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Abstract

Current web technology has brought us a scenario that information about a certain topic is widely dis-
persed in data from different domains and data modalities, such as texts and images from news and social
media. Automatic extraction of the most informative and important multimedia summary (e.g. a ranked
list of inter-connected texts and images) from massive amounts of cross-media and cross-genre data can
significantly save users’ time and effort that is consumed in browsing. In this paper, we propose a novel
method to address this new task based on automatically constructed Multi-media Information Networks
(MiNets) by incorporating cross-genre knowledge and inferring implicit similarity across texts and im-
ages. The facts from MiNets are exploited in a novel random walk-based algorithm to iteratively propagate
ranking scores across multiple data modalities. Experimental results demonstrated the effectiveness of our
MiNets-based approach and the power of cross-media cross-genre inference.

1 Introduction
Recent development on web technology – especially on fast connection and large-scale storage systems – has
enabled social and news media to fulfill their jobs more efficiently in time and depth. However, such development
also raises some problems such as overwhelming social media information and distracting news media contents.
In emergent scenarios such as facing an incoming disaster (e.g., Hurricane Irene in 2011 or Sandy in 2012), tweets
and news are often repeatedly spread and forwarded in certain circles and contents are often overlapped by each
other. However, browsing these messages and pages is almost unpleasant and inefficient. Therefore, an automatic
summarization on piles of tweets and news is always necessary and welcomed, among which ranking is the most
intuitive way to inform the users about the most informative content.

A passive solution is prompting the users to add more key words when typing the search query as most search
engines do. However, without prior knowledge or due to the word limit, it is never trivial for the users to establish
a satisfied ranking list for topics which attract more public attention. Recent changes on some Google Search have
integrated image search and adopted some heterogenous content analysis, nevertheless, the connection between
image and the keywords are still arbitrarily determined by the users, thus it is still far from optimal.

Active solutions which attempt to summarize information only focused on single data modalities. For example,
Zanzotto et al. (2011) provided a comprehensive comparison about summarization methods for tweets. Zhao et al.
(2011) developed a context-sensitive topical PageRank (Brin and Page, 1998) method to extract topical key phrase
from Twitter as a way to summarize twitter content. As a new prospective, Feng and Lapata (2010) used LDA to
annotate images, but this does not firmly integrate the information across different data types. Huang et al. (2012)
presented a tweet ranking approach but only focused on single data modality (i.e., text).

Other conventional solutions towards analyzing the relationship or links between the instances have long been
proposed and applied, such as PageRank (Brin and Page, 1998)and VisualRank (Jing and Baluja, 2008). The
former is excessively used in heterogeneous networks (i.e., webpages and resources) but they are mainly based on
linkage itself. VisualRank, which is based on PageRank, is a content-based linkage method but is confined with
homogeneous networks.

Above all, our goal is to integrate cross-media inference and create the linkage among the information extracted
from those heterogenous data. Our novel Multi-media Information Networks (MiNets) representation initializes
our idea about a basic ontology of the ranking system.

The main contribution of this work is to fill in the domain gaps across different network genres and bridge them
in a principled method. In this work, we manage to discover the hidden links or structures between the heteroge-
neous networks in different genres. We combine joint inference to resolve information conflicts across multi-genre
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networks. We can also effectively measure, share and transfer complementary information and knowledge across
multi-genre networks using structured correspondence.

The work is presented in sections as follows. We firstly introduce an overview of our system in Section 2.
Detailed approaches in information extraction and constructing meta-information network are then followed in
Section 3. Measurement across the multimedia information are proposed in Section 4 and 5. In Section 6 we
demonstrate the results and performance gain.

2 Approach Overview
Within the context of an event where users generate a vast amount of multi-media messages in forms of tweets and
images, we aim to provide a ranked subset of the most informative ones. Given a set of tweets T = {t1, ..., tn},
and a set of images P = {p1, ..., pm} as input, our approach provides ordered lists of the most informative tweets
or images (a.k.a objects) so that the informativeness of an object in position i is higher than or equal to that of an
object in position i + 1. We consider the degree of informativeness of a certain object as the extent to which it
provides valuable information to people who are involved in or tracking the event in question.

