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Abstract

Language identification is a necessary pre-
requisite for processing any user gener-
ated text, where the language is unknown.
It becomes even more challenging when
the text is code-mixed, i.e., two or more
languages are used within the same text.
Such data is commonly seen in social me-
dia, where further challenges might arise
due to contractions and transliterations.
The existing language identification sys-
tems are not designed to deal with code-
mixed text, and as our experiments show,
perform poorly on a synthetically created
code-mixed dataset for 28 languages.We
propose extensions to an existing approach
for word level language identification. Our
technique not only outperforms the exist-
ing methods, but also makes no assump-
tion about the language pairs mixed in the
text - a common requirement of the ex-
isting word level language identification
systems.This study shows that word level
language identification is most likely to
confuse between languages which are lin-
guistically related (e.g., Hindi and Gu-
jarati, Czech and Slovak), for which spe-
cial disambiguation techniques might be
required.

1 Introduction

As the World Wide Web is constantly being in-
undated by user-generated content in many lan-
guages, automatic Language Identification (LI) of
text fragments has become an extremely important

∗The work was done during authors internship at Mi-
crosoft Research Lab India

problem. Since mid 90s, this problem has attracted
the attention of researchers (Prager, ), and by 2005
it was thought to be a solved problem (McNamee,
2005). However, there is a renewed interest in
LI over last few years (Lui and Baldwin, 2011;
Tromp and Pechenizkiy, 2011; Bergsma et al.,
2012; Lui and Baldwin, 2012; Goldszmidt et al.,
2013; King and Abney, 2013; Carter et al., 2013;
Lui et al., 2014) primarily due to a surge in user-
generated content in social media, given the rising
popularity of Twitter, Facebook and several other
online social networking platforms.

Short length, presence of non-standard spelling
variations, idiomatic expressions and acronyms
are the most commonly cited reasons that make
LI for social media content, such as tweets, a
challenging problem (Carter et al., 2013; Gold-
szmidt et al., 2013). However, there are two other
frequently observed phenomena in social media
(and also in other forms of user-generated con-
tent such as blogs and discussion forums) which
have received very little attention: Code-mixing
and Transliteration.

Code-mixing, loosely speaking, is the process
of mixing more than one language in a single con-
versation. In the context of social media, code-
mixing can be defined as using more than one,
usually only two, languages in a single tweet or
post. For instance, in the following comment
posted on Facebook, the user has mixed Hindi (in
italics) and English words in a single sentence.

love affection lekar salose
se sunday ke din chali aarahi
divine parampara ko age badhha
rahe ho

Translation: With love and affection, (you)
are carrying forward the divine tradition that368



has been going on on Sundays for years.

This example also illustrates the phenomenon of
transliteration; the Hindi text is not written using
the Devanagari script; the user has transliterated
it in Roman script. Code-mixing and translitera-
tion are not mere challenges for LI, rather these
phenomena demand a new definition of LI. It is
no longer sufficient to identify the language of a
tweet or microblog or even a sentence. One needs
to identify the language of every word.1 Translit-
eration adds to the complexity of the problem be-
cause there is no notion of correct transliteration
(the same word can be spelled as badhha, badha,
badhaa and so on), which then can be further con-
tracted according to the norms of computer medi-
ated communication.

How common are these phenomena? In a
separate study by us (to appear, reference re-
moved for anonymity), we found that 50% of the
sentences on a Hindi film discussion forum are
code-mixed (mainly between Telugu-English and
Hindi-English); we also found that 17% of the
posts on Facebook public pages of Indian celebri-
ties have code-mixing, and more than 90% of the
Indian language texts were Romanized. In fact,
code-mixing and transliteration are not unique to
social media; Gupta et al (2014) have shown
that 6% of Bing queries from India has Roman
transliterated Hindi words mixed with English
terms. Neither is code-mixing unique to Indian
languages. In a recently conducted shared task
on LI for codeswitched text2, tens of thousands
of tweets were released that had code-mixing be-
tween English and Spanish, English and Nepali,
English and Mandarin, and between standard and
dialectal Arabic. Thus, LI at word level in the
presence of code-mixing and transliteration (wher-
ever relevant) is an essential task that needs to
be solved before any further analysis of user-
generated text in social media.

