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Abstract

The paper presents work on improved sentence-level dialect classification of Egyptian Arabic
(ARZ) vs. Modern Standard Arabic (MSA). Our approach is based on binary feature functions
that can be implemented with a minimal amount of task-specific knowledge. We train a feature-
rich linear classifier based on a linear support-vector machine (linear SVM) approach. Our best
system achieves an accuracy of 89.1 % on the Arabic Online Commentary (AOC) dataset (Zaidan
and Callison-Burch, 2011) using 10-fold stratified cross validation: a 1.3 % absolute accuracy
improvement over the results published by (Zaidan and Callison-Burch, 2014). We also evaluate
the classifier on dialect data from an additional data source. Here, we find that features which
measure the informalness of a sentence actually decrease classification accuracy significantly.

1 Introduction

The standard form of written Arabic is Modern Standard Arabic (MSA) . It differs significantly from
various spoken varieties of Arabic (Zaidan and Callison-Burch, 2011; Zaidan and Callison-Burch, 2014;
Elfardy and Diab, 2013). Even though these dialects do not originally exist in written form, they are
present in social media texts. Recently a dataset of dialectal Arabic has been made available in the form
of the Arabic Online Commentary (AOC) set (Zaidan and Callison-Burch, 2011; Zaidan and Callison-
Burch, 2014). The data consists of reader commentary from the online versions of Arabic newspapers,
which have a high degree of dialect content. Data for the following dialects has been collected: Levan-
tine, Gulf, and Egyptian. The data had been obtained by a crowd-sourcing effort. In the current paper, we
present results for a binary classification task only, where we predict the dialect of Egyptian Arabic ARZ
vs. MSA sentences from the Al-Youm Al-Sabe’ newspaper online commentaries 1. Our ultimate goal
is to use the dialect classifier for building a dialect-aware Arabic-English statistical machine translation
(SMT) system. Our Arabic-English training data contains a significant amount of Egyptian dialect data
only, and we would like to adapt the components of our hierarchical phrase-based SMT system (Zhao
and Al-Onaizan, 2008) to that data.

Similar to (Elfardy and Diab, 2013), we present a sentence-level classifier that is trained in a supervised
manner. Our approach is based on an Arabic tokenizer, but we do not use a range of specialized tokenizers
or orthography normalizers. In contrast to the language-model (LM) based classifier used by (Zaidan and
Callison-Burch, 2014), we present a linear classifier approach that works best without the use of LM-
based features. Some improvements in terms of classification accuracy and 10-fold cross validation under
the same data conditions as (Zaidan and Callison-Burch, 2011; Elfardy and Diab, 2013) are presented.
In general, we aim at a smaller amount of domain specific feature engineering than previous related
approaches.

The paper is structured as follows. In Section 2, we present related work on language and dialect
identification. In Section 3, we discuss the linear classification model used in this paper. In Section 4, we
evaluate the classifier performance in terms of classification accuracy on two data sets and present some

∗Part of the work was done while the author was a student intern at the IBM T.J. Watson Research Center.
1We use the ISO 639-3 code ARZ for denoting Egyptian Arabic.
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error analysis. Finally, in Section 5, we discuss future work on improved dialect-level classification and
its application to system adaptation for machine translation.

2 Related Work

From a computational perpective, we can view dialect identification as a more fine-grained form of lan-
guage identification (ID). Previous work on language ID examined the use of character histograms (Cav-
nar and Trenkle, 1994; Dunning, 1994), and high accuracy prediction results have been reported even
for languages with a common character set. (Baldwin and Lui, 2010) present a range of document-level
language identification techniques on three different data sets. They use n-gram counting techniques and
different tokenization schemes that are adopted to those data sets. Their classification task deals with
several languages, and it becomes more difficult as the number of languages increases. They present an
SVM-based multiclass classification approach similar to the one presented in this paper which performs
well on one of their data sets. (Trieschnigg et al., 2012) generates n-gram features based on character or
word sequences to classify dialectal documents in a dutch-language fairy-tale collection. Their baseline
model uses N -gram based text classification techniques as popularised in the TextCat tool (Cavnar and
Trenkle, 1994). Following (Baldwin and Lui, 2010), the authors extend the usage of n-gram features with
nearest neighbour and nearest-prototype models together with appropriately chosen similarity metrics.
(Zampieri and Gebre, 2012) classify two varieties of the same language: European and Brazilian Por-
tuguese. They use word and character-based language model classification techniques similar to (Zaidan
and Callison-Burch, 2014). (Huang and Lee, 2008) present simple bag-of-word techniques to classify
varieties of Chinese from the Chinese Gigaword corpus. (Kruengkrai et al., 2005) extend the use of n-
gram features to using string kernels: they may take into account all possible sub-strings for comparison
purposes. The resulting kernel-based classifier is compared against the method in (Cavnar and Trenkle,
1994). (Lui and Cook, 2013) present a dialect classification approach to identify Australian, British, and
Canadian English. They present results where they draw training and test data from different sources.
The successful transfer of models from one text source to another is evidence that their classifier indeed
captures dialectal rather than stylistic or formal differences. Language identification of related languages
is also addressed in the DSL (Discriminating Similar Languages) task of the present Vardial workshop
at COLING 14 (Tan et al., 2014).