During emergent events, there are tight correlations between social media and web documents. Important infor-
mation shared in social media tends to be posted in web documents. Therefore we also integrate information in a
formal genre such as web documents to enhance the ranking quality of tweets and images. It consists of two main
sub-tasks:

• Multimedia Information Network (MiNet) Construction:
Construct MiNet from cross-media and cross-genre information (i.e. tweets, images, sentences of web doc-
uments). Given a set of tweets and images on a specific topic as input, the formal genre web documents and
images from the embedded URLs in those tweets are retrieved. Afterwards, a set of sentences and images are
extracted from the web documents. Then we exploit advanced text Information Extraction and image Concept
Extraction techniques to extract meta-information and construct the meta-information network. Together with
three sets of heterogeneous input data, MiNet is constructed.

• MiNet-Based Information Ranking: Rank the tweets and images. By extending and adapting Tri-
HITS (Huang et al., 2012), we propose EN-Tri-HITs, an random walk-based propagation algorithm which
iteratively propagate ranking scores for sentences, tweets, and images across MiNet to refine the tweet and
image rankings.

3 Meta-information Network
When integrating information from different data modalities, meta-information network plays a pivotal role for
representing interesting concepts and relations between them. We automatically construct the initial informa-
tion networks using our state-of-the-art information extraction and image concept extraction techniques. A meta-
information network is a heterogeneous network including a set of “information graphs” which is formally defined
as: G = {Gi : Gi = (Vi, Ei)}, where Vi is the collection of concept nodes, and Ei is the collection of edges
linking one concept to the other. An example is depicted in Figure 1. The meta-information network contains
human knowledge pertaining to the target domain that could improve the performance of text process and image
analysis. In this paper, we first construct meta-information networks separately from texts and images, and then
fuse and enrich them through effective cross-media linking methods.

3.1 Information Extraction from Texts
Extracting salient types of facts for a meta-information network is challenging. In this paper we tackle this problem
from two angles to balance the trade-off between quality and granularity/annotation cost. On one hand, to reveal
deep semantics in meta-information network, we focus on achieving high-quality extraction for pre-defined fine-
grained types such as those in NIST Automatic Content Extraction (ACE) 1. For example, a “Person/Individual”
node may include attributes such as “Birth-Place”, and a “Organization/Employee” node may include attributes
such as “City-of-Headquarter”. These two nodes may be connected via a “Employment/End-Position” link.

We apply an Information Extraction (IE) system (Li et al., 2013) to extract entities, relations and events defined
in ACE2005. There are 7 types of entities, 18 types of relations and 33 types of events. This system is based
on a joint framework using structured perceptron with efficient beam-search and incorporating diverse lexical,
syntactic, semantic and ontological features. We convert the IE output into the graph structured representation of
meta-information network by mapping each entity as a node, and link entity nodes by semantic relations or events
they are involved. For example, the relations between entities are naturally mapped to links in the meta-information
network, such as the “employment” relation between “Bill Read” and “Hurricane Center”. In addition, if an event

1http://www.itl.nist.gov/iad/894.01/tests/ace/

75



flood

Multimedia information Networks

Meta-information Networks

ORG

flooding 
from Irene

killed
one 

person
Puerto 

Rico
Bill Read

Hurricane 
Center

said

Employment

Speaker

Agent Subject

Clause Subject

Place

Agent Victim

storm

Wikipedia

Verified
by wiki

Verified
by wiki

Verified
by wiki

Verified Entity 
Concepts

Tweets
Sentences of 

web documents Images

Contents
Structured information

PER GPE
Event Trigger
Predicate Predicate Noun phrase Noun phrase

Example:

SRL

IE concept

type

Concept
from image

Concept 
from image

Figure 1: An example of meta-information network. Sentence: “Bill Read, Hurricane Center director, said that
flooding from Irene killed at least one person in Puerto Rico”

argument is an entity, we also add an “Event Argument” link between the event trigger and the entity, such as the
link between “Irene” and “killed”.