In this paper, we study the performance of
word-level LI for code-mixed text of several state-
of-the-art and off-the-shelf LI systems. Since
these systems were not designed for tackling code-
mixed text, the performance, as expected, is less

1Sometimes, in certain languages, even the same word
can be composed of parts taken from different languages.
E.g., the word housinalli is composed of an English root
house and Kannada suffix nalli meaning “in the house”. This
kind of usage is not uncommon for morphologically rich lan-
guages, but is beyond the scope of the current work.

2http://www.emnlp2014.org/workshops/
CodeSwitch/call.html

than satisfactory. We propose extensions to an
existing LI technique for language labeling at
word level. In the absence of sufficient data
across many languages annotated with language
labels for words, we created a synthetic dataset
by mixing natural language text fragments in 28
languages. Our dataset included three cases of
transliterated text, for Hindi, Bengali and Gujarati.
The proposed extensions outperform all the exist-
ing LI systems evaluated by a significant margin
for all 28 languages.

Previous work on LI at word level presumes an
a priori knowledge of the two languages mixed
and the task mostly reduces to a binary classifi-
cation problem (Solorio and Liu, 2008a; Nguyen
and Dogruoz, 2013; Gella et al., 2013). However,
this is not the case in practice. The languages to
be identified are usually not known in advance and
the set of potential language labels can span all the
languages represented on the World Wide Web.
The primary contribution of the current work is
to highlight the challenges in such a scenario and
present a few techniques to deal with these.

The rest of the paper is organized as follows. In
Sec. 2 we review related work with special refer-
ence to the existing LI systems evaluated in this
work. Sec. 3 describes the synthetic dataset cre-
ation. In Sec. 4 we propose different extensions
and baselines for word level LI, and in the next
section, we present the results of the evaluation
experiments. Sec 6 discusses the various impli-
cations of these results. We conclude with some
future directions in Sec 7.

2 Related Work

Code-Mixing (CM) or the embedding of lin-
guistic units such as phrases, words and mor-
phemes of one language into an utterance of an-
other language (Gumperz, 1982; Myers-Scotton,
1993; Myers-Scotton, 2002) is a well-studied lin-
guistic phenomenon of multilingual speech com-
munities. As mentioned earlier,the wide-spread
use of computer mediated communication like
email, chat, and more recently, on social me-
dia like Facebook and Twitter (Herring, 2003;
Cardenas-Claros and Isharyanti, 2009; Paolillo,
2011) has ensured that code-mixed data is fairly
prevalent on the web. In the case of social-media
content where there are additional complications
due to contractions, non-standard spellings, and
non-standard constructions as well as mixing of369



scripts, processing of the data poses major chal-
lenges. Further, many languages that use non-
Roman scripts, like Hindi, Bangla, Chinese, Ara-
bic etc. are often present in a Romanized form.
(Sowmya et al., 2010). Not a lot of work has been
done on computational models of code-mixing
(Solorio and Liu, 2008a; Solorio and Liu, 2008b;
Nguyen and Dogruoz, 2013) , primarily due to the
paucity of CM data in conventional text corpora
which makes data-intensive methods hard to ap-
ply. (Solorio and Liu, 2008a) in their work on
English-Spanish CM use models built on smaller
datasets to predict valid switching points to syn-
thetically generate data from monlingual corpora.
While natural language processing like POS tag-
ging, normalization, etc remain hard problems to
solve, any processing of code-mixed text, first
needs to deal with the identification and label-
ing of the parts of text which are in different lan-
guages.

Monolingual language identification has been
worked on intensively in NLP where the task is
to assign a language to every document accord-
ing to the language it contains. There are existing
methods which show high accuracies on large (Xia
et al., 2009) and short (Tromp and Pechenizkiy,
2011; Lui and Baldwin, 2012) documents when
tested against a small set of languages. However,
for Code-mixed text, especially those involving
transliterations and orthographic variation, this is
far from a solved problem. In their work, (King
and Abney, 2013) use a weakly supervised n-gram
based model trained on monolingual data for la-
beling languages in a mixed-language document.
In their experiments with language-labels of words
in multilingual online discussions using language
models and dictionaries, (Nguyen and Dogruoz,
2013) show that spelling variations, similarity be-
tween words in the two languages, as well as
Named Entities, are the biggest source of errors,
though they show some improvement with the in-
corporation of context. Gella et al. (2013) built the
system with the best performance for the shared
task on language identification and back translit-
eration for English mixed with Hindi, Bangla and
Gujarati in FIRE 2013 (Saha Roy et al., 2013).
The system uses a source language with a confi-
dence probability for each word similar to (King
and Abney, 2013), and incorporates context infor-
mation through a code-switching probability. The
thing to be noted in all these cases is that the LI

systems have a priori information on the languages
that they have to disambiguate,making this essen-
tially a binary classification task.