While most of the above work focuses on document-level language classification, recent work on
handling Arabic dialect data addresses the problem of sentence-level classification (Zaidan and Callison-
Burch, 2011; Zaidan and Callison-Burch, 2014; Elfardy and Diab, 2013; Zaidan and Callison-Burch,
2014). The work is based on the data collection effort by (Zaidan and Callison-Burch, 2014) which
crowdsources the annotation task to workers on Amazons Mechanical Turk. The classification results
by (Zaidan and Callison-Burch, 2014) are based on n-gram language-models, where the n-grams are
defined both on words and characters. The authors find that unigram word-based models perform best.
The word-based models are obtained after a minimal amount of preprocessing such as proper handling
of HTML entities and Arabic numbers. Classification accuracy is significantly reduced for shorter sen-
tences. (Elfardy and Diab, 2013) presents classifcation result based on various tokinization and ortho-
graphic normalization techniques as well as so-called meta features that estimate the informalness of the
data. Like our work, the authors focus on a binary dialect classification based on the ARZ-MSA portion
of the dataset in (Zaidan and Callison-Burch, 2011).

3 Classification Model

We use a linear model and compute a score s(tn1 ) for a tokenized input sentence consisting of n tokens
ti:

s(tn1 ) =
d∑

s=1

ws ·
n∑

i=1

φs(ci, ti) (1)

where φs(ci, ti) is a binary feature function which takes into account the context ci of token ti. w ∈ Rd

is a high-dimensional weight vector obtained during training. In our experiments, we classify a tokenized
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Description MSA ARZ
# sentences # words # sentences # words

ARZ-MSA portion of AOC 13, 512 334K 12, 527 327K
DEV12 tune set 585 8.4K 634 9.3K

Table 1: We used the following dialect data: 1) the ARZ-MSA portion of the AOC data from commen-
taries of the Egyptian newspaper Al-Youm Al-Sabe’, and 2) the DEV12 tune set (1219 sentences) which
is the LDC2012E30 corpus BOLT Phase 1 dev-tune set. The DEV12 tune set was annotated by a native
speaker of Arabic.

sentence as being Egyptian dialect (ARZ) if s(tn1 ) > 0. To train the weights w in Eq. 1, we use a linear
SVM approach (Hsieh et al., 2008; Fan et al., 2008). The trainer can easily handle a huge number of
instances and features. The training data is given as instance-label pairs (xi, yi) where i ∈ {1, · · · , l} and
l is the number of training sentences. The xi are d-dimensional vectors of integer-valued features that
count how often a binary feature fired for a tokenized sentence tn1 . yi ∈ {+1,−1} are the class labels
where a label of ‘+1’ represents Egyptian dialect. During training, we solve the following optimization
problem:

min
w
||w||1 + C

l∑
i=1

max(0, 1− yi wT xi ) , (2)

i.e. we use L1 regularized L2-loss support vector classification. We set the penalty term C = 0.5. For
our experiments, we use the data set provided in (Zaidan and Callison-Burch, 2011) which also has been
used in the experiments in (Elfardy and Diab, 2013; Zaidan and Callison-Burch, 2014). We focus on the
binary classification between MSA and ARZ. Details on the data sources can be found in Table 1. We
present accuracy results in terms of 10-fold stratified cross-validation which are comparable to previously
published work.