On the other hand, in order to enrich the meta-information network, we extract more coarse-grained salient
fact types based on Semantic Role Labeling (SRL) (Pradhan et al., 2008). For example, given the sentence “In
North Carolina, 10 counties are being evacuated.”, the “evacuation” event is not included in ACE. However, the
SRL system can successfully detect the predicate (“evacuated”) and its semantic roles (“10 counties” and “North
Carolina”). These argument heads and predicates are added into the meta-information network as vertices, and
edges are added between each predicate-argument pairs.

We merge entity mentions across tweets and web documents based on a cross-document entity clustering system
described in (Chen and Ji, 2011). Moreover, for the same type of nodes from the SRL system, we also merge them
by string matching across documents.

3.2 Concept Extraction from Images

We also developed a concept modeling approach by extending the similar framework in previous work (Tsai et al.,
2012), Probabilistic Logical Tree (PLT), to extract semantic concepts from images. PLT integrates the logical and
statistical inferences in a unifying framework where the existing primitive concepts are connected into a potentially
unlimited vocabulary of high-level concepts by basic logical operations. In contrast, most existing image concept
extraction algorithms either only learn a flat correlative concept structure, or a simple hierarchical structure without
logical connections.

With an efficient statistical learning algorithm, the complex concepts in upper level of PLT are modeled upon
some logically connected primitive concepts. This statistical learning approach is very flexible, where each concept
in PLT can be modeled from distinctive feature spaces with the most suitable feature descriptors (e.g., visual
features such as color and shape for scenery concepts).

For our case study on “Hurricane Irene” scenario, we apply this algorithm to extract the hierarchical concept
trees with roots “flood” or “storm” from all the images in web documents whose URLs are contained in tweets.

The main problem is the classifications of the concepts such that it may be properly be placed onto an ontology.
In order to enrich the hierarchy, we seek to classify these linkages through the use of the semi-structured and
structured data that exists on Wikipedia. We use pattern matching to extract is-a relations from the first paragraphs
of Wikipedia articles. For example, starting from our initial concept ”Hurricane Irene”, we can find its is-a relation
with ”Tropical Cyclone”, and then climb up one more level to ”Storm” where we can further mine lower concepts
such as ”Tornado” and ”Snow Storm”.
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4 Multi-media Information Networks
A Multimedia Information Network (MINet) is a structured collection made up of a set of multimedia documents
(e.g., texts and images) and links between these documents. Each link corresponds to a specific relationship
between nodes, such as hyperlinks between web documents or similarity links between tweets. In this paper, we
construct our MINet based on two forms of contents from different domains: tweets, web documents (plain texts)
and images.

4.1 Within-media Linking
4.1.1 Text-Text Similarity
Taking web document for example, we construct the meta-information network G = {Gi : Gi = (Vi, Ei)} for all
web documents D, in which each web document di ∈ D corresponds to Gi. Given the meta-information network
G, we compute the weight of each vertex vj ∈ Vi as weightvj = nf(vj ,d)

AV E(D) ,
where nf(vj , d) is the mention number of node vj appearing in a document d and AV E(D) is the average

number of mentions in a document d, which is defined as AV E(D) =
∑
d∈D concept mentions in d

|D| .

Similarly, we define the weight of each link ek ∈ Ei as weightek = nf(ek,d)
AV E(D) , where nf(ek, d) is the mention

number of the node ek in a document d and AV E(D) is the average number of mentions in a document d, which
is defined as AV E(D) =

∑
d∈D relation mentions in d

|D| .
If two edges share the same type and link nodes corresponding to the same tokens, we consider them as two

mentions involved in a relation. Based on the weight of each concept mention and relation mention, we count their
frequencies and transform them into vectors. Finally, we compute cosine similarity between every two vectors.

4.1.2 Image-Image Similarity
We extract Histogram of Oriented Gradients (HOG) features (Dalal and Triggs, 2005) from patches in images and
apply Hierarchical Gaussianization (Zhou et al., 2009) to those HOG feature vectors. We learn a Gaussian mixture
model (GMM) to obtain the statistics of the patches of an image by adapting the distribution of the extracted HOG
features from these image patches and each image is represented by a super-vector. Based on the obtained image
representation, the image-image similarity is simply a cosine similarity between two HG super-vectors.

