhanalakshmi, M Anand Kumar, and KP Soman. 2012. Clause boundary identification for tamil
language using dependency parsing. pages 195–197. Springer.

Eva I Ejerhed. 1988. Finding clauses in unrestricted text by finitary and stochastic methods. pages 219–227.
Association for Computational Linguistics.

Phani Gadde, Karan Jindal, Samar Husain, Dipti Misra Sharma, and Rajeev Sangal. 2010. Improving data driven
dependency parsing using clausal information. pages 657–660. Association for Computational Linguistics.

Aniruddha Ghosh, Amitava Das, and Sivaji Bandyopadhyay. 2010. Clause identification and classification in
bengali. In 23rd International Conference on Computational Linguistics, page 17.

Yamuna Kachru. 2006. Hindi, volume 12. John Benjamins Publishing Company.

110

Omkar Nath Koul. 2009. Modern Hindi Grammar. Indian Institute of Language Studies.

Vilson J Leffa. 1998. Clause processing in complex sentences. volume 1, pages 937–943.

Martha Palmer, Rajesh Bhatt, Bhuvana Narasimhan, Owen Rambow, Dipti Misra Sharma, and Fei Xia. 2009.
Hindi syntax: Annotating dependency, lexical predicate-argument structure, and phrase structure. pages 14–17.

Harris V Papageorgiou. 1997. Clause recognition in the framework of alignment. pages 417–426.

Georgiana Puscasu. 2004. A multilingual method for clause splitting.

R Vijay Sundar Ram and Sobha Lalitha Devi. 2008. Clause boundary identification using conditional random
fields. In Computational Linguistics and Intelligent Text Processing, pages 140–150. Springer.

Rahul Sharma, Soma Paul, Riyaz Ahmad Bhat, and Sambhav Jain. 2013. Automatic clause boundary annotation
in the hindi treebank.

Appendix A : Conjuction List

aur ‘and’ athwaa ‘or’ yaa ‘or’ evam ‘and’ para ‘but’ magar ‘but’
lekin ‘but’ kintu ‘but’ parantu ‘but’ tathaa ‘and’ jabki ‘eventhough’ va ‘and’
isalie ‘therfore’ kyunki ‘because’

Appendix B : List of Relative (and Coorelative) Markers

jo ‘who’ jiskaa ‘whose’ jiske ‘whose’ jiski ‘whose’ jisko ‘whose’
jisse ‘from which’ jise ‘who’ jinse ‘from whom’ jinhen ‘to whom’ jinhone ‘who’
jinmen ‘where’ jaba ‘when’ jisse ‘from which’ jise ‘who’

111

Author Index

Alfter, David, 65
Angelov, Krasimir, 55

Berment, Vincent, 50
Bhattacharyya, Pushpak, 28
Bojar, Ondrej, 37
Boonkwan, Prachya, 94
Bosc, Amélie, 50

de Malézieux, Guillaume, 50
Desai, Shilpa, 28
Dien, Dinh, 85
Din, Azizud, 74

Finch, Andrew, 20

Jawaid, Bushra, 37

Kamran, Amir, 37
Knauth, Jürgen, 65
Kyaw Thu, Ye, 20

Malik, M. G. Abbas, 74

Ngo, Quoc Hung, 85

Paul, Soma, 43
Pawar, Jyoti, 28
Phaholphinyo, Sitthaa, 94
Porkeaw, Peerachet, 94
Prasad, K.V.S, 55

Rajan, Vinodh, 11
Ranaivo-Malançon, Bali, 74
Ranta, Aarne, 55
Ren, Fuji, 80

Sagisaka, Yoshinori, 20
Sharma, Rahul, 43, 102
Sulger, Sebastian, 1
SUMITA, Eichiro, 20
Sun, Xiao, 80
Supnithi, Thepchai, 94
Sutantayawalee, Vipas, 94

Vaidya, Ashwini, 1
Virk, Shafqat Mumtaz, 55

Winiwarter, Werner, 85

Ye, Jiaqi, 80

113

	Program
	Towards Identifying Hindi/Urdu Noun Templates in Support of a Large-Scale LFG Grammar
	Konkanverter - A Finite State Transducer based Statistical Machine Transliteration Engine for Konkani Language
	Integrating Dictionaries into an Unsupervised Model for Myanmar Word Segmentation
	A Framework for Learning Morphology using Suffix Association Matrix
	English to Urdu Statistical Machine Translation: Establishing a Baseline
	A hybrid approach for automatic clause boundary identification in Hindi
	RBMT as an alternative to SMT for under-resourced languages
	Developing an interlingual translation lexicon using WordNets and Grammatical Framework
	A Dictionary Data Processing Environment and Its Application in Algorithmic Processing of Pali Dictionary Data for Future NLP Tasks
	RETRACTED - Constituent structure representation of Pashto Endoclitics
	Real Time Early-stage Influenza Detection with Emotion Factors from Sina Microblog
	Building English-Vietnamese Named Entity Corpus with Aligned Bilingual News Articles
	Character-Cluster-Based Segmentation using Monolingual and Bilingual Information for Statistical Machine Translation
	A rule based approach for automatic clause boundary detection and classification in Hindi