3.1 Tokenization and Dictionaries
The Arabic tokenizer used in the current paper is based on (Lee et al., 2003). It is a general purpose
tokenizer which has been optimized towards improving machine translation quality of SMT systems
rather than dialect classification. Together with the tokenized text, a maximum-entropy based tagger
provides the part-of-speech (PoS) tags for each token. In addition, we have explored a range of features
that are based on the output of the AIDA software package (Elfardy and Diab, 2012; Mona Diab et
al., 2009 2011). The AIDA software has been made available to the participants of the DARPA-funded
Broad Operational Language Translation (BOLT) project. AIDA is a system for dialect identification,
classification and glossing on the token and sentence level for written Arabic. AIDA aggregates several
components including dictionaries and language models in order to perform named entity recognition,
dialect identification classification, and MSA English linearized glossing of the input text. We created
a dictionary from AIDA resources that includes about 41 000 ARZ tokens. In addition, we obtained a
second small dictionary of about 70 ARZ dialect tokens with the help of a native speaker of Arabic. The
list was created by training two IBM Model 1 lexicons, one on Egyptian Arabic data and another on
MSA data. We then inspected the ARZ lexicon entries with the highest cosine distance to their MSA
counterparts and kept the ones that are strong ARZ words. The tokens in both dictionaries are not ARZ
exclusive, but could occur in MSA as well.

3.2 Feature Set
In our work, we employ a simple set of binary feature functions based on the tokenized Arabic sentence.
For example, we define a token bigram feature as follows:

φBi(tk, tk−1) =

{
1 tk = ‘ø
 ñ�̄’ and tk−1 = ‘ñÊg’

0 otherwise
. (3)
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Token unigram and trigram features are defined accordingly. We also define unigram, bigram, and tri-
gram features based on PoS tags. Currently, just PoS unigrams are used in the experiments. We define
dictionary-based features as follows:

φDictl(tk) =
{

1 tk = ‘ �I�̄ñËX’ and tk ∈ Dictl
0 otherwise

, (4)

where we use the two dictionaries Dict1 and Dict2 as described in Section 3.1. The dictionaries are
handled as token sets and we generate separate features for each of them. We generate some features
based on the AIDA tool output. AIDA provides a dialect label for each input token tk as well as a single
dialect label at the sentence level. A sentence-level binary feature based on the AIDA sentence level
classification is defined as follows:

φAIDA(tn1 ) =
{

1 AIDA(tn1 ) is ARZ
0 otherwise

(5)

where AIDA(tn1 ) is the sentence-level classification of the AIDA tool. A word-level feature φAIDA(tk) is
defined accordingly. These features improve the classification accuracy of our best system significantly.

We have also experimented with some real-valued feature. For example, we derived a feature from
dialect-specific language model probabilities:

φLM (tn1 ) = 1/n · [ log(pMSA(tn1 )) − log(pARZ(tn1 ))] ,

where log(pARZ(tn1 )) is the language-model log probability for the dialect class ARZ . We used a trigram
language model. pMSA(·) is defined accordingly. In addition, we have implemented a range of so-called
‘meta’ features similar to the ones defined in (Elfardy and Diab, 2013). For example, we define a feature
φExcl(tn1 ) which is equal to the length of the longest consecutive sequence of exclamation marks in
the tokenized sentence tn1 . Similarly, we define features that count the longest sequence of punctuation
marks, the number of tokens, the averaged character-length of a token in the sentence, and the percentage
of words with word-lengthening effects. These features do not directly model dialectalness of the data
but rather try to capture the degree of in-formalness. Contrary to (Elfardy and Diab, 2013) we find that
those features do not improve accuracy of our best model in the cross-validation experiments. On the
DEV12 set, the use of the meta features results in a significant drop in accuracy.

4 Experiments

In this section, we present experimental results. Firstly, Section 4.1 demonstrates that our data is anno-
tated consistently. In Section 4.2, we present dialect prediction results in terms of accuracy and F-score
on our two data sets. In Section 4.3, we perform some qualitative error analysis for our classifier. In
Section 4.4, we present some preliminary effects on training a SMT system.

4.1 Annotator Agreement
To confirm the consistent annotation of our data, we have measured some inter-annotator and intra-
annotator agreement on it. A native speaker of Arabic was asked to classify the ARZ-MSA portion
of the dialect data using the following three labels: ARZ, MSA, Other. We randomly sampled 250
sentences from the ARZ-MSA portion of the Zaidan data maintaining the original dialect distribution.
The confusion matrix is shown in Table 2. It corresponds to a kappa value of 0.84 (using the definition of
(Fleiss, 1971)), which indicates a very high agreement. In addition, we did re-annotate a sub-set of 200
sentences from the DEV12 set over a time period of three months using our own annotator. The kappa
value of the corresponding confusion matrix is 0.93, indicating very high agreement as well.