Some of the commonly used as well as state-of-
the-art LI techniques used that we evaluate in our
work are:
linguini: This was one of the early sys-

tems proposed by (Prager, ) to identify multiple
languages and their proportions in a single docu-
ment. This is based on vector space model, where
the languages in a document are determined by the
similarity scores of the document vector with the
language feature vector.
langid.py: langid.py3 is an off-the-shelf
language identification tool trained over naive
bayes classifier with a multinomial event model
over a mixture of byte 1,2,3,4-grams. It supports
97 languages and has shown high accuracy scores
over both long and short documents.
polyglot: This system is designed to detect mul-
tilingual documents, their constituent languages
and to estimate the portion of each constituent lan-
guage. This was achieved with a generative mix-
ture model combined with the document represen-
tation developed for monolingual language identi-
fication. (Lui and Baldwin, 2011).
CLD2: CLD24 is a compact language detection
tool designed to target mono/multi lingual web
pages of at least 200 characters. It uses Naive
Bayes classifier over unigrams, with quadgrams as
features.

3 Synthetic Dataset for Code-Mixed Text

In order to conduct a comprehensive evalua-
tion of LI systems on code-mixed text, we need a
dataset of short text fragments, which we shall re-
fer to as document (even though they are no longer
than a sentence), spanning a large number of lan-
guages. Ideally, a good proportion of these sen-
tences should feature code-mixing between vari-
ous language pairs. Most importantly, the words in
every sentence must be annotated with the appro-
priate language label, so that we can automatically
evaluate the performance of various LI systems on
this collection.

We are not aware of any such publicly avail-
able dataset. There are monolingual LI test-
benches, but none of these features code-mixing
at the word level. The dataset used by (King

3https://github.com/saffsd/langid.py
4https://code.google.com/p/cld2/370



and Abney, 2013) has language mixing at inter-
sentential level; typically there are stretches of
20 or more words in a single language before
switching. However, tweets and social media
posts are shorter, and code-mixing in such con-
text often means embedding one to three word
phrases of one language inside a sentence in an-
other language (such as the example cited in
Sec. 1). Recently, around 500 code-mixed Web
search queries with language labels for words
were released as a part of the FIRE shared task
on transliterated search (Roy et al., 2013). The
dataset contains Bengali-English, Hindi-English
and Gujarati-English mixed queries, where all the
Indian language words are Romanized. We shall
refer to this dataset as the FIRE-data, which will
be used later for some of our experiments.5

Code-mixed text in only four languages is not
sufficient for a realistic evaluation of Web-scale
systems. Nevertheless, it is also a very effort inten-
sive task to gather and annotate code-mixed text
for a large number of language pairs. Hence, we
decided to create a synthetic code-mixed dataset
spanning 28 languages listed in Table 2.

3.1 Design Principles
Artificially generating code-mixed text from

monolingual text data is a non-trivial problem for
several reasons. First, code-mixed text is not a
random mixture of two languages; rather there
are strict syntactic and semantic rules that gov-
ern the code-switching points as well as the struc-
ture of the sentence. Second, while theoretically
one could mix any subset of languages, in practice
code-mixing is commonly observed only between
certain pairs of languages which have a sizeable
bilingual population with active Web presence.
Therefore, we came up with the following design
principles for creating a synthetic dataset:

1. Every document consists of words from at
most two languages. This is based on a practical
observation that people rarely mix more than two
languages in a single sentence. Whenever they
apparently mix more than two languages, words
of one of the languages can almost always be ex-
plained away as borrowing rather than mixing.