4.2 Cross-media Linking
In order to obtain cross-media similarity, we propose a method based on transfer learning technique (Qi et al.,
2012). Given a set of m points [p1, p2, . . . , pm] in the source (image) domain P , a set of n points [t1, t2, . . . , tn]
in the target (text) domain T , and a set of N corresponding pairs C = {(pai , tbi}Ni=1 in these two domains, we aim
to find a cross-media similarity function:

G(p, t) = `((Up)T (V t)) = `(pTSt)), (1)

where U and V are the linear embedding of P and T , respectively. S = UTV is the cross-domain similarity
matrix and `(θ) = 1

1+e−θ is the logistic sigmoid function.
The key to S in Equation 1 is to solve the optimization problem blow:

min
S
L̄s(S) + λL̄d(S) + γΩ̄(S), (2)

where L̄s(S) =
∑

(x,y)∈C log(1 + exp(−pTSt)), and Ω̄(S) = ‖S‖∗ is the nuclear norm that is the surrogate of
the matrix rank. Also, we have

L̄d(S) =
1
2

∑
KP(p, p′)dT (p, p′) +

1
2

∑
KT (t, t′)dP(t, t′),

where K(·, ·) is the similarity matrix among the points in a single domain and d(·, ·) defines the distance between
two points due to the transfer.

Taking one step further, we have

L̄d(S) = tr(LTQT (S)TKPQP(S)) + tr(LXQP(S)TKTQT (S)),

where LP and LT are the Laplacian matrices for KP and KT , respectively.
To solve the optimization problem (2) with nuclear norm regularization we follow the proximal gradient method

(Toh and Yun, 2010) with the following gradients:

5L̄s(S) = P (JC ◦H)PT ,5L̄d(S) = P ((KPQPLT + LPQTKT ) ◦H)PT (3)
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JC is an m × n matrix with its (i, j)-th entry 1 if (pi, tj) ∈ C, otherwise 0. H is also an m × n matrix whose
(i, j)-th entry where Hij = `′(pT

i Stj).
Hence we have

5L̄(S) = P (G ◦H)TT , (4)

where G = JC + λKPQPLT + λLPQTKT . With the gradient in (4), one can solve the problem (2) using the
proximal gradient method.

5 MiNet-Based Information Ranking: EN-Tri-HITs
5.1 Initializing Ranking Scores

1 Input: A set of tweets (T ), and images (P ) and web documents (W ) on a given topic.
2 Output: Ranking scores (St) for T and (Sp) for P .

1: Use TextRank to compute initial ranking scores S0
p for P ,

S0
t for T and S0

w for W ;
2: Construct multimedia information networks across P , T

and W ;
3: k ← 0, diff ← 10e6;
4: while k < MaxIteration and diff > MinThreshold do
5: Use Eq. (5) (6) and (7) to compute Sk+1

p , Sk+1
t and Sk+1

w ;
6: Normalize Sk+1

p , Sk+1
t and Sk+1

w ;
7: diff ← max(

∑
(|Sk+1

t − Sk
t |),

∑
(|Sk+1

p − Sk
p |));

8: k ← k + 1
9: end while

Algorithm 1: EN-Tri-HITS: Random walk on multimedia information networks

Graph-based ranking algorithms have been widely used to analyze relations between vertices in graphs. In
this paper, we adapted PageRank (Brin and Page, 1998; Mihalcea and Tarau, 2004; Jing and Baluja, 2008) to
compute initial ranking scores in tweet-only and image-only networks where edges between tweets or images are
determined by their cosine similarity.

The ranking score is computed as follows:

S(Vi) = (1− d) + d ∗
∑

Vj∈In(Vi)

wji∑
Vk∈Out(Vj)

wjk

S(Vj),

where Vi is a vertex with S(Vi) as its ranking score; In(Vi) and Out(Vi) are the incoming edge set and outgoing
edge set of Vi, respectively; wij is the weight for the edge between two vertices Vi and Vj . An edge links two
vertices that represent text units when their cosine similarity of shared content exceeds or equals to a predefined
threshold δt.