4.2 Classification Experiments
Following previous work, we present dialect prediction results in terms of accuracy:

ACC =
# sent correctly tagged

# sent
, (6)

113



Predicted Class (IBM)
ARZ MSA Other

Actual ARZ 125 4 1
Class MSA 14 105 1
(AOC) Other 0 0 0

Table 2: Inter annotator agreement on 250 randomly selected AOC sentences from the data in Table 1.
An in-lab annotator’s dialect prediction is compared against the AOC data gold-standard dialect labels.

where ‘# sent’ is the number of sentences. In addition, we present dialect prediction results in terms of
precision, recall, and F-score. They are defined as follows:

Prec =
# sent correctly tagged as ARZ

# sent tagged as ARZ
(7)

Recall =
# sent correctly tagged as ARZ

# ref sent tagged as ARZ

F =
2 · Prec ·Recall
(Prec+Recall)

.

MSA prediction F-score is defined analogously. Experimental results are presented in Table 3, where we
present results for different sets of feature types and the two test sets in Table 1. In the top half of the
table, results are presented in terms of 10-fold cross validation on the ARZ-MSA portion of the AOC
data. In the bottom half, we present results on DEV12 tune set, where we use the entire dialect data in
Table 1 for training (about 26K sentences).

As our baseline we have re-implemented the language-model-perplexity based approach reported in
(Zaidan and Callison-Burch, 2011). We train language models on the dialect-labeled commentary train-
ing data for each of the dialect classes c ∈ {MSA,ARZ}. During testing, we compute the language
model probability of a sentence s for each of the classes c. We assign a sentence to the class c with the
highest probability (or the lowest perplexity) . For the 10-fold cross validation experiments, 10 language
models are built and perplexities are computed on 10 different test sets. The resulting (averaged) ac-
curacy is 83.3 % for cross-validation and 82.2 % on the DEV12 tune set. In comparison, (Elfardy and
Diab, 2013) reports an accuracy of 80.4 % as perplexity-based baseline. We have carried out additional
experiments with a simple feature set that consists of only unigram token and bigram token features as
defined in Eq. 3. Such a system performs surprisingly well under both testing conditions: we achieved an
accuracy of 87.7 % on the AOC data and an accuracy of 83.4 % on the DEV12 test set. On the AOC set
using 10-fold cross validation, we achieve only a small improvement from using the dictionary features
defined in Eq. 4. The accuracy is improved from 87.7 % to 88.0 %. On the DEV12 set, we obtain a
much larger improvement from using these features. Furthermore, we have investigated the usefulness
of the AIDA-based features. The stand-alone sentence-level classification of the AIDA tool performs
quite poorly. On the DEV12 set, it achieves an accuracy of just 77.9 %. But using the AIDA assigned
sentence-level and token-level dialect labels based on the binary features defined in Eq. 5 improves ac-
curacy significantly, e.g. from 85.3 % to 87.8 % on the DEV12 set. In the current experiments, the
so-called meta features which are computed at the sentence level do not improve classification accuracy.
The meta features are only useful in classifying dialect data based on the in-formalness of the data, i.e.
the ARZ news commentaries tend to exhibit more in-formalness than the MSA commentaries. Finally,
the sentence-level perplexity feature defined in Eq. 6 did not improve accuracy as well (no results for this
feature are presented in Table 3).

4.3 Classifier Analysis

In this section, we perform a simple error analysis of the classifier performance on some dialect data for
which the degree of dialectalness is known. The data comes from news sources that differ from the data
used to train the classifier. The classifier is evaluated on data from the DARPA-funded BOLT project.
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Feature Types MSA ARZ
ACC [%] PREC REC F PREC REC F

10-fold language-model 83.3 86.7 90.2 88.4 89.0 85.0 86.9
AOC aida-sentence label 81.0 84.2 78.0 81.0 78.0 84.3 81.0

uni,bi 87.7 86.6 90.2 88.4 89.0 85.0 86.9
uni,bi,dict,pos 88.0 86.9 90.4 88.6 89.2 85.3 87.2
uni,bi,dict,pos,aida 89.1 87.5 92.2 89.8 91.1 85.7 88.3
uni,bi,dict,pos,aida,meta 88.8 87.4 91.7 89.5 90.6 85.7 88.1