5As a part of the Code-switching shared task at EMNLP
2014, large datasets for English-Spanish, English-Mandarin,
English-Nepali and Dialectal-Standard Arabic have been re-
leased recently. But those were not available during this
study.

2. All the documents are in a single script,
which we chose as the Roman script because of
its popularity. If in a code-mixed text, each lan-
guage is written in their native script (say Hindi
words in Devanagari and English words in Ro-
man script), LI becomes a trivial problem. There-
fore, we choose languages which either use Ro-
man script (like most of the West European lan-
guages) or languages which are quite commonly
Romanized on the Web such as the Indian lan-
guages.

3. Whenever code-mixing happens, one of the
languages is always English. This principle is
also based on the empirical observation that code-
mixing happens mostly between English and other
languages (Vyas et al., 2014). However, this is
not necessary; there are examples of code-mixing
between Turkish and Dutch, Arabic and French,
Chinese and Malay, and so on. Since selecting
a representative set of language pairs is difficult,
and mixing between all pairs would not only lead
to impractical cases, but also make it cumbersome
to analyze and represent the experimental data, we
decided to only experiment with mixing between
English and other languages. Note that this choice
does not limit the generality of the conclusions of
this study as none of the algorithms exploit the fact
that one of the languages is English.

4. The length of the documents vary from 4 to
12 words, roughly equivalent to 20-135 charac-
ters. This choice is again motivated by the typical
length of tweets and social media posts.

5. There is only one codeswitching point per
document. Thus, for every code-mixed document,
the words from each language appear together (see
Table 1 for examples). This is not true in real-
ity. For instance, the code-mixed sentence cited
in Sec. 1 has 5 codeswitching point. Neverthe-
less, code-mixing does not allow a random set of
words chosen from two languages to be permuted
in any fashion. The distribution of words as well
as codeswitching points are governed by a com-
plex interplay of the syntactic rules of the two
languages and semantic constraints; while some
of the constraints are known, how they interact
with each other and between language pairs are
open questions. In absence of such knowledge,
we thought as a first study, it will be a better to
have as much coherent text fragments in a docu-
ment as possible. This is achieved through this one
codeswitching principle, of course, at the expense
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of losing some generality.

3.2 Dataset Creation
As a testbench for our experiments, we created a

synthetic dataset following the above design prici-
ples. The monolingual text samples have been col-
lected from the dataset used by (King and Abney,
2013). These are texts from the Wikipedia and var-
ious other resources, such as The Universal Decla-
ration of Human Rights, Rosetta project and Jeho-
vah’s Witness website6. We selected 25 languages,
including English, from this sample, all of which
use Roman script.

We created 954 short documents for each lan-
guage in the following manner. First, a real valued
random variable γ is sampled uniformly at ran-
dom from the interval [0, 1]. γ defines the frac-
tion of words in the document that are in English.
Another integer valued random variable L is sam-
pled, again uniformly at random from the inter-
val [4, 12]. L is the number of words in the docu-
ment. We define two integer dependent variables
X = round(γL) and Y = round((1−γ)L). Here,
round(·) is the rounding-to-nearest-integer func-
tion. A sequence of X words are chosen from
the English monolingual corpus (i.e., an X-gram
is sampled from the corpus following the X-gram
frequency distribution of English). Let us denote
this sequence (potentially null) as Zen. Similarly,
a sequence of Y words are sampled, again at ran-
dom from the text corpus of the other language.
Let this (again potentially null) sequence be de-
noted by Zl∗ . Finally, a binary variable s is sam-
pled from {0, 1}. If s = 1, we generate the
document ZenZl∗ , else we generate the document
Zl∗Zen. Thus, we created 22896 documents span-
ning 25 languages, most of which are code-mixed
with English.

For transliterated text in Gujarati, Bengali and
Hindi, we used the test and development sets
of the FIRE-data. This dataset has naturally
code-mixed text mostly derived from Web search
queries, and we will report the performance of our
system directly on this data.

In Table 1 we show few sample test documents.