5.2 Random Walk on Multimedia Information Networks
We introduce a novel algorithm to incorporate both initial ranking scores and global evidence from multimedia
information networks. It propagates ranking scores across MiNets iteratively. Our algorithm is a natural extension
of Tri-HITS (Huang et al., 2012) based on the mutual reinforcement to boost linked objects.

By extending Tri-HITS, we develop enhanced Tri-HITS (EN-Tri-HITs) to handle multimedia information net-
works with three types of objects: Tweets (T ), sentences of web documents (W ) and images (P ). EN-Tri-HITs
is able to handle more complicated network structure with more links. Given the similarity matrices M tw (be-
tween tweets and sentences of web documents), Mwp (between sentences of web documents and images) andM tp

(between tweets and images), and initial ranking scores of S0(p), S0(t) and S0(w), we aim to refine the initial
ranking scores and obtain the final ranking scores S(w), S(t) and S(p). Starting from images S(p), the update
process considers both the initial score S0(p) and the propagation from connected tweets S(t) and web documents
S(w), which can be expressed as:

Ŝw(pj) =
∑
i∈W

mwp
ij S(wi), Ŝt(pj) =

∑
k∈T

mtp
kjS(tk),

S(pj) = (1− λwp − λtp)S0(pj) + λwp
Ŝw(pj)∑
j Ŝw(pj)

+ λtp
Ŝt(pj)∑
j Ŝt(pj)

, (5)
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Set ID Tweets Web Doc Images(Sentences)
1 1171 41(1272) 183
2 1116 47(1634) 265
3 1184 69(1639) 346

All 3471 157(4545) 794

Table 1: Data Statistics: Numbers of each item in
the dataset.

word word word word
+IE +SRL +IE+SRL

I+W 0.545 0.539 0.521 0.583
I+T 0.422 0.436 0.407 0.489

I+W+T 0.526 0.513 0.492 0.541

Table 2: NDCG@5 of Images. The image ranking
baseline performance is 0.421. I stands for Image;
W Web Documents; T Tweets

where λwp, λtp ∈ [0, 1] (λwp + λtp ≤ 1) are the parameters to balance between initial and propagated ranking
scores. Similar to Tri-HITS, EN-Tri-HITS normalizes the propagated ranking scores Ŝw(pi) and Ŝt(pi).

Similarly, we define the propagations from images and web documents to tweets as follows:

Ŝp(tk) =
∑
i∈P

mpt
ikS(pi), Ŝw(tk) =

∑
j∈W

mwt
jkS(wj),

S(tk) = (1− λwt − λpt)S0(tk) + λwt
Ŝp(tk)∑
k Ŝp(tk)

+ λpt
Ŝw(tk)∑
k Ŝw(tk)

, (6)

where Mpt is the transpose of M tp, λpt and λwt are parameters to balance between initial and propagated ranking
scores.

Each sentence of web documents S(wj) may be influenced by the propagation from both tweets and images:

Ŝt(wi) =
∑
k∈T

mtw
ki S(tk), Ŝp(wi) =

∑
i∈P

mpw
ji S(pj),

S(wi) = (1− λtw − λpw)S0(wi) + λtw
Ŝt(wi)∑
i Ŝt(wi)

+ λpw
Ŝp(wi)∑
i Ŝp(wi)

, (7)

where Mpw is the transpose of Mwp, λtw and λpw are parameters to balance between initial and propagated
ranking scores.

Algorithm 1 summarizes En-Tri-HITS.

6 Experiments
6.1 Data and Scoring Metric
Currently there are no information ranking related benchmark data sets publicly available, therefore we build our
own data set and network ontology.

We crawled 3471 tweets during a three-hour period and extracted key phrases from these tweets, then we use
the key phrases as image search queries. The image search queries are submitted to Bing Image Search API and
we take the top 10 images for each query. We extract a 512-d GIST feature from each image for meta information
training. For image similarity metrics, we resize images to a maximum of 240 × 240 and segmented into patches
with three different sizes (16, 25 and 31) by a 6-pixel step size. A 128-d Histogram of Oriented Gradients (HOG)
feature is extracted from each patch and followed by a PCA dimension reduction to 80-d. The size of dimension
of the final feature vector for each image is 42,496.