DEV12 language-model 82.2 85.1 76.2 80.4 80.0 87.7 83.7
aida-sentence label 77.9 80.9 70.8 75.5 75.8 84.5 79.9
uni,bi 83.4 81.1 85.1 83.1 85.6 81.7 83.6
uni,bi,dict,pos 85.3 83.5 87.5 85.5 88.0 84.1 86.0
uni,bi,dict,pos,aida 87.8 83.4 93.0 88.0 92.8 83.0 87.6
uni,bi,dict,pos,aida,meta 68.3 61.8 90.8 73.5 85.0 48.3 61.6

Table 3: Arabic Dialect Classification Results: predicting MSA vs. (ARZ) dialect in terms of 10-fold
cross-validation on the AOC data and on the DEV12 set using all the AOC data for training.

Corpus #Sent #Sent [ARZ] %[ARZ]
ARZ web forum 299K 183K 61%
Broadcast 169K 18K 11%
Newswire 885K 29K 3%

Table 4: Sub-corpora together with total number as well as percentage of sentences that are classified as
ARZ.

The BOLT data consists of several corpora collected from various resources. These resources include
newswire, web-logs, ARZ web forum data and others. Classification statistics are presented in Table 4,
where we report the number of sentences along with the percentage of those sentences classified as ARZ.
The distribution of the dialect labels in the classifier output appears to correspond to the expected origin
of the data. For example, the ARZ web forum data contains a majority of ARZ sentences, but quite a
few sentences are MSA such as greetings and quotations from Islamic resources (Quran, Hadith ...). The
broadcast conversation data is mainly MSA, but sometimes the speaker switches to dialectal usage for
a short phrase and then switches back to MSA. Lastly, the newswire data has a vast majority of MSA
sentences. Examining a small portion of newswire sentences classified as ARZ, the sentences labeled as
ARZ are mostly classification errors.

Example sentence classifications from the BOLT data are shown in Table 5. The first two text frag-
ments are taken from the Egyptian Arabic (ARZ) web forum data. In the first document fragment, the
user starts with MSA sentences, then switches to Egyptian (ARZ) dialect marked by the ARZ indicator

ú
ÎË@ and using the prefix # H. before a verb which is not allowed in MSA. The user then switches back
to MSA. The classifier is able to classify the Egyptian Arabic (ARZ) sentence correctly. In the second
document fragment, the user uses several Egyptian Arabic (ARZ) words. In the forth sentence no ARZ
words exist, and the classifier correctly classifies the sentence as MSA. The third text fragment shows
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Predicted Arabic English
Dialect
MSA . XðXQË@ ð ¨ñ 	�ñÖÏ @ �H@Q�̄ A 	K @ i read the topic and the replies .

MSA . �èñÊg �èQº 	̄ ¨ñ 	�ñÖÏ @ the topic is great !

ARZ Èñ�®K
 # H. ú
ÎË @ pB@ ©Ó A 	K @ # ð i agree with the brother who said

MSA �ék. Ag É¿ ú

	̄ ÑêÓ 	áK
YË@ Islam is significant in all

ARZ ZCJ. Ë @ ú
Î« �HQ�.� ø
 X �A	JË @ 	àA ��Ê« because they accept affliction with patience

ARZ PA��J 	K @ Q�.» @ �èX �AÔg è+ �IÊÔ« ú
ÎË@ ð what Hamas did was a victory

ARZ ÈC�Jk@ ��ð ú

	̄ @ñ 	®�̄ð �AÔg ø
 	P who encountered the occupation

MSA PA�k ú
Î« @ðQ�.� ð and they were patient despite the siege

ARZ Ñë+ ú 	̄ A¿ A 	K+ H. P èY» 	àA ��Ê« that ’s why Allah rewarded them
ARZ* é» ø
 X ú


�G �HXA�̄ Y�̄ # ð tdk ... led

ARZ* �éÖ ßCË@# H. É�®	JË @ Z @Q�. 	g ñj	JK
 # ð transport experts blame
ARZ* . ø
 + # È è+ ÈA�̄ AÓ Q» 	Y�K ©J
¢���@ B i cannot remember what he told me

Table 5: Automatic classification examples for the dialect classes ARZ and MSA. Arabic source and
English target sentences are given. Dialectal words are in bold. Incorrect predictions are marked by an
asterisk (*).

some sentences from the newswire corpus that are mis-classified. The first sentence contains the word
ø
 X which corresponds to the letter ‘d’ in the abbreviation ‘tdk’. The word is contained in one of our ARZ
dictionaries such that the binary AIDA-based feature in Eq. 5 fires and triggers a mis-classification. In
this context, the word is part of an abbreviation which is split in the Arabic text. In the other examples,
only a few of the binary features defined in Section 3.2 apply and features that correspond to Arabic
prefixes tend to support a classification as ARZ dialect.