3.3 Limitations
It is important to understand the limitations of

this synthetic dataset, so that we can appropri-
ately draw our conclusions on the basis of the

6http://www.watchtower.org

experimental results on this testbench. As we
shall see in the next section, none of the LI al-
gorithms proposed here explicitly assume that at
most two languages are mixed and there is only
one codeswitching point. Therefore, we believe
that these features of the synthetic dataset are
not expected to lead to any misleading conclu-
sions. On the other hand, real code-mixed data
can have richer distributional patterns, for instance
often single words or short phrases are embed-
ded, which if appropriately exploited can lead to
better performance. This dataset, however, lacks
contractions and non-standard spellings because
most of the text fragments come from Wikipedia.
Therefore, performance of the algorithm on tweets
or social media data could be lower than what we
observe here, unless the training data is appropri-
ately modified.

4 Language Identification Algorithms

Following the ideas of (King and Abney, 2013)
and (Gella et al., 2013), we first build binary clas-
sifiers for each language. The classifier for a lan-
guage l takes a word as input and returns a score
between 0 and 1, which can be loosely interpreted
as some sort of probability that the input word is
of language l. We combine the outputs of these 28
classifiers and the context of a word to decide the
final label of the word. We use character n-gram
based classifiers as they are more efficient, robust
to noisy data and save us the effort of collecting
lexicons.

In this section, first we describe the binary clas-
sifier, followed by two simple baselines and one
simple disambiguation strategy. We also describe
a method to compute the accuracy if we had an
optimal disambiguation strategy.

4.1 Binary classifier for Words
For each language l, we built a binary classi-

fier using character n-gram features. We experi-
mented with character n-grams for n = 1 to 5, and
two standard classifiers – Naive Bayes and Logis-
tic Regression, for which we used the Mallet tool
box (McCallum, 2002) set to the default settings.
The positive examples consisted of a random set
of words of l and an equal number of negative ex-
amples were constructed by choosing words from
all the other 27 languages. The training data
for 25 languages were collected from the respec-
tive Wikipedias; since user-generated transliter-372



Language L γ Sentence
Spanish 8 0.50 do nicely Switch off efectivos tanto entre los
Turkish 11 0.45 safhalarnda paraszdr lk retim mecburidir Teknik be delighted to meet them
French 12 0.25 Vasili knew this une libert plus grande Considrant que les tats Membres
Hindi 5 0.60 to reinvent Michigan chandini badarava
Bangla 9 0.60 swadhinatar sutre smritituku pasei sailing in from another room
Latvian 5 0.10 ierobeojumu un apmakstu periodisku atvainjumu
Swahili 11 0.90 ya Magharibi kwenye pwani la Bahari Atlantiki Imepakana na Benin finger

Table 1: Sample of synthetic test data; the non-English part is in italics

ated content is not available on Wikipedia, for
the three Indic languages the training data was
obtained from the development set of the FIRE-
data. Table 2 shows the number of positive train-
ing examples used for each language. An equal
number of negative examples were used as well.

We found that for all languages, logistic regres-
sion gave the best performance when we use a
combination of n-gram features for all n = 1 to
5. The accuracy on the training set of the best bi-
nary classifiers varied from 0.866 for Catalan to
0.992 for Gujarati with an average of 0.941. These
findings and numbers are in good agreement with
those mentioned in (King and Abney, 2013; Gella
et al., 2013).

Language Size Language Size
Catalan (ca) 908 Czech (cs) 1318
Danish (da) 1054 German (de) 1108
Estonian (et) 1304 Finnish (fi) 1435
French (fr) 1038 Irish (ga) 1002
Hunharian (hu) 1379 Indonesian (in) 1055
Italian (it) 1342 Latvian (lv) 1519
Lithuanian (lt) 1258 Maltese (mt) 1369
Dutch (nl) 1160 Polish (pl) 1652
Portuguese (pt) 1228 Romanian (ro) 1278
Slovak (sk) 1410 Slovene (sl) 1136
Spanish (es) 905 Swahili (sw) 931
Swedish (sv) 1051 Turkish (tr) 1363
Hindi (hi) 9486 Bangla (bn) 3140
Gujarati (gu) 384 English (en) 3276

Table 2: Languages tested and number of unique
words in the training samples used for training the
binary classifiers for words.

4.2 Baselines
Let d = w1, w2 . . . w|d| be a document, where

wi’s are the words. The task of word-level LI
is to assign each word wi with a language label

λ(wi) chosen from L = {l1, l2...l28}, the set of
all languages. Let us denote the confidence score
of the classifier for language lj on input wi as
conf score(wi, lj).