We create the ground truth based on human assessment of informativeness on a 5-star likert scale, with grade 5
as the most informative and 1 as the least informative. Table 1 presents an overview on our data sets. We conduct
3-fold cross-validation for our experiments.

To evaluate tweet ranking, we use nDCG as our evaluation metric (Järvelin and Kekäläinen, 2002), which
considers both the informativeness and the position of a tweet:

nDCG(Φ, k) =
1
|Φ|

|Φ|∑
i=1

DCGik

IDCGik
, DCGik =

k∑
j=1

2relij − 1
log(1 + j)

,

where Φ is the set of documents in the test set, with each document corresponding to an hour of tweets in our case,
relij is the human-annotated label for the tweet j in the document i, and IDCGik is the DCG score of the ideal
ranking. The average nDCG score for the top k tweets is: Avg@k =

∑k
i=1 nDCG(Φ, i)/k. To favor diversity of

top ranked tweets, redundant tweets are penalized to lower down the final score.
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6.2 Impact of Cross-media Inference

Table 2 and Figure 2 present the image ranking results. The results indicate that methods integrating heterogeneous
networks outperform the baseline of image ranking (0.421). When web documents are aligned with images (row
1), the ranking quality improves significantly, proving that web documents can help detect informative images by
adding support from text media of formal genre. However, the text media of informal genre, such as tweets, almost
cannot help improve the ranking performance.

1 2 3 4 5 6 7 8 9 1 0
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

ND
CG

@N

N

 I m a g e
 + T w e e t
 + W e b  D o c
 + W e b  D o c & T w e e t

Figure 2: NDCG@n score of Images with Various n

word word word word
+IE +SRL +IE+SRL

T 0.675 0.691 0.697 0.700
T+W 0.766 0.771 0.757 0.809
T+I 0.675 0.691 0.667 0.700

T+W+I 0.722 0.771 0.757 0.809

Table 3: NDCG@5 of Tweets

6.3 Impact of Cross-genre Inference

Methods that integrate heterogeneous networks after filtering, outperform the baseline TextRank, as shown in
Table 3. When tweets are aligned with web documents, the ranking quality improves significantly, proving that
web documents can help infer informative tweets by adding support from a formal genre. The fact that tweets with
low initial ranking scores are aligned with web documents helps promote their ranking positions. For example,
the ranking of the tweet “Hurricane Irene: City by City Forecasts http://t.co/x1t122A” is improved compared to
TextRank, benefitting from the fact that 10 retrieved web documents are about this topic.

6.4 Remaining Error Analysis

Enhanced Tri-HITS shows encouraging improvements in ranking quality with respect to a state-of-the-art model
such as TextRank. However, there are still some issues to be addressed for further improvements.

(i) Long tweets preferred. We tracked tweets containing the keywords “Hurricane” and “Irene”. Using such a
query might also return tweets that are not related to the event being followed. This may occur either because
the terms are ambiguous, or because of spam being injected into trending conversations to make it visible. For
example, the tweet “Hurricane Kitty: http://t.co/cdIexE3” is an advertisement, which is not topically related to
Irene.

(ii) Deep semantic analysis of the content, especially for images. We rely on distinct terms to refer to the
same concept. More extensive semantic analyses of text can help identify those terms, possibly enhancing the
propagation process. For example, we can explore existing text dictionaries such as WordNet (Miller, 1995) to
mine synonym/hypernym/hyponym relations, and Brown clusters (Brown et al., 1992) to mine other types of
relations in order to enrich the concepts extracted from images.

7 Conclusion and Future Work

In this paper, we propose a comprehensive information ranking approach which facilitates measurement on cross-
media/cross-genre informativeness based on a novel multi-media information network representation MiNet. We
establish links via information extraction method from text and images and verification with Wikipedia. In ad-
dition, we propose similarity measurement on intra-media and cross-media using transfer learning techniques.
We also introduce a novel En-Tri-Hits algorithm to evaluate the ranking scores across MiNet. Experiments have
demonstrated that our cross-media/cross-genre ranking method is able to significantly boost the performance of
multi-media tweet ranking. In the future, we aim to focus on enhancing the quality of concept extraction by
exploiting cross-media inference that goes beyond simple fusion.
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