4.4 Preliminary Application for SMT

The dialect classification of Arabic data for SMT can be used in various ways. Examples include domain-
specific tuning, mixture modeling, and the use of so-called provenance features (Chiang et al., 2011)
among others . As a motivation for the future use of the dialect classifier in SMT, we classify the BOLT
bilingual training data into ARZ and MSA parts and examine the effect on the phrase table scores. Phrase
translation pairs demonstrating the use of the classified training data are shown in Table 6. The ARZ web
forum data is split into an ARZ part and an MSA part and two separate phrase probability tables are
trained on these two splits. The ARZ web forum data is highly ambiguous with respect to dialect and it
is difficult to obtain good dialect-dependent splits of the data. In the first example in the table, the word�éJ
K. QªË@ could mean ‘Arab’ in MSA, but in ARZ it could also mean ‘car’. The phrase table scores obtained
from the classifier-split training data correctly reflect this ambiguity. The phrase pair with ‘car’ has the
lowest translation score for the BOLT.ARZ phrase table, while it has a higher cost in the BOLT.MSA
phrase table. In the full phrase table (BOLT), ‘car’ is the fifth translation candidate with a score of 2.09.
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BOLT.ARZ BOLT.MSA
f e cost e cost

�éJ
K. QªË@
the car 1.20 arab 0.80
arab 1.25 the arab 1.32
the arab 1.70 Arabic 1.52

ú
æ�QÓ
merci 1.53 marsa 1.99
marsa 1.63 thanks 2.01
mursi 1.91 morcy 2.13

Table 6: Phrase tables based on classified training data. BOLT.ARZ is trained on the ARZ portion of
the ARZ web forums data, while BOLT.MSA is trained on the MSA part. The table includes Arabic
words and the top three phrase translation candidates, sorted (first is best) by the phrase model cost
(cost= −log(p(f |e)) ).

In the second example, the word ú
æ�Q Ó could function as a proper noun with its English translation
‘mursi’ or ‘marsa’, but only in ARZ it could also be translated as ‘thanks’ (‘merci’). In this case, the
classifier is unable to distinguish between the ARZ dialect and the MSA usage. We found out that the
word token ‘merci’ appears only 4 times in the training data, rendering its binary features unreliable
reliable. In general we note that the phrase tables build on the classified data become more domain-
specific, and it is left to future work to check whether improvements could carry over to the translation
quality.

5 Discussion and Future Work

The ultimate goal is to use the ARZ vs. MSA dialect classifier for training an adapted SMT system.
We split the training data at the sentence level using our classifier and train dialect-specific systems
on each of these splits along with a general dialect-independent system. We will be using techniques
similar to (Koehn and Schroeder, 2007; Chiang et al., 2011; Sennrich, 2012; Chen et al., 2013) to adapt
the general SMT system to a target domain with a predominant dialect. Or, we will be adopting an
SMT system to a development or test set where we use the classifier to predict the dialect for each
sentence and use a dialect-specific SMT system on each of them individually. Our approach of using
just binary feature functions in connection with a sentence-level global linear model can be related to
work on PoS-tagging (Collins, 2002). (Collins, 2002) trains a linear model based on Viterbi decoding
and the perceptron algorithm. The gold-standard PoS tags are given at the word-level, but the training
uses a global representation at the sentence level. Similarly, we use linear SVMs (Hsieh et al., 2008)
to train a classification model at the sentence level without access to sentence length statistics, i.e. our
best performing classifier does not compute features like the percentage of punctuation, numbers, or
averaged word length as has been proposed previously (Elfardy and Diab, 2013). All of our features are
actually computed at the token level (with the exception of a single sentence-level AIDA-based feature).
An interesting direction for future work could be to train the dialect classifier at the sentence level, but
use it to compute token-level predictions for a more fine-grained analysis. Even though the token-level
prediction task corresponds to a word-level tag set of just size 2, Viterbi decoding techniques could be
used to introduce novel context-dependent features, e.g. dialect tag n-gram features. Such a token-level
predictions might be used for weighting each phrase pair in an SMT system using methods like the
instance-based adaptation approach in (Foster et al., 2010).
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