MaxWeighted: In this method we simply as-
sign the label of the language classifier that has the
highest confidence score.

λ(wi) = argmaxnj=1 conf score(wi, lj)

Thus, this is a completely context agnostic model.
Random: In this model, a randomly chosen la-

bel from the possible set of labels is assigned to
the wi, where the possible set of labels is obtained
by setting a threshold value t on the confidence
scores of the classifiers.

λ(wi) = rand{lj : conf score(wi, lj) ≥ t}

where rand{·} selects a random element from the
set.

4.3 CoverSet Method
The CoverSet method is based on the as-

sumption that code-mixing, whenever it happens,
happens only with a few languages, though it as-
sumes no hard upper bound on the number of lan-
guages that can be mixed in a document. Thus, we
want to choose as few labels from L as possible
so as to label or cover all the words w1 to w|d|,
without compromising on accuracy. Since this in
essence is similar to the minimum set cover prob-
lem, we call this technique the CoverSet.

Like Random, we define a hard threshold t,
such that the only labels that are considered valid
forwi are those for which conf score(wi, lj) ≥ t.
Let us define this subset of languages as Li ⊂ L.
We define the minimal coverset of d as L∗d if and
only if the following two conditions are satisfied:

1. L∗d ∩ Li 6= φ ∀1 ≤ i ≤ 28373



2. There does not exist a set L′d that satisfies
condition 1, and |L′d| < |L∗d|.

Once the minimal coverset is determined through
iterative search, λwi is assigned the label from the
set L∗d ∩ Li that has the highest confidence score.
Note that there can be more than one minimal co-
verset for d, in which case, we do the labeling
for all the sets and the one that yields the highest∑

i conf score(wi, λ(wi)) is selected as the final
output.

4.4 Optimal Labels
In order to estimate the maximum achievable

accuracy in such an extreme LI problem with our
language classifiers, we designed the following
optimal method. For each word wi, we first com-
pute the set of possible labels Li based on a thresh-
old t. If the actual (gold standard) label of wi,
λ∗(wi) ∈ Li, then we assign λ(wi) = λ∗(wi), else
any random label is selected for Li. Note that this
is not a practical system because it assumes the
knowledge of the gold standard labels; but it will
be studied to understand the maximum achievable
accuracy of a word label LI system.

5 Experiments and Results

We evaluated the four existing LI systems as
well as the four proposed word level LI strategies
on the synthetic testbench. Since the existing LI
systems output language labels only for the entire
document, we evaluated them on document label-
ing accuracy, and only on the 25 non-Indic lan-
guages because they cannot handle transliterated
content. However, the strategies that we proposed
were evaluated on both document and word label-
ing accuracies for all the languages.

5.1 Document label accuracy
Table 3 we present the document label accu-

racies for the 8 systems. For a given document,
Lang1 refers to the language which has the higher
proportion of words. The other language is de-
noted as Lang 2. In other words, if for a docu-
ment γ > 0.5, Lang1 is English and Lang2 is the
other language, else Lang1 is the other language
and Lang2 is English.

The 4 existing systems output a single lan-
guage as the label for an input document. But
linguini, polyglot and langid.py also
output a second or more languages with some

System Lang1 Lang2 Code Mixing
P R F

linguini 0.589 0.084 0.817 0.846 0.831
polyglot 0.827 0.308 0.990 0.426 0.590
langid.py 0.781 0.058 0.790 1.000 0.885
CLD2 0.817 NA NA NA NA
Random-0.8 0.635 0.235 0.814 0.991 0.894
MaxWeighted 0.832 0.468 0.814 0.993 0.895
CoverSet-0.5 0.888 0.717 0.868 0.991 0.920
Optimal-0.5 0.968 0.882 0.910 0.990 0.953

Table 3: Document label accuracies for the exist-
ing and the proposed LI systems. The value of t
shown after hyphen.

scores whenever the system identifies that the doc-
ument could consist of more than one language.
Thus, for these systems, we compare their first or
primary output with Lang1 and the second output,
whenever present, with Lang2 to compute the re-
spective accuracies. For our approaches, we count
the word labels and assign the language with the
highest and the second highest number of labels in
the document as Lang1 and Lang2 respectively.
We tuned the parameter t for three of the pro-
posed systems for maximum word labelling accu-
racy. These values are also shown in the Table 3,
for which the document labeling accuracies have
been reported.

We also report the precision (P ), recall (R),
f-score (F ) of the systems in identifying code-
mixed documents. While computing these values,
we did not consider the language labels, but only
whether the output was a single (implying mono-
lingual document) or multiple (implying code-
mixed document) languages.

System Hindi Gujarati Bangla English
Random-0.8 0.170 0.103 0.180 0.812

MaxWeighted 0.419 0.105 0.399 0.797
CoverSet-0.5 0.569 0.017 0.394 0.814
Optimal-0.5 0.792 0.714 0.719 0.864

Table 4: Language accuracies on FIRE-data

Table 4 presents the document labeling accu-
racies for the 3 Indic languages evaluated on the
FIRE-data. The numbers are lower than the cor-
responding figures for the other languages.374



5.2 Word Labeling Accuracy
We define the word labeling accuracy as the

fraction of words (tokens) in the entire synthetic
dataset (including Indic language data) that have
been labeled with the correct language. Fig-
ure 1 plots the word labeling accuracy of the
four systems for different values of t. Since
MaxWeighted does not depend on t, its value is
constant (0.67). As expected, Optimal presents
an upper-bound on the accuracy, which is close to
0.94, and the Random baseline provides a lower-
bound on the accuracies, which varies between 0.3
and 0.5. Performance of CoverSet is always
better than MaxWeighted, and reaches 0.82 for
optimal value of t = 0.5.

L A Top n confused languages
it .815 en (.096) ca (.018) ro (.012) pt (.010) es (.009)
es .733 pt (.071) en (.060) it (.038) ca (.027) ro (.013)
mt .889 en (.039) nl (.007) fr (.005) ro (.004) it (.004)
tr .809 en (.094) hi (.015) bn (.014) da (.011) lv (.007)
fr .681 en (.201) ca (.029) ro (.017) pt (.017) it (.008)
hu .884 en (.024) bn (.011) hi (.009) da (.009) pt (.007)
ca .618 en (.199) es (.040) ro (.025) pt (.025) fr (.023)
sk .690 cs (.164) en (.062) sl (.031) pl (.009) bn (.006)
lt .869 en (.032) lv (.021) bn (.012) id (.007) pt (.006)
de .775 en (.122) nl (.041) da (.016) sv (.007) fr (.006)
ga .811 en (.112) pt (.018) fr (.012) hu (.007) bn (.006)
sl .737 en (.065) sk (.063) cs (.030) bn (.017) hi (.015)
pl .871 en (.043) sk (.013) ro (.010) mt (.009) pt (.006)
ro .740 en (.127) it (.027) fr (.021) ca (.019) es (.010)
nl .730 en (.153) de (.039) da (.032) hu (.007) sv (.007)
pt .800 en (.070) es (.050) it (.023) ca (.015) bn (.007)
sv .803 en (.082) da (.061) de (.008) nl (.007) it (.006)
cs .599 sk (.218) en (.069) sl (.030) hu (.018) mt (.011)
da .702 en (.177) sv (.060) nl (.015) mt (.011) de (.007)
fi .681 et (.169) en (.037) hi (.022) sv (.020) bn (.011)
et .848 en (.050) hi (.024) ro (.009) nl (.009) id (.009)
lv .848 en (.041) lt (.026) pl (.013) sl (.008) id (.006)
sw .714 en (.069) tr (.039) hi (.032) bn (.026) pl (.017)
id .810 hi (.045) en (.040) bn (.016) es (.014) tr (.014)
hi .738 bn (.148) en (.040) id (.014) gu (.006) nl (.006)
bn .878 en (.042) hi (.041) pt (.003) it (.003) id (.003)
gu .712 hi (.146) bn (.087) en (.017) id (.006) mt (.005)
en .897 pt (.008) it (.008) fr (.007) hu (.006) ga (.006)

Table 5: Confusion matrix between languages.
L:Language, A: Accuracy

5.3 Error Analysis
Figures 2a and 2b show the variation of the

word labeling accuracy of three of the proposed
systems (results for Random ommited) with the
parameters L (document length) and γ (fraction
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Figure 1: Word labeling accuracy vs. t

of words in English). Again, as expected, perfor-
mance of Optimal is not affected by variation of
these parameters, and that of CoverSet is also
quite robust though we see slight decrease in per-
formance when L drops below 6. Performance
of MaxWeighted is mostly unaffected by L, but
improves linearly with γ, which implies that there
is a high tendency for this system to label words
as English.

We also computed the language label confusion
matrix for these strategies. Table 5 shows the five
most common confused languages for each of the
languages, along with the fraction of tokens so
confused by the CoverSet approach. From the
table we can infer that English is the least confused
language and Czech, Catalan and Finnish are the
most confused languages. This table also shows
that (Czech, Slovak), (Gujarati, Hindi), (Hindi,
Bangla) and (Finnish, Estonian) are some of the
most confused language pairs.

6 Discussion

As can be seen from the results presented in the
previous section, three of the four extensions pro-
posed by us outperform all of the existing LI sys-
tems (Table 3). While polyglot and CLD2 are
comparable to the three proposed extensions in la-
belling accuracies for Lang1, they fail to a varying
degree in labelling Lang2. This is not unexpected
as none of the existing systems are designed to
identify and label languages in a code-mixed text.
The low accuracies of the Random0.8 are also not
surprising as this algorithm randomly assigns la-375
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bels from a set without taking any context infor-
mation into consideration.

All the three extensions are robust to length, i.e.,
the number of words in a text fragment (Fig. 2a).
The Optimal method provides an upper-bound
on the accuracy that can be achieved using the cur-
rent set of binary classifiers. CoverSet uses con-
text information and achieves higher accuracies
for labeling both Lang1 and Lang2 confirming the
importance of context in identifying languages in
code-mixed text. Further, CoverSet technique
is also stable with respect to γ. Thus, from the
results the CoverSet technique seems the most
promising for identifying and labeling languages
in a code-mixed text.

It is interesting to note that the language-pairs
that are confused the most (e.g., Hindi-Gujarati,
Slovak-Czech etc.) are linguistically related and
very close to each other. In fact, the very poor per-
formance of the CoverSet meythod for Gujarati
as opposed to that of Optimal in Table 4 is due
to the fact that most of the Gujarati words were
also identified as Hindi words. Hence,these are

likely to be confused by the LI systems. It there-
fore seems that different techniques and features
would be required to disambiguate between these
languages.

The fall in accuracies for all the proposed ex-
tensions when tested on FIRE-data could be at-
tributed to the fact that this data is not synthetic
and shows all the variations we might expect in
real code-mixed data, but more importantly the
data is in Roman transliteration. As previous stud-
ies have shown (Sowmya et al., 2010; Ahmed et
al., 2011) there is a lot of variation in translit-
erations of Indian languages due to one-to-many
mappings at character level, regional variations
and lack of any universally applicable standard
conventions. The difficulty for LI systems to dis-
ambiguate transliterated Indian languages, thus,
increases manifold. It should be noted, however,
that the overall trend followed by the proposed ex-
tensions remains the same as that on the synthetic
data for other languages.

7 Conclusion

In this paper we considered language identifica-
tion task for short code-mixed documents contain-
ing one or two languages. We analyzed the word-
level LI accuracy of some off-the-shelf systems on
code-mixed synthetic dataset. We extended these
algorithms to identify word-labels across 28 lan-
guages. The results show that our extensions out-
perform the existing systems significantally. How-
ever, most of the methods used consider a binary
classification for a language pair.

An important area to work on is the code-
mixing of transliterated text where standard tech-
niques do not work and lexicons are not avail-
able. Our results also show that linguistically close
or related languages are more difficult to disam-
biguate and further work is required to specifi-
cally address this problem.The biggest bottleneck,
as always, remains the unavailability of suitable
datasets and we will continue to explore new ways
to collect, generate and annotate code-mixed data.
In conclusion, we would like to mention that lan-
guage identification is far from a solved problem;
issues like code-mixing, transliteration and non-
standard usage not only make it a more difficult
problem, but also demands fundamental modifica-
tions in the definition of LI. It is an area that is
likely to attract a lot more interest from researchers
in the near future.376
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